一次函数增减性专题
中考数学复习考点知识讲解与练习11 一次函数-概念与性质
中考数学复习考点知识讲解与练习 专题11 一次函数-概念与性质在某一个变化过程中,设有两个变量x 和y ,如果满足这样的关系:y=kx+b(k 为一次项系数且k≠0,b 为任意常数,),那么我们就说y 是x 的一次函数,其中x 是自变量,y 是因变量 (又称函数)。
其图象是一条直线,k 的值决定图象的增减性,k 、b 的值决定图象的位置。
本中考数学复习考点知识讲解与练习 专题主要内容是对一次函数定义、图象的位置、增减性、直线平移、进行巩固练习,为后期综合题训练打下坚实基础。
一、一次函数定义(基本概念、参数取值或取值范围)1.(2022·广西兴宁·南宁三中期末)下列函数中,一次函数是() A .28y x = B .18y x -= C .1y x =+D .11y x =+ 2.(2022·山东东昌府·期末)下列函数中,y 是x 的一次函数的有( ) ①y =x ﹣6;②y =2x 2+3;③y =2x;④y =8x ;⑤y =x 2A .0个B .1个C .2个D .3个3.(2022·广西横县·期末)下列函数不是正比例函数的是( ) A .y =2xB .y =﹣4xC .y =﹣6xD .y =﹣6x +54.(2022·四川营山·初二期末)下列函数中,正比例函数是() A .2xy =B .y =2x 2C .2y x=D .y =2x +15.(2022·安徽瑶海·合肥38中月考)y=(m-3)x+m 2-9 是正比例函数,则m=_____________6.(2022·山东汶上·初二期末)若25(2)3m y m x -=++是一次函数,则m 的值为()A .2B .-2C .±2D .7.(2022·内蒙古科尔沁右翼前旗·初二期末)若函数y=(m-1)x ∣m ∣-5是一次函数,则m 的值为( ) A .±1B .-1C .1D .28.(2022·山东昌乐·初二期末)已知函数28(3)4m y m x -=++是关于x 的一次函数,则m 的值是() A .3m =±B .3m ≠-C .3m =-D .3m =9.(2022·贵州兴仁·初二期末)若函数()232m y m x -=-是正比例函数,则m =_______.二、一次函数图象的位置10.一次函数2y kx =-的图象经过点()1,0-,则该函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限11.一次函数21y x =--的图象不经过() A .第一象限B .第二象限C .第三象限D .第四象限12.如果一次函数y =mx+n 的图象经过第一、二、四象限,则一次函数y =nx+m 不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限13.当0b <时,一次函数y x b =+的图象大致是()A .B .C .D .14.两个一次函数y 1 = mx+n ,y 2 =nx+m ,它们在同一坐标系中的图像可能是()A .B .C .D .15.一次函数y=3x ﹣6的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限16.一次函数y=kx+b ,当k >0,b <0时,它的图象是( )A .B .C .D .17.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .18.一次函数1y ax b 与一次函数2y bx a =-在同一平面直角坐标系中的图象大致是()A .B .C .D .19.直线()32y a x b =-+-在直角坐标系中的图象如图所示,化简||2b a b --______.三、一次函数图象的增减性20.已知一次函数y=kx+b ﹣x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为() A .k 1>,b 0<B .k 1>,b 0>C .k 0>,b 0>D .k 0>,b 0<21.一次函数24y x =--的图象上有两点A (﹣3,y 1)、B (1,y 2),则y 1与y 2的大小关系是() A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定22.已知一次函数()371y m x m =--+(m 为整数)的图象与y 轴正半轴相交,y 随x 的增大而减小,当04y <<时,x 的取值范围是(). A .10x -<<B .31x -<<C .04x <<D .13x <<23.若点(-3,y 1),(1,y 2)都在直线12y x b =-+上,则y 1、y 2大小关系是()A .y 1 < y 2B .y 1 > y 2C .y 1 = y 2D .y 1≥y 224.点()111,P x y ,点()222,P x y 是一次函数43y x =-+图象上的两个点,且120x x <<,则3,1y 与2y 的大小关系是() A .213y y <<B .123y y >>C .123y y <=D .123y y =>25.已知点()()()123,,1,3,2,y y -在一次函数5y kx =+的图像上,则12,,3y y 的大小关系正确的是() A .213y y <<B .123y y <<C .213y y <<D .213y y <<26.如图,正比例函数y =kx ,y =mx ,y =nx 在同一平面直角坐标系中的图象如图所示,则比例系数k ,m ,n 的大小关系是()A .n <m <kB .m <k <nC .k <m <nD .k <n <m27.一个y 关于x 的一次函数同时满足两个条件:①图像经过(1,-1)点;②当x >0时,y 随x 的增大而减小,这个函数的解析式为________.28.己知一次函数23y x =-+,当05x ≤≤时,函数y 的最大值是__________. 29.已知,函数y =3x +b 的图象经过点A (﹣1,y 1),点B (﹣2,y 2),则y 1_____y 2(填“>”“<”或“=”) 四、一次函数图象的平移 30.将一次函数12y x =的图象向上平移2个单位,平移后,若0y >,则x 的取值范围是() A .4x >B .4x >-C .2x >D .2x >-31.一次函数23y x =+的图象可由直线2y x =向上平移得到,则平移的单位长度是________.32.将一次函数3y x =的图象向上平移2个单位的长度,平移后的直线与x 轴的交点坐标为_________. 33.如果将一次函数132y x =+的图像沿y 轴向上平移3个单位,那么平移后所得图像的函数解析式为__________.34.将直线24y x =-+先向上平移2个单位,再向右平移2个单位得到的直线l 对应的一次函数的表达式为_____.35.将一次函数2y x =的图象向上平移2个单位后,当0y >时,x 的取值范围是_________.36.将直线12y x =-向上平移一个单位长度得到的一次函数的解析式为_______________.37.解答题:如图,直线l 是一次函数y kx b =+的图象. (1)求出这个一次函数的解析式;(2)将该函数的图象向下平移3个单位,求出平移后一次函数的解析式,并写出平移后的图像与x 轴的交点坐标38.解答题:已知一次函数y kx b =+,y 随x 增大而增大,它的图象经过点()1,0且与x 轴的夹角为45,()1确定这个一次函数的解析式;()2假设已知中的一次函数的图象沿x 轴平移两个单位,求平移以后的直线及直线与y 轴的交点坐标.39.解答题:已知一次函数y =kx -4,当x =2时,y =-3. (1)求一次函数的表达式;(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x 轴交点的坐标. 40.解答题:一次函数2y x a =+的图象与x 轴交与点()2,0, (1)求出a 的值;(2)将该一次函数的图象向上平移5个单位长度,求平移后的函数解析式.。
2021年八年级下册一次函数的图像和性质(二)----增减性(含解析)
一次函数的图像和性质(二)----增减性一、单选题(共21题;共42分)1.(2020八上·中宁期中)下列一次函数中,y随x的增大而减小的是()A. y=10x+4B. y=x-3C. y=-2xD. y=0.3x2.(2020八下·醴陵期末)下列一次函数中,y随x值的增大而减小的是()A. y=3﹣2xB. y=3x+1C. y= x+6D. y=(﹣2)x3.(2020八下·来宾期末)下列一次函数中,y随x值的增大而减小的是( )A. y=2x+1B. y=3-4xC. y= x+2D. y=( -2)x4.(2021八下·杭州开学考)在一次函数的图象上,随的增大而减小,则的取值范围是()A. B. C. D.5.(2021八上·连云港期末)已知一次函数,函数值随自变量的增大而减小,那么m 的取值范围是()A. B. C. D.6.(2020八下·江阴月考)已知一次函数y=kx+b,y随x的增大而减小,那么反比例函数满足()A. 当x>0时,y>0B. y随x的增大而增大C. 图象分布在第一、三象限D. 图象分布在第二、四象限7.(2021八上·建邺期末)若一次函数的图象经过点,且函数值随着增大而减小,则点的坐标可能为()A. B. C. D.8.(2020八上·潜山期末)下列一次函数中,的值随着的值增大而减小的是()A. B. C. D.9.(2020八上·慈溪月考)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B. C. D.10.(2021八上·甘州期末)正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx﹣k 的图象大致是()A. B. C. D.11.(2020八上·平阴期末)已知函数中y随的增大而减小,则一次函数的图象大致是()A. B. C. D.12.(2020八上·运城期中)如果一次函数的图象随的增大而减小,且图象经过第三象限,则下列函数符合上述条件的是()A. B. C. D.13.(2020八下·商州期末)下列一次函数中,y随x值增大而增大的是()A. B. C. D.14.(2020八上·庐阳期末)在一次函数中,随的增大而增大,那么的值可以是()A. 1B. 0C.D.15.(2021八上·丹徒期末)一次函数的图象过点(0,4),且y随x的增大而增大,则m的值为()A. ﹣2B. ﹣2或2C. 1D. 216.(2020八下·永春期末)在一次函数中,随的增大而增大,则的取值范围是()A. B. C. D.17.(2021七上·莱州期末)正比例函数()的函数值y随x的增大而减小,则一次函数的图象大致是()A. B. C. D.18.(2020八下·金昌期末)已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A. m<2B.C.D. m>019.(2020·珠海模拟)在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,则它的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限20.(2019八上·辽阳期中)一次函数y=ax+b,b>0,且y随x的增大而减小,则其图象可能是()A. B. C. D.21.(2020八上·龙泉驿期末)正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B.C. D.二、填空题(共11题;共11分)22.(2021八上·海州期末)在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值________.23.(2021八下·上海期中)已知一次函数的函数值随着自变量的值增大而减小,那么实数的取值范围是________.24.(2020八下·巴中月考)一次函数y=4x﹣2的函数值y随自变量x值的增大而________(填“增大”或“减小”).25.(2020八下·焦作期末)写出一个具体的y随x的增大而减小的一次函数解析式________26.(2021·成都模拟)已知一次函数y=kx+k,若y随x的增大而增大,则它的图象经过第________象限.27.(2020八上·镇海期中)写一个经过点(-1,0),且y随x增大而增大的一次函数________.28.(2021九下·盐城月考)若一次函数的函数值y随自变量x的增大而增大,则实数k的取值范围是________.29.(2021八下·浦东期中)已知一次函数y=kx+b的图象不经过第三象限,那么函数值y随自变量x的值增大而________(填“增大”或“减小”).30.(2020·成都模拟)若一次函数y=(1-m)x+2,函数值y随x的增大而减小,则m的取值范围是________.31.(2020八下·西华期末)如果一次函数(是常数,)的图象过点,那么的值随的增大而________(填“增大”或“减小”).32.(2020八下·西吉期末)写出同时具备下列两个条件:(1)y随着x的增大而减小;(2)图象经过点(0,-3)的一次函数表达式(写出一个即可)________.答案解析部分一、单选题1.【答案】C【解析】【解答】解:在y=10x+4、y=x-3和y=0.3x中k分别为10,1,0.3,y随x的增大而增大;在y=-2x中,k=-2,y随x的增大而减小.故答案为:C.【分析】形如“y=kx+b(k,b为常数,且k≠0)”的函数就是一次函数,一次函数中k大于0的时候,y随x 的增大而增大;k小于0的时候,y随x的增大而减小,从而即可一一判断得出答案.2.【答案】A【解析】【解答】A.∵k=-2<0,∴y随x的增大而减小,故本选项符合题意;B.∵k=3>0,∴y随x的增大而增大,故本选项不符合题意;C.∵k= >0,∴y随x的增大而增大,故本选项不符合题意;D.∵k= ﹣2>0,∴y随x的增大而增大,故本选项不符合题意.故答案为:A.【分析】根据一次函数的性质对各选项进行逐一分析即可.关键看x的系数的正负.3.【答案】B【解析】【解答】解:A、y=2x+1,k=2,y随x的增大而增大,故A不符合题意;B、y=3-4x,k=-4<0,y随x的增大而减小,故B符合题意;C、y= x+2 ,k=>0,y随x的增大而增大,故C不符合题意;D、y=( -2)x ,k=-2>0,y随x的增大而增大,故D不符合题意;故答案为:B.【分析】根据直线y=kx+b,当k>0时y随x的增大而增大,当k<0时,y随x增大而减小;再对各选项逐一判断,可得答案。
考点10 一次函数(精讲)(解析版)
考点10.一次函数(精讲)【命题趋势】一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。
各地对一次函数的图象与性质的考查也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面,年年考查,总分值为10分左右。
一次函数不仅是中考重要考点,也是反比例函数、二次函数学习的基础,而初中函数部分,更是和整个高中学习体系联系紧密,不管对于中考还是高中基础积累,一次函数学习都尤为重要。
故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。
【知识清单】1:一次函数的相关概念(☆☆)1)正比例函数的概念:一般地,形如y =kx (k 是常数,k ≠0)的函数,叫正比例函数,其中k 叫正比例系数。
2)一次函数的定义:一般地,形如y =kx +b (k ,b 为常数,且k ≠0)的函数叫做x 的一次函数。
特别地,当一次函数y =kx +b 中的b =0时,y =kx ,所以说正比例函数是一种特殊的一次函数。
2:一次函数的图象与性质(☆☆☆)1)一次函数的图象特征与性质函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0,b >0一、二、三y 随x 的增大而增大k >0,b <0一、三、四k >0,b =0一、三y =kx +b (k ≠0)k <0,b >0一、二、四y 随x 的增大而减小k <0,b <0二、三、四k <0,b =0二、四2)k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0)。
①当–bk>0时,即k,b异号时,直线与x轴交于正半轴。
②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴。
3)两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直。
一次函数的图像与性质-增减性
解析式为
.
讨论一: (1)b的正负性是否影响到一次函数的增减性呢? (2)一次函数的增减性由谁决定呢?
结论:一次函数y=kx+b和正比例函数一样,k决 定直线的倾斜方向与倾斜程度 (1) 当k>0时,y随x的增大而增大,这时函 数的图象从左到右上升; (2) 当k<0时,y随x的增大而_____,这时函 数的图象从左到右_____.
12.2.4 一次函数图象与性质 ——k、b的实际意义
学习目标: 1.掌握一次函数的性质 2.掌握k、b的实际意义 3.运用函数性质解决简单问题
考纲要求: 一次函数的意义(C) 一次函数的图象和性质(C)
复习回顾:
正比例函数y=kx(k是常数,k≠0)的大致图像与 性质有哪些?
y
y
0
x
0
x
练习
(2)当m+1<0即m<-1时y随x的增大而减小。
例2、已知点(2,m) 、(-3,n)都在直线y=3x-1上, 试比较 m和n的大小。
解:方法一 把两点的坐标代入函数关系式 方法二 根据函数增减性进行比较 方法三 图像法
变式.已知点(2,m) 、(-3,n)都在直线y=kx-5(k<0)
上,试比较 m和n的大小。你能想出几种判断 的方法?
试一试
1、下列一次函数中,y的值随x的增大而减小 的有________
(1)y 1 x 2
(2)y 2x 3
(3)y 3x 4
(4)y x 3
例1、已知函数y=(m+1)x-3 (1)当m取何值时,y随x的增大而增大? (2)当 m取何值时,y随x的增大而减小?
解(: 1)当m+1>0即m>-1时y随x的增大而增大;
一次函数的图像与性质-增减性
12.2.4 一次函数图象与性质
——k 、b 的实际意义
学习目标:
1.掌握一次函数的性质
2.掌握k 、b 的实际意义
3.运用函数性质解决简单问题
考纲要求:
一次函数的意义(C)
一次函数的图象和性质(C)
复习回顾:
正比例函数y=kx(k 是常数,k ≠0)的大致图像与性质有哪些?
讨论一:
(1)b 的正负性是否影响到一次函数的增减性呢?
(2)一次函数的增减性由谁决定呢?
结论:一次函数y=kx+b 和正比例函数一样,k 决定直线的倾斜方向与倾斜程度
(1) 当k >0时,y 随x 的增大而增大,这时函数的图象从左到右上升;
(2) 当k <0时,y 随x 的增大而_____,这时函数的图象从左到右_____. y x 0 x y 0
例1、已知函数y=(m+1)x-3
(1)当m取何值时,y随x的增大而增大?
(2)当 m取何值时,y随x的增大而减小?
例2、已知点(2,m) 、(-3,n)都在直线y=3x-1上,试比较 m和n的大小。
变式.已知点(2,m) 、(-3,n)都在直线y=kx-5(k<0)上,试比较 m和n的大小。
你能想出几种判断的方法?
小结:
本节课我们主要学习了哪些东西?
k、b的意义及用法。
专题:“一次函数增减性求最值”类方案选择问题
【2019·滨州】有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人。
(1)1辆甲种客车与1辆乙种客车的载客量分别为多少人?
(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点。若每辆甲种客车的租金为400元,每辆乙
①+=180;
②+=105。
我们可以设:
1辆甲种客车的载客量为x人,1辆乙种客车的载客量为y人,可列方程组:
{
同学们,相信你一定能解出来,试一下!
(2)同学们,我们要用一次函数的增减性来确定方案,就需要确定一次函数解析式,所以我们要设出两个变量:设租用甲种客车m辆,租车总费用为w元,则租用乙种客车辆,租m辆甲种客车的总费用为:
(1)当x取最小值-3时,y一定取到最小值-1吗?如果你不太会,请回顾下面(2)(3)问的知识点,
(2)当k>0时,y随x的增大而,即:当x取最大值时,y取最;当x取最小值时,y取最。
(3)当k<0时,y随x的增大而,即:当x取最大值时,y取最;当x取最小值时,y取最。
(4)同学们,现在你能回答第(1)问了吗?试着写下来,再小组交流一下。
页码:第 1 页
五台县第二中学校八年级数学学科导学案(附页)
主备人:张强 学科组长:张强 时间:2020年6月10日
检测题:
【2018·湖州】“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥。甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥。两个仓库到A,B两个果园的路程如下表所示:
一次函数专题
一次函数【知识点】1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.(1)解析式:y=kx(k 是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时, 图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k 不为零)①k 不为零②x 指数为1③b 取任意实数一次函数y=kx+b 的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b 是常数,k ≠0)(2)必过点:(0,b)和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>0b k 直线经过第一、二、三象限⇔⎩⎨⎧<>0b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移:当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)考点例析考点1认识一次函数1.下列函数关系式:①y=-2x,②y=-2x,③y=-2x2,④y=3x,⑤y=2x-1.其中是一次函数的有()A.①⑤B.①④⑤C.②⑤D.②④⑤2.若一次函数y=kx+b,当x=-2时,y=7;当x=1时,y=-11,则k、b的值为()A.k=6,b=5B.k=-1,b=-5C.k=-6,b=-5D.k=1,b=53.据调查,某地铁自行车存放处在某星期天的存车量为4000辆次,其中变速车存车费是每辆一次0.30元,普通自行车存车费是每辆一次0.20元,若普通自行车存车数为x辆,存车费总收入为y元,则y关于x的函数关系式为()A.y=0.10x+800(0≤x≤4000)B.y=0.10x+1200(0≤x≤4000)C.y=-0.10x+800(0≤x≤4000)D.y=-0.10x+1200(0≤x≤4000)4.若函数y=(n+2)x+(n2-4)是一次函数,则n__________;若函数y=(n+2)x+(n2-4)是正比例函数,则n__________.5.已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?6.函数y=(m-2)x n-1+n是一次函数,则m、n应满足的条件是()A.m≠2且n=0B.m=2且n=2C.m≠2且n=2D.m=2且n=07.若3y-4与2x-5成正比例,则y是x的()A.正比例函数B.一次函数C.没有函数关系D.以上均不正确8.如图,在△ABC中,∠ABC与∠ACB的平分线交于点P,设∠A=x,∠BPC=y,当∠A变化时,求y与x之间的函数关系式,并判断y是不是x的一次函数,指出自变量的取值范围.9.+(b-2)2=0,则函数y=(b+3)x-a+1-2ab+b2是什么函数?当x=-12时,函数值y是多少?10.已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数关系式,并说明此函数是什么函数;(2)当x=3时,求y的值.考点2一次函数的图象与性质1.(2014·东营)直线y=-x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.(2014·资阳)一次函数y=-2x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2014·温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,-4)B.(0,4)C.(2,0)D.(-2,0)4.若一次函数y=(2-m)x-2的函数值y随x的增大而减小,则m的取值范围是()A.m<0B.m>0C.m<2D.m>25.如果一次函数y=k x+b的图象经过第一、三、四象限,那么()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<06.(2014·邵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>bB.a=bC.a<bD.以上都不对7.已知一次函数y=(a+8)x+(6-b),求:(1)a、b为何值时,y随x的增大而增大?(2)a、b为何值时,函数与y轴交点在x轴上方?(3)a、b为何值时,图象过原点?10.(2014·河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为()11.(2014·达州)直线y=kx+b不经过第四象限,则()A.k>0,b>0B.k<0,b>0C.k>0,b≥0D.k<0,b≥012.(2014·娄底)一次函数y=kx-k(k<0)的图象大致是()13.(2014·巴中)已知直线y=mx+n,其中m、n是常数,且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限14.(2014·鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第__________象限.15.(2014·嘉兴)点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)的两点,则y1-y2__________0.(填“>”或“<”)16.如图是一个正比例函数的图象,把该图象向左平移1个单位长度,得到的函数图象的解析式为__________.17.已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.18.作出一次函数y=2x-1的图象,根据图象回答问题:(1)y的值随x的变化怎样变化?(2)当x取何值时,y>0,y=0,y<0?(3)指出图象与两坐标轴的交点坐标.19.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x-3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.挑战自我20.如图,点B是直线y=-x+8在第一象限的一动点,A(6,0),设△AOB的面积为S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)画出S与x之间函数关系式的图象;。
一次函数知识点及其典型例题
一次函数知识点及其典型例题一次函数是数学中的基础概念之一。
其中,变量是在一个变化过程中可以取不同数值的量,而常量则是在一个变化过程中只能取同一数值的量。
例如,在匀速运动公式s=vt中,速度v和时间t是变量,路程s是常量。
在圆的周长公式C=2πr 中,周长C是常量,半径r是变量。
函数是指在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
判断y是否为x的函数,只需要看x取值确定的时候,y是否有唯一确定的值与之对应。
例如,y=πx、y=2x-1、y=-3x+2、y=x-1都是一次函数。
对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。
画一次函数图像的一般步骤是:第一步,列表(表中给出一些自变量的值及其对应的函数值);第二步,描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步,连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
函数的表示方法有三种:列表法、解析式法和图象法。
列表法一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法形象直观,但只能近似地表达两个变量之间的函数关系。
正比例函数是一种特殊的一次函数,其一般形式为y=kx(k是常数,k≠0)。
其中,k叫做比例系数。
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小。
正比例函数必过点(0,0)和(1,k)。
1.若y=x+2-3b是正比例函数,则b的值是()A。
一次函数 各种题型
一次函数基本题型分类训练题型一:一次函数的判定题型例1 根据变量x 、y 的关系式,判断y 是否是x 的一次函数。
(1) y =40x (2) y =2x +16 (3)y -5x =150 (4) 35+=xy 例2、若函数y =(3-m )x 2m --8是正比例函数,求m 的值。
例3、写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比例函数?(1)小红去商店买笔记本,每个笔记本2.5元,小红所付买本款y (元)与买本的个数x (个)之间的关系.答:_________________________________________(2)等腰三角形的周长是18,若腰长为y ,底边长为x ,则y 与x 之间的关系.并求出x 的取值范围.答:____________________________________针对性练习:1.以下函数:①y =2x 2+x +1 ②y =2πr ③y =x 1 ④y =(2-1)x ⑤y =-(a +x )(a 是常数)⑥s =2t 是一次函数的是___ _____.2.当m =________时,y =(m -1)x 2m 是正比例函数.3.当k =________时,y =(k +1)x 2k +k 是一次函数.4.圆的周长与半径 成正比例关系;圆的面积与半径 成正比例关系。
(填“是”或者“不是”)5.时间t 一定时,速度v 与路程s 成 关系。
题型二:一次函数与坐标轴的交点例4、1.函数y =2x +1与X 轴的交点坐标是( ),与Y 轴的交点坐标是( );2. 函数y =31x -2与X 轴的交点坐标是( ),与Y 轴的交点坐标是( ); 例5. 若一次函数y =mx -(m -2)过点(0,3),则m = .例6. 函数y =-x +2的图像与x 轴,y 轴围成的三角形面积为_________________.针对性练习:1.函数y =x -3与X 轴的交点坐标是( ),与Y 轴的交点坐标是( );2、函数y =-x +3与X 轴的交点坐标是( ),与Y 轴的交点坐标是( );3、若一次函数y =mx +3过点(1,2),则m =4、函数y = x -3的图像与x 轴,y 轴围成的三角形面积为_________________.题型三:一次函数与象限的关系例7. 一次函数y =kx +b 的图像过二、三、四象限,则k ,b 。
一次函数的图象和性质
周期性和对称性的应用
周期性在物理学中的应用:描述振动、波动等现象 周期性在数学分析中的应用:研究函数的性质和图像 对称性在几何学中的应用:研究图形的形状和性质 对称性在物理学中的应用:描述晶体结构和光学现象
周期性和对称性的证明
周期性证明:通过函数表达式和图像的观察,证明一次函数的周期性。 对称性证明:通过函数表达式和图像的观察,证明一次函数的对称性。 周期性和对称性的关系:探讨一次函数的周期性和对称性之间的关系。 实际应用:介绍一次函数的周期性和对称性在实际问题中的应用。
周期函数的定义:对于函数f(x),如果存在一个非零常数T,使得当x取值时, f(x+T)=f(x)恒成立,则称f(x)为周期函数,T称为这个函数的周期。
周期函数的性质:周期函数的图像是具有规律性的重复图形,其性质与周期T 有关。例如,正弦函数和余弦函数是常见的周期函数,其周期分别为2π和π。
一次函数的周期性:一次函数y=kx+b(k≠0)的图像是一条直线,不具备周期 性。
一次函数的图象和 性质
单击此处添加副标题
汇报人:XX
目录
一次函数的图象 一次函数的奇偶性 一次函数的零点
一次函数的单调性
一次函数的周期性和对称 性
01
一次函数的图象
函数表达式和图象
函数表达式:y=kx+b,其中 k≠0
截距:表示函数图像与y轴的交点, b>0时,交点在y轴正半轴;b<0 时,交点在y轴负半轴
确定函数表达式 确定自变量的取值范围 计算对应的函数值 绘制点,连接成线
函数图象的性质
斜率表示函数的增减性
一次函数图象是一条直线
y截距表示函数与y轴交点 的位置
函数的图象可以平移和翻转
中考 函数专题13 一次函数-最值问题(老师版)
专题13 一次函数-最值问题本专题是一次函数背景下的最值问题,题型上有三个方面,(1)函值性质中的最值问题;(2)几何图形中的最值问题;(3)利用一次函数性质解决生活中的最值问题;通过本专题的学习,让学生对最值问题的认知更全面,从而全面提升学生的分析和解决问题的能力。
本专题适合教师对学生进行专题教学,也适合教师对学生进行个体辅导。
题型一:一次函数性质(增减性)最值问题一、单选题1.(2019·合肥寿春中学 )设20k -<<,关于x 的一次函数()31y kx x =++,当01x ≤≤时的最小值是( )A .kB .3k +C .6k +D .3【答案】D【解析】把一次函数()31y kx x =++整理,得()()3133,y kx x k x =++=++判断出30k +>,根据一次函数的性质即可得到当01x ≤≤时的最小值. 【详解】()()3133,y kx x k x =++=++20,k -<< 30k ∴+>故0x =取最小值为3,故选:D.【考点】一次函数()0y kx b k =+≠的性质,当0k >时,y 随x 的增大而增大.当k 0<时,y 随x 的增大而减小.2.(2018·余姚市梁辉初级中学中考模拟)设0<k <2,关于x 的一次函数y=(k -2)x+2,当1≤x≤2时,y 的最小值是( )A .2k -2B .k -1C .kD .k+1【答案】A【解析】先根据0<k <2判断出k -2的符号,再判断出函数的增减性,根据1≤x≤2即可得出结论.【详解】∵0<k <2,∴k -2<0,∴此函数是减函数,∵1≤x≤2,∴当x=2时,y 最小=2(k -2)+2=2k -2.故选A .【考点】本题考查的是一次函数的性质,熟知一次函数y=kx+b (k≠0)中,当k <0,y 随x 的增大而减小。
3.(2018·广东初二学业考试)一次函数()y k 1x k =--的大致图象如图所示,关于该次函数,下列说法错误的是( )A .k 1>B .y 随x 的增大而增大C .该函数有最小值D .函数图象经过第一、三、四象限【答案】C 【解析】根据一次函数的增减性确定有关k 的不等式组,求解即可. 【详解】观察图象知:y 随x 的增大而增大,且交与y 轴负半轴,函数图象经过第一、三、四象限,所以,k - 1> 0 , - k<0 , 解得:k 1>,该函数没有最小值,故选C .【点拨】本题考查了一次函数的图象与系数的关系,解题的关键是了解系数对函数图象的影响,难度不大.二、填空题4.(2020·辽宁初二期末)已知一次函数2y x =-+,当31x -≤≤-时,y 的最小值是________.【答案】3【解析】根据一次函数的性质得出当31x -≤≤-时,y 的取值范围即可.【详解】∵k=-1<0,∴y 随x 的增大而减小,∴当31x -≤≤-时,∴x = - 1 时,函数值最小,最小值为3. 故答案为:3.【点拨】本题考查了一次函数的性质,掌握一次函数的增减性是解题的关键.5.(2019·安徽省桐城市黄岗初中初二月考)在一次函数23y x =+中,当 05x ≤≤时,y 的最小值为____________.【答案】3【详解】k =2>0,∴y 随x 的增大而增大,∴当x =0时,y 有值小值,把x =0代入y =2x +3得y =0+3=3.故答案为3.【点拨】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降;当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.6.(2019·江西初二期末)已知一次函数y =﹣2x +5,若﹣1≤x ≤2,则y 的最小值是_____.【答案】1【详解】解:∵一次函数y =﹣2x +5,k =﹣2<0,∴y 随x 的增大而减小,∵﹣1≤x ≤2,∴当x =2时,y 的最小值是1,故答案为:1【点拨】此题主要考查了一次函数,根据一次函数的性质得出其增减性是解答此题的关键. 7.(2018·梅州市梅县区松口中学初二月考)在一次函数23y x =+中,y 随x 的增大而____________(填“增大”或“减小”),当 05x ≤≤时,y 的最小值为____________.【答案】增大 3【解析】由题意得:∵一次函数y=2x+3中,k=2>0,∴y 随x 的增大而增大,∵此函数为增函数,∴当0≤x≤5时,y 的最小值为x=0时,y 最小=3.8.(2019·北京市第十一中学初二月考)在一次函数y =﹣2x +3中,y 随x 的增大而_____(填“增大”或“减小”),当﹣1≤x ≤3时,y 的最小值为_____.【答案】减小 ﹣3【解析】根据一次函数的性质得一次函数23y x =+﹣,y 随x 的增大而减小;然后计算3x =时得函数值即可得到y 的最小值.【详解】∵k =﹣2<0,∴一次函数y =﹣2x +3,y 随x 的增大而减小;当x =3时,y =﹣2x +3=﹣3.∴当﹣1≤x ≤3时,y 的最小值为﹣3.故答案为减小,﹣3.【点拨】本题考查了一次函数的性质:0k >,y 随x 的增大而增大,函数从左到右上升;0k <,y 随x 的增大而减少,函数从左到右下降.题型 二:几何图形中最值问题;一、选择题9.(2019·广东红岭中学初二期中)一次函数y kx b =+的图象与x 轴、y 轴分别交于点(2,0)A ,(0,4)B ,点C ,D 分别是OA ,AB 的中点,P 是OB 上一动点.则DPC ∆周长的最小值为( )A .4B C . D .2【答案】D 【解析】作C 点关于y 轴的对称点C ',连接'DC ,与y 轴的交点即为所求点P ,用勾股定理可求。
2020中考常见最值问题总结归纳 微专题八 函数最值 一次函数增减性法(解析版)
2020中考常见最值问题总结归纳微专题八:一次函数增减性法WORKINGPLAN微专题八:利用一次函数增减性法考法指导一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
【典例精析】例题1.(2019·河南中考真题)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.【答案】(1)A 的单价30元,B 的单价15元(2)购买A 奖品8个,购买B 奖品22个,花费最少【详解】解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得 3212054210x y x y +=⎧⎨+=⎩, 3015x y =⎧∴⎨=⎩, ∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-, 152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;【针对训练】1.(2019·广东中考真题)有A B 、两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A B 、两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【答案】(1)焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度;(2)当60x =时,y 取最大值25800度.【详解】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则4030201800a b b a -=⎧⎨-=⎩,解得:300260a b =⎧⎨=⎩答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧()90x -吨,总发电量为y 度,则 300260(90)4023400y x x x =+-=+∵2(90)x x ≤-∴60x ≤∵y 随x 的增大而增大∴当60x =时,y 取最大值25800度.2.(2017·山东中考真题)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?【答案】(1)该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.【详解】解:(1)设该网店甲种口罩每袋的售价为x 元,乙种口罩每袋的售价为y 元,根据题意得:523110x y x y -=⎧⎨+=⎩,解这个方程组得:2520x y =⎧⎨=⎩,故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)设该网店购进甲种口罩m 袋,购进乙种口罩(500(m )袋,根据题意得4(500)522.418(500)10000m m m m ⎧>-⎪⎨⎪+-≤⎩,解这个不等式组得:222.2(m ≤227.3,因m 为整数,故有5种进货方案,分别是:购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;设网店获利w 元,则有w =(25(22.4(m +(20(18((500(m (=0.6m +1000,故当m =227时,w 最大,w 最大=0.6×227+1000=1136.2(元),故该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.3.(2017·四川中考真题)(2017四川省广安市,第22题,8分)某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t (件)的函数关系式.(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.【答案】(1(W=8t+900((2)有三种购买方案.为了使拍照的资金更充足,应选择方案:购买30件文化衫、15本相册.【详解】1)设购买的文化衫t件,则购买相册(45﹣t)件,根据题意得:W=28t+20×(45﹣t)=8t+900.(2)根据题意得:,解得:30≤t≤32,∴有三种购买方案:方案一:购买30件文化衫、15本相册;方案二:购买31件文化衫、14本相册;方案三:购买32件文化衫、13本相册.∴W=8t+900中W随x的增大而增大,∴当t=30时,W取最小值,此时用于拍照的费用最多,∴为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.4.(2017·四川中考真题)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【答案】(1)每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷;(2)有七种方案,当大型收割机用8台时,总费用最低,最低费用为4800元.【详解】(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:,解得:.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∴2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴,解得:5≤m≤7,∴有三种不同方案.∴w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.5.(2017·四川中考真题)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【答案】(1)购进篮球40个,排球20个;(2(y=5x+1200((3)共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.最大利润为1415元.【详解】解:(1)设购进篮球m个,排球n个,根据题意得:60 80504200 m nm n+=⎧⎨+=⎩,解得:4020mn=⎧⎨=⎩(答:购进篮球40个,排球20个.(2)设商店所获利润为y元,购进篮球x个,则购进排球(60(x(个,根据题意得:y=(105(80(x+(70(50((60(x(=5x+1200((y与x之间的函数关系式为:y=5x+1200((3)设购进篮球x个,则购进排球(60(x(个,根据题意得:5120014008050(60)4300 xx x+≥⎧⎨+-≤⎩,解得:40≤x≤130 3((x取整数,(x=40(41(42(43,共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.(在y=5x+1200中,k=5(0((y随x的增大而增大,(当x=43时,可获得最大利润,最大利润为5×43+1200=1415元.6.(2017·辽宁中考真题)为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1((当x≤10时,y与x的关系式为:((当x(10时,y与x的关系式为:((2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?【答案】(1)①y=300x﹣600;②y=﹣12x2+420x﹣600;(2)停车场能实现3000元的日净收入,每辆次轿车的停车费定价是15元或20元;(3)每辆次轿车的停车费定价应定为17元,此时最大日净收入是3072元.【详解】(1)①由题意得:y=300x﹣600;②由题意得:y=[300(12(x(10(]x(600( 即y=﹣12x2+420x(600((2)依题意有:﹣12x2+420x(600=3000( 解得x1=15(x2=20(故停车场能实现3000元的日净收入,每辆次轿车的停车费定价是15元或20元;(3)、当x≤10时,停车300辆次,最大日净收入y=300×10﹣600=2400(元);当x>10时,y=(12x2+420x(600=(12(x2(35x((600=(12(x(17.5(2+3075(∴当x=17.5时,y有最大值.但x只能取整数,(x取17或18.显然x取17时,小车停放辆次较多,此时最大日净收入为y=﹣12×0.25+3075=3072(元).由上可得,每辆次轿车的停车费定价应定为17元,此时最大日净收入是3072元.7.(2017·四川中考真题)(2017四川省攀枝花市,第20题,8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.【答案】∴1∴A品种芒果售价为每箱75元,B品种芒果售价为每箱100元;(2)购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A品种芒果6箱,B品种芒果12箱;其中购进A品种芒果6箱,B品种芒果12箱总费用最少.【详解】解:(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意得:23450{2275x yx y+=+=,解得:75 {100 xy==.答:A品种芒果售价为每箱75元,B品种芒果售价为每箱100元.(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,∴18﹣n≥2n且18﹣n≤4n,∴185≤n≤6,∵n非负整数,∴n=4,5,6,相应的18﹣n=14,13,12;∴购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A 品种芒果6箱,B品种芒果12箱;∴所需费用m分别为:4×75+14×100=1700元;5×75+13×100=1675元;6×75+12×100=1650元,∴购进A品种芒果6箱,B品种芒果12箱总费用最少.。
第19章专题21:一次函数的增减性-通用版八年级下册数学专题练
19章专题21:一次函数的增减性与最值1.已知一次函数y=-2x+1,当x≤0时,y的取值范围为()A.y≤1B.y≥0C.y≤0D.y≥1【答案】D2.已知关于x的一次函数y=mx+2m-3在-1≤x≤1上的函数值总是正的,则m的取值范围在数轴上表示正确的是()A.B.C.D.【答案】A3.已知点A(-2,y1),B(-3,y2),C(3,y3)都在关于x的一次函数y=-x+m的图象上,则之间的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2<y1<y3D.y3<y1<y2 【答案】D4.已知一次函数y=-3x+m图象上的三点P(n,a),Q(n-1,b),R(n+2,c),则a,b,c的大小关系是()A.b>a>c B.c>b>a C.c>a>b D.a>b>c【答案】A5.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5 B.2 C.2.5 D.-6【答案】A6.已知A(-1,y1)和B(m,y2)在一次函数y=-3x+b(b为常数)的图象上,且y1<y2,则m的值可能是()A.-2 B.-1 C.0 D.2【答案】A7.已知关于x的一次函数y=(k2+1)x-2图象经过点A(3,m)、B(-1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n【答案】B8.直线y=-2x+b上有三个点(-2.4,y1).(-1.5,y2).(1.3,y3).则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2<y1<y3 D.y2>y1>y3【答案】A9.已知整数x满足-5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.-4 B.-6 C.14 D.6【答案】D10.已知当-2≤x≤3时,函数y=|2x-m|(其中m为常量)的最小值为2m-54,则m=__________。
一次函数增减性的应用
(B 层)学生自主学习导学案班级: 姓名: 科目初二数学 课题 一次函数增减性应用 授课时间 2015.6.15 设计人张晓梅 审核人 张晓梅 序号 56 学习目标熟记一次函数的性质,并熟练应用一次函数的性质解决一些问题。
【温故知新】 同学们都知道,一次函数的性质是:(1)k>0时,y 随x 的增大而增大;(2)k<0时,y 随x 的增大而减小。
这就是一次函数的“增减性”。
【知识归纳】(一)求函数解析式一次函数的图象经过(-1,0),且函数值随着自变量的增大而减小,写出符合条件的一次函数。
(至少三个)(二)确定函数图象已知一次函数y=kx-k ,若y 随着x 的增大而减小,则该函数的图象经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限(三)比较函数值的大小点),(111y x P ,点),(222y x P 是一次函数y=-4x+3的图象上的两个点,且21x x <,则21,y y 的大小关系是 ( )A.21y y >B.021>>y yC.21y y <D.21y y =(四)确定字母系数的取值范围若正比例函数x m y )21(-=的图象经过点A ),(11y x 和点B ),(22y x ,当21x x <时,21y y >,则m 的取值范围是 ( )A.m<0B.0>mC.21<m D.21>m 【学以致用】 1、若一次函数y=kx+b 的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是 ( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<02、已知直线1l 和直线2l 在同一平面直角坐标 系中的位置如图所示,点),(111y x p 在直线1l 上,点),(333y x p 在直线2l 上,点),(222y x p 为直线1l ,2l 的交点,其中3212,x x x x <<则 ( )A.321y y y <<B.213y y y <<C.123y y y <<D.312y y y <<3、已知一次函数y=(6+3m)x+(m-4),y 随x 的增大而增大,函数的图象与y 轴交于负半轴。
用一次函数增减性不等式应用题与答案2
(一) 利用一次函数增减性和不等式解应用题1、 某社区购甲乙两种树苗共600棵,甲乙两种树苗单价及成活率见下表:(1)假设购买树苗资金不超过44000元,那么最多可购买乙树苗多少棵? 解:设购买乙树苗X 棵,甲树苗(600 - X )棵,费用W ,W =80X + 60•(600–X )≤44000X ≤400答:买乙树苗400棵。
(2)假设希望这批树苗成活率不低于90%,并使购买树苗费用最低,应如何选购树苗,购买树苗的最低费用为多少?解:设购买乙树苗X 棵,甲树苗(600 – X )棵,费用W ,W =80X + 60•(600–X )=20 X+3600∵20为正数∴W 随X 增大而增大∴W=150时费用最低二、为了更好治理南门湖水质,爱惜环境,市治污公司决定购10台活水处置设备,现有A 、B 两种型号的设备,购买一台A 型设备比一台B 型设备多2万元,96%X+528–88% X ≥ 540 X ≥ 15096%X+88%(600–X ) 600 ≥90%购买2台A型设备比3台B设备少6万元。
(1)求a、b的值解:由题可知,a=(b+2)万元2(b+2)=3 b–6b=10a=12万元答:a为12,b为10(2)市治污公司购买污水处置设备的资金不超过105万元,你以为该公司有哪几种方案。
12X+10(10–X)≤105X≤∵台数为正整数∴X为0,1,2答:A型O台,B型10台A型1台,B型9台A型2台,B型8台(3)在(2)的条件下,每一个月要求处置南门湖污水量不低于2040吨为了节约资金,请你设计“一个最省钱”的购买方案。
解设A型买X台2040X+200(600 – X )≥204012X+10(10–X )≤1051≤ x ≤设总金额为yy=12x+10(10 –x)=2x+100依照一次函数增减性y 随x 增大而增大在1≤ x ≤ x 是整数∴X 取1即A 型1台,B 型9台3、 某市为进一步改善居民生活环境,决定对城区部份路段实施改造,现需要A 、B 两种花砖50万块,该厂现有甲种原料180千克,乙种原料145万千克,已知生产1万块A 砖,用甲种原料万千克,用乙种原料万千克,造价万元,生产1万块B 砖,用甲种原料2万千克,乙种原料5万千克,造价万元。
专题八:利用一次函数增减性法
专题八:利用一次函数增减性法考法指导一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
【典例精析】例题1.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得 3212054210x y x y +=⎧⎨+=⎩,3015x y =⎧∴⎨=⎩,∴A 的单价30元,B 的单价15元; (2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-,152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;【针对训练】1.有A B 、两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A B 、两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【详解】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则4030201800a b b a -=⎧⎨-=⎩,解得:300260a b =⎧⎨=⎩答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧()90x -吨,总发电量为y 度,则 300260(90)4023400y x x x =+-=+∵2(90)x x ≤-∴60x ≤∵y 随x 的增大而增大∴当60x =时,y 取最大值25800度.2.某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?解:(1)设该网店甲种口罩每袋的售价为x 元,乙种口罩每袋的售价为y 元,根据题意得:523110x y x y -=⎧⎨+=⎩,解这个方程组得:2520x y =⎧⎨=⎩,故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)设该网店购进甲种口罩m 袋,购进乙种口罩(500(m )袋,根据题意得4(500)522.418(500)10000m m m m ⎧>-⎪⎨⎪+-≤⎩,解这个不等式组得:222.2(m ≤227.3,因m 为整数,故有5种进货方案,分别是:购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;设网店获利w 元,则有w =(25(22.4(m +(20(18((500(m (=0.6m +1000,故当m =227时,w 最大,w 最大=0.6×227+1000=1136.2(元),故该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.3.某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t (件)的函数关系式.(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.【详解】1)设购买的文化衫t件,则购买相册(45﹣t)件,根据题意得:W=28t+20×(45﹣t)=8t+900.(2)根据题意得:,解得:30≤t≤32,∴有三种购买方案:方案一:购买30件文化衫、15本相册;方案二:购买31件文化衫、14本相册;方案三:购买32件文化衫、13本相册.∴W=8t+900中W随x的增大而增大,∴当t=30时,W取最小值,此时用于拍照的费用最多,∴为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.4.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【详解】(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:,解得:.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∴2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴,解得:5≤m≤7,∴有三种不同方案.∴w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.5.为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?解:(1)设购进篮球m个,排球n个,根据题意得:60 80504200 m nm n+=⎧⎨+=⎩,解得:4020mn=⎧⎨=⎩(答:购进篮球40个,排球20个.(2)设商店所获利润为y元,购进篮球x个,则购进排球(60(x(个,根据题意得:y=(105(80(x+(70(50((60(x(=5x+1200((y与x之间的函数关系式为:y=5x+1200((3)设购进篮球x个,则购进排球(60(x(个,根据题意得:5120014008050(60)4300 xx x+≥⎧⎨+-≤⎩,解得:40≤x≤130 3((x取整数,(x=40(41(42(43,共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.(在y=5x+1200中,k=5(0((y随x的增大而增大,(当x=43时,可获得最大利润,最大利润为5×43+1200=1415元.6.为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1((当x≤10时,y与x的关系式为:((当x(10时,y与x的关系式为:((2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?【详解】(1)①由题意得:y=300x﹣600;②由题意得:y=[300(12(x(10(]x(600( 即y=﹣12x2+420x(600((2)依题意有:﹣12x2+420x(600=3000( 解得x1=15(x2=20(故停车场能实现3000元的日净收入,每辆次轿车的停车费定价是15元或20元;(3)、当x≤10时,停车300辆次,最大日净收入y=300×10﹣600=2400(元);当x>10时,y=(12x2+420x(600=(12(x2(35x((600=(12(x(17.5(2+3075(∴当x=17.5时,y有最大值.但x只能取整数,(x取17或18.显然x取17时,小车停放辆次较多,此时最大日净收入为y=﹣12×0.25+3075=3072(元).由上可得,每辆次轿车的停车费定价应定为17元,此时最大日净收入是3072元.7.攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.解:(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意得:23450{2275x yx y+=+=,解得:75 {100 xy==.答:A品种芒果售价为每箱75元,B品种芒果售价为每箱100元.(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,∴18﹣n≥2n且18﹣n≤4n,∴185≤n≤6,∵n非负整数,∴n=4,5,6,相应的18﹣n=14,13,12;∴购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A 品种芒果6箱,B品种芒果12箱;∴所需费用m分别为:4×75+14×100=1700元;5×75+13×100=1675元;6×75+12×100=1650元,∴购进A品种芒果6箱,B品种芒果12箱总费用最少.。