河南省普通高中招生考试数学试卷及答案
2023年河南省普通高中招生考试数学试卷及答案

2023年河南省一般高中招生考试试卷数 学注意事项:1. 本试卷共6页,三大题,满分120分,考试时间100分钟。
2. 本试卷上不要答题,按答题卡上注意事项旳规定把答案填写在答题卡上。
答在试卷上旳答案无效。
一、选择题(每题3分,共30分)下列各小题均有四个答案,其中只有一种是对旳旳。
1.52-旳相反数是( )A.52-B. 52C.25-D.25 2.今年一季度,河南省对“一带一路”沿线国家进口总额达214.7亿元。
数据“214.7亿”用科学计数法表达为A .210147.2×B .3102147.0×C .1010147.2×D .11102147.0×3.某正方体旳每个面上均有一种中文,如图是它旳一种展开图,那么在原正方体中,与“国”字所在面相对旳面上旳汉子是( )A.厉B.害C.了D.我4.下列运算对旳旳是( )A.()532--x x =B.532x x x =+C.743x x x= D.1-233=x x5.河南省旅游资源丰富,2023~2023年旅游收入不停增长,同比增速分别为15.3%,12.7%,15.3%,14.5%,17.1%。
有关这组数据,下列说法对旳旳是( )A .中位数是12.7%B .众数是15.3%B . C.平均数是15.98% D .方差是06.《九章算术》中记载:‘今有共买羊,人出五,局限性四十五;人出七,局限性三。
问人数、羊价各几何?’其大意是:今有人合作买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱。
问合作人数、羊价各是多少?设合作人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A 、⎩⎨⎧+=+=37455x y x y B 、⎩⎨⎧+==3745-5x y x y C 、⎩⎨⎧=+=3-7455x y x y D 、⎩⎨⎧==3-745-5x y x y7.下列一元二次方程中,有两个不相等旳实数根是( )A 、0962=++x xB 、x x =2C 、x x 232=+ D 、()011-2=+x8.既有4张卡片,其中3张卡片正面上旳图案是“”,1张卡片正面上旳图案是“”,它们除此之外完全相似,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相似旳概率是( )A.169 B.43 C.83 D.219.如图,已知平行四边形AOBC 旳顶点O (0,0),A (-1,2),点B 在x 轴正半轴上,按如下环节作图:①以点O 为圆心,合适长度为半径作弧,分别交边OA ,OB 于点D,E ;②分别以点D,E 为圆心,不小于21DE 旳长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 旳坐标为( )A.()215,- B.()2,5 C.()2,53- D.()225,-10.如图1,点F 从菱形ABCD 旳顶点A 出发,沿B D A →→以1cm/s 旳速度匀速运动到点B.图2是点F 运动时,△FBC 旳面积()2cm y 随时间()s x 变化旳关系图像,则a 旳值为( )A. 5B.2C.25D.52 二、填空题(每题3分,共15分)11. =9-5-12.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 旳度数为13.不等式组⎩⎨⎧≥>+3-425x x 旳最小整数解是14.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 旳中点D 逆时针旋转90°得到△A ’B ’C ’,其中点B 旳运动途径为弧BB ’,则图中阴影部分旳面积为15.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A’BC 与△ABC 有关BC 所在直线对称。
河南省普通高中招生考试数学试卷及答案.doc

2018 年河南省普通高中招生考试试卷数学注意事项:1. 本试卷共 6 页,三大题,满分 120 分,考试时间 100 分钟。
2. 本试卷上不要答题,按答题卡上注意事项的要求把答案填写在答题卡上。
答在试卷 上的答案无效。
一、选择题(每小题 3 分,共 30 分)下列各小题均有四个答案,其中只有一个是正确的。
1. -2的相反数是()5A.2 B.2 C.5 5 5 5 2D.22. 今年一季度,河南省对“一带一路”沿线国家进口总额达亿元。
数据“亿”用科学计数法表示为 A .2.147 × 2B. 0.2147 × 3C. × 10D. 0.2147 × 1110102.147 10103. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉子是()A.厉B.害C.了D.我4. 下列运算正确的是( )A. - x 23= - x 52 3 5 3 4 7 3 3) B.x + x = xC. x x = xD. 2x - x = 1 (5. 河南省旅游资源丰富, 2013~2017 年旅游收入不断增长,同比增速分别为 %,%,%,%,%。
关于这组数据,下列说法正确的是() A .中位数是 % B .众数是 % B . C. 平均数是 % D .方差是 06. 《九章算术》中记载:‘今有共买羊,人出五,不足四十五;人出七,不足三。
问人数、羊价各几何?’其大意是:今有人合伙买羊,若每人出5 钱,还差 45 钱;若每人出 7 钱,还差 3 钱。
问合伙人数、 羊价各是多少?设合伙人数为 x 人,羊价为 y 钱, 根据题意,可列方程组为( )A 、y5x 45B 、y5x - 45 C 、 y5x 45 D 、 y 5x - 45y 7x 3y 7x 3y 7 x - 3y 7x - 37. 下列一元二次方程中,有两个不相等的实数根是( )A 、 26 9 02Cx 2 3 2x2、x -1 + 1= 0x + x+ =B 、 x = x+ =D 、()8. 现有 4 张卡片,其中 3 张卡片正面上的图案是 “ ”,1 张卡片正面上的图案是 “ ”,它们除此之外完全相同,把这 4 张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )A.9B.3 C. 3 D. 116 4 8 29. 如图,已知平行四边形 AOBC 的顶点 O ( 0,0 ), A (-1,2 ),点 B 在 x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧, 分别交边 OA ,OB 于点 D,E ;②分别以点 D,E为圆心,大于 1DE 的长为半径作弧,两弧在∠ AOB 内交于点 F ; 2③作射线 OF ,交边 AC 于点 G ,则点 G 的坐标为( )A. 5 1,2B.5,2 C. 3 5,2D.5 2,210. 如图 1,点 F 从菱形 ABCD 的顶点 A 出发,沿A DB 以 1cm/s 的速度匀速运动到点 B.图 2是点 F 运动时, △ FBC 的面积 y cm 2 随时间 x s 变化的关系图像,则 a 的值为()A. 5 C. 5D.2 5 2二、填空题(每小题 3 分,共 15 分)12. 如图,直线 AB ,CD 相交于点 O ,EO ⊥ AB 于点 O ,∠ EOD=50°,则∠ BOC 的度数为x 5 2 13. 不等式组的最小整数解是4 - x314. 如图,在△ ABC 中,∠ ACB=90°, AC=BC=2,将△ ABC 绕 AC 的中点 D 逆时针旋转 90°得到△A ’B ’C ’,其中点 B 的运动路径为弧 BB ’,则图中阴影部分的面积为15. 如图,∠ MAN=90°,点 C 在边 AM 上, AC=4,点 B 为边AN 上一动点,连接 BC ,△ A ’BC 与△ ABC 关于 BC 所在直线对 称。
河南省普通高中招生考试试卷数学word版含答案

河南省普通高中招生考试试卷数学w o r d版含答案WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】2018年河南省普通高中招生考试试卷数 学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.52-的相反数是(A )52- (B )52 (C )25- (D )252.今年一季度,河南省对“一带一路”沿线国家进出口总额达亿元,数据“亿”用科学记数法表示为(A )210147.2⨯ (B )3102147.0⨯ (C )1010147.2⨯ (D )11102147.0⨯ 3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是 (A )厉 (B )害 (C )了 (D )我 4.下列运算正确的是(A )532)x x -=-( (B )532x x x =+ (C )743x x x =• (D )1233=-x x 5.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:%,%,.%,%,%,关于这组数据,下列说法正确的是 (A )中位数是% (B )众数是% (C )平均数是% (D )方差是06.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问合伙人数,羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为(A )⎩⎨⎧+=+=37455x y x y (B )⎩⎨⎧+=-=37455x y x y (C )⎩⎨⎧-=+=37455x y x y (D )⎩⎨⎧-=-=37455x y x y7.下列一元二次方程中,有两个不相等实数根的是(A )0962=++x x (B )x x =2 (C )x x 232=+ (D )01)12=+-x ( 8.现有4张卡片,其中3张卡上正面上的图案是“”,一张卡片正面上的图案是“”,他们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是 (A )169 (B )43 (C )83 (D )21 9.如图,已知□AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上.按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为(A ))(2,15- (B ))(2,5 (C ))(2,53- (D ))(2,25-10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B.图2是点F 运动时,△FBC 的面积y (2cm )随时间x (s )变化的关系图象,则a 的值为(A )5 (B )2 (C )25(D )52 二、填空题(每小题3分,共15分)11.计算:95--=__________.12.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.13.不等式组⎩⎨⎧≥-+3425x x ,>的最小整数解是__________.14.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A 'B 'C ',其中点B 的运动路径为弧'BB ,则图中阴影部分的面积为__________.15. 如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A 'BC 与△ABC 关于BC 所在直线对称.点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A 'B 所在直线于点F ,连接A 'E.当△A 'EF 为直角三角形时,AB 的长为__________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:11112-÷⎪⎭⎫⎝⎛-+x x x ,其中x=12+. 17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代.漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有__________人.(2)扇形统计图中,扇形E 的圆心角度数是__________. (3)请补全条形统计图.(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数. 18.(9分)如图,反比例函数xky (x >0)的图象过格点(网格线的交点)P. (1)求反比例函数的解析式.(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ; ②矩形的面积等于k 的值.19.(9分)如图,AB 是○O 的直径,DO ⊥AB 于点O ,连接DA 交○O 于点C ,过点C 作○O 的切线交DO 于点E ,连接BC 交DO 于点F. (1)求证:CE=EF.(2)连接AF 并延长,交○O 于点G.填空:①当∠D 的度数为__________时,四边形ECFG 为菱形; ②当∠D 的度数为__________时,四边形ECOG 为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm,低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC 与直线AB的夹角∠CAE为°,高杠的支架BD与直线AB的夹角∠DBF为°,求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据:°≈,°≈,°≈,°≈,°≈,°≈)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:(注:日销售利润=日销售量×(销售单价-成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值.(2)根据以上信息,填空:该产品的成本单价是__________元.当销售单价x=__________元时,日销售利润w 最大,最大值是__________元.(3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分) (1)问题发现如图1,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M.填空: ①BDAC的值为__________. ②∠AMB 的度数为__________. (2)类比探究如图2,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断BDAC的值及∠AMB 的度数,并说明理由. (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M.若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.23.(11分)如图,抛物线c x ax y ++=62交x 轴于A ,B 两点,交y 轴于点C.直线y=x-5经过点B ,C. (1)求抛物线的解析式.(2)过点A 的直线交直线BC 于点M.①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标.②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.。
2024年河南省普通高中招生考试《数学》试卷(附答案)

2024年河南省普通高中招生考试试卷数 学注意事项:1. 本试卷共6页,三个大题,满分 120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1.如图,数轴上点 P 表示的数是A. -1B.0C.1D.22. 据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为 A.5784×10⁸ B.5.784×10¹⁰ C.5.784×10′′ D.0.5784×10¹² 3.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为 A.60° B.50° C.40° D.30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为(第4题)A. x>2B. x<0C. x<-2D. x>-36. 如图,在▱ABCD 中,对角线AC,BD 相交于点O,点E 为OC 的中点,EF∥AB 交BC 于点 F.若AB = 4,则EF 的长为 A. 12 B.1 C. 43 D.2 7. 计算 (a ⋅a ,⋯⋅a )3的结果是a 个A. a ⁵B. a ⁶C. a ⁴⁺³D. a³a数学试卷 第1页(共6页)8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为A. 19B. 16C. 15D. 139. 如图,⊙O 是边长为4 √3的等边三角形ABC 的外接圆,点D 是BC 的中点,连接BD,CD.以点 D为圆心,BD 的长为半径在⊙O 内画弧,则阴影部分的面积为 A.8π3 B.4π C.16π3 D.16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误..的是A. 当P =440 W 时, I =2 AB. Q 随I 的增大而增大C. I 每增加 1 A,Q 的增加量相同D.P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项: .12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为 分.数学试卷 第 2页(共6页)13. 若关于x的方程12x2−x+c=0有两个相等的实数根,则c的值为 .14. 如图,在平面直角坐标系中,正方形ABCD的边AB在x轴上,点A的坐标为(-2,0),点 E在边 CD 上. 将△BCE沿BE折叠,点C落在点F 处. 若点 F的坐标为(0,6),则点 E 的坐标为 .15. 如图,在Rt△ABC 中,∠ACB =90°,CA = CB =3,线段 CD 绕点 C 在平面内旋转,过点B作AD的垂线,交射线AD于点E.若CD=1,则AE的最大值为,最小值为 .三、解答题(本大题共8个小题,共75分)16. (10分)(1) 计算:√2×√50−(1−√3)0; (2) 化简:(3a−2+1)÷a+1a2−4.17.(9分)为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.比赛得分统计图队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是 (填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(-1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.数学试卷第 3 页(共6页)18.(9分)如图,矩形ABCD的四个顶点都在格点(网格线的交点)上,对角线AC,BD相交(x⟩0)的图象经过点 A.于点 E,反比例函数y=kx(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为 .19.(9分)如图,在Rt△ABC中,CD是斜边AB上的中线,BE‖DC交AC的延长线于点 E.(1)请用无刻度的直尺和圆规作∠ECM,使∠ECM=∠A,且射线 CM交 BE 于点 F(保留作图痕迹,不写作法).(2) 证明(1) 中得到的四边形 CDBF是菱形.20.(9分)如图1,塑像AB在底座BC上,点D 是人眼所在的位置.当点 B 高于人的水平视线DE时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B两点的圆与水平视线DE相切时(如图2),在切点P处感觉看到的塑像最大,此时∠APB为最大视角.(1)请仅就图2的情形证明∠APB>∠ADB.(2) 经测量,最大视角∠APB为30°,在点P处看塑像顶部点A 的仰角∠APE为60°,点P到塑像的水平距离PH为6m . 求塑像AB的高(结果精确到0.1m.参考数据:√3≈1.73).数学试卷第4页(共6页)21.(9分)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1) 若要从这两种食品中摄入4600 kJ热量和70g蛋白质,应选用A,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?22.(10分)从地面竖直向上发射的物体离地面的高度h(m)满足关系式ℎ=−5t²+v₀t,其中t(s)是物体运动的时间,v₀(m/s)是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后 s时离地面的高度最大(用含v₀的式子表示).(2)若小球离地面的最大高度为20m,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s.”已知实验楼高15 m,请判断他的说法是否正确,并说明理由.数学试卷第5页(共6页)23. (10分) 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验.请运用已有经验,对“邻等对补四边形”进行研究.定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有 (填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD是邻等对补四边形,AB=AD,,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若.BC=m,DC=n,∠BCD=2θ,,求AC 的长(用含m,n,θ的式子表示).(3)拓展应用如图3,在Rt△ABC中,∠B=90°,AB=3,BC=4,,分别在边BC,AC上取点M,N,使四边形ABMN是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出 BN的长.数学试卷第6页(共6页)2024年河南省普通高中招生考试数学试题参考答案(注:第15题只填对1空得2分)三、解答题(本大题共8个小题,共75分)16.(1)原式=10-1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分=9.……………………………………………………………………5分(2) 原式=a+1a−2⋅(a+2)(a−2)a+1…4分=a+2.………………………………………………………………………5分17.(1)甲29⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好.(注:答案不唯一,合理即可)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分(3) 甲的综合得分为:26.5×1+8×1.5+2×(-1)=36.5.乙的综合得分为:26×1+10×1.5+3×(-1)= 38.因为38>36.5,所以乙队员表现更好.…………………………………………9分18.(1)∵ 反比例函数y=kx(x⟩0)的图象经过点A(3,2),∴2=k3.∴ k = 6.∴ 这个反比例函数的表达式为y=6x.………………3分数学试题参考答案第1页(共4页)(2) 如图.7分(3)92………………………………………………………9分19.(1) 如图.……………………… ……… 4分(2) 由(1),得∠ECF =∠A.∴ CF∥AB.∵ BE∥DC,∴四边形CDBF是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∵ CD 是Rt△ABC斜边AB上的中线,∴ CD =BD.∴□CDBF是菱形.…………………………………………………………9分20.(1) 如图,连接BM.则∠AMB=∠APB.∵ ∠AMB>∠ADB,∴∠APB>∠ADB.…………………………3分(2) 在Rt△AHP 中,∠APH = 60°,PH = 6.,∵tan∠APH=AHPH∴ AH = PH·tan 60°=6×√₃ =6√₃. …… 6分∵ ∠APB = 30°,∴ ∠BPH =∠APH--∠APB =60°-30°=30°.数学试题参考答案第2页(共4页)在Rt△BHP 中, tan∠BPH =BHPH ,∴BH =PH ⋅tan30∘=6×√33=2√3. … …8分∴AB =AH −BH =6√3−2√3=4√3≈4×1.73≈6.9(m).答:塑像AB 的高约为6.9m.……………………………………………………9分21.(1) 设选用A 种食品x 包,B 种食品y 包,根据题意,得{700x +900y =4600,10x +15y =70.…3分解方程组,得 {x =4,y =2.答:选用A 种食品4包,B 种食品2包.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)设选用A 种食品a 包,则选用B 种食品(7-a)包,根据题意,得10a+15(7-a)≥90.∴a≤3.…………………………………………………………………………7分设总热量为wkJ ,则w=700a+900(7-a)=-200a+6300.∵ -200<0,∴ w 随a 的增大而减小. ∴ 当a=3时,w 最小.∴ 7-a=7-3 =4.答:选用A 种食品3包,B 种食品4包.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分22.(1)ⁿ₀…………………………………3分(2)根据题意,得当 t =v10时,h=20.∴−5×(v 010)2+v 0×v 010=20.∴v₀=20(m s ⁄). …………………………………………………6分 (3)小明的说法不正确.(注:若没写出结果,但后续说理正确,不扣分)⋯7分理由如下:由(2),得 ℎ=−5t²+20t.当h = 15时, 15=−5t²+20t.解方程,得 l₁=1,t₂=3.……………………………………………9分 ∵ 3-1=2(s),∴小明的说法不正确.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分数学试题参考答案 第3 页(共4页)23.(1)②④(注:全部填对的得2分,对但不全的得1分,有错的得0分)⋯⋯⋯2分(2)①∠ACD=∠ACB.(注:若没写出结果,但后续说理正确,不扣分)………4分理由如下:延长CB至点 E,使 BE = DC. 连接AE.∵ 四边形ABCD 是邻等对补四边形,∴∠ABC+∠D=180°.∵∠ABC+∠ABE=180°,∴ ∠ABE =∠D.∵AB=AD,∴△ABE≅△ADC.∴∠E=∠ACD,AE=AC.∴ ∠E =∠ACB.∴∠ACD=∠ACB.………………………………………………………6分②过点A作AF⊥EC,垂足为点 F.∵ AE=AC,∴CF=12CE=12(BC+BE)=12(BC+DC)=m+n2.∵ ∠BCD =2θ,∴ ∠ACB =∠ACD=θ.在Rt△AFC中,cosθ=CFAC,∴AC=CFcosθ=m+n2cosθ.…8分(3)12√25或12√27.…10分数学试题参考答案第4页(共4页)。
2020河南省普通高中招生考试试卷数学试卷(word版)含答案

2020年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 2的相反数是A.-2B.-12C.12D.22如下摆放的几何体中,主视图与左视图有可能不同的是3.要调查下列问题,适合采用全面调查(普查)的是A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.如图,11∥l2,l3∥14,若∠1=70°,则∠2的度数为A.100°B.110°C.120°D.130°5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于A.230BB.830BC.8×1010BD.2×1030B6若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y= -6x的图象上,则,y1,y2,y3的大小关系是A. y1> y2> y3B. y2> y3> y1C. y1> y3> y2D. y3> y2> y17定义运算:m☆n=mn2-mn-1。
例如:4☆2=4x22-4x2-1=7.则方程1☆x=0的根的情况为A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根8.国家统计局统计数据显示,我国快递业务收入逐年增加,2017年至2019年我国快递业务收入由5000亿元增加到7500亿元,设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75009.如图,在△ABC中,∠ACB=90,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为A.(32,2) B.(2.2) C.(114,2) D.(4,2)10.如图,在△ABC中,AB=BC=3,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为A.6 3B.9C.6D.33二、填空题(每小题3分,共15分)11.请写出一个大于1且小于2的无理数12已知关于x的不等式组其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色,固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是(第13题) (第14题) (第15题)14.如图,在边长为2 2 的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:其中a=5+117.(9分)为发展乡村经济,某村根据本地特色.创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲,乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:【收集数据】从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501【整理数据】整理以上数据,得到每袋质量x(g)的频数分布表.【分析数据】根据以上数据,得到以下统计量,根据以上信息,回答下列问题:(1)表格中的a= ,b=(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一。
2022年河南省普通高中招生考试试卷数学含答案

2022年河南省普通高中招生考试试卷数学含答案一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.12的相反数是()A.2B.2C.12D.12【答案】D【解析】【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D.【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【解析】【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.3.如图,直线AB ,CD 相交于点O ,EO ⊥CD ,垂足为O .若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B 【解析】【分析】根据垂直的定义可得90COE ,根据平角的定义即可求解.【详解】解:∵EO ⊥CD ,90COE ,12180COE ∵,2180905436 .故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.4.下列运算正确的是()A.2B.2211a a C.325a a D.2322a a a 【答案】D 【解析】【分析】根据二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式逐项分析判断即可求解.【详解】解:A. ,故该选项不正确,不符合题意;B.22112a a a ,故该选项不正确,不符合题意;C.326a a ,故该选项不正确,不符合题意;D.2322a a a ,故该选项正确,符合题意;故选:D.【点睛】本题考查了二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式,正确地计算是解题的关键.5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD 的中点.若OE =3,则菱形ABCD 的周长为()A.6B.12C.24D.48【答案】C 【解析】【分析】由菱形的性质可得出BO =DO ,AB =BC =CD =DA ,再根据中位线的性质可得26BC OE ,结合菱形的周长公式即可得出结论.【详解】解:∵四边形ABCD 为菱形,∴BO =DO ,AB =BC =CD =DA ,∵OE =3,且点E 为CD 的中点,OE 是BCD △的中位线,∴BC =2OE =6.∴菱形ABCD 的周长为:4BC =4×6=24.故选:C .【点睛】本题考查了菱形的性质以及中位线的性质,解题的关键是求出AD =6.6.一元二次方程210x x 的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根【答案】A 【解析】【分析】计算一元二次方程根的判别式进而即可求解.【详解】解:241450b ac 一元二次方程210x x 的根的情况是有两个不相等的实数根,故选:A.【点睛】本题考查了一元二次方程20ax bx c (0a a b c ,,,为常数)的根的判别式24b ac ,理解根的判别式对应的根的三种情况是解题的关键.当0 时,方程有两个不相等的实数根;当0 时,方程有两个相等的实数根;当 时,方程没有实数根.7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%【答案】B 【解析】【分析】根据扇形统计图中得分情况的所占比多少来判断即可;【详解】解:由扇形统计图可知:1分所占百分比:5%;2分所占百分比:10%;3分所占百分比:25%;4分所占百分比:45%;5分所占百分比:15%;可知,4分所占百分比最大,故4分出现的次数最多,∴所打分数的众数为4;故选:B .【点睛】本题主要考查众数的概念,扇形统计图,理解扇形统计图中最大百分比是所打分数的众数,这是解本题的关键.8.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于()A.810B.1210 C.1610D.2410【答案】C【解析】【分析】将1万表示成410,1亿表示成810,然后用同底数幂的乘法法则计算即可.【详解】∵1兆=1万×1万×1亿,∴1兆=4481610101010创=,故选:C .【点睛】本题考查同底数幂的乘法法则,科学记数法的表示方法,其中a 的范围是110a ,n 是整数,正确确定a ,n 的值是解答本题的关键.9.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为()A.1B.1, C.1D. 【答案】B 【解析】【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1,AO =2,∠OPA =90°,∴OP∴A (1,第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,);第3次旋转结束时,点A 的坐标为(,1);第4次旋转结束时,点A 的坐标为(1;∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,),故选:B【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.10.呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是()A.呼气酒精浓度K 越大,1R 的阻值越小B.当K =0时,1R 的阻值为100C.当K =10时,该驾驶员为非酒驾状态D.当120 R 时,该驾驶员为醉驾状态【答案】C 【解析】【分析】根据函数图象分析即可判断A ,B ,根据图3公式计算即可判定C ,D .【详解】解:根据函数图象可得,A.R 随K 的增大而减小,则呼气酒精浓度K 越大,1R 的阻值越小,故正确,不符合题意;B.当K =0时,1R 的阻值为100,故正确,不符合题意;C.当K =10时,则332200102200101022mg/100ml M K ,该驾驶员为酒驾状态,故该选项不正确,符合题意;D.当120 R 时,40K ,则332200102200401088mg/100ml M K ,该驾驶员为醉驾状态,故该选项正确,不符合题意;故选:C.【点睛】本题考查了函数图像,根据函数图像获取信息是解题的关键.二、填空题(每小题3分,共15分)11.请写出一个y 随x 增大而增大的一次函数表达式_________.【答案】y x (答案不唯一)【解析】【分析】在此解析式中,当x 增大时,y 也随着增大,这样的一次函数表达式有很多,根据题意写一个即可.【详解】解:如y x ,y 随x 的增大而增大.故答案为:y x (答案不唯一).【点睛】此题属于开放型试题,答案不唯一,考查了一次函数的性质,熟练掌握一次函数的增减性是解题关键.12.不等式组30,12x x的解集为______.【答案】23x 【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:3012x x①②解不等式①得:3x 解不等式②得:2x ∴不等式组的解集为:23x 故答案为:23x 【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.13.为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为______.【答案】16【解析】【分析】根据题意,画出树状图,可得一共有12种等可能结果,其中恰好选中甲和丙的有2种,再根据概率公式计算,即可求解.【详解】解:根据题意,画出树状图,如下∶一共有12种等可能结果,其中恰好选中甲和丙的有2种,所以恰好选中甲和丙的概率为21126.故答案为:16【点睛】利用树状图或列表法求概率,明确题意,准确画出树状图或列出表格是解题的关键.14.如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O 处,得到扇形A O B .若∠O =90°,OA =2,则阴影部分的面积为______.【答案】332【解析】【分析】设A O 与扇形AOB 交于点C ,连接OC ,解Rt OCO ,求得3,60O C COB ,根据阴影部分的面积为 OCO A O B OCB S S S 扇形扇形,即可求解.【详解】如图,设A O 与扇形AOB 交于点C ,连接OC ,如图O ∵是OB 的中点11122OO OB OA ,OA =2,∵AOB =90°,将扇形AOB 沿OB 方向平移,90A O O 1cos 2OO COB OC60COB sin 60O C OC阴影部分的面积为OCO A O B OCB S S S扇形扇形OCO AOB OCB S S S 扇形扇形2290601221360360232故答案为:332【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB 是解题的关键.15.如图,在Rt △ABC 中,∠ACB =90°,AC BC,点D 为AB 的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当∠ADQ =90°时,AQ 的长为______.【答案】【解析】【分析】连接CD ,根据题意可得,当∠ADQ =90°时,Q 点在CD 上,且1CQ CP ,勾股定理求得AQ 即可.【详解】如图,连接CD ,∵在Rt △ABC 中,∠ACB =90°,AC BC ,4AB ,CD AD ,122CD AB,根据题意可得,当∠ADQ =90°时,Q 点在CD 上,且1CQ CP ,211DQ CD CQ ,在Rt ADQ △中,AQ ,.【点睛】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点Q 的位置是解题的关键.三、解答题(本大题共8个小题,共75分)16.(1)计算:01123;(2)化简:2111x x x.【答案】(1)52;(2)1x 【解析】【分析】(1)根据求一个数的立方根,零指数幂,负整指数幂进行计算即可求解;(2)原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】(1)解:原式=131252(2)解:原式= 111x x x x x111x x xxx 1x 【点睛】本题考查了求一个数的立方根,零指数幂,负整指数幂,分式的混合运算,正确的计算是解题的关键.17.2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a .成绩频数分布表:成绩x (分)5060x 6070x 7080x 8090x 90100x 频数7912166b .成绩在7080x 这一组的是(单位:分):707172727477787878797979根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是______分,成绩不低于80分的人数占测试人数的百分比为______.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【答案】(1)78.5,44%(2)不正确.理由见解析(3)见解析【解析】【分析】(1)因为共50名学生参加测试,故中位数为第25、26名学生成绩的平均数,用成绩不低于80分的人数除以总人数即可求出所占百分比;(2)根据中位数的意义进行判断;(3)根据测试成绩合理评价即可,答案不唯一.【小问1详解】解:由成绩频数分布表和成绩在7080x 这一组的数据可知,排在第25、26名学生的成绩分别为78分,79分,因此成绩的中位数是:787978.52分.成绩不低于80分的人数占测试人数的百分比为:166100%44%50,故答案为:78.5,44%;【小问2详解】解:不正确.因为甲的成绩77分低于中位数78.5,所以甲的成绩不可能高于一半学生的成绩.【小问3详解】解:成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好.【点睛】本题考查调查统计时中位数的计算方法,以及运用中位数做决策等知识点,利用成绩频数分布表和成绩在7080x 这一组的数据得出中位数是解题的关键.18.如图,反比例函数 0k y x x的图像经过点 2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.【答案】(1)8y x(2)图见解析部分(3)证明见解析【解析】【分析】(1)把点A 的坐标代入反比例函数解析式,即可得出答案;(2)利用基本作图作线段AC 的垂直平分线即可;(3)根据垂直平分线的性质和角平分线的定义可得到BAC DCA ,然后利用平行线的判定即可得证.【小问1详解】解:∵反比例函数 0k y x x的图像经过点 2,4A ,∴当2x 时,42k ,∴8k =,∴反比例函数的表达式为:8y x;【小问2详解】如图,直线EF 即为所作;【小问3详解】证明:如图,∵直线EF 是线段AC 的垂直平分线,∴AD CD ,∴DAC DCA ,∵AC 平分OAB ,∴DAC BAC ,∴BAC DCA ,∴CD AB ∥.【点睛】本题考查了作图—基本作图,用待定系数法求反比例函数的解析式,垂直平分线的性质,等腰三角形的性质,平行线的判定,角平分线的定义等知识.解题的关键是熟练掌握五种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).19.开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁顶端D 的仰角为34°,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为45°.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上,求拂云阁DC 的高度(结果精确到1m .参考数据:sin 340.56 ,cos340.83 ,tan 340.67 ).【答案】拂云阁DC 的高度约为32m【解析】【分析】延长EF 交CD 于点G ,则四边形,AEFB AEGC 是矩形,则 1.5CG AE ,15EF AB ,在Rt DGF △,Rt DGE △中,分别表示出,FG EG ,根据15EG FG ,建立方程,解方程求解可得DG ,根据DC DG GC 即可求解.【详解】如图,延长EF 交CD 于点G ,则四边形,AEFB AEGC 是矩形,则 1.5CG AE ,15EF AB ,在Rt DGF △中,tan tan 45DG DG FG DG DFG,在Rt DGE △中,tan tan 340.67DG DG DG EG DEG ,15EG FG ∵,即150.671DG DG ,解得30.5DG ,30.5 1.532DC DG GC (m).拂云阁DC 的高度约为32m .【点睛】本题考查了解直角三角形的应用,掌握直角三角形中的边角关系是解题的关键.20.近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元.学校决定在菜苗基地购买A ,B 两种菜苗共100捆,且A 种菜苗的捆数不超过B 种菜苗的捆数.菜苗基地为支持该校活动,对A ,B 两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【答案】(1)20元(2)2250元【解析】【分析】(1)设菜苗基地每捆A 种菜苗的价格为x 元,根据题意列出方程,解出方程即可;(2)设:购买A 种菜苗m 捆,则购买B 种菜苗 100m 捆,花费为y 元,根据A 种菜苗的捆数不超过B 种菜苗的捆数,解出m 的取值范围,列出花费y 与A 种菜苗m 捆之间的关系式,根据关系式求出最少花费多少钱即可.【小问1详解】解:设:菜苗基地每捆A 种菜苗的价格为x 元,300300354x x 51530030044x 15754x 解得20x =检验:将20x =代入55202544x ,值不为零,∴20x =是原方程的解,∴菜苗基地每捆A 种菜苗的价格为20元.【小问2详解】解:设:购买A 种菜苗m 捆,则购买B 种菜苗 100m 捆,花费为y 元,有题意可知:100m m ,解得50m ≤,又∵ 20301000.9y m m ,∴ 9270050y m m ,∵y 随m 的增大而减小∴当50m 时,花费最少,此时95027002250y ∴本次购买最少花费2250元.【点睛】本题考查分式方程与一次函数表达式求最小值,根据题意列出分式方程并检验是解答本题的关键.21.红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立如图所示的平面直角坐标系,并设抛物线的表达式为 2y a x h k ,其中x (m )是水柱距喷水头的水平距离,y (m )是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m ,身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【答案】(1) 20.15 3.2y x (2)2或6m【解析】【分析】(1)根据顶点 5,3.2,设抛物线的表达式为 25 3.2y a x ,将点 0,0.7P ,代入即可求解;(2)将 1.6y 代入(1)的解析式,求得x 的值,进而求与点 3,0的距离即可求解.【小问1详解】解:根据题意可知抛物线的顶点为 5,3.2,设抛物线的解析式为 25 3.2y a x ,将点 0,0.7代入,得0.725 3.2a ,解得0.1a ,抛物线的解析式为 20.15 3.2y x ,【小问2详解】由 20.15 3.2y x ,令 1.6y ,得 21.60.15 3.2x ,解得121,9x x ,∵爸爸站在水柱正下方,且距喷水头P 水平距离3m , 当她的头顶恰好接触到水柱时,她与爸爸的水平距离为312 (m),或936 (m).【点睛】本题考查了二次函数的实际应用,掌握顶点式求二次函数解析式是解题的关键.22.为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O 与水平地面相切于点C ,推杆AB 与铅垂线AD 的夹角为∠BAD ,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环⊙O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.(1)求证:∠BOC +∠BAD =90°.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B 是该区域内最低位置,此时点A 距地面的距离AD 最小,测得3cos 5BAD.已知铁环⊙O 的半经为25cm ,推杆AB 的长为75cm ,求此时AD 的长.【答案】(1)见解析(2)50cm 【解析】【分析】(1)根据切线的性质可得OC CD ,AB OB ,根据AD CD ,可得AD OC ∥,过点B 作BE AD ∥,根据平行线的性质可得BAD EBA ,COB OBE ,进而即可得证;(2)过点B 作CD 的平行线,交AD 于点G ,交OC 于点F ,由(1)得到OBF A ,在Rt ABG △,Rt OBF △中,求得,AG BF ,进而求得,OF FC ,根据AD AG GD 即可求解.【小问1详解】证明:∵⊙O 与水平地面相切于点C ,OC CD ,AD CD ∵,AD OC ∥,∵AB 与⊙O 相切于点B ,AB OB ,90OBA ,过点B 作BE AD ∥,BAD EBA ,BE OC ∥,COB OBE ,90COB BAD OBE ABE OBA ,即∠BOC +∠BAD =90°.【小问2详解】如图,过点B 作CD 的平行线,交AD 于点G ,交OC 于点F ,,FG AD FG OC ,则四边形CFGD 是矩形,90BOC BAD ∵,90 ABO ,90OBF FOB A ,在Rt ABG △中,∵3cos 5BAD ,75cm AB ,3cos 75455AG AB BAD (cm),在Rt OBF △中,3cos cos 5OBF A ,25OB cm ,33251555BF OB (cm),2222251520OF OB BF (cm),25205FC OC OF (cm),5DG FC cm ,45550AD AG GD (cm).【点睛】本题考查了切线的性质,平行线的性质,解直角三角形的应用,掌握以上知识是解题的关键.23.综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD 按照(1)中的方式操作,并延长PM 交CD 于点Q ,连接BQ .①如图2,当点M 在EF 上时,∠MBQ =______°,∠CBQ =______°;②改变点P 在AD 上的位置(点P 不与点A ,D 重合),如图3,判断∠MBQ 与∠CBQ 的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD 的边长为8cm ,当FQ =1cm 时,直接写出AP 的长.【答案】(1)BME 或ABP 或PBM 或MBC(2)①15,15;②MBQ CBQ ,理由见解析(3)4011APcm 【解析】【分析】(1)根据折叠的性质,得12BE BM ,结合矩形的性质得30BME ,进而可得30ABP PBM MBC ;(2)根据折叠的性质,可证 Rt Rt HL BQM BQC ,即可求解;(3)由(2)可得QM QC ,设8AP PM x PD x ,,由勾股定理即可求解;【小问1详解】解:12AE BE AB AB BM ∵,12BE BM ∴90BEM∵30BME∴60MBE∴ABP PBM∵30ABP PBM MBC∴【小问2详解】∵四边形ABCD 是正方形∴AB =BC ,∠A =∠ABC =∠C =90°由折叠性质得:AB =BM ,∠PMB =∠BMQ =∠A =90°∴BM =BC①BM BC BQ BQ∵,∴Rt Rt HL BQM BQC MBQ CBQ∴30MBC Ð=°Q 15MBQ CBQ∴②BM BC BQ BQ∵,Rt Rt HL BQM BQC ∴MBQ CBQ∴【小问3详解】1cm 4cm 8cmFQ DF FC AB ∵,,8413(cm)QC CD DF FQ ∴,DQ =DF +FQ =4+1=5(cm)由(2)可知,QM QC设8AP PM x PD x ,,222PD DQ PQ ∴,即222853x x 解得:4011x∴40cm11 AP【点睛】本题主要考查矩形与折叠,正方形的性质、勾股定理、三角形的全等,掌握相关知识并灵活应用是解题的关键.。
2023年河南省中考数学试卷+参考答案解析

2023年河南省普通高中招生考试试卷数学一、单选题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.下列各数中,最小的数是()A.-lB.0C.1D.32.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。
如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源。
数据“4.59亿”用科学记数法表示为()A.4.59×107B.45.9×108C.4.59×108D.0.459×1094.如图,直线AB ,CD 相交于点O ,若∠1=80°,∠2=30°,则∠AOE 的度数为()A.30°B.50°C.60°D.80°5.化简a -1a +1a的结果是()A.0B.1C.aD.a -26.如图,点A ,B ,C 在⊙O 上,若∠C =55°,则∠AOB 的度数为()A.95°B.100°C.105°D.110°7.关于x 的一元二次方程x 2+mx -8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.199.二次函数y =ax 2+bx 的图象如图所示,则一次函数y =x +b 的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B 。
2022年河南省中考数学试题(含答案解析)

2022年河南省普通高中招生考试试卷数 学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。
2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的. 1.12-的相反数是A .12B .2C .2-D .12-2.2022年冬奥会的奖牌“同心”表达了“天地合⋅人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的 一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字 是 A .合B .同C .心D .人3.如图,直线AB ,CD 相交于点O ,EO CD ⊥,垂足为O .若154∠=︒,则2∠的度数为A .26︒B .36︒C .44︒D .54︒4.下列运算正确的是A .2332-=B .22(1)1a a +=+C .235()a a =D .2322a a a ⋅=5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD的中点.若3OE =,则菱形ABCD 的周长为 A .6 B .12 C .24D .486.一元二次方程210x x +-=的根的情况是A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .只有一个实数根7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为A.5分B.4分C.3分D.45%8.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿1=万1⨯万,1兆1=万1⨯万1⨯亿.则1兆等于()A.810B.1210C.1610D.24109.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,//AB x轴,交y轴于点P.将OAP∆绕点O顺时针旋转,每次旋转90︒,则第2022次旋转结束时,点A的、坐标为A.(3,1)-B.(1,3)--C.(3-,1)-D.(1,3)10.呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1)R,1R的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是A.呼气酒精浓度K越大,1R的阻值越小B.当0K=时,1R的阻值为100C.当10K=时,该驾驶员为非酒驾状态D.当120R=时,该驾驶员为醉驾状态二、填空题(每小题3分,共15分)11.请写出一个y 随x 的增大而增大的一次函数的表达式 .12.不等式组30,12x x -⎧⎪⎨>⎪⎩的解集为 .13.为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为 . 14.如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形AO B '''.若90O ∠=︒,2OA =,则阴影部分的面积为 .15.如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC ==,点D 为AB 的中点,点P 在AC 上,且1CP =,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ . 当90ADQ ∠=︒时,AQ 的长为 .三、解答题(本大题共8个小题,共75分)16.(1)(5011()23-+;(2)(5分)化简:211(1)x x x -÷-.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课, 被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况, 随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:ab .成绩在7080x <这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79 根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 分,成绩不低于80分的人数占测试人数的百分比为 .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由. (3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.18.(9分)如图,反比例函数(0)ky x x=>的图象经过点(2,4)A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证://CD AB .19.(9分)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁 顶端D 的仰角为34︒,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为 45︒.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上, 求拂云阁DC 的高度(结果精确到1m .参考数据:sin340.56︒≈,cos340.83︒≈,tan340.67)︒≈.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园, 需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆. (1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元.学校决定在菜苗基地购买A ,B 两种菜苗共100捆,且A 种菜苗的捆数不超过B 种菜苗的捆数.菜苗基地为支持该校活动, 对A ,B 两种菜苗均提供九折优惠.求本次购买最少花费多少钱.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立 如图所示的平面直角坐标系,并设抛物线的表达式为2()y a x h k =-+,其中()x m 是水柱距 喷水头的水平距离,()y m 是水柱距地面的高度. (1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m .身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚 铁环时,铁环O 与水平地面相切于点C ,推杆AB 与铅垂线AD 的夹角为BAD ∠,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.(1)求证:90BOC BAD ∠+∠=︒.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B 是该区域内最低位置,此时点A 距地面的距离AD 最小,测得3cos 5BAD ∠=.已知铁环O 的半径为25cm ,推杆AB 的长为75cm ,求此时AD 的长.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30︒的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,MBQ∠=︒;∠=︒,CBQ②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断MBQ∠的∠与CBQ 数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当1=时,直接写出AP的FQ cm长.2022年河南省普通高中招生考试试卷数学试题参考答案与试题解析一、 选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ADBDCABCBC二、 填空题(每小题3分,共15分)题号 1112131415答案y x =, (答案不唯一)23x <16332π+ 5或13三、解答题(本大题共8个小题,共75分) 16.(10分) 解:(1)原式1312=-+52=; (2)原式(1)(1)1x x x x x +--=÷(1)(1)1x x xx x +-=⋅- 1x =+.17.(9分)解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为787978.52+=(分), 成绩不低于80分的人数占测试人数的百分比为166100%44%50+⨯=, (2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).18.(9分)(1)解:反比例函数(0)ky x x=>的图象经过点(2,4)A ,248k ∴=⨯=,∴反比例函数的解析式为8y x=; (2)解:如图,直线m 即为所求.(3)证明:AC 平分OAB ∠,OAC BAC ∴∠=∠,直线m 垂直平分线段AC ,DA DC ∴=,OAC DCA ∴∠=∠, DCA BAC ∴∠=∠, //CD AB ∴.19.(9分)解:延长EF 交DC 于点H ,由题意得:90DHF ∠=︒,15EF AB ==米, 1.5CH BF AE ===米,设FH x =米,(15)EH EF FH x ∴=+=+米,在Rt DFH ∆中,45DFH ∠=︒,tan45DH FH x ∴=⋅︒=(米),在Rt DHE ∆中,34DEH ∠=︒,tan340.6715DH xEH x ∴︒==≈+, 30.1x ∴≈,经检验:30.1x ≈是原方程的根,30.1 1.532DC DH CH ∴=+=+≈(米),∴拂云阁DC 的高度约为32米.20.(9分)解:(1)设菜苗基地每捆A 种菜苗的价格是x 元,根据题意得:300300354x x =+, 解得20x =,经检验,20x =是原方程的解,答:菜苗基地每捆A 种菜苗的价格是20元;(2)设购买A 种菜苗m 捆,则购买B 种菜苗(100)m -捆,A 种菜苗的捆数不超过B 种菜苗的捆数,100m m ∴-,解得50m ,设本次购买花费w 元,200.9300.9(100)92700w m m m ∴=⨯+⨯-=-+, 90-<,w ∴随m 的增大而减小,50m ∴=时,w 取最小值,最小值为95027002250-⨯+=(元),答:本次购买最少花费2250元. 21.(9分)解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为2(5) 3.2y a x =-+,将(0,0.7)代入得:0.725 3.2a =+,解得110a =-, 22117(5) 3.2101010y x x x ∴=--+=-++, 答:抛物线的表达式为2171010y x x =-++; (2)当 1.6y =时,2171.61010x x -++=, 解得1x =或9x =,∴她与爸爸的水平距离为312()m -=或936()m -=,答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m 或6m . 22.(10分)(1)证明:如图1,过点B 作//EF CD ,分别交AD 于点E ,交OC 于点F .CD 与O 相切于点C , 90OCD ∴∠=︒. AD CD ⊥, 90ADC ∴∠=︒. //EF CD ,90OFB AEB ∴∠=∠=︒,90BOC OBF ∴∠+∠=︒,90ABE BAD ∠+∠=︒,AB 为O 的切线,90OBA ∴∠=︒. 90OBF ABE ∴∠+∠=︒,90OBF ∴∠=︒. 90OBF ABE ∴∠+∠=︒,OBF BAD ∴∠=∠, 90BOC BAD ∴∠+∠=︒;(2)解:如图1,在Rt ABE ∆中,75AB =,3cos 5BAD ∠=,45AE ∴=.由(1)知,OBF BAD ∠=∠,3cos 5OBF ∴∠=, 在Rt OBF ∆中,25OB =, 15BF ∴=, 20OF ∴=.25OC =, 5CF ∴=.90OCD ADC CFE ∠=∠=∠=︒,∴四边形CDEF 为矩形,5DE CF ∴==, 50AD AE ED cm ∴=+=.23.(10分)解:(1)对折矩形纸片ABCD ,12AE BE AB ∴==,90AEF BEF ∠=∠=︒, 沿BP 折叠,使点A 落在矩形内部点M 处,AB BM ∴=,ABP PBM ∠=∠,1sin 2BE BME BM ∠==, 30EMB ∴∠=︒,60ABM ∴∠=︒,30CBM ABP CBM ∴∠=∠=∠=︒,故答案为:EMB ∠或CBM ∠或ABP ∠或CBM ∠(任写一个即可);数学试卷 第11页(共11页) (2)①由(1)可知30CBM ∠=︒,四边形ABCD 是正方形, AB BC ∴=,90BAD C ∠=∠=︒, 由折叠可得:AB BM =,90BAD BMP ∠=∠=︒, BM BC ∴∠=,90BMQ C ∠=∠=︒, 又BQ BQ =,Rt BCQ Rt BMQ(HL)∴∆≅∆, 15CBQ MBQ ∴∠=∠=︒,故答案为:15,15; ②MBQ CBQ ∠=∠,理由如下: 四边形ABCD 是正方形, AB BC ∴=,90BAD C ∠=∠=︒, 由折叠可得:AB BM =,90BAD BMP ∠=∠=︒, BM BC ∴∠=,90BMQ C ∠=∠=︒, 又BQ BQ =,Rt BCQ Rt BMQ(HL)∴∆≅∆, CBQ MBQ ∴∠=∠;(3)由折叠的性质可得4DF CF cm ==,AP PQ =,Rt BCQ Rt BMQ ∆≅∆, CQ MQ ∴=,当点Q 在线段CF 上时,1FQ cm =, 3MQ CQ cm ∴==,5DQ cm =, 222PQ PD DQ =+, 22(3)(8)25AP AP ∴+=-+, 4011AP ∴=, 当点Q 在线段DF 上时,1FQ cm =, 5MQ CQ cm ∴==,3DQ cm =, 222PQ PD DQ =+, 22(5)(8)9AP AP ∴+=-+, 2413AP ∴=,综上所述:AP 的长为4011cm 或2413cm .。
2023年河南省(初三学业水平考试)数学中考真题试卷含详解

2023年河南省普通高中招生考试试卷数学一、选择题1.下列各数中,最小的数是()A.-lB.0C.1D.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A .主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.74.5910⨯ B.845.910⨯ C.84.5910⨯ D.90.45910⨯4.如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为()A.30︒B.50︒C.60︒D.80︒5.化简11a a a-+的结果是()A.0B.1C.aD.2a -6.如图,点A ,B ,C 在O 上,若55C ∠=︒,则AOB ∠的度数为()A.95︒B.100︒C.105︒D.110︒7.关于x 的一元二次方程280x mx +-=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.199.二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PBy PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A.6B.3C.3D.23二、填空题11.某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.12.方程组35,37x y x y +=⎧⎨+=⎩的解为______.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.14.如图,PA 与O 相切于点A ,PO 交O 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.15.矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.三、解答题16.(1)计算:1395--+;(2)化简:()()224x y x x y ---.17.蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:66777899910乙:67788889910b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目统计量快递公司配送速度得分服务质量得分平均数中位数平均数方差甲7.8m 72s 甲乙8872s 乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18.如图,ABC 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.19.小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数ky x=图象上的点)A和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.20.综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).21.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.22.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.23.李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y 轴,作ABC 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD αα∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP β∠=,请判断β与α的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60α=︒,3AD =15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.2023年河南省普通高中招生考试试卷数学一、选择题1.下列各数中,最小的数是()A.-lB.0C.1D.【答案】A【分析】根据实数的大小比较法则,比较即可解答.【详解】解:∵101-<<<,∴最小的数是-1.故选:A【点睛】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同【答案】A【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .【点睛】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.74.5910⨯B.845.910⨯ C.84.5910⨯ D.90.45910⨯【答案】C【分析】将一个数表示为10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【详解】解:4.59亿8459000000 4.9510==⨯.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,掌握形式为10n a ⨯,其中110a ≤<,确定a 与n 的值是解题的关键.4.如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为()A.30︒B.50︒C.60︒D.80︒【答案】B【分析】根据对顶角相等可得180AOD ∠=∠=︒,再根据角的和差关系可得答案.【详解】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B【点睛】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5.化简11a a a-+的结果是()A.0B.1C.aD.2a -【答案】B【分析】根据同母的分式加法法则进行计算即可.【详解】解:11111a a aa a a a--++===,故选:B .【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键.6.如图,点A ,B ,C 在O 上,若55C ∠=︒,则AOB ∠的度数为()A.95︒B.100︒C.105︒D.110︒【答案】D【分析】直接根据圆周角定理即可得.【详解】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7.关于x 的一元二次方程280x mx +-=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【分析】对于20(0)ax bx c a ++=≠,当0∆>,方程有两个不相等的实根,当Δ0=,方程有两个相等的实根,Δ0<,方程没有实根,根据原理作答即可.【详解】解:∵280x mx +-=,∴()2248320m m ∆=-⨯-=+>,所以原方程有两个不相等的实数根,故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.19【答案】B【分析】先画树状图,再根据概率公式计算即可.【详解】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9.二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据二次函数图象的开口方向、对称轴判断出a 、b 的正负情况,再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0,由对称轴bx 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出a 、b 的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10.如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PB y PC =,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A.6B.3C.D.【答案】A 【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为AO OB ==O 作OD AB ⊥,解直角三角形可得cos303AD AO =⋅︒=,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==,∴30BAO ABO ∠=∠=︒,过点O 作OD AB ⊥,∴AD BD =,则cos303AD AO =⋅︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11.某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12.方程组35,37x y x y +=⎧⎨+=⎩的解为______.【答案】12x y =⎧⎨=⎩【分析】利用加减消元法求解即可.【详解】解:3537x y x y +=⎧⎨+=⎩①②由3⨯-①②得,88x =,解得1x =,把1x =代入①中得315y ⨯+=,解得2y =,故原方程组的解是12x y =⎧⎨=⎩,故答案为:12x y =⎧⎨=⎩.【点睛】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.【答案】280【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.【点睛】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14.如图,PA 与O 相切于点A ,PO 交O 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.【答案】103【分析】连接OC ,证明OAC OBC ≌,设CB CA x ==,则12PC PA CA x =-=-,再证明PAO PBC ∽,列出比例式计算即可.【详解】如图,连接OC ,∵PA 与O 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =⎧⎪=⎨⎪=⎩,∴OAC OBC ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x =-,解得103x =,故CA 的长为103,故答案为:103.【点睛】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15.矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21【分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可.【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD=,又∵M 为对角线BD 的中点,∴BM MD =,∴1AN BM ND MD ==,即:1ND AN ==,∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND =∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16.(1)计算:135--+;(2)化简:()()224x y x x y ---.【答案】(1)15;24y 【分析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.【详解】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.【点睛】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17.蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:66777899910乙:67788889910b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目统计量快递公司配送速度得分服务质量得分平均数中位数平均数方差甲7.8m 72s 甲乙8872s 乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;<(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【分析】(1)根据中位数和方差的概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.【小问1详解】由题意可得,787.52m +==,()()()()22222137748726757110s ⎡⎤=⨯⨯-+⨯-+⨯-+-=⎣⎦甲()()()()()()()222222221478721072679725777 4.210s ⎡⎤=⨯-+-+⨯-+⨯-+-+⨯-+-=⎣⎦乙,∴22s s <甲乙,故答案为:7.5;<;【小问2详解】∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;【小问3详解】还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点睛】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18.如图,ABC 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.【答案】(1)见解析(2)见解析【分析】(1)利用角平分线的作图步骤作图即可;(2)证明()SAS BAE DAE △≌△,即可得到结论.【小问1详解】解:如图所示,即为所求,【小问2详解】证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.【点睛】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19.小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数k y x=图象上的点)3,1A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(13(2)半径为2,圆心角为60︒(3)2333π-【分析】(1)将)3,1A 代入k y x=中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出AOD ∠的度数,最后结合菱形的性质求解;(3)先计算出23AOCD S =菱形k 的几何意义可求出3FBO S = ,从而问题即可解答.【小问1详解】解:将)A 代入k y x=中,得1=,解得:k =【小问2详解】解: 过点A 作OD 的垂线,垂足为G ,如下图:)A ,1,AG OG ∴==,2OA ∴==,∴半径为2;12AG OA = ,∴1sin 2AG AOG OG ∠==,30AOG ∴∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC ∴∠=︒,∴扇形AOC 的圆心角的度数:60︒;【小问3详解】解:2OD OG == ,1AOCD S AG OD ∴=⨯=⨯菱形,221122663AOC S r πππ=⨯=⨯⨯= 扇形,如下图:由菱形OBEF 知,FHO BHO S S = ,322BHO kS == ,3232FBO S ∴=⨯= ,22323333FBO AOCD AOC S S S S ππ∴=+-=-=- 阴影部分面积菱形扇形.【点睛】本题考查了反比例函数及k 的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握k 的几何意义.20.综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).【答案】树EG 的高度为9.1m【分析】由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,易知EAF BAH ∠=∠,可得2tan tan 3EF EAF BAH AF ∠==∠=,进而求得22m 3EF =,利用EG EF FG =+即可求解.【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+≈,答:树EG 的高度为9.1m .【点睛】本题考查解直角三角形的应用,得到EAF BAH ∠=∠是解决问题的关键.21.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算(2)400元(3)当300400a ≤<或600800a ≤<时,活动二更合算【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a 元,活动二当0300a <<时,所需付款为a 元,当300600a ≤<时,所需付款为()80a -元,当600900a ≤<时,所需付款为()160a -元,然后根据题意列出不等式即可求解.【小问1详解】解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360⨯=元,活动二需付款:45080370-=元,∴活动一更合算;【小问2详解】设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,【小问3详解】这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a ≤<时,所需付款为:()80a -元,当600900a ≤<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a ≤<时,800.8a a -<,解得300400a ≤<,即:当300400a ≤<时,活动二更合算,③当600900a ≤<时,1600.8a a -<,解得600800a ≤<,即:当600800a ≤<时,活动二更合算,综上:当300400a ≤<或600800a ≤<时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【分析】(1)在一次函数上0.4 2.8y x =-+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x =-+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x -+=,()20.41 3.20x --+=,即可求得落地点到O 点的距离,即可判断谁更近.【小问1详解】解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;【小问2详解】∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±+(负值舍去),即:落地点距离点O 距离为()1m ,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23.李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y 轴,作ABC 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD αα∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP β∠=,请判断β与α的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60α=︒,AD =15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.【答案】(1)180︒,8.(2)①2βα=,理由见解析;②2sin m α(3)或【分析】(1)观察图形可得222A B C △与ABC 关于O 点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,进而可得22PAP BAD ∠=∠,即可得出结论;②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,,得出32PP EF =,证明四边形EFDG 是矩形,则DG EF =,在Rt DAG △中,根据sin DG DAG DA∠=,即可求解;(3)分23P P AD ∥,23P P CD ∥,两种情况讨论,设AP x =,则12AP AP x ==,先求得1622PP x =,勾股定理求得13PP ,进而表示出3PP ,根据由(2)②可得32sin PP AD α=,可得36PP =,进而建立方程,即可求解.【小问1详解】(1)∵ABC 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC 关于O 点中心对称,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=⨯=,即38AA =,333A B C △可以看作是ABC 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.【小问2详解】①2βα=,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2βα=,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,。
2023河南省普通高中招生考试数学试卷及答案

2023河南省普通高中招生考试数学试卷及答案数学试题卷注意事项:1、本试卷共6页,三个大题,满分120分,考试时间100分钟;2、本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
3、本试卷由冰橙醉整理于2023年6月26日。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.的绝对值是()A.B.C.2D.22.成人每天维生素D的摄入量约为0.0000046克,数据“0.0000046”用科学记数法表示为()A.46某10-7B.4.6某10-7C.4.6某10-6D.0.46某10-53.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为(4.下列计算正确的是())A.45°B.48°C.50°D.58°A.2a+3a=6aB.(-3a)=6a2C.(某-y)=某2-y2D.移前后几何体的三视图,下列说法正确的是(A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同图①6.一元二次方程(某+1)(某-1)=2某+3的根的情况是(A.有两个不相等的实数根C.只有一个实数根)B.有两个相等的实数根D.没有实数根图②5.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平)7.超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元D.44,n)两点,则8.已知抛物线y=-某2+b某+4经过(-2,n)和(n的值为()A.2B.-4C.29.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3,分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为(A.2B.4C.31/10)D.10.如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4).将△OAB 与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为()A.(10,3)B.(-3,10)C.(10,-3)D.(3,-10)二、填空题(每小题3分,共15分)11.计算:-2-1=______.12.不等式组>的解集是______。
最新2020年河南省普通高中招生考试数学试卷(附参考答案和评分标准)

l 4l 3l 2l 121第 4 题图2020年河南省普通高中招生考试数学试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 2的相反数是 【 】 (A )2- (B )21-(C )21 (D )22. 如下摆放的几何体中,主视图与左视图有可能不同的是 【 】(A ) (B ) (C ) (D )3. 要调查下列问题,适合采用全面调查(普查)的是 【 】 (A )中央电视台《开学第一课》的收视率 (B )某城市居民6月份人均网上购物的次数 (C )即将发射的气象卫星的零部件质量 (D )某品牌新能源汽车的最大续航里程4. 如图所示,4321//,//l l l l ,若︒=∠701,则2∠的 度数为 【 】 (A )︒100 (B )︒110 (C )︒120 (D )︒1305. 电子文件的大小常用B , KB , MB , GB 等作为单位,其中1GB 102=MB,1MB 102=KB,1KB =102 B.某视频文件的大小约为1GB,1GB 等于 【 】 (A )302 B (B )308 B (C )10108⨯ B (D )30102⨯ B6. 若点()1,1y A -,()2,2y B ,()3,3y C 在反比例函数xy 6-=的图象上,则321,,y y y 的大小关系是 【 】 (A )321y y y >> (B )132y y y >> (C )231y y y >> (D )123y y y >>7. 定义运算:m ☆12--=mn mn n .例如:4☆27124242=-⨯-⨯=.则方程1☆0=x 的根的情况为 【 】第 12 题图a0b (A )有两个不相等的实数根 (B )有两个相等的实数根 (C )无实数根 (D )只有一个实数根8. 国家统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为 【 】 (A )()7500215000=+x (B )()7500125000=+⨯x(C )()7500150002=+x (D )()()7500150001500050002=++++x x9. 如图所示,在△ABC 中,︒=∠90ACB ,边BC 在x 轴上,顶点A 、B 的坐标分别为()6,2-和()0,7.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为 【 】(A )⎪⎭⎫ ⎝⎛2,23 (B )()2,2 (C )⎪⎭⎫⎝⎛2,411 (D )()2,4第 9 题图第 10 题图DCBA10. 如图所示,在△ABC 中,︒=∠==30,3BAC BC AB ,分别以点A 、C 为圆心,AC 的长为半径作弧,两弧交于点D ,连结DA 、DC ,则四边形ABCD 的面积为 【 】 (A )36 (B )9 (C )6 (D )33 二、填空题(每小题3分,共15分)11. 请写出一个大于1且小于2的无理数__________.12. 已知关于x 的不等式组⎩⎨⎧>>b x a x ,其中b a ,在数轴上的对应点如图所示,则这个不等式组的解集为__________.13. 如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是__________.14. 如图所示,在边长为22的正方形ABCD 中,点E 、F 分别是边AB 、BC 的中点,连结E C 、FD ,点G 、H 分别是EC 、FD 的中点,连结GH ,则GH 的长度为__________.第 13 题图第 14 题图H GF EDCBA第 15 题图15. 如图所示,在扇形BOC 中,︒=∠60BOC ,OD 平分BOC ∠交弧BC 于点D ,点E 为半径OB 上一动点.若2=OB ,则阴影部分周长的最小值为____________. 三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛+-a a a ,其中15+=a .17.(9分)为发展乡村经济,某村根据本地特色,创办了山药加工厂.该厂需要购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500 g,与之相差大于10 g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:【收集数据】从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下:甲: 501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505 乙: 505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501 【整理数据】整理以上数据,得到每袋质量x (g )的频数分布表:【分析数据】根据以上数据,得到以下统计量:根据以上信息,回答下列问题:(1)表格中的=a __________,=b __________;(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.PMC B A45°22°某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为︒22,然后沿MP 方向前进16 m 到达点N 处,测得点A 的仰角为︒45.测角仪的高度为1. 6 m. (1)求观星台最高点A 距离地面的高度(结果精确到0. 1 m ); (参考数据:41.12,40.022tan ,93.022cos ,37.022sin ≈≈︒≈︒≈︒)(2)“景点简介”显示,观星台的高度为12. 6 m,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下: 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且b x k y +=11;按照方案二所需费用为2y (元),且x k y 22=.其函数图象如图所示. (1)求1k 和b 的值,并说明它们的实际意义; (2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.次20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 垂直于点B ,DB 足够长.图 1使用方法如图2所示,若要把MEN ∠三等分,只需适当放置三分角器,使DB 经过MEN ∠的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,则EB , EO 就把MEN ∠三等分了. 为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A 、B 、O 、C 在同一直线上,AC EB ⊥,垂足为点B ,_____________________. 求证:______________________.21.(10分)如图所示,抛物线c x x y ++-=22与x 轴正半轴,y 轴正半轴分别交于点A 、B ,且OB OA =,点G 为抛物线的顶点. (1)求抛物线的解析式及点G 的坐标;(2)点M 、N 为抛物线上两点(点M 在点N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q 为抛物线上点M 、N 之间(含点M 、N )的一个动点,求点Q 的纵坐标Q y 的取值范围./cm22.(10分)小亮在学习中遇到这样一个问题:小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段BD 、CD 、FD 的长度,得到下表的几组对应值:操作中发现:①“当点D 为弧BC 的中点时,BD =5.0cm”.则上表中a 的值是__________; ②“线段CF 的长度无需测量即可得到”.请简要说明理由. (2)将线段BD 的长度作为自变量x ,CD 和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在 平面直角坐标系xOy 中画出了函数FD y 的图象, 如图所示,请在同一坐标系中画出函数CD y 的图 象;(3)继续在同一坐标系中画出所需的函数图象, 并结合图象直接写出:当△DCF 为等腰三角形时, 线段BD 长度的近似值. (结果保留一位小数)23.(11分)将正方形ABCD 的边AB 绕点A 逆时针旋转至'AB ,记旋转角为α.连结'BB ,过点D 作DE 垂直于直线'BB ,垂足为点E ,连结CE DB ,'.(1)如图1所示,当︒=60α时,△'DEB 的形状为____________,连结BD ,可求出CEBB '的值为__________;(2)当︒<<︒3600α且︒≠90α时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2所示的情形进行证明;如果不成立,请说明理由;②当以点'B 、E 、C 、D 为顶点的四边形是平行四边形时,请直接写出EB BE'的值. 图 2B'EDCBA图 1E B'D CBA。
河南省普通高中招生考试试卷数学(word版-含标准答案)

年河南省普通高中招生考试试卷数学(word版-含答案)————————————————————————————————作者:————————————————————————————————日期:2018年河南省普通高中招生考试试卷数 学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.52-的相反数是(A )52- (B )52 (C )25- (D )252.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为(A )210147.2⨯ (B )3102147.0⨯ (C )1010147.2⨯ (D )11102147.0⨯ 3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是 (A )厉 (B )害 (C )了 (D )我4.下列运算正确的是(A )532)x x -=-( (B )532x x x =+ (C )743x x x =∙ (D )1233=-x x 5.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3.%,14.5%,17.1%,关于这组数据,下列说法正确的是(A )中位数是12.7% (B )众数是15.3% (C )平均数是15.98% (D )方差是06.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问合伙人数,羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为(A )⎩⎨⎧+=+=37455x y x y (B )⎩⎨⎧+=-=37455x y x y (C )⎩⎨⎧-=+=37455x y x y (D )⎩⎨⎧-=-=37455x y x y 7.下列一元二次方程中,有两个不相等实数根的是(A )0962=++x x (B )x x =2 (C )x x 232=+ (D )01)12=+-x ( 8.现有4张卡片,其中3张卡上正面上的图案是“”,一张卡片正面上的图案是“”,他们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是 (A )169 (B )43 (C )83 (D )21 9.如图,已知□AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上.按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为(A ))(2,15- (B ))(2,5 (C ))(2,53- (D ))(2,25-10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B.图2是点F 运动时,△FBC 的面积y (2cm )随时间x (s )变化的关系图象,则a 的值为(A )5 (B )2 (C )25(D )52 二、填空题(每小题3分,共15分) 11.计算:95--=__________.12.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.13.不等式组⎩⎨⎧≥-+3425x x ,>的最小整数解是__________.14.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A 'B 'C ',其中点B 的运动路径为弧'BB ,则图中阴影部分的面积为__________.15. 如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A 'BC 与△ABC 关于BC 所在直线对称.点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A 'B 所在直线于点F ,连接A 'E.当△A 'EF 为直角三角形时,AB 的长为__________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:11112-÷⎪⎭⎫⎝⎛-+x x x ,其中x=12+.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代.漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮,您选哪一项?(单选) A.减少杨树新增面积,控制杨树每年的栽种量 B.调整树种结构,逐渐更换现有杨树 C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有__________人.(2)扇形统计图中,扇形E 的圆心角度数是__________. (3)请补全条形统计图.(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数xky (x >0)的图象过格点(网格线的交点)P . (1)求反比例函数的解析式.(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ; ②矩形的面积等于k 的值.19.(9分)如图,AB 是○O 的直径,DO ⊥AB 于点O ,连接DA 交○O 于点C ,过点C 作○O 的切线交DO 于点E ,连接BC 交DO 于点F. (1)求证:CE=EF.(2)连接AF 并延长,交○O 于点G.填空:①当∠D 的度数为__________时,四边形ECFG 为菱形; ②当∠D 的度数为__________时,四边形ECOG 为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm,低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°,求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据:sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价-成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值. (2)根据以上信息,填空:该产品的成本单价是__________元.当销售单价x=__________元时,日销售利润w 最大,最大值是__________元.(3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分) (1)问题发现如图1,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M.填空: ①BDAC的值为__________. ②∠AMB 的度数为__________. (2)类比探究如图2,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断BDAC的值及∠AMB 的度数,并说明理由. (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M.若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.2交x轴于A,B两点,交y轴于点C.直23.(11分)如图,抛物线c=6+axxy+线y=x-5经过点B,C.(1)求抛物线的解析式.(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM 的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标.②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年河南省普通高中招生考试试卷数 学注意事项:1. 本试卷共6页,三大题,满分120分,考试时间100分钟。
2. 本试卷上不要答题,按答题卡上注意事项的要求把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.52-的相反数是( ) A.52-B. 52C.25-D.25 2.今年一季度,河南省对“一带一路”沿线国家进口总额达亿元。
数据“亿”用科学计数法表示为A .210147.2× B .3102147.0× C .1010147.2× D .11102147.0× 3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉子是( )A.厉B.害C.了D.我 4.下列运算正确的是( )A.()532--x x =B.532x x x =+C.743x x x= D.1-233=x x5.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为%,%,%,%,%。
关于这组数据,下列说法正确的是( ) A .中位数是% B .众数是% B . C.平均数是% D .方差是06.《九章算术》中记载:‘今有共买羊,人出五,不足四十五;人出七,不足三。
问人数、羊价各几何?’其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱。
问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A 、⎩⎨⎧+=+=37455x y x y B 、⎩⎨⎧+==3745-5x y x y C 、⎩⎨⎧=+=3-7455x y x y D 、⎩⎨⎧==3-745-5x y x y7.下列一元二次方程中,有两个不相等的实数根是( )A 、0962=++x xB 、x x =2C 、x x 232=+ D 、()011-2=+x8.现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )A.169 B.43 C.83 D.219.如图,已知平行四边形AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D,E ;②分别以点D,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为( )A.()215,- B.()2,5 C.()2,53- D.()225,-10.如图1,点F 从菱形ABCD 的顶点A 出发,沿B D A →→以1cm/s 的速度匀速运动到点B.图2是点F 运动时,△FBC 的面积()2cm y 随时间()s x 变化的关系图像,则a 的值为( ) A. 5 C.25D.52 二、填空题(每小题3分,共15分)治理杨絮-----您选哪一项(单选)A.减少杨树新增面积。
控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植11.=9-5-12.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为13.不等式组⎩⎨⎧≥>+3-425xx的最小整数解是14.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A’B’C’,其中点B的运动路径为弧BB’,则图中阴影部分的面积为15.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A’BC与△ABC关于BC所在直线对称。
点D,E分别为AC,BC的中点,连接DE并延长交A’B所在直线于点F,连接A’E,当△A’EF为直角三角形时,AB的长为三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:11112-÷⎪⎭⎫⎝⎛-+xxx,其中12+=x17.(9分)每到春夏交替时节,雌性杨树会以漫天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰。
为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查A 15%B 12%C 40%D 25%E3002408001602004006008001000A B C D E人数表如图所示),并根据调查结果绘制了如下尚不完整的统计图调查结果扇形统计图 调查结果条形统计图根据以上统计图,解答下列问题(1)本次接受调查的市民共有 人(2)扇形统计图中,扇形E 的圆心角的度数是 ; (3)请补全条形统计图;(4)若该市约有90万人,请估计赞同选育无絮杨品种,并推广种植的人数 18.(9分)如图,反比例函数()0>=x xky 的图像过格点(网格线的交点)P (1)求反比例函数的解析式(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ②矩形的面积等于k 的值19.(9分)如图,AB是圆O的直径,DO⊥AB于点O,连接DA交圆O于点C,过点C作圆O的切线交DO于点E,连接BC交DO于点F(1)求证:CE=EF(2)连接AF并延长,交圆O于点G。
填空①∠D的度数为时,四边形ECFG为菱形②∠D的度数为时,四边形ECOG为正方形20.(9分)“高低杠”是女子体操持有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高低两杠间的距离。
某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答如图所示,座底上A、B两点间的距离为90cm,低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为°,高杠的支架BD与直线AB的夹角∠DBF为°,求高、低杠间的水平距离CH的长。
(结果精确到1cm,参考数据:°≈,°≈,°≈,°≈,°≈,°≈)21.(10分)某公司推出一款新品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系。
关于销售单价,日销售量,日销售利润的几组对应值如下表:(注:日销售利润=日销售量×(销售单价-成本单价))(1)求y 与x 的函数解析式(不要求写出x 的取值范围)即m 的值; (2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x= 元时,日销售利润w 最大,最大值是 元(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系,若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成品单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB 和△OCD 中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC ,BD 交于点M 。
填空:①BDAC的值为 ②∠AMB 的度数为(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线交于点M 。
请判断BDAC的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长23. (11分)如图,抛物线c x ax y ++=62交x 轴于A 、B 两点,交y 轴于点C.直线5-=x y 经过点B 、C(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M.①当AM ⊥BC ,过抛物线上一动点P (不与点B 、C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A,M,P,Q 为顶点的四边形是平行四边形,求点P 的横坐标;②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标备用图2018年河南省普通高中招生考试数学试题参考答案一、选择题二、填空题三、解答题16.()()xxxxx11111-+⋅+--=原式=x-1当()212112-=+-=+=时,原式x17. (1)2000(2)°(3)按人数为500正确补全条形统计图 (4)90×40%=36(万)即估计赞同“选育无絮杨品种,并推广种植”的人数约为36万人。
18. (1)∵点P (2,2)在反比例函数)0(>=x xky 的图像上 ∴22=k,即k=4 ∴反比例函数的解析式为xy 4=(2)(答案不唯一,正确画出两个矩形即可) 19. (1)连接OC.∵CE 是圆O 的切线,∴OC ⊥CE ∴∠FCO+∠ECF=90°∵DO ⊥AB ,∴∠B+∠BFO=90° ∵∠CFE=∠BFO ,∴∠B+∠CFE=90° ∵OC=OB ,∴∠FCO=∠B ∴∠ECF=∠CFE ,∴CE=EF (2)①30° ②°20. 在Rt △CAE 中,7.20500.71554.82tan 155tan ≈≈=∠=οCAE CE AE在Rt △DBF 中,40850.52343.80tan 234tan ≈≈=∠=οDBF DF BF ∴EF=AE+AB+BF ≈+90+40=≈151.∵四边形CEFH 是矩形,∴CH=EF ≈151. 即高低杠间水平距离CH 的长约是151cm 21. (1)设y 关于x 的函数解析式为y=kx+b,由题意得⎩⎨⎧=+=+1259517585b k b k ,解得⎩⎨⎧=-=6005b k∴y 关于x 的函数解析式为6005=-=x y 当x=115时,m=-5×115+600=25 (2)80;100;2000(3)设产品的成本价为a 元,由题意得()()375090600905≥-⋅+⨯-a 解得65≤a答:该产品的成本单价应不超过65元. 22.(1)①1 ②40° (2)ο903=∠=AMB BDAC, 理由如下:∵∠AOB=∠COD=90°,∠OAB=∠OCD=30°, ∴3==BOAODO CO ∠COD+∠AOD=∠AOB+∠AOD ,即∠AOC=∠BOD ∴△AOC ∽△BOD ∴DBO CAO DOCOBD AC ∠=∠==,3 ∵∠AOB=90°,∴∠DBO+∠ABD+∠BAO=90° ∴∠ CAO+∠ABD+∠BAO=90°,∴∠AMB=90°(3)AC 的长为3332或【提示】在△OCD 旋转过程中,(2)中的结论仍成立,即3=BDAC ,∠AMB=90°. 如图所示,当点C 与点M 重合时,21AC AC ,的长即为所求23.(1)∵直线y=x -5交x 轴于点B ,交y 轴于点C ,∴B (5,0),C (0,-5) ∵抛物线c x ax y ++=62过点B ,C ∴⎩⎨⎧=-++=c c a 530250∴⎩⎨⎧-=-=51c a ∴抛物线的解析式为56-2-+=x x y(2)①∵OB=OC=5,∠BOC=90°,∴∠ABC=45°∵抛物线56-2-+=x x y 交x 轴于A ,B 两点 ∴A (1,0)∴AB=4,∵AM ⊥BC ,∴AM=22∵PQ ∥AM ,∴PQ ⊥BC若以点A,M,P ,Q 为顶点的四边形是平行四边形,则PQ=AM=22 过点P 作PD ⊥x 轴交直线BC 于点D ,则∠PDQ=45°∴PD=42=PQ设()56,2-+-m m m P ,则D (m,m -5)分两种情况讨论如下:(ⅰ)当点P 在直线BC 上方时,()4555622=+-=---+-=m m m m m PD ∴()4121==m m ,舍去(ⅱ)当点P 在直线BC 下方时,、 ()()4556522=-=-+---=m m m m m PD ∴2415,241543-=+=m m 综上,点P 的横坐标为4或24152415-+或 ②⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-67-623617,613,或M 【提示】作AC 的垂直平分线,交BC 于点1M ,连接1AM ,过点A 作BC AN ⊥于点N ,将1ANM ∆沿AN 翻折,得到2ANM ∆,点1M ,2M 的坐标即为所求。