高等数学下册9-2(涂)
(完整word版)《高等数学》(下)课程教学大纲
《高等数学》(下)课程教学大纲教研室主任:王树泉执笔人:蔡俊青一、课程基本信息开课单位:经济学院课程名称:高等数学下册课程编号:101001212英文名称:Advanced Mathematics课程类型:专业基础课总学时: 72理论学时: 72 实验学时: 0学分:3开设专业:所有专业先修课程:《高等数学》(上)二、课程任务目标(一)课程任务本课程是理科院校经济管理类专业的一门专业基础课,又是全国硕士研究生入学考试统考科目。
通过本课程的学习,要使学生掌握多元函数微积分学、无穷级数和常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
(二)课程目标基本了解多元函数微积分学的基础理论;充分理解微积分学的背景思想及数学思想。
掌握多元函数微积分学、无穷级数和常微分方程的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学、无穷级数和微分方程的思想方法解决应用问题。
三、教学内容和要求第六章多元函数微积分1.内容概要空间解析几何简介,多元函数基本概念,偏导数,全微分,多元复合函数微分法与隐函数微分法,多元函数的极值及其求法,二重积分的概念与性质,直角坐标系下二重积分的计算,极坐标系下二重积分的计算。
2.重点和难点重点:多元函数的概念;偏导数与全微分的概念;多元复合函数的求导法则;多元函数的极值问题;二重积分的概念及其计算难点:全微分的概念;多元复合函数的求导法则与隐函数微分法;二重积分的计算。
3.学习目的与要求(1)理解多元函数的极限与连续性,以及有界闭区域上的连续函数的性质。
(2)理解偏导数、全微分的概念。
(3)熟练掌握复合函数求导法;会求二阶偏导。
(4)会求隐函数的偏导数。
高等数学(第三版)课件:二重积分的计算
式:0 x π ,0 y 2 所确定的长方形区域. 2
解 这题可以不必画积区域.分析被积函数可知,如先
对x积分,需用分部积分法. 如先对y积分则不必,
计算会简单些.因此,我们选择先对y积分,即
π
xy
cos(
xy
2
)dxdy
2
0
dx
2
0
xy
cos(
xy
2
)dy
D
1π
2
2
0
sin( xy 2 )
和
x
π
D
所围成的三角形区域.
2
解法1 先对y积分. 作平行于y轴的直线与积分 区域D
相交,沿着y的正方向看,入口曲线为y=0,出口
曲线为y=x,D在x 轴上的投影区间为[0, π] . 2
sin
x
cos
ydxdy
π
2
0
dx
x
0
sin
x
cos
ydy
D
π
02
sin
x
sin
y
x 0
dy
π
02
sin
2
xdx
由 y x, x 2,
得x 2, y 2.
在y轴上的积分区间为12 ,2
当1 y 1时,平行于x轴的直线与区域D相交时,
2 沿x轴正方向看,入口曲线为
x,出1口曲线为x=2.
y
当1 y 2时,平行于x轴的直线与区域D相交时, 沿x轴正方向看,入口曲线为x=y,出口曲线为x=2.
依上述不等式组可作出区域D的图形,
再化为先对y积分后对x积分的二次积分.
01
dy
1y
高等数学下册知识点
高等数学下册知识点第七章 空间解析几何与向量代数一、填空与选择1、已知点A (,,)321-和点B (,,)723-,取点M 使MB AM 2=,则向量OM=。
2 已知点A (,,)012和点B =-(,,)110,则AB=。
3、设向量与三个坐标面的夹角分别为ξηζ,,,则cos cos cos 222ξηζ++= 。
4、设向量a 的方向角απβ=3,为锐角,γπβ=-4=,则a = 。
5、向量)5,2,7(-=a 在向量)1,2,2(=b 上的投影等于。
6、过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,, 垂直的平面方程为_____________________________. 7、已知两直线方程是130211:1--=-=-z y x L ,11122:2zy x L =-=+,则过1L 且平行2L 的平面方程为____________________ 8、设直线182511:1+=--=-z y x L ,⎩⎨⎧=-+=--03206:2z y y x L ,则1L 与2L 的夹角为( ) (A ). 6π (B ).4π (C ).3π (D )2π.9、平面Ax By Cz D +++=0过x 轴,则( )(A )A D ==0 (B )B C =≠00, (C )B C ≠=00, (D )B C ==0 10、平面3510x z -+=( )(A )平行于zox 平面 (B )平行于y 轴(C )垂直于y 轴 (D )垂直于x 轴 11、点M (,,)121到平面x y z ++-=22100的距离为( )(A )1 (B )±1 (C )-1 (D )1312、与xoy坐标平面垂直的平面的一般方程为 。
13、过点(,,)121与向量k j S k j i S--=--=21,32平行的平面方程为 。
14、平面0218419=++-z y x和0428419=++-z y x 之间的距离等于⎽⎽⎽⎽⎽⎽ 。
数学一复习计划
总结归纳第四、五章中的知识点, 整理并创建四、五章中的难题、错题题库
高等数学 第六章 定积分的应用
天数
学习章节
习题章节
练习题目
备注
第一天
第 6 章第 1 节
——
——
元素法
第 6 章 第 2 节
习题6—2
1(1)(4),2(1),4,5(1),9,12,15(1) (3) ,16,19,21
求平面图形的面积(直角坐标情形、极坐标情形)旋转体的体积及侧面积 平行截面面积为已知的立体的体积平面曲线的弧长
第五天
总结归纳第二章中的知识点, 整理并创建本章中的难题、错题题库
高等数学 第三章 微分中值定理与导数的应用
天数
学习章节
习题章节
练习题目
备注
第一天
第 3 章 第 1 节
习题3-1
6,8,11(1),12,15
费马定理、罗尔定理、拉格朗日定理、柯西定理及其几何意义 构造辅助函数
第二天
第 3 章第 2 节
第 1 章 第 7 节
习题1-7
1,2,3(1),4(3) (4)
无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、低阶无穷小、k 阶无穷小)及其应用 一些重要的等价无穷小以及它们的性质和确定方法
第五天
第 1 章 第 8 节
习题1-8
3(4),4,5
函数的连续性, 函数的间断点的定义与分类(第一类间断点与第二类间断点) 判断函数的连续性和间断点的类型
第二天
第 6 章第 3 节
习题6—3
5,11
用定积分求功、水压力、引力
第三天
第 6章总复习六
总复习题六
2,3,5
高等数学 9-2二重积分的计算法
解 根据对称性有 D = 4D1
在极坐标系下
D1
x + y = a ⇒ r = a,
2 2 2
( x + y ) = 2a ( x − y )
2 2 2 2 2 2
⇒ r = a 2 cos 2θ ,
r = a 2 cos 2θ π , 得交点 A = ( a, ) , 由 6 r=a
1
2− y 1− y
2
f ( x , y )dx .
例 3 求 ∫∫ ( x + y )dxdy ,其中 D 是由抛物线
2
所围平面闭区域. y = x 和 x = y 所围平面闭区域
2 2
D
解 两曲线的交点
x = y2
y = x ⇒ (0,0) , (1,1), 2 x = y
2
y = x2
y
A(x0 )
x
y = ϕ1(x)
ϕ2 ( x) ϕ1 ( x )
∫∫ f ( x , y )dσ = ∫ dx ∫
a D
f ( x , y )dy .
c 如果积分区域为: 如果积分区域为: ≤ y ≤ d , ϕ 1 ( y ) ≤ x ≤ ϕ 2 ( y ).
[Y-型] -
d
d
x = ϕ1( y)
x2 + y2 = 1
1 , 直线方程为r = sinθ + cosθ
所以圆方程为 r = 1,
x+ y =1
∫∫ f ( x , y )dxdy = ∫ dθ ∫
2
π
1
D
0
1 sinθ +cosθ
f (r cosθ , r sinθ )rdr.
最新同济大学第六版高等数学上下册课后习题答案9-2
同济大学第六版高等数学上下册课后习题答案9-2仅供学习与交流,如有侵权请联系网站删除 谢谢13 习题9-21. 计算下列二重积分:(1)⎰⎰+Dd y x σ)(22, 其中D ={(x , y )| |x |≤1, |y |≤1};解 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是⎰⎰+D d y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=. (2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域: 解 积分区域可表示为D : 0≤x ≤2, 0≤y ≤2-x . 于是⎰⎰+D d y x σ)23(y d y x dx x ⎰⎰-+=2020)23(dx y xy x ⎰-+=20022]3[ dx x x ⎰-+=202)224(0232]324[x x x -+=320=. (3)⎰⎰++Dd y y x x σ)3(223, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解 ⎰⎰++D d y y x x σ)3(323⎰⎰++=1032310)3(dx y y x x dy ⎰++=1001334]4[dy x y y x x ⎰++=103)41(dy y y 0142]424[y y y ++=1412141=++=. (4)⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (π, 0), 和(π, π)的三角形闭区域.解 积分区域可表示为D : 0≤x ≤π, 0≤y ≤x . 于是,⎰⎰+D d y x x σ)cos(⎰⎰+=x dy y x xdx 00)cos(π⎰+=π0)][sin(dx y x x x ⎰-=π0)sin 2(sin dx x x x ⎰--=π0)cos 2cos 21(x x xd仅供学习与交流,如有侵权请联系网站删除 谢谢13+--=0|)cos 2cos 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=. . 2. 画出积分区域, 并计算下列二重积分: (1)⎰⎰Dd y x σ, 其中D 是由两条抛物线x y =, 2x y =所围成的闭区域;解 积分区域图如, 并且D ={(x , y )| 0≤x ≤1, x y x ≤≤2}. 于是 ⎰⎰D d y x σ⎰⎰=102dy y x dx x x ⎰=10223]32[dx y x x x 556)3232(10447=-=⎰dx x x . (2)⎰⎰Dd xy σ2, 其中D 是由圆周x 2+y 2=4及y 轴所围成的右半闭区域;解 积分区域图如, 并且D ={(x , y )| -2≤y ≤2, 240y x -≤≤}. 于是 ⎰⎰⎰⎰⎰----=22402240222222]21[dy y x dx xy dy d xy y y D σ 1564]10132[)212(22225342=-=-=--⎰y y dy y y . (3)⎰⎰+Dy x d e σ, 其中D ={(x , y )| |x |+|y |≤1};解 积分区域图如, 并且D ={(x , y )| -1≤x ≤0, -x -1≤y ≤x +1}⋃{(x , y )| 0≤x ≤1, x -1≤y ≤-x +1}.于是⎰⎰⎰⎰⎰⎰+--+---++=11101101x x y x x x y x D y x dy e dx e dy e dx e d eσ ⎰⎰+---+--+=10110111][][dy e e dx e e x x y x x x y x ⎰⎰---+-+-=101201112)()(dx e e dx e e x x 101201112]21[]21[---+-+-=x x e ex x e e =e -e -1. (4)⎰⎰-+Dd x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域.仅供学习与交流,如有侵权请联系网站删除 谢谢13解 积分区域图如, 并且D ={(x , y )| 0≤y ≤2, y x y ≤≤21}. 于是 ⎰⎰⎰⎰⎰-+=-+=-+2022232222022]2131[)()(dy x x y x dx x y x dy d x y x y y y y D σ 613)832419(2023=-=⎰dy y y . 3. 如果二重积分⎰⎰Ddxdy y x f ),(的被积函数f (x , y )是两个函数f 1(x )及f 2(y )的乘积,即f (x , y )= f 1(x )⋅f 2(y ), 积分区域D ={(x , y )| a ≤x ≤b , c ≤ y ≤d }, 证明这个二重积分等于两个单积分的乘积, 即])([])([)()(2121dy y f dx x f dxdy y f x f dc b a D ⎰⎰⎰⎰⋅=⋅证明 dx dy y f x f dy y f x f dx dxdy y f x f d c b a d c b a D⎰⎰⎰⎰⎰⎰⋅=⋅=⋅])()([)()()()(212121,而 ⎰⎰=⋅dc d c dy y f x f dy y f x f )()()()(2121, 故 dx dy y f x f dxdy y f x f b a dc D ⎰⎰⎰⎰=⋅])()([)()(2121.由于⎰dc dy y f )(2的值是一常数, 因而可提到积分号的外面, 于是得 ])([])([)()(2121dy y f dx x f dxdy y f x f dc b a D ⎰⎰⎰⎰⋅=⋅4. 化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域D 是:(1)由直线y =x 及抛物线y 2=4x 所围成的闭区域;仅供学习与交流,如有侵权请联系网站删除 谢谢13 解积分区域如图所示, 并且D ={(x , y )|x y x x 2 ,40≤≤≤≤}, 或D ={(x , y )| y x y y ≤≤≤≤241 ,40}, 所以 ⎰⎰=x x dy y x f dx I 240),(或⎰⎰=yy dx y x f dy I 4402),(. (2)由x 轴及半圆周x 2+y 2=r 2(y ≥0)所围成的闭区域;解积分区域如图所示, 并且D ={(x , y )|220 ,x r y r x r -≤≤≤≤-},或D ={(x , y )| 2222 ,0y r x y r r y -≤≤--≤≤},所以 ⎰⎰--=220),(x r r r dy y x f dx I , 或⎰⎰---=2222),(0y r y r r dx y x f dy I .(3)由直线y =x , x =2及双曲线xy 1=(x >0)所围成的闭区域; 解积分区域如图所示, 并且D ={(x , y )|x y xx ≤≤≤≤1 ,21}, 或D ={(x , y )| 21 ,121≤≤-≤≤x yy }⋃{(x , y )|2 ,21≤≤≤≤x y y }, 所以 ⎰⎰=x x dy y x f dx I 1),(21, 或⎰⎰⎰⎰+=22121121),(),(y ydx y x f dy dx y x f dy I .仅供学习与交流,如有侵权请联系网站删除 谢谢13 (4)环形闭区域{(x , y )| 1≤x 2+y 2≤4}.解 如图所示, 用直线x =-1和x =1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ ⎰⎰⎰⎰--------+=222244411112),(),(x x x x dy y x f dx dy y x f dx ⎰⎰⎰⎰--------++222214442111),(),(x x x x dy y x f dx dy y x f dx用直线y =1, 和y =-1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4, 如图所示. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ ⎰⎰⎰⎰--------+=222244141121),(),(y y y y dx y x f dy dx y x f dy ⎰⎰⎰⎰--------++222241441211),(),(y y y y dx y x f dy dx y x f dy5. 设f (x , y )在D 上连续, 其中D 是由直线y =x 、y =a 及x =b (b >a )围成的闭区域, 证明:⎰⎰⎰⎰=byb a x a b a dx y x f dy dy y x f dx ),(),(.仅供学习与交流,如有侵权请联系网站删除 谢谢13证明 积分区域如图所示, 并且积分区域可表示为D ={(x , y )|a ≤x ≤b , a ≤y ≤x }, 或D ={(x , y )|a ≤y ≤b , y ≤x ≤b }.于是 ⎰⎰D d y x f σ),(⎰⎰=x a b a dy y x f dx ),(, 或⎰⎰D d y x f σ),(⎰⎰=b yb a dx y x f dy ),(.因此 ⎰⎰⎰⎰=by b a x a b a dx y x f dy dy y x f dx ),(),(. 6. 改换下列二次积分的积分次序:(1)⎰⎰ydx y x f dy 010),(; 解 由根据积分限可得积分区域D ={(x , y )|0≤y ≤1, 0≤x ≤y }, 如图.因为积分区域还可以表示为D ={(x , y )|0≤x ≤1, x ≤y ≤1}, 所以⎰⎰⎰⎰=110010),(),(x y dy y x f dx dx y x f dy . (2)⎰⎰yy dx y x f dy 2202),(; 解 由根据积分限可得积分区域D ={(x , y )|0≤y ≤2, y 2≤x ≤2y }, 如图.因为积分区域还可以表示为D ={(x , y )|0≤x ≤4, x y x ≤≤2}, 所以 ⎰⎰y y dx y x f dy 2202),(⎰⎰=402),(xx dy y x f dx . (3)⎰⎰---221110),(y y dx y x f dy ;解 由根据积分限可得积分区域}11 ,10|),{(22y x y y y x D -≤≤--≤≤=, 如图. 因为积分区域还可以表示为}10 ,11|),{(2x y x y x D -≤≤≤≤-=, 所以仅供学习与交流,如有侵权请联系网站删除 谢谢13 ⎰⎰⎰⎰-----=22210111110),(),(x y y dy y x f dx dx y x f dy (4)⎰⎰--21222),(x x x dy y x f dx ;解 由根据积分限可得积分区域}22 ,21|),{(2x x y x x y x D -≤≤-≤≤=, 如图. 因为积分区域还可以表示为}112 ,10|),{(2y x y y y x D -+≤≤-≤≤=, 所以 ⎰⎰--21222),(x x x dy y x f dx ⎰⎰-+-=101122),(y y dx y x f dy . (5)⎰⎰e x dy y x f dx 1ln 0),(;解 由根据积分限可得积分区域D ={(x , y )|1≤x ≤e , 0≤y ≤ln x }, 如图.因为积分区域还可以表示为D ={(x , y )|0≤y ≤1, e y ≤x ≤ e }, 所以⎰⎰e x dy y x f dx 1ln 0),(⎰⎰=10),(ee y dx y xf dy (6)⎰⎰-x xdy y x f dx sin 2sin 0),(π(其中a ≥0).解 由根据积分限可得积分区域}sin 2sin ,0|),{(x y x x y x D ≤≤-≤≤=π, 如图. 因为积分区域还可以表示为}arcsin 2 ,01|),{(π≤≤-≤≤-=x y y y x D}arcsin arcsin ,10|),{(y x y y y x -≤≤≤≤⋃π,所以 ⎰⎰⎰⎰⎰⎰----+=y y y x xdx y x f dy dx y x f dy dy y x f dx arcsin arcsin 10arcsin 201sin 2sin 0),(),(),(πππ.7. 设平面薄片所占的闭区域D 由直线x +y =2, y =x 和x 轴所围成, 它的面密度为μ(x , y )=x 2+y 2, 求该薄片的质量.仅供学习与交流,如有侵权请联系网站删除 谢谢13解 如图, 该薄片的质量为⎰⎰=D d y x M σμ),(⎰⎰+=D d y x σ)(22⎰⎰-+=10222)(y y dx y x dy ⎰-+-=10323]372)2(31[dy y y y 34=. 8. 计算由四个平面x =0, y =0, x =1, y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体的体积.解 四个平面所围成的立体如图, 所求体积为⎰⎰--=D dxdy y x V )326(⎰⎰--=1010)326(dy y x dx ⎰--=10102]2326[dx y xy y ⎰=-=1027)229(dx x .9. 求由平面x =0, y =0, x +y =1所围成的柱体被平面z =0及抛物面x 2+y 2=6-z 截得的立体的体积.解 立体在xOy 面上的投影区域为D ={(x , y )|0≤x ≤1, 0≤y ≤1-x }, 所求立体的体积为以曲面z =6-x 2-y 2为顶, 以区域D 为底的曲顶柱体的体积, 即⎰⎰--=D d y x V σ)6(22⎰⎰---=101022)6(x dy y x dx 617=. 10. 求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.解 由⎩⎨⎧--=+=2222262yx z y x z 消去z , 得x 2+2y 2=6-2x 2-y 2, 即x 2+y 2=2, 故立体在x O y 面上的投影区域为x 2+y 2≤2, 因为积分区域关于x 及y 轴均对称, 并且被积函数关于x , y 都是偶函数, 所以仅供学习与交流,如有侵权请联系网站删除 谢谢13 ⎰⎰+---=D d y x y x V σ)]2()26[(2222⎰⎰--=Dd y x σ)336(22⎰⎰---=2202220)2(12x dy y x dx π6)2(82032=-=⎰dx x . 11. 画出积分区域, 把积分⎰⎰D dxdy y x f ),(表示为极坐标形式的二次积分, 其中积分区域D 是:(1){(x , y )| x 2+y 2≤a 2}(a >0);解积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤a }, 所以⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ200)sin ,cos (d f d a. (2){(x , y )|x 2+y 2≤2x };解 积分区域D 如图. 因为}cos 20 ,22|),{(θρπθπθρ≤≤≤≤-=D , 所以⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰-=22cos 20)sin ,cos (ππθρρθρθρθd f d .(3){(x , y )| a 2≤x 2+y 2≤b 2}, 其中0<a <b ;解 积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (ba d f d . (4){(x , y )| 0≤y ≤1-x , 0≤x ≤1}.解 积分区域D 如图. 因为}sin cos 10 ,20|),{(θθρπθθρ+≤≤≤≤=D , 所以 ⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰+=θθρρθρθρθπsin cos 1020)sin ,cos (d f d .12. 化下列二次积分为极坐标形式的二次积分: (1)⎰⎰101),(dy y x f dx ;解 积分区域D 如图所示. 因为}csc 0 ,24|),{(}sec 0 ,40|),{(θρπθπθρθρπθθρ≤≤≤≤⋃≤≤≤≤=D ,所以 ⎰⎰⎰⎰⎰⎰==DDd d f d y x f dy y x f dx θρρθρθρσ)sin ,cos (),(),(101⎰⎰=40sec 0)sin ,cos (πθρρθρθρθd f d ⎰⎰+24csc 0)sin ,cos (ππθρρθρθρθd f d .(2)⎰⎰+xxdy y x f dx 3222)(;解 积分区域D 如图所示, 并且 }sec 20 ,34|),{(θρπθπθρ≤≤≤≤=D , 所示 ⎰⎰⎰⎰⎰⎰=+=+xxDDd d f d y x f dy y x f dx 3222220)()()(θρρρσ⎰⎰=34sec 20)(ππθρρρθd f d .(3)⎰⎰--21110),(x xdy y x f dx ;解 积分区域D 如图所示, 并且}1sin cos 1 ,20|),{(≤≤+≤≤=ρθθπθθρD ,所以 ⎰⎰⎰⎰⎰⎰--==10112)sin ,cos (),(),(x xDDd d f d y x f dy y x f dx θρρθρθρσ⎰⎰+=2sin cos 101)sin ,cos (πθθρρθρθρθd f d(4)⎰⎰21),(x dy y x f dx .解 积分区域D 如图所示, 并且}sec tan sec ,40|),{(θρθθπθθρ≤≤≤≤=D ,所以 ⎰⎰210),(x dy y x f dx ⎰⎰⎰⎰==DDd d f d y x f θρρθρθρσ)sin ,cos (),(⎰⎰=40sec tan sec )sin ,cos (πθθθρρθρθρθd f d13. 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax ady y x dx ;解 积分区域D 如图所示. 因为}cos 20 ,20|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰-+2202220)(x ax ady y x dx ⎰⎰⋅=Dd d θρρρ2⎰⎰⋅=20cos 202πθρρρθa d d ⎰=2044cos 4πθθd a 443a π=. (2)⎰⎰+xa dy y x dx 0220;解 积分区域D 如图所示. 因为}sec 0 ,40|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰⎰⎰⋅=+Dxa d d dy y x dx θρρρ0220⎰⎰⋅=40sec 0πθρρρθa d d ⎰=4033sec 3πθθd a )]12ln(2[63++=a . (3)⎰⎰-+xxdy y xdx 221221)(;解 积分区域D 如图所示. 因为}tan sec 0 ,40|),{(θθρπθθρ≤≤≤≤=D , 所以⎰⎰⎰⎰⋅=+--Dxx d d dy y xdx θρρρ21212212)(12tan sec 40tan sec 02140-==⋅=⎰⎰⎰-πθθπθθθρρρθd d d .(4)⎰⎰-+220220)(y a a dx y x dy .解 积分区域D 如图所示. 因为}0 ,20|),{(a D ≤≤≤≤=ρπθθρ, 所以⎰⎰⎰⎰⋅=+-Dy a ad d dx y x dy θρρρ2022022)(420028a d d aπρρρθπ=⋅=⎰⎰.14. 利用极坐标计算下列各题: (1)⎰⎰+Dy xd e σ22,其中D 是由圆周x 2+y 2=4所围成的闭区域;解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤2}, 所以 ⎰⎰⎰⎰=+DDy xd de d e θρρσρ222)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ.(2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰+=++DDd d d y x θρρρσ)1ln()1ln(222)12ln 2(41)12ln 2(212)1ln(20102-=-⋅=+=⎰⎰πρρρθπd d .(3)σd xyDarctan⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解 在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⎰⎰⋅=⋅=DDDd d d d d xyθρρθθρρθσ)arctan(tan arctan⎰⎰⋅=4021πρρθθd d ⎰⎰==40321643ππρρθθd d .15. 选用适当的坐标计算下列各题: (1)dxdy y x D22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域. 解 因为积分区域可表示为}1 ,21|),{(x y x x y x D ≤≤≤≤=, 所以dxdy y x D22⎰⎰dy y dx x x x ⎰⎰=211221⎰-=213)(dx x x 49=. (2)⎰⎰++--Dd yx y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⋅+-=++--DDd d d y x y x θρρρρσ2222221111)2(811102220-=+-=⎰⎰ππρρρρθπd d .(3)⎰⎰+Dd y x σ)(22, 其中D 是由直线y =x , y =x +a , y =a , y =3a (a >0)所围成的闭区域;解 因为积分区域可表示为D ={(x , y )|a ≤y ≤3a , y -a ≤x ≤y }, 所以⎰⎰+Dd y x σ)(22⎰⎰-+=aaya y dx y x dy 322)(4332214)312(a dy a y a ay aa =+-=⎰. (4)σd y x D22+⎰⎰, 其中D 是圆环形闭区域{(x , y )| a 2≤x 2+y 2≤b 2}.解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以 σd y x D22+⎰⎰)(3233202a b dr r d ba -==⎰⎰πθπ. 16. 设平面薄片所占的闭区域D 由螺线ρ=2θ上一段弧(20πθ≤≤)与直线2πθ=所围成, 它的面密度为μ(x , y )=x 2+y 2. 求这薄片的质量.解 区域如图所示. 在极坐标下}20 ,20|),{(θρπθθρ≤≤≤≤=D , 所以所求质量⎰⎰⎰⎰⋅==Dd d d y x M 20202),(πθρρρθσμ⎰==254404ππθθd .17. 求由平面y =0, y =kx (k >0), z =0以及球心在原点、半径为R 的上半球面所围成的在第一卦限内的立体的体积.解 此立体在xOy 面上的投影区域D ={(x , y )|0≤θ≤arctan k , 0≤ρ≤R }. ⎰⎰--=Ddxdy y x R V 222k R d R d kRarctan 313arctan 022=-=⎰⎰ρρρθ.18. 计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底, 而以曲面z =x 2+y 2为顶的曲顶柱体的体积.解 曲顶柱体在xOy 面上的投影区域为D ={(x , y )|x 2+y 2≤ax }. 在极坐标下}cos 0 ,22|),{(θρπθπθρa D ≤≤≤≤-=, 所以⎰⎰≤++=axy x dxdy y xV 22)(22πθθρρρθππθππ422cos 022442323cos 4a d a d d a ==⋅=⎰⎰⎰--.。
《高等数学(下册)》 第9章
(1)结合律: (a) (a) ()a ; (2)分配律: ( )a a a ,(a b) a b . 这里 a ,b 为向量, , 为实数.
向量的加法运算以及向量的数乘运算统称为向量的线性运算.
9.1.2 向量的线性运算
设 a 0 ,与 a 同方向的单位向量记为 ea ,由数与向量乘积的定义有 a | a | ea ,
9.2.2 向量的坐标表示
3 4 2
解法一 按对角线法则,有
D 1 2 (2) 2 1 (3) (4) (2) 4 11 4 2 (2) (2) (4) 2 (3) 4 6 32 4 8 24 14.
解法二 按第一行展开,有
2 D 1
1 2 2
1
2
(4)
2 1 (4 4) 2 (4 3) (4) (8 6) 14 .
x 为数轴上点 P 的坐标.
9.1.3 二阶与三阶行列式
1.二阶行列式 由 4 个数排成 2 行 2 列(横排称行、竖排称列)的数表
a11 a12 a21 a22 , 表达式 a11a22 a12a21 称为该数表所确定的二阶行列式,并记作
a11 a12 . a21 a22
数 aij (i 1,2 ;j 1,2) 称为二阶行列式的元素,元素 aij 中的第一个下标 i 和第二个下 标 j 分别表示该元素所在的行数和列数.例如,元素 a21 在行列式中位于第二行、第一列.
9.1.3 二阶与三阶行列式
例1 计算二阶行列式 2 1 . 1 3
解 2 1 2 (3) 11 7 . 1 3
9.1.3 二阶与三阶行列式
2.三阶行列式 由 9 个数排成 3 行 3 列的数表
a11 a12 a13 a21 a22 a23 a31 a32 a33 ,
高等数学下册复习第九章(二重积分)
1 x2 0 0
典型例题
13 把下列积分化为极坐标形式 并计算积分值 (2) dx x y dy (4) dy (x y )dx 14 利用极坐标计算下列各题
a x 2 2 0 0
a
a2 y2
2
2
0
0
(2) ln(1 x y )d , 其中 D 是由圆周 x2y2 1 及坐标轴
(x2
y 2 )]d
y 轴上半平面部分
定理3
设 f x, y 在有界闭区域 D 上连续,若 D
关于原点对称,则
D
0 f x,y d 2 f x,y d D3
f x,-y = f x,y , x,y D f x,-y f x,y , x,y D
第九章 二重积分
内容要点 一、二重积分的概念与性质 1. 二重积分的定义: 和式的极限
n
f ( i ,i ) i D f ( x , y )d lim 0
i 1
2.曲顶柱体的体积: V f ( x, y )d
D
平面薄片的密度: M ( x, y )d
将D分割, 如图. 则 2 2 xyf ( x y )d 0, D2 xd 0. D
D xd D1 xd
2
0 x3 xdx x 3 dy 1
0 4 dx x 1
2 , 5 2 . 5
所以, D x[1 yf
x 2 ( y )
D
c
c
x 2 ( y )
f ( x, y )d f ( x, y )dxdy
高等数学下9-2
4、利用直角坐标计算二重积分的步骤 、利用直角坐标计算二重积分的步骤 角坐标
(1)画出积分区域的图形,求出边界曲线交点坐标; )画出积分区域的图形,求出边界曲线交点坐标; (2)根据积分域类型, 确定积分次序; )根据积分域类型, 确定积分次序; (3)确定积分限,化为二次定积分; )确定积分限,化为二次定积分; (4)计算两次定积分,即可得出结果。 )计算两次定积分,即可得出结果。 注意:二重积分转化为二次定积分时, 注意:二重积分转化为二次定积分时,关键在 于正确确定积分限,一定要做到熟练、准确。 于正确确定积分限,一定要做到熟练、准确。
例1. 计算 y=x 所围的闭区域 = 所围的闭区域.
其中D 其中 是直线 y=1, x=2, 及 = =
解法1. 看作X–型区域 解法 将D看作 型区域 则 看作 型区域,
y
x
解法2. 看作Y–型区域 解法 将D看作 型区域 则 看作 型区域,
例 2 求 ∫∫ ( x 2 + y )dxdy ,其中 D 是由抛物线 所围平面闭区域. y = x 2 和 x = y 2 所围平面闭区域
c ≤ y ≤ d , ϕ1 ( y) ≤ x ≤ ϕ2 ( y).
d
d
x = ϕ1( y)
x = ϕ1( y)
D
c
x = ϕ2( y)
c
Dx
= ϕ2( y)
[Y-型] - Y型区域的特点:a. 穿过区域且平行于 轴的直 型区域的特点 穿过区域且平行于x轴的直 线与区域边界的交点不多于两个; 线与区域边界的交点不多于两个; b. ϕ1( y) ≤ ϕ2 ( y).
高等数学 上、下册9_2 二重积分的计算法
个公式的成立并不受此条件限制.类似地,如果积分区域D 可用不等式
1(y)x2(y),cyd
表示(图9-5),其中1(y),2(y)在区间c,d 上连续,这样的
区域称为Y-型区域,
y
y
d
D
d
x 2(y)
x 1 ( y) x 2 ( y)
x 1 (y)
c
D c
O
x
O
x
(a)
(b)
图 9-5
其特点是:穿过 D 内部且平行 x 轴的直线与 D 的边 界相交不多于两点,则有
B 是穿出区域 D 的点,它的纵坐标 2 (x)是积分的上限,把计
算的结果(是 x 的函数)再对 x 在其变化区间a,b上作定积分.
同理可得 Y-型区域的定限方法.
注意 以上说的 X 型
(Y 型)区域都要求平行于 y
y
轴( x轴)的直线与区域D 的 边界曲线相交不多于两点,如 果不满足这个条件时
(
y
2)2
y
y5
dy
1 2
y4 4
4 3
y3
2y2
y6 6
2 1
55 8
若 按 x- 型 区 域 计 算,用公式(1),则由 于下方边界曲线
y
y x
(4,2)
y 1(x) 在区间[0,1] 及
[1, 4]上的表达方式不一
y x2
D1 D2
致,所以要用经过交点
Ox 1
x4 x
(1, 1) 且 平 行 于 y 轴 的 y x (1,-1)
0
0
D
1 0
x2
y
3
1 0
x
2
dx
高等数学习题详解-第9章 无穷级数
习题9-11. 判定下列级数的收敛性:(1) 1n ∞=∑; (2) 113n n ∞=+∑; (3)1ln 1n n n ∞=+∑; (4) 1(1)2nn ∞=-∑;(5) 11n n n ∞=+∑; (6) 0(1)21n n nn ∞=-⋅+∑. 解:(1)11n n k S ===∑,则lim lim(11)nnnS n ,级数发散。
(2)由于14113n n nn,因此原级数是调和级数去掉前面三项所得的级数,而在一个级数中增加或删去有限项不改变级数的敛散性,所以原级数发散。
(3)11ln[ln ln(1)]ln1ln(1)ln(1)1nnnk k n S n n n n n ,则lim lim[ln(1)]nnnS n ,级数发散。
(4) 2 , 21, 1,2,3,; 0 , 2nn k S k nk因而lim n nS 不存在,级数发散。
(5)级数通项为1nn u n ,由于1lim10nn n,不满足级数收敛的必要条件,原级数发散。
(6)级数通项为(1)21n nnu n ,而lim n n S 不存在,级数发散。
2. 判别下列级数的收敛性,若收敛则求其和: (1) 11123n nn ∞=⎛⎫+ ⎪⎝⎭∑; (2) 11(1)(2)n n n n ∞=++∑; (3) 1πsin 2n n n ∞=⋅∑; (4)πcos 2n n ∞=∑.解:(1)因为111111111131111(1).23232232223nn n nk kkk n n n nk k k S 所以该级数的和为31113lim lim(),22232nn nnnSS 即1113.232nnk(2)由于1111[](1)(2)2(1)(1)(2)n n nn n n n,则111111111[][](1)(2)2(1)(1)(2)22(1)(2)nnnk kS k k kk kk kn n所以该级数的和为 1111limlim [],22(1)(2)4nnn SS n n即111.(1)(2)4n n n n(3)级数的通项为sin2nu n n,由于sin2lim sinlim()02222nnnn nn,不满足级数收敛的必要条件,所以原级数发散。
《高等数学》(下)习题参考答案
《高等数学》(下)习题参考答案第七章 空间解析几何与矢量代数习题一、 1.(,,),(,,),(,,)x y z x y z x y z ------; 2.k j i 573--;3.2y z +=或210x y z +-=; 4.圆, 圆柱面; 5.2340x y z --+=. 二、 1. 2. 3. 4. 5.B C B A C三、1.u =11232.cos cos cos 22343πππαβγαβγ=-=====;3.4-;4.32550x y z +-+=;5.3πθ=; 6.P r j βα=;7.2OABS ∆= 2228.9x y z ++=; 222289.0x x y z ⎧-+=⎨=⎩; 10.⎪⎭⎫ ⎝⎛--8343,8356,83273; 11.0x y z -+=. 第八章 多元函数微分学习题一 一、 1、yyx +-112; 2、},0,0|),{(2y x y x y x ≥≥≥; 3、1,2; 4、⎪⎪⎭⎫ ⎝⎛++++xy xy xy xy x 1)1ln()1(,12)1(-+x xy x ; 5、22812y x -,22812x y -,xy 16-. 二、1. 2. 3. 4. 5.D D B B A三、 111ln ln ln z z z z y y z y z uuuy x x y z x x y x y xyz--∂∂∂===∂∂∂、 2、)ln (1z x y z y x x u x z y +=∂∂-,)ln (1z x y z y x yux z y +=∂∂-,)ln (1y z x z y x z u x z y +=∂∂-2222222222222222223z xy z xy x x y y x y z y x x y x y ∂∂==-∂+∂+∂-=∂∂+、()()()4、xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-5、dy dx 3231+习题二 一、1、)()(y x f xy y x yf +'++,)()()()(y x f xy y x f y x y x f +''++'+++;2、2242232f y x f y x ''+'; 3、dy f f dx f f ⎪⎪⎭⎫ ⎝⎛+''-''-12121; 4、y x y x -+; 5、x y z z z -ln ln ,yyz xy z ln 2-二、1、C ;2、A ;3、C ;4、B ;5、C 三、 1、321f yz f y f x u '+'+'=∂∂,32f xz f x yu '+'=∂∂,3f xy z u '=∂∂ 3、212f x f y x z '+'=∂∂,22122211124)(2f xy f y x f xy f yx z''-''-+''+'=∂∂∂ 6、)()(1)](1)[(v g u f v g u f x z ''+'+'=∂∂,)()(1)](1)[(v g u f v g u f y z ''+'+'-=∂∂ 7、2222111133332sin cos 2cos x y x y x y zf x f x e f x f e e f x+++∂''''''''=-⋅+⋅+⋅+⋅+∂; 332232313122sin cos sin cos f e f y e f e f x e y x f y x zy x y x y x y x ''+''⋅-'+''⋅+''-=∂∂∂++++ 8、2222222222222222222221213394133u u u u u u u x x u u u u u u u y y u u u u x y ζηζζηηζηζζηηζζηη∂∂∂∂∂∂∂=+=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=--=++∂∂∂∂∂∂∂∂∂∂∂∂=---∂∂∂∂∂∂ 习题三 一、12121281610148x y z x y z ---==-+-=-2、042=-+y x ,2112zy x =-=-3.1+4.326i j k --5.(3,2)大 36二、1. 2. 3. 4. 5.B D A C C 三、(1,2)2zl∂=∂、13(,1)2-、极小值2e-2433p p 、22222222221212121251122022020x y zx y z x y z z x y x y z F x y z x y z z x y x y z F x x F y y F z x λλλλλλλλ=++=+++==+++--+++-=-+=⎧⎪=-+=⎨⎪=++=⎩2、设椭圆上点为(x,y,z),则原点到椭圆上这点的距离平方为d ,其中,,满足和令(,,)()()==11求解方程,最长距离为d d 6、在点)1,1(-处有极小值:-2;极大值:6.第九章 重积分 习题一一、1.()2aba b + 2、⎰⎰e ey dx y x f dy ),(10;3、)1(214--e ;4、1210cos sin (cos ,sin )d f d πθθθρθρθρρ+⎰⎰;5、⎰⎰-+--2211111),(x x dy y x f dx二、1. 2. 3. 4. 5.C A B D C三、1.[36,100]ππ; 62.55; 3.49; 4.e e 2183-; 5.2643π;6.38; 7.π6; 8.)0(32f 'π. 习题二 一、1、⎰⎰⎰+----111112222),,(y x x xdz z y x f dy dx ; 2、π32; 3、θϕϕd drd r dv sin 2=;4、⎰⎰⎰adr r f r d d 0224020)(sin ππϕϕθ; 5、dxdy y z x z dS 221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 二、1. B ;2.B ;3.D ;4.C ;5.B三、1.)852(ln 21-; 2.481; 3.467a π; 4.6π; 5.)22(162-π; 3232001()6.()2[()],lim (0)33t t F t F t r h h f r dr h hf t πππ+→=+=+⎰; 27.2()a a π-.第十章 习题一 一、填空题 1、23202(2sin 2cos 2)sin 2ta t t t t dt π--+⎰; 2、2; 3、34/3;4、⎰; 5、π2二、选择题1、(B);2、(A);3、(C );4、(A );5、(A );6、(C )三、计算题1、242-⎪⎭⎫ ⎝⎛+a e a π; 2、9四(略)五1、π2-;2、1/2 六、⎰++Lds xxQP 2412七、⎰Γ++++ds yx yRxQ P 2294132习题二一、选择题 1、(B ); 2、(D ); 3、(B ); 4、(D ); 5、(C ) 二、8 三、1、42R π-;2、241π;3、281a m π四、3cos 42cos 9+ 五、y x y x u 2),(=六、283a π七、八(略) 习题三一、填空题1、π8;2、321; 3、π8-; 4、dS R Q P ⎰⎰∑++53223; 5、22a π 二、选择题1、(D );2、(B );3、(C );4、(C ) 三、计算题 1、427-; 2、π221+ 四、 1、π23; 2、81五、552a π六、π32第十一章 习题一 一、判断题1、√;2、×;3、√;4、×;5、√;6、× 二、填空题1、0;2、1>p 且.const p =;3、1>p ,10≤<p ,0≤p ;4、 ,2,1,1=≥+n u u n n 且0lim =∞→n n u三、选择题 1、(C ); 2、(A ); 3、(C ); 4、(A ); 5、(C ) 四(略) 五、1、发散;2、收敛 六、1、发散;2、收敛 七、1、发散;2、收敛八、当b a >时,收敛;当b a <时,发散;当b a =时,可能收敛,也可能发散. 九、1、收敛;2、收敛 十(略) 习题二一、判断题1、×;2、√;3、√;4、×;5、√ 二、填空题1、⎪⎭⎫⎢⎣⎡-21,21; 2、)5,1[-; 3、)1,1[-,)1ln(x --; 4、22,2)1(1)1(2ln 011≤<-⋅+-+∑∞=++x x n n n n n; 5、26,)4(3121011-<<-+⎪⎭⎫ ⎝⎛-∑∞=++x x n nn n三、选择题1、(D );2、(B );3、(B );4、(C );5、(C ) 四、1、)3,3[-;2、)3,1[;3、]1,1[- 五、 1、)1,1(,)1(1)(2-∈-=x x x s ;2、)1,1(,arctan 21)]1ln()1[ln(41)(-∈+--+=x x x x x s六、2(1)(),(1,1](1)n nn f x x x x n n ∞=-=+∈--∑七、)1,1(,)1(2131)(01-∈⎪⎭⎫⎝⎛-+=∑∞=+x x x f nn n n八、)1,1(,)1ln(arctan 21222-∈+-++x x x x xx 第十二章 习题一 一、判断题1、×;2、√;3、√;4、×;5、× 二、填空题1、2)(ln 21)(x x f =;2、x cxe y -=;3、x y 2=;4、x x x y 91ln 31-=;5、yP x Q ∂∂=∂∂ 三、1、C y x =⋅tan tan ;2、C e e y x =-⋅+)1()1( 四、22sec )1(=⋅+y e x 五、s cm /3.269 六、1、Cx y x =-332;2、223x y y -= 七、)ln 41(x x y -= 八、 1、)(sin C x ey x+=-; 2、322Cy y x +=; 3、)cos 1(1x y --=ππ 九、⎪⎪⎭⎫ ⎝⎛-+=-t m ke k m k t k k v 2122121 十、xx x f 3132)(+=十一、)1,1[,)1ln()(1-∈--=∑∞=x x e x f x n n习题二一、选择题 1、(C ); 2、(B ); 3、(D ); 4、(C ); 5、(B ); 6、(A ); 7、(D ) 二、填空题1、3221)3(C x C x C e x y x +++-=;2、22121C x x e C y x +--=; 3、)1ln(1+-=ax ay三、1、x x e C e C y 221-+=;2、x C x C y sin cos 21+=;3、x C x C e C e C y x x sin cos 4321+++=-;4、4x x y e e -=- 四、⎪⎭⎫ ⎝⎛-+=+-++-tk k tk k k eek k v x 1221222424122014五、)sin (cos 21)(x e x x x ++=ϕ 六、u u f ln )(= 七、1)(21)(++=-x xe e x s。
高等数学9-2'利用极坐标系计算二重积分
二重积分的性质
总结词
二重积分具有可加性、可交换性、可分解性和可积性等性质。
详细描述
二重积分具有可加性,即如果两个平面区域的边界曲线可以相加或相减,那么它们的二重积分也可以相加或相减。 二重积分还具有可交换性,即积分区域和被积函数的顺序可以交换,不影响二重积分的值。此外,二重积分还具 有可分解性和可积性等重要性质,这些性质在计算二重积分时非常有用。
ERA
二重积分的定义与几何意义
总结词
二重积分是定积分的一种扩展,用于计算二维曲面的面积。
详细描述
二重积分是高等数学中的重要概念,它表示一个函数在平面区域上的累积效果。通过二 重积分,我们可以计算平面曲线的长度、平面图形的面积以及立体的体积等。二重积分
的几何意义是二维曲面的面积,即由函数z=f(x,y)所确定的曲面的面积。
05
总结与思考
BIG DATA EMPOWERS TO CREATE A NEW
ERA
本章内容的总结
极坐标系的基本概念 极坐标系是二维平面上的一个坐标系,其中每个点由一个距离和一个角度确定。
极坐标系中的基本元素包括极点、极轴、极径和极角。
本章内容的总结
二重积分的极坐标形式
二重积分在极பைடு நூலகம்标系中的表示形式与直角坐标系 有所不同。
极坐标系中的二重积分可以表示为对面积的积分, 其中面积由极径和角度确定。
本章内容的总结
极坐标系中的面积元素
1
2
在极坐标系中,面积元素是极径和角度的函数。
3
掌握面积元素的计算对于理解和计算二重积分至 关重要。
本章内容的总结
二重积分的计算方法
利用极坐标系计算二重积分的基本步骤包括:选择合适的积分次序、将直角坐标 转换为极坐标、选择适当的面积元素进行积分。
高等数学-第七版-课件-9-2 牛顿-莱布尼茨公式
高等教育出版社
§2 牛顿-莱布尼茨式
1 1 1 L . 例5 求 lim n n 1 n 2 nn 1 1 1 解 易见 lim 是函数 n n 1 n2 nn 1 f (x ) 在[0,1]上黎曼和的极限. 其中 1 x 1 n 1 1, 分割和介点分别为 Tn : 0 n n i i 1 i i [ , ], i 1, 2, , n. n n n 1 1 1 1 1 因此 lim 0 dx n n 1 n2 nn 1 x
n
1 n
数学分析 第九章 定积分
高等教育出版社
ln(1 x )
数学分析 第九章 定积分
高等教育出版社
1 0
ln 2.
§2 牛顿-莱布尼茨式
1 2 n 例6 求 lim (1 )(1 )(1 ) . n n n n 1 1 2 n n 1 n i 解 令 an ln (1 )(1 )(1 ) ln 1 , n n n n i 1 n
§2 牛顿-莱布尼茨式
例3 求 解
1 2 0
dx . 2 1 x
dx
arcsin x
12 0
1 2 0
1 x2
0 . 6 6
例4 求 解
2
0
x 4 x 2 dx
2
3 2 2 2 0
2
0
1 x 4 x dx (4 x ) 3
8 . 3
用牛顿—莱布尼茨公式还可以求一些和式的极限.
数学分析 第九章 定积分
高等教育出版社 后退 前进 目录 退出
高等数学同济版下第九章课件
及T
切线方程为? 法平面方程为?
切线方程为
x x0 y y0 z z0 , Fy Fz Fz Fx Fx Fy G y Gz 0 Gz G x 0 G x G y 0
法平面方程为
Fy Gy Fx F y Fz Fx ( x x0 ) ( y y0 ) ( z z0 ) 0 Gz Gx G y Gz G x 0 0 0 Fz
x (t ) : y ( t ), z (t )
n
M
T
在上, F ( (t ), (t ), w(t )) 0 dF 在t t 0具有全导数: 0 dt t t0
Fx ( x0 , y0 , z0 ) (t0 ) Fy ( x0 , y0 , z0 ) (t0 ) Fz ( x0 , y0 , z0 ) w(t0 ) 0
6 8 10 6 (F , G ) (F , G ) 0 120 0 ( x , y ) ( 3,4,5 ) 6 8 ( z , x ) ( 3 , 4 , 5 ) 10 6
得曲线在M ( 3,4,5, )处的切线方程:
x3 y4 z5 160 120 0
y ( x) , 1.空间曲线方程为 z ( x)
( x), ( x)在x x0处可导
在M ( x0 , y0 , z0 )处, T {1, ( x0 ), ( x0 )}
切线方程为 x x0 y y0 z z0 , 1 ( x 0 ) ( x 0 )
特殊地:空间曲面方程形为
z f ( x, y)
显式
曲面的法 向量 法线的方 向向量
令
F ( x, y, z ) f ( x, y ) z,
高等数学 第九章 9-2偏导数
561§9. 2 偏 导 数内容提要:偏导数的定义、计算、几何意义;高阶偏导数 重点分析:偏导数的计算难点分析:多元函数偏导数与一元函数导数之间的联系与区别因为多元函数的自变量不止一个,因变量与自变量的关系要比一元函数复杂得多。
在本节中,我们首先考虑多元函数关于其中一个自变量的变化率。
一、偏导数的定义及其计算法 1、定义一元函数()y f x = ,00()()()limlim x x y f x x f x f x x x→→+-'==二元函数 000(,),(,),(,)z f x y x y D P x y D =∈∈考虑0y y =,x 从00x x x →+ ,000100(,)(,)P x y P x x y →+ 偏增量 0000(,)(,)x z f x x y f x y =+-(p12)定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义,当y 固定在0y 而x 在0x 处有增量x ∆时,相应地函数有增量),(),(0000y x f y x x f -∆+,如果xy x f y x x f x ∆-∆+→∆),(),(lim00000存在,则称此极限为函数),(y x f z =在点),(00y x 处对x 的偏导数,记为0y y x x xz ==∂∂,0y y x x xf ==∂∂,00y y x x xz ==或),(00y x f x 。
(也可记作,x x z f '')即 0000000(,)(,)(,)limx x f x x y f x y f x y x∆→+∆-=∆。
注:偏导记号为一整体记号,不能拆分。
562同理,yy x f y y x f y ∆-∆+→∆),(),(lim00000为函数),(y x f z =在点),(00y x 处对y 的偏导数,记为0y y x x yz ==∂∂,0y y x x yf ==∂∂,00y y x x yz ==或),(00y x f y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∂z y = x ln x , ∂y
x ∂z 1 ∂ z x y −1 1 y x ln x + = yx + ln x y ∂x ln x ∂y y
= x y + x y = 2z .
பைடு நூலகம்原结论成立. 原结论成立.
x ∂z ∂z 例 3 设 z = arcsin ,求 , . 2 2 ∂x ∂ y x +y
按定义可知: 当( x , y ) = (0,0)时, 按定义可知:
f ( ∆x ,0) − f (0,0) 0 f x (0,0) = lim = lim = 0, ∆x → 0 ∆x → 0 ∆ x ∆x f ( 0, ∆ y ) − f ( 0, 0 ) 0 f y ( 0,0) = lim = lim = 0, ∆y → 0 ∆y → 0 ∆ y ∆y f x ( 0, ∆ y ) − f x ( 0, 0 ) f xy (0,0) = lim = 0, ∆y → 0 ∆y f y ( ∆x ,0) − f y (0,0) f yx (0,0) = lim = 1. ∆x → 0 ∆x 显然 f xy (0,0) ≠ f yx (0,0).
两个二阶混合偏导数必相等. 两个二阶混合偏导数必相等.
∂u x , ∴ = 2 2 ∂x x + y
∂u y , = 2 2 ∂y x + y
y2 − x2 ∂ 2u ( x 2 + y 2 ) − x ⋅ 2 x , ∴ 2= = 2 2 2 2 2 2 (x + y ) (x + y ) ∂x x2 − y2 ∂ 2u ( x 2 + y 2 ) − y ⋅ 2 y . = = 2 2 2 2 2 2 2 (x + y ) (x + y ) ∂y
0 0
x = x0 或 y = y0
f x ( x 0 , y0 ) .
同理可定义函数 同理可定义函数 z = f ( x , y ) 在点( x0 , y0 ) 处对 y 的偏导数, 为 的偏导数,
f ( x 0 , y0 + ∆y ) − f ( x 0 , y0 ) lim ∆y → 0 ∆y ∂z ∂f 记为 , , z y x = x0 或 f y ( x 0 , y 0 ) . y = y0 ∂y x = x 0 ∂y x = x 0 y= y y= y
∂ ∂z ∂ 2 z ∂ ∂z ∂ 2 z = f xy ( x , y ), = = = f yx ( x , y ) ∂ y ∂ x ∂ x∂ y ∂x ∂y ∂y∂x
纯偏导
混合偏导 定义:二阶及二阶以上的偏导数统称为高阶偏导数. 定义:二阶及二阶以上的偏导数统称为高阶偏导数.
按定义可知: 当( x , y ) = (0,0)时, 按定义可知: f ( ∆x ,0) − f (0,0) 0 f x (0,0) = lim = lim = 0, ∆x → 0 ∆x → 0 ∆ x ∆x f ( 0, ∆ y ) − f ( 0, 0 ) 0 f y ( 0,0) = lim = lim = 0, ∆y → 0 ∆y → 0 ∆ y ∆y y( y 2 − x 2 ) ( x , y ) ≠ ( 0,0) 2 2 2 f x ( x, y) = ( x + y ) , 0 ( x , y ) = ( 0, 0 ) x( x 2 − y 2 ) ( x , y ) ≠ (0,0) 2 2 2 f y ( x, y) = ( x + y ) . 0 ( x , y ) = (0,0)
∂ z ∂ z 2 ∂ z 2 = 6 xy , = 2 x 3 − 18 xy; = 6y , 2 3 ∂y 2 ∂x ∂x 2 ∂ z ∂ 2z 2 2 2 2 = 6 x y − 9 y − 1, = 6 x y − 9 y − 1. ∂x∂y ∂y∂x
2
3
2
例7
求二阶偏导数. 设 u = e ax cos by , 求二阶偏导数
RT RT ∂p 证 p= ⇒ =− 2; V ∂V V RT ∂V R ∂T V pV V= ⇒ = ; = ; T= ⇒ p ∂T p ∂p R R
RT R V ∂p ∂V ∂T RT = −1. ⋅ ⋅ =− 2 ⋅ ⋅ =− V ∂V ∂T ∂p p R pV
有关偏导数的几点说明: 有关偏导数的几点说明:
解
∂z = ∂x
1 x 1− 2 2 x +y
2
′ x ⋅ x2 + y2 x
=
x2 + y2 y2 ⋅ | y| ( x 2 + y 2 )3
( y 2 =| y |)
| y| . = 2 2 x +y
∂z = ∂y
1 x 1− 2 2 x +y
2
′ x ⋅ x2 + y2 y
解
∂u = ae ax cosby , ∂x ∂ 2u = a 2e ax cos by , 2 ∂x ∂ u = − abe ax sin by , ∂ x∂ y
2
∂u = − be ax sin by; ∂y ∂ 2u = − b 2e ax cos by , ∂y 2 ∂ u = − abe ax sin by . ∂y∂x
=
x2 + y2 ( − xy ) ⋅ 2 2 3 | y| (x + y )
( y ≠ 0)
∂z 不存在. 不存在. 0 ∂y x ≠ 0 y=
x y =− 2 x + y2 y
例 4
已知理想气体的状态方程 pV = RT
∂p ∂V ∂T ⋅ ⋅ = −1. 为常数) 求证: ,求证 ( R 为常数) 求证: , ∂ V ∂ T ∂p
但函数在该点处并不连续. 但函数在该点处并不连续 偏导数存在
连续. 连续
4、偏导数的几何意义 、
设 M 0 ( x0 , y0 , f ( x0 , y0 )) 为曲面 z = f ( x , y ) 上一点,
如图
几何意义: 几何意义:
偏导数 f x ( x0 , y0 ) 就是曲面被平面 y = y0 所截得的曲线在点 M 0 处的切线 M 0Tx 对 x 轴的 斜率. 斜率
当( x , y ) ≠ (0,0)时,
y( x 2 + y 2 ) − 2 x ⋅ xy y( y 2 − x 2 ) , = 2 f x ( x, y) = 2 2 2 2 2 (x + y ) (x + y ) x ( x 2 + y 2 ) − 2 y ⋅ xy x ( x 2 − y 2 ) , = 2 f y ( x, y) = 2 2 2 2 2 (x + y ) (x + y )
f ( x , y , z + ∆z ) − f ( x , y , z ) f z ( x , y , z ) = lim . ∆z → 0 ∆z
z = x 2 + 3 xy + y 2 在点(1, 2) 处的偏导数. 处的偏导数. 例1 求
解
∂z = 2x + 3 y ; ∂x
x =1 y= 2
∂z = 3x + 2 y . ∂y
∂z ∴ ∂x ∂z ∂y
= 2×1 + 3× 2 = 8 , = 3×1 + 2× 2 = 7 .
x =1 y= 2
例2
y 设 z = x ( x > 0, x ≠ 1) ,
x ∂z 1 ∂z + = 2z . 求证 y ∂x ln x ∂y
证
∂z yx y −1 , = ∂x
一、偏导数的定义及其计算法
定义 设函数 z = f ( x , y ) 在点 ( x0 , y0 ) 的某一邻 域内有定义, 域内有定义 , 当 y 固定在 y0 而 x 在 x0 处有增量 ∆x 时,相应地函数有增量 f ( x 0 + ∆ x , y0 ) − f ( x 0 , y0 ) ,
例6
设 z = x 3 y 2 − 3 xy 3 − xy + 1,
∂ 2z ∂ 2z ∂3z ∂2z ∂ 2z 、 、 2及 3. 求 2、 ∂x ∂x ∂y∂x ∂x∂y ∂y
∂z ∂z 2 2 3 解 = 2 x 3 y − 9 xy 2 − x; = 3 x y − 3 y − y, ∂y ∂x
f ( x 0 + ∆ x , y 0 ) − f ( x 0 , y0 ) 如果 lim 存在,则称 存在, ∆x → 0 ∆x 此极限为函数 z = f ( x , y ) 在点( x0 , y0 ) 处对 x 的
偏导数, 偏导数,记为
∂z ∂f , ,zx = = ∂x x = x0 ∂x x = x0 y y y y
偏导数 f y ( x 0 , y0 ) 就是曲面被平面 x = x0 所截得的曲线在点 M 0 处的切线 M 0T y 对 y 轴的 斜率. 斜率
二、高阶偏导数
函数 z = f ( x , y ) 的二阶偏导数为
∂ ∂z ∂ 2 z ∂ ∂z ∂ 2 z = 2 = f xx ( x , y ), = 2 = f yy ( x , y ) ∂x ∂ x ∂x ∂y ∂y ∂y
同理可以定义函数 z = f ( x , y ) 对自变量 y 的偏导
∂z ∂ f 数,记作 , ,z y 或 f y ( x , y ). ∂y ∂y
偏导数的概念可以推广到二元以上函数 如 u = f ( x, y, z ) 在 ( x, y, z ) 处
f ( x + ∆x , y , z ) − f ( x , y , z ) f x ( x , y , z ) = lim , ∆x → 0 ∆x f ( x , y + ∆y , z ) − f ( x , y , z ) f y ( x , y , z ) = lim , ∆y → 0 ∆y