2020年中考数学必考34个考点专题33:最值问题

合集下载

初中数学最值问题归纳总结

初中数学最值问题归纳总结

初中数学最值问题归纳总结初中数学中,最值问题是一个重要的考点,也是学生们经常遇到的难题之一。

在解决最值问题时,可以通过归纳总结一些常见的解题方法,以便在实际应用中更好地应对这类问题。

首先,在解决最大值问题时,可以采用以下几种方法。

一种常见的方法是利用函数的性质进行求解。

例如,当函数是单调递增的时候,最大值通常出现在定义域的最大值处;当函数是单调递减的时候,最大值通常出现在定义域的最小值处。

此外,还可以通过将函数进行分析,找出函数在不同区间内的变化趋势,从而确定最大值所在的位置。

其次,在解决最小值问题时,也可以采用类似的方法。

同样可以利用函数的性质进行求解,如利用函数的单调性、奇偶性以及周期性等。

此外,还可以通过将函数进行化简,找出函数表达式中的最小值,或者通过计算函数的导数,找出函数在定义域内的极值点,从而确定最小值所在的位置。

另外,对于一些特殊形式的最值问题,我们也可以采取特殊的解题方法。

例如,在一些几何问题中,求解最大面积或最小周长的问题,可以利用几何图形的性质,通过建立相关的方程或不等式进行求解。

此外,对于一些实际问题,可以通过建立数学模型,将问题转化为数学问题,再通过求解数学问题得到最终的答案。

在解决最值问题时,还要注意一些常见的误区。

首先,要注意函数定义域的限制。

有些函数可能在某些特定的定义域内取得最大值或最小值,而在其他定义域内可能没有这样的值。

其次,要注意考虑到所有可能的情况。

有些最值问题可能会给出一些限制条件,要保证解满足这些限制条件才是有效的解。

总之,初中数学中的最值问题是一个需要灵活运用数学知识和思维方法的问题。

通过归纳总结一些常见的解题方法,可以帮助学生更好地理解和应用这类问题,提高解题的准确性和效率。

同时,也要注意避免一些常见的误区,保证解的有效性。

2020年中考数学必须掌握的28个考点及60个易错点试题及答案-最新推荐

2020年中考数学必须掌握的28个考点及60个易错点试题及答案-最新推荐

中考数学必须掌握的28个考点及60个易错点中考进入最后的倒计时了,老师整理了中考的28个考点以及60个易错点,同学们再自查一下哈,以免遗漏!1相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求: (1)理解相似形的概念; (2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点5:三角形的重心考核要求:知道重心的定义并初步应用。

考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算2锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

考点9:解直角三角形及其应用考核要求: (1)理解解直角三角形的意义; (2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

3二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求: (1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念; (2)知道常值函数; (3)知道函数的表示方法,知道符号的意义。

考点11:用待定系数法求二次函数的解析式考核要求: (1)掌握求函数解析式的方法; (2)在求函数解析式中熟练运用待定系数法。

2024年中考数学专题复习定值与最值问题

2024年中考数学专题复习定值与最值问题

定值与最值问题1、平面几何最值问题:在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

线段最值问题的解决通常方法:应用几何性质.①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长.基本类型有:将军饮马、选址造桥、线段之差的最大值,隐圆最值,瓜豆原理,胡不归最值,阿氏圆等。

2、立体几何最值问题:展开平面图形,根据平面几何最值问题方法去做!3、代数最值问题:无非就是根据完全平方公式或者二次函数的知识去求解!例1.如图,A、B两个机离线l的距离分别是3米,5米,CD=6米,若由l上一点分别向A,B连线,最短为()A.11米B.10米C.9米D.8米1.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED、EB,则△BDE周长的最小值为()A.2 5 B.2 3 C.25+2 D.23+22.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB 的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为__ .3.直线l1、l2交于点O,A、B是两直线间的两点,从点A出发,先到l1上一点P,再从点P到l2上一点Q,再回到点B,求作P、Q两点,使四边形APQB周长最小.4.A、B是位于河流两旁的两个村庄,要在这条宽度为d的河上建一条垂直的桥,使得从A村到B村的距离之和最短.试着画出桥应该建在何处?例2.如图,AC⊥BC于C,连接AB,点D是AB上的动点,AC=6,BC=8,AB=10,则点C到点D的最短距离是()A.6 B.8 C.403D.2451.如图,点A 的坐标为(1,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为( )A .(0,0)B .(21-,21-)C .(22,22-)D .(22-,22-) 2.如图,在平面直角坐标系xOy 中,直线AB 经过点A (﹣4,0)、B (0,4),⊙O 的半径为1,点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为_________.例3.如图,在菱形ABCD 中,AB =4,∠A =135°,点P 、M 、N 分别为对角线BD 及边BC ,CD 上的动点,则PM +PN 的最小值为__ .1.如图,∠ABC =45°,BC =42,BD 平分∠ABC 交AC 于点D ,M 、N 分别是BD 和BC 上的动点(M 与B ,D 两点不重合,N 与B ,C 两点不重合),则CM +MN 的最小值为__ .2.如图,∠AOB =45°,P 是∠AOB 内一定点,PO =10,Q 、R 分别是OA ,OB 上的动点,则△PQR 周长的最小值为__ .例4.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PB PA -的最大值等于 .1.如图所示,已知11(,)2A y ,2(2,)B y 为反比例函数1y x =图象上的两点,动点(,0)P x 在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)2B .(1,0)C .3(,0)2D .5(,0)22.点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP *OQ = .例5.在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC =2.设tan ∠BOC =m ,则m 的取值范围是_________.1.如图, △ABC 中,∠ABC =90°,AB =6,BC =8,O 为AC 的中点,过O 作OE ⊥OF ,OE 、OF 分别交射线AB 、BC 于E 、F ,则EF 的最小值为 .2.如图,已知Rt △ABC 中,∠ACB =90°,AC =3,BC =4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF =90°,则EF 的最小值是_____________.例6.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+1.如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为( )A .13cmB .12cmC .10cmD .8cm2.如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm .第1题 第2题例7.求二次三项式2x 2x +3的最小值.1.求代数式﹣2x 2+3x +5的最大值.例9.如果P 是边长为2的正方形ABCD 的边CD 上任意一点且PE ⊥DB ,PF ⊥CA ,垂足分别为E ,F ,则PE +PF =__ __.1.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定2.如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t =2秒时PQ =52.(1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E ,把AE 沿AD 翻折交CD 延长线于点F ,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值.1.如图,在正方形ABCD 中,G 是正方形内一点,AD =4,P 是BC 的中点,且BG =BP ,则DG +12GC 的最小值是__________.(提示:考虑用相似转化,系数需要化成相同)。

2020年中考数学复习 动点最值专题

2020年中考数学复习  动点最值专题

动点最值专题动点最值专题近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题.最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴).我们知道“对称、平移、旋转”是三种保形变换。

通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。

数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。

(1)去伪存真。

刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。

(2)科学选择。

捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。

(3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。

(4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最短”或“垂线段最短”把“折线”转“直”,找出最短位置,求出最小值。

2020年九年级数学中考经典几何题讲义系列:几何最值问题

2020年九年级数学中考经典几何题讲义系列:几何最值问题

中考经典几何题系列:几何最值问题【知识点】几何中最值问题包括: ①“面积最值” ②“线段(和、差)最值”.(1)求面积的最值方法:需要将面积表达成函数,借助函数性质结合取值范围求解;(2)求线段及线段和、差的最值方法:需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理.一般处理方法:常用定理: 两点之间,线段最短(已知两个定点时)垂线段最短(已知一个定点、一条定直线时)三角形三边关系下面对三类线段和的最值问题进行分析、讨论。

(1) 两点一线的最值问题: (两个定点 + 一个动点)问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线PA +PB 最小, 需转化,使点在线异侧 Bl段和最短。

核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。

方法:1.定点过动点所在直线做对称。

2.连结对称点与另一个定点,则直线段长度就是我们所求。

变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。

1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。

(2)一点两线的最值问题: (两个动点+一个定点)问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。

核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。

变异类型:1.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△PAB的周长最小。

2.如图,点A 是∠MON 外的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小。

2020中考常见最值问题总结归纳 微专题一 几何最值 单线段最值 单动点型(解析版)

2020中考常见最值问题总结归纳  微专题一  几何最值  单线段最值   单动点型(解析版)

2020中考常见最值问题总结归纳微专题一:单线段最值+单动点型WORKINGPLAN微专题一:单线段最值+单动点型类型一:动点轨迹--直线型考法指导动点轨迹为一条直线时,利用“垂线段最短”求最值。

(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。

②当某动点到某条直线的距离不变时,该动点的轨迹为直线。

③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。

【典例精析】例题1.(2020·全国初三单元测试)如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【答案】【详解】 ABCD 为矩形,AB DC ∴=又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上,连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +====故答案为:【针对训练】1.(2018·湖北中考真题)如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A.4 B.2 C .1 D .2【答案】C【详解】连接OC ,作PE ⊥AB 于E,MH ⊥AB 于H,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=2,∠A=∠B=45°, ∵O 为AB 的中点,∴OC ⊥AB,OC 平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ,∴AP=CQ,易得△APE 和△BFQ 都为等腰直角三角形,∴∴PE+QF=2,CQ+BQ,=2BC=2 ∵M 点为PQ 的中点,∴MH 为梯形PEFQ 的中位线,∴MH=12,PE+QF,=12, 即点M 到AB 的距离为12, 而CO=1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB=1, 故选C,2.(2017·江苏中考真题)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为______,【答案】【详解】解:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt,ABC′中,易知AB=BC′=6,,ABC′=90°,,EE′=AC故答案为:类型二:动点轨迹--圆或圆弧型考法指导动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。

【精品】2020年中考数学复习中考数学复习中考数学复习专题33 最值问题(学生版)

【精品】2020年中考数学复习中考数学复习中考数学复习专题33  最值问题(学生版)

专题33 最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a =-2时,y 有最小值。

y ac b amin =-442; ②若a <0当x b a =-2时,y 有最大值。

y ac b amax =-442。

2.一次函数的增减性一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

专题知识回顾专题典型题考法及解析【例题1】(经典题)二次函数y=2(x ﹣3)2﹣4的最小值为 .【例题2】(2018江西)如图,AB 是⊙O 的弦,AB=5,点C 是⊙O 上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、AC 的中点,则MN 长的最大值是 .【例题3】(2019湖南张家界)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值;(4)若点Q 为线段OC 上的一动点,问AQ +21QC 是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.专题典型训练题1.(2018河南)要使代数式x 32-有意义,则x 的( )A.最大值为32 B.最小值为32 C.最大值为23 D.最大值为23 2.(2018四川绵阳)不等边三角形∆ABC 的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为________。

中考最值问题归纳

中考最值问题归纳

中考最值问题归纳
在中考中,最值问题是考生需要掌握的重要数学知识点之一。

以下是一些常见的最值问题类型:
1. 线性函数最值问题
对于形如y = kx + b 的线性函数,其中k 和b 分别为常数,该函数的最值很容易计算。

如果k > 0,那么最小值为b,最大值不存在;当k < 0 时,最大值为b,最小值不存在。

2. 二次函数最值问题
对于形如y = ax^2 + bx + c 的二次函数,其中a、b、c 是常数,通过求导数可以求出函数的极值点并进而得出最值。

如果a > 0,那么最小值在极值点出现;如果a < 0,那么最大值出现在极值点处。

3. 几何图形最值问题
对于几何图形的最值问题,需要根据几何图形的特点关系进行推导和求解。

例如,对于一个等腰直角三角形,因为任何一个斜边的长度都大于等于第三边,所以该三角形的一个锐角就是最大角。

4. 实际问题最值问题
实际问题最值问题通常需要将问题建模成一个数学形式,然后利用求解数学模型的方法来计算最值。

例如,某公司需要运送一些物品到另一个城市,在不同的路线上行驶,每条路线有固定的费用和运输时间,问题是如何选择最优路线来最小化成本或时间。

当然,不同的最值问题类型有不同的解题方法,学生需要根据具体的题目及题型分别运用所学的数学知识来进行解答。

中考数学最值问题

中考数学最值问题

中考数学最值问题在中考数学中,最值问题一直是一个重要且具有挑战性的考点。

它不仅考察了同学们对数学知识的掌握程度,还检验了大家运用所学知识解决实际问题的能力。

最值问题,简单来说,就是在一定的条件下,求某个量的最大值或者最小值。

这类问题形式多样,涉及的知识点也较为广泛。

首先,我们来谈谈利用函数求最值。

函数是解决最值问题的有力工具,常见的函数类型有一次函数、二次函数等。

对于一次函数,比如形如 y = kx + b(k ≠ 0)的函数,如果 k > 0,函数值 y 随 x 的增大而增大;如果 k < 0,函数值 y 随 x 的增大而减小。

我们可以根据这个性质,在给定的自变量取值范围内,找到函数的最值。

而二次函数,形如 y = ax²+ bx + c(a ≠ 0),其最值的求解就相对复杂一些。

当 a > 0 时,函数图像开口向上,函数有最小值,其最小值在顶点处取得,顶点的横坐标为 b /(2a),将其代入函数即可求得最小值;当 a < 0 时,函数图像开口向下,函数有最大值,同样在顶点处取得。

例如,某商品的售价为每件 60 元,每星期可卖出 300 件。

市场调查反映,如果调整价格,每涨价 1 元,每星期要少卖 10 件。

设每件商品的售价为 x 元(x ≥ 60),每星期的销售量为 y 件,销售利润为 w 元。

我们可以得到关系式:y = 300 10(x 60) = 900 10x,w =(x 50)(900 10x) =-10x²+ 1400x 45000。

这就是一个典型的利用二次函数求最值的问题。

因为 a =-10 < 0,所以函数有最大值,当 x = b/(2a)= 70 时,w 有最大值 9000 元。

除了函数,几何中的最值问题也常常出现。

比如在三角形中,两边之和大于第三边,两边之差小于第三边。

利用这个性质,我们可以求解一些线段长度的最值。

再比如,圆中的最值问题。

在一个圆中,直径是最长的弦。

2020浙江中考数学复习:最值问题

2020浙江中考数学复习:最值问题
抛物线唯一的交点,则以为边,
+ PA PC 最小或APAC 的周长最
另一顶点在 BD 上方的ABDP 面积 小.
最大.
变化 3: 特殊图形的最值
B
/1
/~ p~C
点 P 是圆 O 外的定点,
在直线 1 上,动点 P
+ A, B 是圆 O 上的动 AB 是过圆 0 内定点 P
点. 当点 A, O, B, 的弦. 当 0P丄AB 时, 使形如 “CP kAP”
C. 40°
D. 60°
3. (2019 开州区)如图,点 E 是菱形 ABCD 对角线 BD 上任一点,点 F 是 CD 上
+ 任一点,连结 CE, EF.当ZABC=45° , BC=10 时,CE EF 的最小值是( )
/ A. l(h 2
B. 10
^C. 5 /2
D. 5
4. (2019 陕西)如图,在正方形 ABCD 中,AB=8, AC 与 BD 交于点 0, N 是 A0
• ••
AC2
=
81,
AB2 = 144,
BCZ=225,
. + / AC2 AB2=BC2,
.\ ZA=90° .
VPG丄AC, PH丄AB,
..* ZAGP=ZAHP=90° , ..四边形 AGPH 是矩形.
(2)解:存在. 如图,连结 AP.
Y四边形 AGPH 是矩形,
•••GH=AP. V当 AP丄BC 时,AP 最短.
; 在AA0B 中,A0=AN=4, AB=4 ,
- .*.NB=4 /2 4,
_ . 又 •/RtAHBN 是等腰直角三角形,/ HB=4 2 ,
^ - - - .. - / •CP, 4 (4 2 2) 2=2 2 2.

中考数学必考考点专题33最值问题含解析

中考数学必考考点专题33最值问题含解析

专题33 最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种: 1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有①若a >0当x b a =-2时,y 有最小值。

y ac b a min =-442;②若a <0当x b a =-2时,y 有最大值。

y ac b amax =-442。

2.一次函数的增减性一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

专题知识回顾专题典型题考法及解析【例题1】(经典题)二次函数y=2(x﹣3)2﹣4的最小值为.【答案】﹣4.【解析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.【例题2】(2018江西)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【答案】.【解析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC ′===5,∴MN 最大=.【例题3】(2019湖南张家界)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值; (4)若点Q 为线段OC 上的一动点,问AQ +12QC 是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【思路分析】(1)将A 、B 、C 三点坐标代入抛物线的解析式即可求出a 、b 、c 的值(当然用两根式做更方便);(2)先证四边形AMBD 为矩形,再证该矩形有一组邻边相等,即可证明该四边形为正方形;(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .再由S △PBC =S △PBE +S △CPE ,转化为12PE •OB =12×3×(-m 2+3m ),最后将二次函数化为顶点式即可锁定S △PBC 的最大值与点P 坐标;(4)解决本问按两步走:一找(如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC 1(3)2t -,取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小)、二求(由 AQ =12QC ,解关于t 的方程即可).【解题过程】(1)∵抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,∴令抛物线解析为y=a(x-1)(x-3).∵该抛物线过点C(0,3),∴3=a×(0-1)×(0-3),解得a=1.∴抛物线的解析式为y=(x-1)(x-3),即y=x2-4x+3.∵y=x2-4x+3=(x-2)2-1,∴抛物线的顶点D的坐标为(2,-1).综上,所求抛物线的解析式为y=x2-4x+3,顶点坐标为(2,-1).(2)如答图1,连接AD、BD,易知DA=DB.∵OB=OC,∠BOC=90°,∴∠MBA=45°.∵D(2,-1),A(3,0),∴∠DBA=45°.∴∠DBM=90°.同理,∠DAM=90°.又∵AM⊥BC,∴四边形ADBM为矩形.又∵DA=DB,∴四边形ADBM为正方形.(3)如答图2,过点P作PF⊥AB于点F,交BC于点E,令P(m,m2-4m+3),易知直线BC的解析式为y=-x+3,则E(m,-m+3),PE=(-m+3)-(m2-4m+3)=-m2+3m.∵S △PBC =S △PBE +S △CPE =12PE •BF +12PE •OF =12PE •OB =12×3×(-m 2+3m ) =-32 (m -32)2+278,∴当m =32时,S △PBC 有最大值为278,此时P 点的坐标为(32,-34). (4)如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC1(3)2t -, 取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小,此时,√t 2+1=12(3−t ),解得t =2√63-1,于是AQ +12QC 的最小值为3-t =3-(2√63-1)=4-2√63.1.(2018河南)要使代数式√2−3t 有意义,则x 的( ) A.最大值为23B.最小值为23C.最大值为32 D.最大值为32 【答案】A.【解析】要使代数式√2−3t 有意义,必须使2-3x ≥0,即x ≤23,所以x 的最大值为23。

2020中考数学复习专题最值问题解析版

2020中考数学复习专题最值问题解析版

专题33最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种: 1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有①若a >0当x ba =-2时,y 有最小值。

y acb a min =-442;②若a <0当x ba=-2时,y 有最大值。

y ac b a max =-442。

2.一次函数的增减性一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

专题知识回顾专题典型题考法及解析【例题1】(经典题)二次函数y=2(x﹣3)2﹣4的最小值为.【答案】﹣4.【解析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.【例题2】(2018江西)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【答案】.【解析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN 最大=.【例题3】(2019湖南张家界)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值;(4)若点Q 为线段OC 上的一动点,问AQ +12QC 是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【思路分析】(1)将A 、B 、C 三点坐标代入抛物线的解析式即可求出a 、b 、c 的值(当然用两根式做更方便);(2)先证四边形AMBD 为矩形,再证该矩形有一组邻边相等,即可证明该四边形为正方形;(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .再由S △PBC =S △PBE +S△CPE,转化为12PE •OB =12×3×(-m 2+3m ),最后将二次函数化为顶点式即可锁定S △PBC 的最大值与点P坐标;(4)解决本问按两步走:一找(如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC1(3)2t -,取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小)、二求(由 AQ =12QC ,解关于t 的方程即可).【解题过程】(1)∵抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点, ∴令抛物线解析为y =a (x -1)(x -3). ∵该抛物线过点C (0,3),∴3=a×(0-1)×(0-3),解得a=1.∴抛物线的解析式为y=(x-1)(x-3),即y=x2-4x+3.∵y=x2-4x+3=(x-2)2-1,∴抛物线的顶点D的坐标为(2,-1).综上,所求抛物线的解析式为y=x2-4x+3,顶点坐标为(2,-1).(2)如答图1,连接AD、BD,易知DA=DB.∵OB=OC,∠BOC=90°,∴∠MBA=45°.∵D(2,-1),A(3,0),∴∠DBA=45°.∴∠DBM=90°.同理,∠DAM=90°.又∵AM⊥BC,∴四边形ADBM为矩形.又∵DA=DB,∴四边形ADBM为正方形.图1(3)如答图2,过点P作PF⊥AB于点F,交BC于点E,令P(m,m2-4m+3),易知直线BC的解析式为y=-x+3,则E(m,-m+3),PE=(-m+3)-(m2-4m+3)=-m2+3m.∵S △PBC =S △PBE +S △CPE =12PE •BF +12PE •OF =12PE •OB =12×3×(-m 2+3m ) =-32(m -32)2+278,∴当m =32时,S △PBC 有最大值为278,此时P 点的坐标为(32,-34).(4)如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC1(3)2t -, 取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小,此时,√t 2+1=12(3−t),解得t =2√63-1, 于是AQ +12QC 的最小值为3-t =3-(2√63-1)=4-2√63.1.(2018河南)要使代数式√2−3x 有意义,则x 的( ) A.最大值为23 B.最小值为23 C.最大值为32D.最大值为32【答案】A.【解析】要使代数式√2−3x 有意义,必须使2-3x ≥0,即x ≤23,所以x 的最大值为23。

2020中考代数几何压轴系列---最值问题

2020中考代数几何压轴系列---最值问题
类型 一 两线段之和(三角形周长之和)最短——双定点问题
模型 在一条直线 m 上找一点 P 使 PA+PB 最小
方法(1)点位置的确定 作一已知点关于未知点所在直线的对称点, 连接对称点与另 一个已知点,则与未知点所在直线的交点即为所求 (2)点坐标的确定 <1>利用对称性求出对称点坐标
<2>利用对称点坐标与另一已知点坐标,结合待定系数法求出对称点 与已知点所在直线解析式
小红同学认为:“当 E 为抛物线的顶点时,△BCE 的面积最大.”
她的观点是否正确?提出你的见解,若△BCE 的面积存在最大值,请求出点 E 的坐标和 △BCE 的最大面积.
E
C F
AO
D
B
图2
8
第三课时 最值问题——几何方法 涉及知识点
1 两点之间,线段最短 2 三角形两边之和大于第三边 3 三角形两边之差小于第三边
<3>将未知点所在直线的横坐标或纵坐标代入即可
9
例题 1.如图,抛物线 y 1 x2 bx 2 与 x 轴交于 A,B 两点,与 y 轴交于 C 点,且 A1,0 .
2
点 M (m,0) 是 x 轴上的一个动点,当 MC MD 的值最小时,求 m 的值.
变式(2012 山西)综合与实践:如图,在平面直角坐标系中,抛物线 y=﹣x2+2x+3 与 x 轴交于 A.B 两点,与 y 轴交于点 C,点 D 是该抛物线的顶点. (1)求直线 AC 的解析式及 B.D 两点的坐标;. (2)请在直线 AC 上找一点 M,使△BDM 的周长最小,求出 M 点的坐标.
6
练习 如图 1,抛物线 y=ax2+bx+c(a≠0)与 x 轴交于点 A(﹣1,0)、B(4,0)两 点,与 y 轴交于点 C,且 OC=3OA.点 P 是抛物线上的一个动点,过点 P 作 PE⊥x 轴于点 E,交直线 BC 于点 D,连接 PC. (1)求抛物线的解析式; (2)如图 2,当动点 P 只在第一象限的抛物线上运动时,求过点 P 作 PF⊥BC 于点 F, 试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由.

【中考2020】最值题型—几何代数法全梳理

【中考2020】最值题型—几何代数法全梳理

【中考2020】最值题型—几何代数法全梳理
文章来源:爱在数学
作者:郭庆明
初中数学“最值类”题型有几何、代数两种解题方法:
几何方法:比较常见的如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短,直角三角形中斜边大于直角边;
代数方法:比较常见的如利用一次函数和二次函数的性质求最值,根的判别式,基本不等式等。

代数方法求最值
根的判别式或基本不等式
一次函数性质
二次函数性质
几何法求最值
三角形三边关系或两点之间线段最短
示例1
将军饮马
轨迹圆
垂线段最短、直角三角形斜边大于直角边
代数、几何方法均可用
更多好题详见领跑数学
距离中考不到一个月,
《领跑数学》为您助力,
三种购买方式任意挑选:。

2020年中考数学必考34个考点专题33:最值问题

2020年中考数学必考34个考点专题33:最值问题

专题33 最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种: 1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有①若a >0当x ba =-2时,y 有最小值。

y acb a min =-442;②若a <0当x ba=-2时,y 有最大值。

y ac b a max =-442。

2.一次函数的增减性一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

专题知识回顾专题典型题考法及解析【例题1】(经典题)二次函数y=2(x﹣3)2﹣4的最小值为.【答案】﹣4.【解析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.【例题2】(2018江西)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【答案】.【解析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC ′===5,∴MN 最大=.【例题3】(2019湖南张家界)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值; (4)若点Q 为线段OC 上的一动点,问AQ +12QC 是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【思路分析】(1)将A 、B 、C 三点坐标代入抛物线的解析式即可求出a 、b 、c 的值(当然用两根式做更方便);(2)先证四边形AMBD 为矩形,再证该矩形有一组邻边相等,即可证明该四边形为正方形;(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .再由S △PBC =S △PBE +S △CPE ,转化为12PE •OB =12×3×(-m 2+3m ),最后将二次函数化为顶点式即可锁定S △PBC 的最大值与点P 坐标;(4)解决本问按两步走:一找(如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC =211(3)2t t ++-,取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小)、二求(由 AQ =12QC ,解关于t 的方程即可).【解题过程】(1)∵抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,-2-1-1321321y xOMDCBA∴令抛物线解析为y =a (x -1)(x -3). ∵该抛物线过点C (0,3),∴3=a ×(0-1)×(0-3),解得a =1.∴抛物线的解析式为y =(x -1)(x -3),即y =x 2-4x +3. ∵y =x 2-4x +3=(x -2)2-1, ∴抛物线的顶点D 的坐标为(2,-1).综上,所求抛物线的解析式为y =x 2-4x +3,顶点坐标为(2,-1). (2)如答图1,连接AD 、BD ,易知DA =DB . ∵OB =OC ,∠BOC =90°, ∴∠MBA =45°. ∵D (2,-1),A (3,0), ∴∠DBA =45°. ∴∠DBM =90°. 同理,∠DAM =90°. 又∵AM ⊥BC ,∴四边形ADBM 为矩形. 又∵DA =DB ,∴四边形ADBM 为正方形.(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .-2-1-1321321y xOMDCB A 图1∵S △PBC =S △PBE +S △CPE =12PE •BF +12PE •OF =12PE •OB =12×3×(-m 2+3m ) =-32 (m -32)2+278,∴当m =32时,S △PBC 有最大值为278,此时P 点的坐标为(32,-34). (4)如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC =211(3)2t t ++-, 取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小, 此时,√t 2+1=12(3−t),解得t =2√63-1, 于是AQ +12QC 的最小值为3-t =3-(2√63-1)=4-2√63.1.(2018河南)要使代数式√2−3x 有意义,则x 的( ) A.最大值为23 B.最小值为23 C.最大值为32 D.最大值为32 【答案】A.【解析】要使代数式√2−3x 有意义,必须使2-3x ≥0,即x ≤23,所以x 的最大值为23。

中考最值题型总结

中考最值题型总结

中考最值题型总结引言中考是学生们接受九年义务教育后的第一次高压考试,对于学生而言,正确应对各种题型是成功的关键。

其中,最值题型常常是中考数学试卷中的难点之一。

本文将对中考最值题型进行总结,介绍常见的最值题型及解题思路。

1. 单变量最值问题在最值问题中,单变量最值问题是最基础且最常见的题型。

这类题目要求求出一个方程在一定范围内的最大或最小值。

解题思路如下:1.找出问题中给出的数学模型。

2.分析模型,确定变量的取值范围。

3.利用导数或二次函数的性质,求出该变量对应的函数的最值。

4.在给定的变量范围内,找出最值对应的具体数值。

举例:以下是一个典型的单变量最值问题:例子 1:求解在区间[-5, 5]内函数f(x) = x^2的最小值。

解答:根据解题思路,1.根据题意,我们需要找出一个方程,这里是f(x) = x^2。

2.给定的区间是[-5, 5]。

3.因为f(x) = x^2是一个二次函数,二次函数的最小值出现在顶点处。

通过求导可知,在x = 0处取得函数的最小值。

4.最小值对应的x为0,带入f(x) = x^2可以得到最小值为0。

通过这样的步骤,我们就可以得到求解单变量最值问题的答案。

2. 多变量最值问题多变量最值问题相对而言更加复杂,需要同时考虑多个变量之间的关系。

在解决这类问题时,我们需要灵活运用各种方法和知识,包括函数性质、数学模型、图形分析等。

解题思路如下:1.确定多个变量的数学模型以及它们之间的关系。

2.建立一个或多个方程或不等式,描述变量之间的关系。

3.利用已知条件,将多变量问题转化为单变量问题。

4.根据前面单变量问题的解题思路,求解单变量问题。

5.将单变量问题的解带回到原方程,得到多变量问题的解。

举例:以下是一个典型的多变量最值问题:例子 2:在一座公园中,两条小路相交成直角,现要在小区顶点的另两个点种修建两栋宿舍楼,如何选址使得两栋宿舍楼到最近的小路距离之和最小。

解答:根据解题思路,1.问题中的两栋宿舍楼与两条小路之间的位置关系可以用图形表示出来。

决战2020中考数学【最值模型】大剖析

决战2020中考数学【最值模型】大剖析

初中阶段的最值问题涵盖范围广泛,涉及了海量的知识点,那么我们是否可以用“一根线”将这些最值问题窜连起来呢?
今天用的这根线就是“两点之间线段最短”,绝大部分最值的本质都基于此公理,差别就在“转化”上!
首先,我们从“两点之间线段最短”这个基本公理出发,来引出一连串的最值系列
将军饮马
首先引发了“将军饮马”求最值的热潮,本质上就是将线段通过对称转化为共线情况
例题演示
这个模型中,涉及元素主要是三个点和三条线
三个点:P、A、B
三条线:PA、PB、点P所在直线
所以基本的模型拓展与变化,主要是这6个元素的变化
A、B点的变化
定点变动点
点在圆上
P点的变化
点变线段
例题演示
PA、PB的转化例题演示
P所在直线其它演绎例题演示
其它演绎
例题演示
将军饮马求最值的特点是“通过对称、平移、旋转等手段解决多条条动线段之和”的问题,一旦涉及的变换较多时,人们又给它起了一个美妙的名字—移花接木
例题演示
上面我们整理了“两条动线段之和”的问题,下面我们再迎来“三条及多条动线段之和”的问题
例题演示
单个模型的变化,主要在背景与条件的变化上做文章!定点变动点
定点落边上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题33 最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种: 1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有①若a >0当x ba =-2时,y 有最小值。

y acb a min =-442;②若a <0当x ba=-2时,y 有最大值。

y ac b a max =-442。

2.一次函数的增减性一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

专题知识回顾专题典型题考法及解析【例题1】(经典题)二次函数y=2(x﹣3)2﹣4的最小值为.【答案】﹣4.【解析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.【例题2】(2018江西)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【答案】.【解析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC ′===5,∴MN 最大=.【例题3】(2019湖南张家界)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值; (4)若点Q 为线段OC 上的一动点,问AQ +12QC 是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【思路分析】(1)将A 、B 、C 三点坐标代入抛物线的解析式即可求出a 、b 、c 的值(当然用两根式做更方便);(2)先证四边形AMBD 为矩形,再证该矩形有一组邻边相等,即可证明该四边形为正方形;(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .再由S △PBC =S △PBE +S △CPE ,转化为12PE •OB =12×3×(-m 2+3m ),最后将二次函数化为顶点式即可锁定S △PBC 的最大值与点P 坐标;(4)解决本问按两步走:一找(如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC =211(3)2t t ++-,取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小)、二求(由 AQ =12QC ,解关于t 的方程即可).【解题过程】(1)∵抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,-2-1-1321321y xOMDCBA∴令抛物线解析为y =a (x -1)(x -3). ∵该抛物线过点C (0,3),∴3=a ×(0-1)×(0-3),解得a =1.∴抛物线的解析式为y =(x -1)(x -3),即y =x 2-4x +3. ∵y =x 2-4x +3=(x -2)2-1, ∴抛物线的顶点D 的坐标为(2,-1).综上,所求抛物线的解析式为y =x 2-4x +3,顶点坐标为(2,-1). (2)如答图1,连接AD 、BD ,易知DA =DB . ∵OB =OC ,∠BOC =90°, ∴∠MBA =45°. ∵D (2,-1),A (3,0), ∴∠DBA =45°. ∴∠DBM =90°. 同理,∠DAM =90°. 又∵AM ⊥BC ,∴四边形ADBM 为矩形. 又∵DA =DB ,∴四边形ADBM 为正方形.(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .-2-1-1321321y xOMDCB A 图1∵S △PBC =S △PBE +S △CPE =12PE •BF +12PE •OF =12PE •OB =12×3×(-m 2+3m ) =-32 (m -32)2+278,∴当m =32时,S △PBC 有最大值为278,此时P 点的坐标为(32,-34). (4)如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC =211(3)2t t ++-, 取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小, 此时,√t 2+1=12(3−t),解得t =2√63-1, 于是AQ +12QC 的最小值为3-t =3-(2√63-1)=4-2√63.1.(2018河南)要使代数式√2−3x 有意义,则x 的( ) A.最大值为23 B.最小值为23 C.最大值为32 D.最大值为32 【答案】A.【解析】要使代数式√2−3x 有意义,必须使2-3x ≥0,即x ≤23,所以x 的最大值为23。

2.(2018四川绵阳)不等边三角形∆ABC 的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为________。

【答案】5【解析】设a 、b 、c 三边上高分别为4、12、h图2F E P -2-1-1321321y xOMDCB A G Q -2-1-1321321y xODCB A 图3专题典型训练题因为2412S a b ch ABC ∆===,所以a b =3 又因为c a b b <+=4,代入12b ch = 得124b bh <,所以h >3又因为c a b b >-=2,代入12b ch = 得122b bh >,所以h <6所以3<h<6,故整数h 的最大值为5。

3.(2018齐齐哈尔)设a 、b 为实数,那么a ab b a b 222++--的最小值为_______。

【答案】-1【解析】a ab b a b 222++--=+-+-=+-+--=+-+--≥-a b a b ba b b b a b b 22222212123432141234111()()()() 当a b +-=120,b -=10,即a b ==01,时, 上式等号成立。

故所求的最小值为-1。

4.(2018云南)如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为 .【答案】2.【解析】过A 作关于直线MN 的对称点A ′,连接A ′B ,由轴对称的性质可知A ′B 即为PA+PB 的最小值,由对称的性质可知=,再由圆周角定理可求出∠A ′ON 的度数,再由勾股定理即可求解.过A 作关于直线MN 的对称点A ′,连接A ′B ,由轴对称的性质可知A ′B 即为PA+PB 的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.5.(2018海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【答案】看解析。

【解析】(1)设该种水果每次降价的百分率为x,则第一次降价后的价格为10(1-x),第二次降价后的价格为10(1-x)2,进而可得方程;(2)分两种情况考虑,先利用“利润=(售价-进价)×销量-储存和损耗费用”,再分别求利润的最大值,比较大小确定结论;(3)设第15天在第14天的价格基础上降a元,利用不等关系“(2)中最大利润-[(8.1-a-4.1)×销量-储存和损耗费用]≤127.5”求解.解答:(1)设该种水果每次降价的百分率为x,依题意得:10(1-x)2=8.1.解方程得:x 1=0.1=10%,x 2=1.9(不合题意,舍去) 答:该种水果每次降价的百分率为10%.(2)第一次降价后的销售价格为:10×(1-10%)=9(元/斤), 当1≤x <9时,y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352;当9≤x <15时,y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80,综上,y 与x 的函数关系式为:y =⎩⎨⎧-17.7x +352(1≤x <9,x 为整数),-3x 2+60x +80(9≤x <15,x 为整数).当1≤x <9时,y =-17.7x +352,∴当x =1时,y 最大=334.3(元);当9≤x <15时,y =-3x 2+60x +80=-3(x -10)2+380,∴当x =10时,y 最大=380(元); ∵334.3<380,∴在第10天时销售利润最大.(3)设第15天在第14天的价格上最多可降a 元,依题意得: 380-[(8.1-a -4.1)(120-15)-(3×152-64×15+400)]≤127.5, 解得:a ≤0.5,则第15天在第14天的价格上最多可降0.5元.6.(2018湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R 、P 与x 的关系式分别为R x =+50030,P x =-1702。

相关文档
最新文档