桥梁线形监控
浅析桥梁工程施工监控技术
浅析桥梁工程施工监控技术摘要:现今桥梁工程发展迅速,对施工质量体系的建设也提出了更高的要求。
在桥梁施工过程中,难免因为支模误差、测量误差、材料误差以及其他人为误差等因素对桥梁的线性定位、应力强度和安全控制等方面产生影响。
因此需建立一套行之有效的施工监控技术,作为桥梁检测的重要组成部分,全面提高竣工质量水平。
本文主要介绍了桥梁工程施工监控技术的主要内容和常用方法,梳理理论体系,为工程实际提供参考。
关键词:桥梁工程;施工监控1引言现今桥梁工程发展迅速,对施工质量体系的建设也提出了更高的要求。
大跨度连续刚构桥、连续钢桁架桥、预应力梁拱组合桥等对施工的连续性、准确性均有较高要求,而在桥梁施工过程中,难免因为支模误差、测量误差等因素对桥梁的线性定位、应力强度和安全控制等方面产生影响。
对建成后人员车辆的通行、结构的永久稳定性等产生隐患。
因此需建立一套行之有效的施工监控技术,实时掌握桥梁施工的关键参数,及时发现问题并予以纠偏,全面提升竣工质量水平。
桥梁工程施工监控技术应运而生,因其科学的管控思路、清晰的操作规程、良好的工程效果,正成为越来越多的工程技术人员的研究对象,也成为了桥梁检测技术的重要组成部分。
2桥梁施工监控的组成2.1桥梁线型监控桥梁是一个三维立体的构筑物,因此,需要从竖向和平面两个维度对桥梁的线型参数进行确定和评估。
工程技术人员在桥梁的撞击、桥墩、梁拱等组合构件的主要位置上,设定出几个待测点,测量出高程、位移和扭曲率等,以判断是否在设计范围和国家规范要求的误差冗余内。
从平面空间上来看,桥梁有着严格的轴线定位要求,应该采取GPS监控等措施,并使用结构有限元软件进行建模和计算,判定桥体水平线型定位是否在图纸要求范围内,以避免出现梁体无法合拢或者带着误差合拢后产生的内力集中、受力不均、构件外观扭曲、偏角过大、水平失控等质量问题[1]。
因此桥梁线型监控非常重要,特别是对于大跨度、多孔径的桥梁而言。
2.2桥梁应力监控桥梁设计时会对桥梁的主体承重、施工临时荷载承重等提出上限要求,施工过程中的桥梁应力监控就是要在判断桥桩基、梁段、钢索等主要构件的内部应力是否在设计要求范围内。
连续梁线形监控施工技术
浅谈连续梁线形监控施工技术摘要:随着桥梁建设的发展对桥梁施工过程中的结构受力、变形及稳定进行监测控制已广泛的应用到悬灌现浇连续梁施工当中,使施工中结构处于最优状态。
所以施工监控是施工质量控制体系的重要组成部分,保证桥梁建设质量的重要手段,对桥梁建设质量的宏观调控,是桥梁施工质量控制的补充与前提。
关键词:控制、质量、线形中图分类号:tu74 文献标识码:a 文章编号:1 工程概况跨武黄高速特大桥位于鄂州市汀祖镇及花湖镇境内,本桥中100m 连续梁横跨武黄高速,施工中心里程为dk077+193.58,结构为无砟轨道预应力混凝土双线连续梁,桥跨布置为( 60+100+60)m,全长221.5m。
该连续梁施工方法采用挂篮悬臂浇注混凝土,它是利用已建成的桥墩沿桥跨径方向逐段地悬出接长对称施工。
该连续梁混凝土箱梁除了本身是非匀质材料和材质不稳定外,它还受温度、湿度、时间等因素的影响,加上采用悬臂施工方法,各节段混凝土相互影响,且这种相互影响又有差异,由此这些影响因素造成各节段内力和位移随着混凝土浇注过程变化而偏离设计值,所以通过线形监控对每一个施工阶段进行监测,并对成果对误差进行分析、预测和对下一立模标高进行调整,以此来保证成桥后的线型、合拢段两悬臂的高差满足施工规范要求,结构内力状态符合设计要求。
2 施工监控的实施施工监控的目的就是通过施工过程中的有关参数的监测与数据分析处理,确保施工过程中结构的安全和稳定,使成桥后的轴线和桥面线型达到设计要求,并且使结构的内力分布与设计理论状态基本吻合,确保桥梁施工安全和正常运营。
桥梁施工监控是一个预告→监测→识别→修正→预告的循环过程。
在施工前和施工过程中均须对结构进行详细的计算分析,对施工过程中每个阶段进行详细的变形计算和受力分析,对计算数据进行参数识别、修正,使计算模型逐步与实际状态接近,误差能控制的规范容许的范围内,并据此预测下一施工节段的立模高程。
2.1 初始数据的获得该箱梁在墩顶 0#块段和边跨直线段均采用支架现浇的施工方法。
连续梁线形监控方案
1 工程概况1、鲁南高铁花果峪特大桥DK212+220.5处跨S241省道,道路与线路为斜交,角度约30。
,采用一联三孔(60+112+60)m 的预应力混凝土双线连续箱梁跨越,梁全长233.5m 。
S241省道路面宽度为15米,公路交叉里程K13+747。
桥型布置如图1-1所示。
11#墩12#墩10#墩13#墩6011260图1-1 (60+112+60)m 连续梁桥型布置图(1)下部结构本连续梁10#、13#边墩基础采用8-φ1.5m 钻孔灌注桩,桩长分别为20.5m 、15.0m ,11#主墩基础采用12-φ1.8m 钻孔灌注桩,桩长为15.0m ,12#主墩基础采用12-φ1.8m 钻孔灌注桩,桩长为13.0m ;10#、13#边墩承台尺寸:12.4×6.5×3m ,边墩高度:10#墩10米;13#墩13.5米;11#主墩尺寸:14.0×10.3×4.0m ,12#主墩尺寸:14.0×11.3×4.0m ,桥墩采用圆端形实体直坡墩,10#、13#边墩高10.0m 、13.5m ,11#、12#主墩高9.0m 、12.0m 。
(2)梁部结构箱梁为单箱单室、变高度、变截面箱梁,梁底、腹板、顶板局部向内侧加厚,均按直线线性变化。
全联在端支点,中支点处设横隔板,横隔板设有孔洞,供检查人员通过。
中支点处梁高9.017m ,边支点处梁高5.017m 。
边支点中心线至梁端0.75m ,梁缝分界线至梁端0.1m ,边支座横桥向中心距离6.0m ,中支座横桥向中心距离6.0m 。
桥面防护墙内侧净宽7.6m ,桥梁宽12.6m ,桥梁建筑总宽12.9m ,底板宽7.0m 。
顶板厚度43.5-73.5cm ,腹板厚度50cm ~95cm ,底板厚度50cm ~90cm ,腹、底板厚度均按折线变化。
在梁体边支点、中支点共设4个横隔板,隔板中部设有孔洞,供检查人员通过。
连续梁线形监控方案说明
完美WORD 格式1 工程概况1、鲁南高铁花果峪特大桥DK212+220.5处跨S241省道,道路与线路为斜交,角度约30。
,采用一联三孔(60+112+60)m的预应力混凝土双线连续箱梁跨越,梁全长233.5m。
S241省道路面宽度为15米,公路交叉里程K13+747。
桥型布置如图1-1 所示。
60 112 6010#墩13#墩11#墩12#墩图1-1 (60+112+60)m连续梁桥型布置图(1)下部结构本连续梁10#、13#边墩基础采用8-φ1.5m钻孔灌注桩,桩长分别为20.5m、15.0m,11#主墩基础采用12-φ1.8m 钻孔灌注桩,桩长为15.0m,12#主墩基础采用12-φ1.8m钻孔灌注桩,桩长为13.0m;10#、13#边墩承台尺寸:12.4 × 6.5 ×3m,边墩高度:10#墩10 米;13#墩13.5 米;11#主墩尺寸:14.0 ×10.3 × 4.0m,12#主墩尺寸:14.0×11.3 ×4.0m,桥墩采用圆端形实体直坡墩,10#、13#边墩高10.0m、13.5m,11#、12#主墩高9.0m、12.0m。
(2)梁部结构箱梁为单箱单室、变高度、变截面箱梁,梁底、腹板、顶板局部向内侧加厚,均按直线线性变化。
全联在端支点,中支点处设横隔板,横隔板设有孔洞,供检查人员通过。
中支点处梁高9.017m,边支点处梁高 5.017m。
边支点中心线至梁端0.75m,梁缝分界线至梁端0.1m,边支座横桥向中心距离 6.0m,中支座横桥向中心距离 6.0m。
桥面防护墙内侧净宽7.6m,桥梁宽12.6m,桥梁建筑总宽12.9m,底板宽7.0m。
顶板厚度43.5-73.5cm ,腹板厚度50cm~95cm,底板厚度50cm~90cm,腹、底板厚度均按折线变化。
在梁体边支点、中支点共设 4 个横隔板,隔板中部设有孔洞,供检查人员通过。
大跨径桥梁线形监控测量技术
Ab ta t sr c:Th a e ic s e h a tlv r b a o o g s a ep p rdsu s st e cn i e e m fln -p n e l e rmo io ig tc n lg ,icu igee ainb n h ak s i a ntrn e h oo y n ldn lv t e c m r se — n o tbih n ,o sr ainp itly u ,mo ioi a u e n , a l me t b e v t on a o t s o ntrn me s rme t g a d p o ie ee e c o i lrb ig o sr cin n r vd sarfr n ef rsmi rd ec n tu t . a o
参考文献 :
Ei 徐桂平. l 桥梁预制节段测量控制技术口] 城市道桥与防 .
洪 ,0 4 4 :79 . 20 ( )8 -0
E3 李宝仓 , 白琳. 孟溪 大桥 施工监 控测 量技 术 E]企 业 2 何 南 J.
技术开发 ,0 6 2 ( )4 -8 2 0 ,5 4 :74 .
() 6二期恒 载后 进行 主梁 线形 观测 。
的作用效果。
() 7二期恒载半年后全面进行主桥线形观测 。 4 结 束语 通过上述监控测量技术的应用, 沪杭高铁 5 标段 l 2 处连续梁已全部成功合拢, 且各项精度均满足设计要求 , 质量优 良。因此该技术值得在同类桥梁施工中推广。
Ke r s a t e e o sr ci n b a ;h i h a u ;c n r l ywo d :c n i v r c n t u to e m l e g td t m o to
大跨度桥梁的线形控制
目录第一篇大跨度桥梁的线形控制 (2)1桥梁线形控制的意义及目的 (2)2桥梁线形控制的工作流程 (2)3桥梁线形测试截面及测点总体布置 (3)4桥梁线形监控方法 (3)5桥梁线形监控影响因素 (3)6桥梁线形控制计算 (4)7桥梁线形监控要点 (4)8小榄水道特大桥施工监控实例介绍 (4)9沙田赣江特大桥施工监控实例介绍 (8)第一篇大跨度桥梁的线形控制1 桥梁线形控制的意义及目的桥梁线形控制不仅是桥梁施工技术的重要组成部分,也是确保桥梁施工宏观质量控制的关键及桥梁建设的安全保证,它在施工过程中起着安全预警、施工指导以及及时为设计提供依据。
任何体系的桥梁在每一个施工阶段的变形和内力是可以预计的,因此当施工中发现监测的实际值和预计值相差过大时,随即进行检查和分析,找出原因并排除问题后方可继续施工,避免出现事故,造成不必要的损失。
1 )通过各桥梁施工过程中的线形监测,及时掌握桥梁施工过程中的线形状态,了解施工过程中各关键截面的挠度变化。
2)通过各桥梁施工过程中控制截面的应力测试,及时跟踪各施工阶段关键截面的应力大小,了解桥梁结构的应力状况。
3 )通过测定新型结构桥梁施工过程中的温度效应、混凝土的收缩徐变效应,为施工过程中的相关决策提供数据依据。
4 )通过对桥梁施工过程中关键工况的应力及变形监测,吊杆力、斜拉索力等的监测,了解施工过程最不利工况下关键截面的受力状况、关键截面的挠度,并与理论计算结果作对比,评价施工工艺的可行性,并在必要时提供改进建议。
2 桥梁线形控制的工作流程一般大跨度桥梁的施工控制是一个施工→量测→识别→修正→预告→施工的循环过程。
该过程中需要对主梁标高和应力实行双控。
它主要包括两个部分:数据采集系统,即在桥上埋设各类传感器和设置监控系统,采集资料;资料分析仿真模拟系统,将采集到的资料进行分析处理,以确定下一个施工阶段的参数。
桥梁线形等监控系统框图3 桥梁线形测试截面及测点总体布置桥梁结构位移测试截面及测点布置如下:悬臂梁段的各节段,拱、塔的位移控制断面.在结构位移测试的同时,通常进行其他如应力的测试:1)应力测试截面及测点布置:结构控制截面、受力复杂位置。
连续梁线形监控方案
连续梁线形监控方案1、测量点埋设1.1浇筑0#块时需埋设对应水准点。
1.2埋设各梁段标高测量点,梁顶面标高测点设置1-10号测点,小里程端1、2、3、4、5,大里程端6、7、8、9、10,边测点距翼缘外端0.4m,次外测点距翼缘外端3m,中点在中轴线上;梁底测点A,B,H,K位于梁段前端底部内吊杆(吊带)对应处。
如图,2、测量点观测2.1在每个梁段立模时(浇砼前),浇注当前节段混凝土后(浇砼后),准备好张拉当前节段对应钢束前(张拉前),张拉当前节段对应钢束后(张拉后),结构体系转换前后(边、中跨合拢、拆临时锚固)测量和记录梁面所有已埋设水准点处标高。
2.2每个节段的标高测量,尤其是立模标高和浇注砼后标高的测量,要求安排在年平均气温附近及温度较恒定时段,建议一般安排的早上6:30之前,特殊情况下可安排在天气多云时。
2.3每个节段的施工过程测量4个工况的标高:浇筑前,浇筑后,张拉前,张拉后。
2.4梁顶标高测量需设立短钢筋作标识点,短钢筋安放时需与梁内钢筋网焊接,下端贴紧模板,测量时标尺立于短钢筋顶部,梁顶标高数据需扣除短钢筋顶部到梁顶结构面距离。
3、测量数据记录3.1挂篮及模板系统行走到位后按提供的理论梁底立模标高进行立模(标高误差小于1cm);同时记录实测梁底立模标高,加上对应处梁高后,得出实测梁顶立模标高,做平均处理后填入标高反馈数据表。
3.2梁顶面所有已埋设水准点处标高原始数据在经过处理(扣除短钢筋外露量后对梁顶标高求平均)和定性判别(保证无明显不合理数据)后,填入标高反馈数据表。
3.3对边跨现浇直线段支架进行预压处理,并记录和提供在与待浇筑梁段同等(或略大)重量的重物加载下的支架变形数据,以及重物卸载后的支架残余变形数据。
3.4边跨和中跨合拢前,观测和记录好每天的气温变化情况,以及梁体的变形规律,为合拢做好准备。
3.5现场提供当前节段标高的同时需提供之前浇筑所有梁段标高。
4、施工标高数据的提供4.1根据设计资料建立桥梁和挂篮的有限元计算模型并整理计算数据。
桥梁线性监控的原理
桥梁线性监控的原理桥梁线性监控是一种通过传感器、数据采集系统和数据分析算法对桥梁进行实时监测、预警和管理的技术。
它能够通过实时监测和分析桥梁的形变、挠度、裂缝等参数,提供早期预警和故障诊断,以避免桥梁结构的严重破坏和事故发生。
桥梁线性监控的原理主要包括传感器信号采集、数据传输和分析处理三个部分。
首先,桥梁线性监控系统通过布置在桥梁结构上的一系列传感器来实时监测桥梁的结构参数。
这些传感器可以分为静态和动态两类。
静态传感器主要用于测量桥梁的某些静态参数,如形变、温度、裂缝等。
常见的静态传感器有应变计、光纤传感器、温度传感器、位移传感器等。
动态传感器用于测量桥梁的挠度、加速度等动态变化参数,常见的动态传感器有加速度计、位移传感器、倾斜仪等。
这些传感器可以采用有线或无线方式与数据采集系统连接。
其次,采集到的传感器信号通过数据采集系统进行实时采集和传输。
数据采集系统负责将传感器信号转换为数字信号,并通过有线或无线方式将数据传输至数据处理中心。
数据采集系统需要具备高精度、高稳定性和多通道的特点。
对于传感器信号,数据采集系统需要进行信号调理、滤波和放大等处理,以确保采集到的数据准确可靠。
最后,通过数据处理中心对采集到的数据进行分析处理。
数据处理中心主要包括数据存储、数据处理和数据展示三个模块。
数据存储模块用于存储历史数据和实时数据,以便后续分析和比对。
数据处理模块通过分析算法对采集到的数据进行处理和分析,从而得到桥梁的结构状态和健康状况。
常见的分析算法包括模型更新、时域分析、频域分析、小波分析等。
数据展示模块将处理结果以图表、曲线、报表等形式进行展示,并提供远程查询和监控功能。
桥梁线性监控的原理基于传感器信号采集、数据传输和分析处理三个关键环节。
通过布置在桥梁结构上的传感器,实时监测桥梁的结构参数;通过数据采集系统,对传感器信号进行实时采集和传输;通过数据处理中心,对采集到的数据进行分析处理,得到桥梁的结构状态和健康状况。
连续梁线型监控实施细则。
新建铁路兰州至乌鲁木齐第二双线LXJL-1监理标段连续梁线型监控监理实施细则新建铁路兰州至乌鲁木齐第二双线DK18+235~DK104+066连续梁线型监控监理实施细则编制:审核:审批:日期:年月北京铁科院兰新铁路甘青段监理站目录第一章编制依据 (3)第一节综合依据 (3)第二节主要技术规范及设计文件 (3)第二章工程概况 (3)第三章线型监控 (5)第一节线型监控必要性 (5)1、施工线形控制 (5)2、施工控制的内容 (7)第二节线型监控内容 (9)1、施工过程中监理控制 (9)2、施工控制的具体内容 (12)第三节线型监控监理控制要点 (16)1、监理控制流程 (16)2、测量内容 (18)3、有关数据的修正 (19)4、立模标高的计算 (19)5、对施工监控的工作及对施工工艺的要求 (20)2第一章编制依据第一节综合依据1.已编写批准的监理大纲、监理规划;2.与本专业工程相关的验收标准、设计文件和技术资料;3.建设单位的其他有关标准化管理体系文件与专业管理规定;4.《铁路建设工程监理规范》(TB10420-2007)。
第二节主要技术规范及设计文件1.《客运专线铁路桥涵工程施工技术指南》(TZ213-2005);2.《铁路桥涵工程施工安全技术规程》(TB10303-2009);3.《高速铁路工程测量规范》(TB10601-2009);4.新建兰新铁路第二双线LXJL-1段桥梁施工图5、已批准的施工组织设计第二章工程概况监理LXJL-1标段线路总长度102.406km,其中DK1+700~DK18+325只包括站后工程,DK18+325~DK104+066包括新线建设和站后工程。
正线共设桥梁特大桥15座,大桥7座,中桥4座,桥梁总计26座。
其中连续梁结构的桥见下表:34第三章线型监控第一节线型监控必要性1、施工线形控制线形控制是超静定结构施工过程质量控制的重要手段;是理论与实践紧密结合的学科;专业性很强。
连续梁线形监控方案
连续梁线形监控方案1、测量点埋设1.1浇筑0#块时需埋设对应水准点。
1.2埋设各梁段标高测量点,梁顶面标高测点设置1-10号测点,小里程端1、2、3、4、5,大里程端6、7、8、9、10,边测点距翼缘外端0.4m,次外测点距翼缘外端3m,中点在中轴线上;梁底测点A,B,H,K位于梁段前端底部内吊杆(吊带)对应处。
如图,2、测量点观测2.1在每个梁段立模时(浇砼前),浇注当前节段混凝土后(浇砼后),准备好张拉当前节段对应钢束前(张拉前),张拉当前节段对应钢束后(张拉后),结构体系转换前后(边、中跨合拢、拆临时锚固)测量和记录梁面所有已埋设水准点处标高。
2.2每个节段的标高测量,尤其是立模标高和浇注砼后标高的测量,要求安排在年平均气温附近及温度较恒定时段,建议一般安排的早上6:30之前,特殊情况下可安排在天气多云时。
2.3每个节段的施工过程测量4个工况的标高:浇筑前,浇筑后,张拉前,张拉后。
2.4梁顶标高测量需设立短钢筋作标识点,短钢筋安放时需与梁内钢筋网焊接,下端贴紧模板,测量时标尺立于短钢筋顶部,梁顶标高数据需扣除短钢筋顶部到梁顶结构面距离。
3、测量数据记录3.1挂篮及模板系统行走到位后按提供的理论梁底立模标高进行立模(标高误差小于1cm);同时记录实测梁底立模标高,加上对应处梁高后,得出实测梁顶立模标高,做平均处理后填入标高反馈数据表。
3.2梁顶面所有已埋设水准点处标高原始数据在经过处理(扣除短钢筋外露量后对梁顶标高求平均)和定性判别(保证无明显不合理数据)后,填入标高反馈数据表。
3.3对边跨现浇直线段支架进行预压处理,并记录和提供在与待浇筑梁段同等(或略大)重量的重物加载下的支架变形数据,以及重物卸载后的支架残余变形数据。
3.4边跨和中跨合拢前,观测和记录好每天的气温变化情况,以及梁体的变形规律,为合拢做好准备。
3.5现场提供当前节段标高的同时需提供之前浇筑所有梁段标高。
4、施工标高数据的提供4.1根据设计资料建立桥梁和挂篮的有限元计算模型并整理计算数据。
连续梁线形监控方案
新建铁路郑州至开封城际铁路工程(60+100 +60) m连续梁施工监控方案郑州铁路局科学技术研究所二〇一一年七月目录1 概述 (1)1.1 项目概况 (1)1.2 技术标准 (1)1.3 监控方案制定依据 (1)2 施工监控的目标 (2)3 施工监控的目的和任务 (2)4 拟采用的施工监控方法和体系 (2)4.1 施工监控方法 (2)4.2 施工监控体系 (3)4.2.1 技术体系 (3)4.2.2 组织体系 (3)4.2.3 协调体系 (5)4.3 对施工监控技术体系的进一步说明 (6)4.3.1 施工控制计算 (6)4.3.2 误差分析 (6)4.3.3 施工误差容许度指标 (7)5 施工控制的主要工作 (7)5.1 实际参数的测试 (7)5.2 实时控制 (9)5.3 监控计算 (9)5.4 几何控制 (10)5.4.1 主梁线形监测 (11)5.4.3 线形控制的实施 (12)5.6 施工控制报告 (12)6 施工监控技术方案的保障措施 (12)附表一:主梁施工控制数据指令表 (14)附表二:梁段观测表 (15)附表三:梁段模板变形观测表 (16)附表四:桥梁实际参数测试表 (17)附表五:主梁轴线偏移及基础沉降观测表 (18)1 概述项目概况新建铁路郑州至开封城际铁路工程(60+100+60) m预应力混凝土连续梁为单线、有砟曲线桥。
主梁为单箱单室截面,中支点梁高7 m,跨中梁高4 m,梁顶宽8.5 m,梁底宽5.5 m。
顶板厚度除梁端附近外均为41.5 cm;底板厚度38 cm至85. 2 cm,在梁高变化段范围内按抛物线变化,边跨端块处底板由38 cm渐变至108 cm;腹板厚40 cm至75 cm,按折线变化,边跨端块处腹板厚由40 cm渐变至60 cm。
全桥在端支点、中支点及跨中处共设5个横隔板,横隔板设有孔洞,供检查人员通过。
全桥共分55个梁段,0号梁段长度13 m,普通梁段长度为3.0~4.0 m,合拢段长 m,边跨现浇直梁段长11.65 m。
(完整版)连续梁线型监控实施细则。
新建铁路兰州至乌鲁木齐第二双线LXJL-1监理标段连续梁线型监控监理实施细则新建铁路兰州至乌鲁木齐第二双线DK18+235~DK104+066连续梁线型监控监理实施细则编制:审核:审批:日期:年月北京铁科院兰新铁路甘青段监理站目录第一章编制依据 (3)第一节综合依据 (3)第二节主要技术规范及设计文件 (3)第二章工程概况 (3)第三章线型监控 (5)第一节线型监控必要性 (5)1、施工线形控制 (5)2、施工控制的内容 (7)第二节线型监控内容 (9)1、施工过程中监理控制 (9)2、施工控制的具体内容 (12)第三节线型监控监理控制要点 (16)1、监理控制流程 (16)2、测量内容 (18)3、有关数据的修正 (19)4、立模标高的计算 (19)5、对施工监控的工作及对施工工艺的要求 (20)2第一章编制依据第一节综合依据1.已编写批准的监理大纲、监理规划;2.与本专业工程相关的验收标准、设计文件和技术资料;3.建设单位的其他有关标准化管理体系文件与专业管理规定;4.《铁路建设工程监理规范》(TB10420-2007)。
第二节主要技术规范及设计文件1.《客运专线铁路桥涵工程施工技术指南》(TZ213-2005);2.《铁路桥涵工程施工安全技术规程》(TB10303-2009);3.《高速铁路工程测量规范》(TB10601-2009);4.新建兰新铁路第二双线LXJL-1段桥梁施工图5、已批准的施工组织设计第二章工程概况监理LXJL-1标段线路总长度102.406km,其中DK1+700~DK18+325只包括站后工程,DK18+325~DK104+066包括新线建设和站后工程。
正线共设桥梁特大桥15座,大桥7座,中桥4座,桥梁总计26座。
其中连续梁结构的桥见下表:34第三章线型监控第一节线型监控必要性1、施工线形控制线形控制是超静定结构施工过程质量控制的重要手段;是理论与实践紧密结合的学科;专业性很强。
连续梁线形控制监控量测方法
连续梁线形控制监控量测方法发布时间:2022-05-06T08:50:31.149Z 来源:《新型城镇化》2022年8期作者:郭晓峰[导读] 随着我国高铁施工的快速发展,对桥隧涵的线形监控越来越重视。
中铁十五局四川成都 610000摘要:随着我国高铁施工的快速发展,对桥隧涵的线形监控越来越重视。
为了进一步的提升其线性监测控制技术,必须要根据实际情况对技术进行创新和完善,且需加强对各部门之间的交流。
而本桥梁线性控制是采用预应力砼连续梁,利用悬臂挂篮施工工法对桥梁进行施工管控,降低不同的施工阶段的工序差异,使得施工能够平顺完成。
因此本文对该段连续梁线形控制监控量测方法进行简要分析,并针对具体的情况提出合理化的建议。
关键词:连续梁桥;线形控制;监控量测1.前言我国对高速铁路越来越重视,注重连续梁线形控制监控量测方法创新,且由于我国部分地域的发展情况不同,施工技术不一,应用连续梁技术施工管理时往往与当地的实际施工情况出现差异。
对于采用连续梁悬臂灌注法进行施工必须要在前一段地区施工完毕后进行预备应力的调整,及时有效对其进行测量,降低其误差出现的可能性,逐步的形成多元的未浇筑梁段的立模标高,以此降低施工质量问题,做好基础把关工作。
在本次桥梁设计中,由于其经历过程复杂,施工工序繁杂,其不同程序之间相互影响且存有差异,对此,必须要根据实际情况对其进行多元分析,减少由于凝土浇筑而产生偏离设计值的情况,通过施工对其进行线性管控,使其符合施工要求,且以此来保证施工的主线设计质量。
2.工程内容分析赵河镇跨南水北调特大桥桥长2.47km,共754跨,755个墩台;本桥跨X013县道梁体为预应力混凝土连续梁(48+80+48)m、位于曲线段上,按照设计本桥梁采用挂篮悬臂灌注施工。
连续梁主墩基础采用Φ1.5m钻孔灌注桩,边墩基础采用Φ1.25m钻孔灌注桩。
连续梁采梁体用单箱单室、变高度、变截面箱梁,底板、腹板、顶板局部向内侧加厚。
(完整版)桥梁线形监控
K14+060大桥连续梁线形控制监控方案编制: Z D D审核:批准:六丙公路第三合同段项目经理部二〇一四年七月三日K14+060大桥连续梁桥线形控制监控量测方案一、工程概述K14+060桥位于省道S22线六库~跃进桥段二级公路Ⅲ合同段,为跨越沙坝沟而设,是本合同的控制性工程。
桥垮布置为:4×31m预应力T梁+100+180+100m连续钢构+3×31m预应力T梁。
该桥最大墩高105m,本桥采用预应力混凝土单T型钢构方案,桥梁上部采用纵、竖向预应力混凝土变截面T型钢构;下部采用双薄壁空心墩、钻孔灌注桩基础。
箱梁断面采用单箱单室直服板断面,顶板宽度为12.0米,箱梁根部梁高11米,边跨合拢及现浇段梁高为3.5米。
箱梁底板厚度0号块为150厘米,各梁段底板厚从悬臂根部至悬浇段结束出由130~35厘米,合拢段及边跨现浇段为35厘米,箱梁顶板厚度0号块为60厘米,其余为28厘米,箱梁腹板厚度1~14号块为70厘米,15号块为70~50厘米,其余梁段为50厘米。
主梁悬臂长度为2.75米,翼缘外侧厚18厘米,根部为100厘米。
边跨现浇段处设置宽度为2米的端横梁。
箱梁横桥向底板保持水平,顶板横坡由顶板形成。
主梁采用纵、竖向预应力体系:纵向预应力分为顶板束、腹板束、边跨底板束、中跨底板束、边跨合拢束及中跨合拢刚束六种,采用《预应力混凝土用钢绞线》(GB/T52244-2003)标准的19Φs15.2mm、16Φs15.2mm、15Φs15.2mm高强度低松驰钢绞线,其抗拉强度标准值fpk=1860MPa,刚束张拉控制应力为1395MPa,其张拉控制力分别为:371.1吨、312.5吨、293吨。
竖向预应力及0号块横板预应力采用JL32的高强精扎螺纹粗钢筋,抗拉强度标准值(材料屈服点σ0.2)为785MPa,张拉控制应力为706.5MPa其张拉控制力为56.8吨。
二、控制方法本桥施工控制的最终目标是:使成桥后的线形与设计成桥线形的所有各点的误差均满足《公路桥涵工程施工质量验收执行标准》规定,当箱梁当前悬浇节段的施工挂篮初步就位后,先根据箱梁截面控制网,采用全站仪或采用经纬仪穿线法或盘左盘右法进行悬浇节段平面中线位置放样。
太中银铁路古城子石中高速特大桥主桥线形监控
186YAN JIUJIAN SHE太中银铁路古城子石中高速特大桥主桥线形监控Tai zhong yin tie lu gu cheng zi shi zhong gao su te da qiao zhu qiao xian xing jian kong肖松松以太中银铁路古城子石中高速特大桥线形监控为对象,结合梁拱组合桥梁线形监控的特点,采用正装分析和倒退分析方法进行理论计算,通过对该桥在梁体拆除支架后、钢管拱架设后和吊杆张拉后梁体挠度和预拱度的控制,从而对各阶段主梁线形与理论值进行比较并分析误差因素。
一、工程概况太中银铁路古城子石中高速特大桥主桥采用预应力混凝土系杆拱连续梁,跨径布置为(60+96+60)m,桥型布置图如图1所示。
图1 古城子石中高速特大桥桥型布置图本桥梁上部结构采用预应力混凝土梁拱组合结构,箱梁采用单箱单室结构,截面高度沿轴线变化设置,梁体下缘除中支点处4 m、中跨中部18 m 和边跨端部21.85 m 梁段为等高直线段外,其余按二次抛物线变化。
梁体按全预应力构件设计,设置纵、横、竖三向预应力体系。
本桥主桥下部共4个桥墩,1、4 #桥墩为与引桥简支梁相接的活动墩,2、3 #桥墩为中间活动墩。
拱轴线采用二次抛物线,矢跨比1/6,拱肋高2.0m,采用哑铃形钢管混凝土截面,两榀拱肋中心间距7.2m。
二、梁拱组合桥线形监控的特点本桥梁上部结构采用预应力混凝土梁拱组合结构,如桥梁梁体在施工过程中严格按照设计施工顺序及荷载进行施工,一般全桥成桥后其内力状态不会出现偏差,因此控制主梁的线形成了上部结构施工控制的主要目标。
若在分段施工过程中已经施工的梁段上出现了线形误差,调整线形一般采用调整吊杆张力和张拉预备预应力束,但这种方法调整量也是非常有限的,而且不利于梁体整体受力。
因此,线形误差一旦在某一施工阶段出现,误差将不能消除。
根据以上分析,梁拱组合桥梁上部结构施工过程中标高控制的特点是,无法调整已施工完毕梁段的误差,而未施工梁段的预拱度及立模标高只与正装分析模拟计算有关,与已施工完毕梁段产生的误差基本无关。
线形监控专项方案
一、方案背景为确保工程项目施工过程中的线形质量,提高工程质量,根据国家相关法律法规、行业规范及企业标准,特制定本线形监控专项方案。
二、方案目标1. 严格控制线形质量,确保工程线形满足设计及规范要求。
2. 实现线形数据实时监测,及时发现并处理线形问题。
3. 提高施工效率,降低施工成本。
4. 为工程验收提供依据。
三、组织机构及职责1. 成立线形监控领导小组,负责线形监控工作的总体协调和决策。
2. 设立线形监控组,负责线形监控工作的具体实施。
3. 各参建单位应明确各自职责,积极配合线形监控工作。
四、监控内容与方法1. 监控内容:(1)平面线形:直线、曲线、圆曲线、缓和曲线等。
(2)高程线形:标高、坡度、高程变化等。
(3)结构物线形:桥梁、涵洞、隧道等。
2. 监控方法:(1)采用全站仪、水准仪等测量仪器进行现场测量。
(2)利用GPS技术进行高精度定位。
(3)采用自动化监测系统进行实时监测。
(4)结合BIM技术,对线形进行模拟分析。
五、数据采集与处理1. 数据采集:(1)定期进行现场测量,采集线形数据。
(2)实时监测系统自动采集线形数据。
2. 数据处理:(1)对采集到的线形数据进行整理、分析。
(2)对异常数据进行追踪、处理。
(3)将处理后的线形数据存档,为工程验收提供依据。
六、问题处理与反馈1. 发现线形问题时,及时上报线形监控领导小组。
2. 线形监控领导小组组织相关人员进行调查、分析,制定整改措施。
3. 对整改措施的实施情况进行跟踪、监督,确保问题得到有效解决。
4. 将问题处理结果及时反馈给相关部门。
七、总结与改进1. 定期对线形监控工作进行总结,分析存在的问题,提出改进措施。
2. 不断完善线形监控体系,提高线形监控水平。
3. 加强与相关单位的沟通与协作,确保线形监控工作顺利进行。
4. 将线形监控经验应用于其他类似工程,提高工程质量。
本线形监控专项方案旨在确保工程项目施工过程中的线形质量,提高工程质量,为我国基础设施建设贡献力量。
线形监控测量在连续梁施工中的应用
线形监控测量在连续梁施工中的应用发布时间:2021-04-12T01:36:02.153Z 来源:《防护工程》2020年33期作者:李鹏[导读] 以便为以后相关基建工程施工提供有效参考,更好的提高连续梁施工质量,进一步了解线形监控测量对连续梁结构的重要性。
中铁二十局集团第四工程有限公司山东青岛 266061摘要:本文以佳木斯至鹤岗铁路改造工程鹤岗特大桥一处(48+80+48)m 连续梁为例,详细阐述线形监控测量在连续梁施工中的应用,以便为以后相关基建工程施工提供有效参考,更好的提高连续梁施工质量,进一步了解线形监控测量对连续梁结构的重要性。
关键词:连续梁;线形监控测量;模板高程;测点布设0 引言随着我国经济的迅速增长以及交流日益加快,对交通运输设施的要求也越来越高,铁路工程作为长远途运输的一个重要支柱,发展也越来越迅速。
与此同时信息化时代的到来也对铁路工程建设不断提出了更高的要求,铁路工程建设中信息化的应用也越来越广泛,铁路工程管理平台也在不断增加新的科目,线形监控测量在连续梁施工的重要性也不断的被突显。
1 工程概况佳木斯至鹤岗铁路改造工程岗鹤岗特大桥(48+80+48)m 连续梁桥为预应力钢筋砼结构,全长177.5m。
该梁体是单箱单室、变化截面、变化高度,梁体中跨中部为 10m的梁段,其边跨端梁段为13.75m等高段,梁高3.6m,中墩处梁高为6.4m;箱梁顶板宽7.3m,箱底宽 4.4m;底板厚0.46~0.8m,按照二次抛物线的图形变化;腹板厚 0.4至0.6m、0.6至0.8m,按折线变化。
全联在中支点处、中跨跨中上,以及端支点处共设5个横隔板,在其横隔板上设计有孔洞,以便检查人员通行。
佳木斯至鹤岗铁路改造工程鹤岗特大桥(48+80+48)m连续梁桥箱梁纵向分A0号段、悬臂浇注段、合龙段及边跨现浇段,其中A0号段6m,悬臂节段最长为4.0m、最短为3.0m,合龙段的长度是2m,连续梁桥边跨现浇段长度为7.75m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K14+060大桥连续梁线形
控制监控方案
编制: Z D D
审核:
批准:
六丙公路第三合同段项目经理部
二〇一四年七月三日
K14+060大桥连续梁桥线形控制监控
量测方案
一、工程概述
K14+060桥位于省道S22线六库~跃进桥段二级公路Ⅲ合同段,为跨越沙坝沟而设,就是本合同的控制性工程。
桥垮布置为:4×31m预应力T梁+100+180+100m连续钢构+3×31m预应力T梁。
该桥最大墩高105m,本桥采用预应力混凝土单T型钢构方案,桥梁上部采用纵、竖向预应力混凝土变截面T型钢构;下部采用双薄壁空心墩、钻孔灌注桩基础。
箱梁断面采用单箱单室直服板断面,顶板宽度为12.0米,箱梁根部梁高11米,边跨合拢及现浇段梁高为3.5米。
箱梁底板厚度0号块为150厘米,各梁段底板厚从悬臂根部至悬浇段结束出由130~35厘米,合拢段及边跨现浇段为35厘米,箱梁顶板厚度0号块为60厘米,其余为28厘米,箱梁腹板厚度1~14号块为70厘米,15号块为70~50厘米,其余梁段为50厘米。
主梁悬臂长度为2.75米,翼缘外侧厚18厘米,根部为100厘米。
边跨现浇段处设置宽度为2米的端横梁。
箱梁横桥向底板保持水平,顶板横坡由顶板形成。
主梁采用纵、竖向预应力体系:纵向预应力分为顶板束、腹板束、边跨底板束、中跨底板束、边跨合拢束及中跨合拢刚束六种,采用《预应力混凝土用钢绞线》(GB/T52244-2003)标准的19Φs15.2mm、16Φs15.2mm、15Φs15.2mm高强度低松驰钢绞线,其抗拉强度标准值
fpk=1860MPa,刚束张拉控制应力为1395MPa,其张拉控制力分别
为:371、1吨、312、5吨、293吨。
竖向预应力及0号块横板预应力采用JL32的高强精扎螺纹粗钢筋,抗拉强度标准值(材料屈服点σ0、
2)为785MPa,张拉控制应力为706、5MPa其张拉控制力为56、8吨。
二、控制方法
本桥施工控制的最终目标就是:使成桥后的线形与设计成桥线形
的所有各点的误差均满足《公路桥涵工程施工质量验收执行标准》规定,当箱梁当前悬浇节段的施工挂篮初步就位后,先根据箱梁截面控
制网,采用全站仪或采用经纬仪穿线法或盘左盘右法进行悬浇节段平面中线位置放样。
然后,根据箱梁节段立模标高通知单,安装底模、侧
模与顶模,调整挂篮前吊杆高度等方法使底模标高、顶板底模标高满足通知单要求,误差不应该大于±10mm(高程)与-5mm(中轴线位置)。
成桥线形与设计线形误差在+15mm之间,合拢误差在10mm以内,施工过程中挂篮定位标高与预报标高之差控制在5mm以内。
平面位置一定要定位准确,否则张拉筋对桥梁内部受力不均匀,使桥梁内部受力较大,最终会影响桥梁质量。
从挂篮的前移定位至预应力钢束张拉完毕就是本桥施工的一个周期,每个周期中有关施工控制的步骤如下:
1)按照预报的挂篮定位标高定位挂篮测量定位后的挂篮标高,并向第三方提供挂篮的定位测量结果;
2)立模板、绑扎钢筋;
3)测量所有已施工梁段上的高程点,复测挂篮标高,墩顶的水平位移;
4)浇筑完混凝土第二天后测量已施工梁段上的测点标高,测量本梁段端部梁底与预埋在梁顶的测点标高,建立测点与梁底标高的关系;
5)张拉预应力钢筋,测量所有已施工梁段上的高程测点;
工作程序的关键就是:每个施工循环过程的结束都必须对已完成的节段进行全面的测量,分析实施施工结果与预计目标的误差,从而及时地对与出现的误差进行调整,在达到要求的精度后,才能对下一施工循环做出预报。
三、位移测点布置
1) 测点布置
挠度观测资料就是控制成桥线形最主要的依据,连续梁桥线形监测断面设在每一阶段的端部,测点离梁段端部10cm,不妨碍施工及挂篮的行走、固定等,易于保护,如立一次仪器既可以测试全部测点的高程,最好设在挂篮内侧,这样也可以减少转仪器引起的误差。
线形测点如图1所示。
图1 K14+060大桥连续梁线形监测测点
布置0#块件的高程测点就是为了控制顶板的设计标高,同时也作为以后各悬浇节段高程测量的基准点。
每个0#块的顶板各布置9个高程观测点,如图2所示。
图2 0#块的测点布置图
悬浇节段每个监测断面上布置3个对称的高程观测点(分别位于两侧腹板上及箱梁顶部中心线),如图3所示,不仅可以测量箱梁的挠度,同时可以观测箱梁就是否发生扭转变形,标高测点用Φ16mm圆钢,圆钢筋顶部磨平。
露出顶板2cm~3cm,并用红油漆作为标记。
图3 各号块测点布置示意图
2) 观测时间与项目
为尽量减少温度的影响,挠度的观测安排在早晨太阳出来之前进
行,每个施工阶段的变形测试时间根据施工阶段的进度来定。
在整个施工中主要观测的内容包括:每阶段混凝土浇筑前的高程测量,每阶段混凝土浇筑后,预应力张拉前的高程测量,每阶段预应力张拉后,挂篮行走前的高程测量,每阶段挂篮行走后的高程测量,拆除挂篮后,边(中)跨合拢前的高程测量及最终成桥前的高程测量。
四、悬臂节段测量工作
从挂篮前行至本号梁块预应力张拉完毕为一个施工阶段,在每个施工阶段需完成的测量工作,挂篮定位时根据已确定的立模标高进行挂篮定位,定位底模前端标高及顶板标高。
由于在浇筑混凝土后需要对底模前端标高进行测量,为消除其她因素影响,在定位时,在底模上尽量靠近本梁块底模前端左右两侧各设置钢筋头一个,挂篮定位时需测量的内容包括:(底模前端模板)的标高,使其满足监控方标高预报文件中的底板立模标高,顶板立模标高,为底板立模标高+梁高。
主梁控制误差:
1)悬臂梁段高程:±15mm,-5mm
2)合拢前两悬臂端相对高差:合拢段长1/100,且不大于15mm
3)梁段轴线偏差:15mm
4)梁段顶面高差:±10mm
五、误差分析与识别
在每一施工阶段,对监测得到的应力与位移与理论值进行误差分析,并分析产生误差的原因,采用自适应控制法对下一阶段的误差进行预测、调整,报告预制梁段架设标高等施工状态。
基本思路为当
结构的实测状态与模型计算结果不符时,将误差输入到参数辨别法中去调整计算模型的参数,使模型的输出结果与实测结果一致,得到修正的计算模型参数后,重新计算各施工阶段的理想状态,经过几个阶段的反复识别后,计算模型就基本与实际结构一致,从而对施工过程进行有效控制。
六、结语
悬臂灌注施工过程中对各个节段的精确测量结果就是对挠度变形进行分析与预测的依据,就是每一节段施工参数调整的基础,科学合理测量方法与精确的测量结果就是保证连续梁桥线形与设计线形吻合,实现高精度合拢的根本保障。