第3讲 圆周运动

合集下载

第3讲 圆周运动的角量描述

第3讲 圆周运动的角量描述

第四节圆周运动及其描述上一节学习了一般的平面曲线运动,本节学习一种特殊且常见的曲线运动――圆周运动。

1 圆周运动的线量描述回顾上一节,我们在自然坐标系下使用了位置、速度、加速度等量来描述曲线运动。

这些量称为线量,所以上一节对于曲线运动的描述称为线量描述。

由于圆周运动是一种特殊的曲线运动,因而上一节关于曲线运动的描述完全适用于圆周运动的描述。

所以可以把上一节的结论直接用于圆周运动的线量描述。

位置:s=s(t)速度:dsdt v=τ加速度:22d sdtτ=aτ(1a)2nvR=a n(1b)(1b)式中的R就是圆的半径,而v则是质点做圆周运动的速率。

质点作圆周运动时,如果切向加速度为0,就是所谓的匀速圆周运动......。

2 圆周运动的角量描述极坐标系2.1 角位移除了线量描述形式外,对于圆周运动还有一种常用的描述形式――角量描述。

如图1所示,以圆心为极点,沿着任意方向引出一条线作为极轴,就建立了一个坐标系,称为极坐标系。

在极坐标系中,质点的位置所对应的矢径r与极轴的夹角θ称为质点的角位置,而dθ称为dt时间内的角位移。

注意:1,角位移...d.θ.既有大小,又有方向.........(.但未必是矢量......1)。

其方向由右手定则确定,即:伸出右手,使四指沿着质点旋转的方向弯曲,与四指垂直的拇指所指的方向1矢量的严格定义是:矢量是在空间中有一定的方向和数值,并遵从平行四边形加法法则的量。

即为d θ的正方向。

2,有限大小的角位移不是矢量(因为角位移的合成不符合交换律,比如翻一本书:先x->90,再y ->90,最后z ->90得到的结果,与先x->90,再z ->90,最后y ->90得到的结果不一样),只有..当△..t . .0.时,角位移.....d .θ.才是矢量....。

3,质点作圆周运动时,其角位移只有两种可能的方向,因此可以在标量前...............................加正号或者是负号来指明角位移的方向.................。

高中物理【圆周运动】知识点、规律总结

高中物理【圆周运动】知识点、规律总结
7.因为“绳”和“杆”施力特点不同,竖直平面内的圆周运动中“绳”模型和“杆” 模型在最高点的最小速度是不同的.
考点一 圆周运动的运动学分析 1.圆周运动各物理量间的关系
自主学习
11
2.常见的三类传动方式及特点 (1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大 小相等,即 vA=vB.
3.当 v 一定时,a 与 r 成反比;当 ω 一定时,a 与 r 成正比. 4.向心力是效果力,在分析完物体受到的重力、弹力、摩擦力等性质力后,不能 另外添加一个向心力.
9
5.物体做匀速圆周运动还是偏离圆形轨道完全是由实际提供的向心力和所需的向 心力间的大小关系决定的.
6.皮带传动和摩擦传动装置中两轮边缘线速度大小相等,而同轴传动装置中两轮 角速度相等.
向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是
几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.
14
2.运动模型 运动模型
飞机水平转弯
火车转弯
向心力的来源图示
15
运动模型 圆锥摆
飞车走壁
向心力的来源图示
16
运动模型 汽车在水平路面转弯
水平转台(光滑)
6
三、离心现象 1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需 __向__心__力__的情况下,就做逐渐远离圆心的运动. 2.本质:做圆周运动的物体,由于本身的_惯__性___,总有沿着圆周切线方向飞出去 的趋势.
7
3.受力特点 (1)当 F =mω2r 时,物体做匀速圆周运动,如图所示.
(2)摩擦传动和齿轮传动:如图丙、丁所示,两轮边缘接触,接触点无打滑现象时, 两轮边缘线速度大小相等,即 vA=vB.

第四章 第3讲 圆周运动 高三新高考练习题及答案解析

 第四章 第3讲 圆周运动 高三新高考练习题及答案解析

第3讲 圆周运动一、非选择题1.(2022·河北高三月考)国家雪车雪橇中心位于北京延庆区西北部,赛道全长1 975 m ,垂直落差121 m ,由16个角度、倾斜度都不同的弯道组成,其中全长179 m 的回旋弯赛道是全球首个360°回旋弯道。

2022年北京冬奥会期间,国家雪车雪橇中心将承担雪车、钢架雪车、雪橇三个项目的全部比赛,其中钢架雪车比赛惊险刺激,深受观众喜爱。

测试赛上,一钢架雪车选手单手扶车,助跑加速30 m 之后,迅速跳跃车上,以俯卧姿态滑行。

该选手推车助跑时间为4.98 s ,运动员质量为80 kg ,通过回旋弯道某点时的速度为108 km/h ,到达终点时的速度为124 km/h 。

该选手推车助跑过程视为匀加速直线运动,回旋弯道可近似看作水平面,重力加速度g 取10 m/s 2,结果保留两位有效数字。

求该选手:(1)助跑加速的末速度;(2)以108 km/h 的速度通过回旋弯道某点时钢架雪车对运动员作用力的大小。

[答案] (1)12 m/s (2)2.6×103 N[解析] (1)运动员助跑加速的末速度为v 1,可知s =12v 1t 代入数据,解得v 1=12 m/s 。

(2)回旋弯道全长179 m ,L =2πr ,运动员通过回旋弯道某点时,钢架雪车对运动员作用力设为F ,F y =mg ,F x =m v 2r,代入数据,解得F =F 2x +F 2y =2.6×103N 。

2.(2022·山东新泰月考)如图所示,水平传送带与水平轨道在B 点平滑连接,传送带AB 长度L 0=2.0 m ,一半径R =0.2 m 的竖直圆形光滑轨道与水平轨道相切于C 点,水平轨道CD 长度L =1.0 m ,在D 点固定一竖直挡板。

小物块与传送带AB 间的动摩擦因数μ1=0.9,BC 段光滑,CD 段动摩擦因数为μ2。

当传送带以v 0=6 m/s 沿顺时针方向匀速转动时,将质量m =1 kg 的可视为质点的小物块轻放在传送带左端A 点,小物块通过传送带、水平轨道、圆形轨道、水平轨道后与挡板碰撞,并以原速率弹回,经水平轨道CD 返回圆形轨道。

第4章 第3讲 匀速圆周运动

第4章 第3讲 匀速圆周运动

例2:如图4-3-2所示,用细 绳一端系着的质量为M=0.6kg的物 体A静止在水平转盘上,细绳另一 端通过转盘中心的光滑小孔O吊着 质量为m=0.3kg的小球B,A的重心 到O点的距离为0.2m.若A与转盘间 的最大静摩擦力为f=2N,为使小球 B保持静止,求转盘绕中心O旋转的 角速度ω的取值范围.(取g=10m/s2, 保留两位有效数字)
例1:如图4-3-1所示的传动装置中,B、 C两轮固定在一起绕同一轴转动,A、B两轮用 皮带传动,三轮半径关系是rA=rC=2rB.若皮带 不打滑,求A、B、C轮边缘的a、b、c三点的角 速度之比、线速度之比和向心加速度之比.
解析:A、B两轮通过皮带传动,皮带不打滑, 则A、B两轮边缘的线速度大小相等,即:va=vb或 va∶vb=1∶1 由v=ωr得:ωa∶ωb=rB∶rA=1∶2 B、C两轮固定在一起绕同一轴转动,则B、C 两轮的角速度相同,即ωb=ωc或ωb∶ωc=1∶1
由v=ωr得:vb∶vc=rB∶rC=1∶2
所以:ωa∶ωb∶ωc=1∶2∶2 va∶vb∶vc=1∶1∶2 因为a=vω,所以aa∶ab∶ac=1∶2∶4
点评:传动装置特点:凡是直接用皮带传动(包括 皮带传动、齿轮传动) 的两个轮子,两轮边缘上各点的 线速度大小相等;凡是同一个轮轴上(各个轮都绕同一 根轴同步转动)的各点角速度相等(轴上的点除外). v2 警示:an= = 2 r=v· 这几个公式是用瞬时量线 r 速度v和角速度 表示的,因而既适用于匀速圆周运动,
(1)物理意义:描述质点沿圆周运动的 慢 . 快
(2)方向:质点在圆弧某点的线速度方向沿 圆弧该点的 切线 方向.
(3)大小:v=s/t(s是t时间内通过的弧长).
2.角速度 (1)物理意义:描述质点绕圆心转动的 慢 . 快

第3讲 圆周运动及向心力公式的应用

第3讲 圆周运动及向心力公式的应用
2 v0 fm=m ④ R
fm=μN=μmg ⑤
2 v0 由③④⑤式解得μ= =0.2 gR
栏目索引
3-2 小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有 质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运 动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示。已知握 绳的手离地面高度为d,手与球之间的绳长为 d,重力加速度为g。忽略 手的运动半径和空气阻力。 (1)求绳断时球的速度大小v1和球落地时的速度大小v2。 (2)问绳能承受的最大拉力多大? (3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使 球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?
ωr r3
栏目索引
1-3 (2014北京西城期末,5)如图所示,自行车的大齿轮、小齿轮、后轮 的半径不一样,它们的边缘有三个点A、B、C。在自行车正常骑行时, 下列说法正确的是 ( )
A.A、B两点的角速度大小相等 B.B、C两点的线速度大小相等 C.A、B两点的向心加速度大小之比等于它们所在圆周的半径之比 D.B、C两点的向心加速度大小之比等于它们所在圆周的半径之比
1.下列关于向心加速度的说法中,正确的是 ( A.向心加速度的方向始终与速度的方向垂直 B.向心加速度的方向保持不变 C.在匀速圆周运动中,向心加速度是恒定的
)
D.在匀速圆周运动中,向心加速度的大小不断变化
答案 A 向心加速度的方向始终指向圆心,随着物体运动位置的变化, 方向也随之变化,故选项A对,B、C错误;匀速圆周运动中,向心加速度的 大小保持不变,故选项D错误。
栏目索引
物理
北京版
第3讲 圆周运动及向心力公式的应用
Байду номын сангаас目索引

高三物理第一轮复习课件:第四章第三讲圆周运动

高三物理第一轮复习课件:第四章第三讲圆周运动
小球
过最高点 的临界条

由 mg=mvr2得 v 临= gr
由小球恰能做圆周 运动得 v 临=0
(1)过最高点时,v≥ (1)当 v=0 时,FN=mg,FN 为支
gr,FN+mg=mvr2,持(2)力当,0<沿v半< 径gr背时离,圆-心FN+mg=
讨论
绳、圆轨道对球产生 弹力 FN
mvr2,FN 背离圆心,随 v 的增大
1.在竖直平面内做圆周运动的物体,按运动到轨道 最高点时的受力情况可分为两类:一是无支撑(如球与绳 连接、沿内轨道运动的过山车等),称为“绳(环)约束模 型”;二是有支撑(如球与杆连接、在弯管内的运动等), 称为“杆(管)约束模型”.
2.绳、杆模型涉及的临界问题.
项目
绳模型
杆模型
常见类型 均是没有支撑的 均是有支撑的小球
(2)由于秋千做变速圆周运动,合外力既有指向圆心 的分力,又有沿切向的分力,所以合力不指向悬挂点.
[易误辨析] 判断下列说法的正误(正确的打“√”,错误的打 “×”). (1) 做 匀 速 圆 周 运 动 物 体 的 合 外 力 是 保 持 不 变 的.( ) (2)做圆周运动物体的合外力不一定指向圆心.( ) (3)随圆盘一起匀速转动的物体受重力、支持力和向 心力的作用.( ) 答案:(1)× (2)√ (3)×
A.若盒子在最高点时,盒子与小球之间恰好无作用
力,则该盒子做匀速圆周运动的周期为 2π
R g
B.若盒子以周期 π Rg做匀速圆周运动,则当盒子 运动到图示球心与 O 点位于同一水平面位置时,小球对
盒子左侧面的力为 4mg C.若盒子以角速度 2 Rg做匀速圆周运动,则当盒
子运动到最高点时,小球对盒子下面的力为 3mg

第4章 第3讲 圆周运动—2021届高中物理一轮复习讲义(机构)

第4章 第3讲  圆周运动—2021届高中物理一轮复习讲义(机构)

第四章曲线运动第3讲圆周运动【教学目标】1、理解线速度、角速度和周期的概念;2、理解向心加速度和向心力以及和各物理量间的关系;3、会用牛顿第二定律求解圆周运动问题,并能灵活解决圆周运动中的有关临界问题4、知道离心现象及发生离心现象的条件。

【重、难点】1、会用牛顿第二定律求解圆周运动问题;2、临界问题【知识梳理】1(1)匀速圆周运动是匀变速曲线运动.()(2)物体做匀速圆周运动时,其角速度是不变的.()(3)物体做匀速圆周运动时,其合外力是不变的.()(4)匀速圆周运动的向心加速度与半径成反比.()(5)做匀速圆周运动的物体角速度与转速成正比.( )(6)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢,看周期或角速度.()(7)匀速圆周运动的向心力是产生向心加速度的原因.()(8)做圆周运动的物体所受到的合外力不一定等于向心力.()(9)做圆周运动的物体,一定受到向心力的作用,所以分析做圆周运动物体的受力时,除了分析其受到的其他力,还必须指出它受到向心力的作用.()(10)做匀速圆周运动的物体,当合外力突然减小时,物体将沿切线方向飞出.()(11)做圆周运动的物体所受合外力突然消失,物体将沿圆周的半径方向飞出.()(12)摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故.()(13)在绝对光滑的水平路面上汽车可以转弯.()(14)火车转弯速率小于规定的数值时,内轨受到的压力会增大.()(15)飞机在空中沿半径为R的水平圆周盘旋时,飞机机翼一定处于倾斜状态.()典例精析考点一描述圆周运动的物理量1.圆周运动各物理量间的关系及其理解2.常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即23v A =v B 。

(2)摩擦传动:如图丙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即 v A =v B 。

高考物理总复习第四章 第3讲 圆周运动的规律和应用

高考物理总复习第四章 第3讲 圆周运动的规律和应用

2013-11-27
有志者事竟成
7
高考复习· 物理
4.来源:做匀速圆周运动的物体,向心力就是物体所 受的合外力,总是指向圆心.做变速圆周运动的物体,向心 力只是物体所受合外力在沿着半径方向上的一个分力.
2013-11-27
有志者事竟成
8
高考复习· 物理
三、匀速圆周运动 1.匀速圆周运动:质点沿圆周运动,在相等的时间里 通过的弧长相等. 2.匀速圆周运动的特点. (1)是速度大小不变而速度方向时刻变化的变速曲线运 动.
2013-11-27
有志者事竟成
21
高考复习· 物理
图4-3-4
2013-11-27
有志者事竟成
22
高考复习· 物理
A.小球的向心加速度突然增大到原来的3倍 B.小球的线速度突然增大到原来的3倍 C.小球的角速度突然增大到原来的1.5倍 D.细绳对小球的拉力突然增大到原来的1.5倍
2013-11-27
图4-3-2
2013-11-27
有志者事竟成
15
高考复习· 物理
A.木块受到圆盘对它的摩擦力,方向背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向指向圆盘中心 C.因为木块随圆盘一起运动,所以木块受到圆盘对它 的摩擦力,方向与木块的运动方向相同 D.因为摩擦力总是阻碍物体的运动,所以木块受到圆 盘对它的摩擦力的方向与木块的运动方向相反
2013-11-27
有志者事竟成
16
高考复习· 物理
解析 从静摩擦力总是阻碍物体间的相对运动的趋势来 分析:由于圆盘转动时,以转动的圆盘为参考系,物体的运 动趋势是沿半径向外背离圆心的,所以盘面对木块的静摩擦 力方向沿半径指向圆心.从做匀速圆周运动的物体必须有力 提供向心力的角度来分析,木块随圆盘一起做匀速圆周运 动,它必须受到沿半径指向圆心的合力,只有来自盘面的静 摩擦力提供指向圆心的向心力,因而盘面对木块的静摩擦力 方向必沿半径指向圆心,所以,正确选项为B.

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

g lcos
θ=
gh,所以小球 A、B 的角速度相等,
线速度大小不相等,故 A 正确,B 错误;
对题图乙中 C、D 分析,设绳与竖直方向的夹角为 θ,小球的质量为 m,绳上拉力为 FT,则有 mgtan θ=man,FTcos θ=mg,得 an=gtan θ,FT =cmosgθ,所以小球 C、D 所需的向心加速度大小相等,小球 C、D 受 到绳的拉力大小也相等,故 C、D 正确.
当转速较大,FN指向转轴时, 则FTcos θ+FN′=mω′2r 即FN′=mω′2r-FTcos θ 因ω′>ω,根据牛顿第三定律可知,小球对杆的压力 不一定变大,C错误; 根据F合=mω2r可知,因角速度变大,则小球所受合外力变大,D正确.
例5 (2022·全国甲卷·14)北京2022年冬奥会首钢滑雪大跳台局部示意图
例7 如图所示,质量相等的甲、乙两个小球,在光滑玻璃漏斗内壁做 水平面内的匀速圆周运动,甲在乙的上方.则 A.球甲的角速度一定大于球乙的角速度
√B.球甲的线速度一定大于球乙的线速度
C.球甲的运动周期一定小于球乙的运动周期 D.甲对内壁的压力一定大于乙对内壁的压力
对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,
√B.弹簧弹力的大小一定不变
C.小球对杆压力的大小一定变大
√D.小球所受合外力的大小一定变大
对小球受力分析,设弹簧弹力为FT,弹簧与水平方向 的夹角为θ, 则对小球竖直方向有 FTsin θ=mg,而 FT=kcMosPθ-l0 可知θ为定值,FT不变,则当转速增大后,小球的高度 不变,弹簧的弹力不变,A错误,B正确; 水平方向当转速较小,杆对小球的弹力FN背离转轴时,则FTcos θ- FN=mω2r 即FN=FTcos θ-mω2r

初中物理竞赛及自主招生专题讲义第一讲物体的运动第三讲圆周运动含解析

初中物理竞赛及自主招生专题讲义第一讲物体的运动第三讲圆周运动含解析

第三讲 圆周运动匀速圆周运动是指物体运动的轨迹是圆周,且运动快慢不变的运动,这是一种曲线运动。

一、描述匀速圆周运动的几个物理量1.周期做匀速圆周运动的物体,每完成一次完整的圆周运动所需要的时间都相同,这个时间叫做一个周期,用符号T 表示,国际单位为秒()s .例如,时钟的秒针周期为60s ,分针周期为60min ,地球自转的周期为24h 等。

匀速圆周运动的周期越小,转动越快.2.频率单位时间内物体完成的圆周数,叫做匀速圆周运动的频率,用符号f 表示,国际单位为赫兹()Hz ,频率越大,转动越快,频率与周期互为倒数,即1f T =。

例如,秒针转动的频率为1Hz 60,每分钟转动300转的电风扇,其转动频率为5Hz 。

3.角速度做匀速圆周运动的物体,单位时间内物体与圆心的连线(即半径)转过的角度叫做角速度,用ω表示。

若t 时间内半径转过的角度用θ表示,则角速度可以表示为tθω=。

这里应该注意的是,θ的单位不再是“度",而是“弧度”,弧度是指某个角所对的圆弧长度与圆弧半径的比值,如图3。

32所示,l r θ=,弧度无单位,但物理学中常用“rad "来表示弧度的单位。

由弧度的定义,180︒角所对应的弧度可以表示为r rππ=,即180︒=π,可得1180π︒=,因此我们可以得到其他常用角度的弧度值,例如,902π︒=,45︒4π=,306π︒=,603π︒=,21203π︒=等。

当物体运动一周时,转过的角度为360︒2π=,所用时间为一个周期T ,因此匀速圆周运动的角速度还可以表示为2T πω=等,根据角速度的定义式tθω=,可知角速度的单位为“弧度/秒”,符号为“rad/s ”.4.转速转速表示物体单位时间内完成的圆周数,常用单位有“转/秒”和“转/分”,符号分别为“r/s ”和“r/min ”,r/s=60r/min 。

转速取“转/秒"作为单位时,其数值与频率相同。

若转速为n ,则表示每秒转过n 周,每秒转过的角度为2n π,因此角速度与转速的关系可表示为2n ωπ=。

高三物理一轮复习 第3讲 圆周运动

高三物理一轮复习  第3讲  圆周运动

心力。
(×)
(6)“魔盘”的转速逐渐增大时,盘上的人便逐渐向边缘滑去,这是人受沿
半径向外的离心力作用的缘故。
(× )
(7)当“魔盘”转动到一定速度时,人会“贴”在“魔盘”竖直壁上而不会
滑下,此时的向心力是由静摩擦力提供。
(×)
提能点(一) 描述圆周运动的物理量(自练通关)
点点通
1.[皮带传动]
(多选)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小
3.[同轴传动] (2021·上海黄浦区模拟)某高中开设了糕点制作的选修课, 小明同学在体验糕点制作“裱花”环节时,他在绕中心匀 速转动的圆盘上放了一块直径 8 英寸(20 cm)的蛋糕,在 蛋糕上每隔 4 s 均匀“点”一次奶油,蛋糕一周均匀 “点”上 15 个奶油,则下列说法正确的是 A.圆盘转动的转速约为 2π r/min B.圆盘转动的角速度大小为3π0 rad/s C.蛋糕边缘的奶油线速度大小约为π3 m/s D.蛋糕边缘的奶油向心加速度约为9π0 m/s2
速圆周运动需要的向心力。
情景创设 现在有一种叫作“魔盘”的娱乐设施,如图所示。当“魔盘”转动很慢时, 人会随着“魔盘”一起转动,当盘的速度逐渐增大时,盘上的人便逐渐向边缘 滑去,离转动中心越远的人,这种滑动的趋势越明显,当“魔盘”转动到一定 速度时,人会“贴”在“魔盘”竖直壁上而不会滑下。
微点判断
(1)人随“魔盘”一起做匀速圆周运动时,其角速度是不变的。
(√ )
(2)人随“魔盘”一起做匀速圆周运动时,其合外力是不变的。
(× )
(3)人随“魔盘”一起做匀速圆周运动的向心加速度与半径成反比。
(× )
(4)随“魔盘”一起做匀速圆周运动时,人离“魔盘”中心越远,人运动得

第3讲 圆周运动

第3讲 圆周运动

A.角速度为 0.5 rad/s C.轨迹半径为π4 m 答案 BCD
B.转速为 0.5 r/s D.加速度大小为 4π m/s2
7
知识梳理 双基过关
课堂互动 研透考点
@《创新设计》
3.[人教版必修2·P25·T3改编]如图2所示,小物体A与水平圆盘保持相对静止,跟着圆 盘一起做匀速圆周运动,则A受力情况是 ( )
@《创新设计》
图6
17
知识梳理 双基过关
课堂互动 研透考点
@《创新设计》
解析 题图中三个齿轮边缘线速度大小相等,A点和B点的线速度大小之比为 1∶1,由v=ωr可得,线速度大小一定时,角速度与半径成反比,A点和B点角 速度之比为3∶1,选项A、C正确,B、D错误。 答案 AC
18
知识梳理 双基过关
力在水平方向上的分力提供向心力,设该小球到 P 的距离为 l,则有 Fsin θ=
mgtan θ=m4Tπ22lsin θ,解得周期为 T=2π
lcos g
θ=2π
hg,因为任意时刻两球
均在同一水平面内,故两球运动的周期相等,选项 A 正确;连接两球的绳的张
力 F 相等,由于向心力为 Fn=Fsin θ=mω2lsin θ,故 m 与 l 成反比,由 m1≠m2,
均是有支撑的小球
由小球恰能做圆周运动 得v临=0
知识梳理 双基过关
课堂互动 研透考点
C.A、C两点的周期大小相等
D.A、B两点的向心加速度大小相等
15
知识梳理 双基过关
课堂互动 研透考点
@《创新设计》
解析 自行车的链条不打滑,A 点与 B 点的线速度大小相等,故 A 正确;B 点 与 C 点绕同一转轴转动,角速度相等,故 B 正确;由 T=2vπr可知,A 点 的半 径大于 B 点的半径,A 点的周期大于 B 点的周期,而 B 点的周期与 C 点的周期 相等,所以 A 点的周期大于 C 点的周期,故 C 错误;由向心加速度公式 an=vr2, A 点的半径大于 B 点的半径,可知 A 点的向心加速度小于 B 点的向心加速度, 故 D 错误。 答案 AB

第四章第3讲 圆周运动--2025版高考总复习物理

第四章第3讲 圆周运动--2025版高考总复习物理
返回导航
第4章 抛体运动与圆周运动
2.如图所示,圆桌桌面中间嵌着一可绕中心轴O转动的圆盘,A是圆盘边 缘的一点,B是圆盘内的一点。分别把A、B的角速度记为ωA、ωB,线速 度vA、vB,向心加速度记为aA、aB,周期记为TA、TB,则( ) A.ωA>ωB B.vA>vB C.aA<aB D.TA<TB
=ω2C及关系式 a=ω2R,可得 aB=a4C,即 B 点与 C 点的向心加速度大小 之比为 1∶4,选项 D 正确。
返回导航
第4章 抛体运动与圆周运动
02
考点突破 提升能力
返回导航
第4章 抛体运动与圆周运动
考点 1 圆周运动的运动学问题 1.对公式 v=ωr 的理解 当 r 一定时,v 与 ω 成正比。
返回导航
第4章 抛体运动与圆周运动
[解析] 轻杆拉着小球在竖直平面内做圆周运动,在最高点的最小速度为 零,故 A 正确;根据 F 向=mvl2知,速度增大,向心力增大,故 B 正确; 当 v= gl时,杆的作用力为零,当 v> gl时,杆的作用力表现为拉力, 速度增大,拉力增大,故 C 正确;当 v< gl时,杆的作用力表现为支持 力,速度减小,支持力增大,故 D 错误。
返回导航
第4章 抛体运动与圆周运动
3.(多选)如图所示,有一皮带传动装置,A、B、C 三点到各自转轴的距 离分别为 RA、RB、RC,已知 RB=RC=R2A,若在传动过程中,皮带不打滑。 则( ) A.A 点与 C 点的角速度大小相等 B.A 点与 C 点的线速度大小相等 C.B 点与 C 点的角速度大小之比为 2∶1 D.B 点与 C 点的向心加速度大小之比为 1∶4
返回导航
第4章 抛体运动与圆周运动
解析:处理传动装置类问题时,对于同一根皮带连接的传动轮边缘的点, 线速度相等;同轴转动的点,角速度相等。对于本题,显然 vA=vC,ωA =ωB,选项 B 正确;根据 vA=vC 及关系式 v=ωR,可得 ωARA=ωCRC,

专题四:第3讲 圆周运动及其应用

专题四:第3讲 圆周运动及其应用
答案:BC
6.绳系着装有水的水桶,在竖直平面内做圆周运动,水的 质量 m=0.5 kg,绳长 l=60 cm,求:
(1)在最高点水不流出的最小速率;
(2)水在最高点速率 v=3 m/s 时,水对桶底的压力.
解:(1)在最高点水不流出的条件是重力不大于水做圆周运 v2 m 动所需要的向心力,即 mg≤m R 则所求最小速率 vm= Rg= 0.6×9.8 m/s=2.42 m/s.
提供圆周运动所需的向心力.
(3)离心运动的应用:离心干燥器、离心沉淀器等. (4)离心运动的防止:车辆转弯时要限速;转动的砂轮和飞
轮要限速等.
考点3 竖直平面内的圆周运动 1.竖直平面内的圆周运动的特点 变速 竖直平面内的圆周运动一般是__________圆周运动,其合 外力一般不指向圆心,它产生两个方向的效果:
运动.
(3)条件:合外力大小不变,方向始终与速度方向垂直且指
向圆心.
4.各物理量的比较
物理量 线速度v 角速度ω 向心加速度a v2 a= r 向心力F
s v= t
公式
θ ω= t 2π ω= T ω=2πf
表示转动的 快慢 rad/s v=ωr
v2 F=m r F=mω2r 4π2 F=m T2 r F=mωv
2.向心加速度 (1)物理意义:描述某点线速度方向改变的快慢.
v2 (2)大小:a= =ω2r. r
圆心 (3)方向:总是指向____________,与线速度方向垂直.
3.匀速圆周运动 (1)定义:做圆周运动的物体,若在相等的时间内通过的圆 弧长相等,就是匀速圆周运动. (2)特点:加速度大小不变,方向始终指向圆心,是变加速
(2)杆球模型:有物体支撑的小球在竖直平面内做圆周运动 的情况,如图4-3-2 所示.

第三讲圆周运动及应用公开课一等奖优质课大赛微课获奖课件

第三讲圆周运动及应用公开课一等奖优质课大赛微课获奖课件
第38页
[思绪点拨] 分析小轿车所在处轿车受力情况,依据沿 半径方向合外力提供向心力列式求解,再应用牛顿第三 定律求出小轿车对桥面压力.
第39页
[解析] (1)小轿车通过凹形桥面最低点 时,在水平方向受到牵引力F和阻力 Ff1,在竖直方向受到桥面向上的支持力 FN1和向下的重力G=mg,如图甲所示. 取向上为正方向,可得: FN1-mg=mvR12, 解得FN1=mg+mvR12=2.89×104 N. 由牛顿第三定律可得:小轿车对桥面压力为2.89×104 N.
第46页
解析:女运动员离开地面在空中做圆锥摆运动时受到 重力 G 和拉力 FT 的作用,合力沿水平方向指向圆心, 拉力 FT=sinG30°=2G,由 mgcot30°=ma 得向心加速 度为 a= 3g,故本题正确选项为 B. 答案:B
第7页
(2)受力特点:
当F= mrω2 时,物体做匀速
圆周运动;
当F=0时,物体沿 切线 飞出;
当F<mrω2时,物体逐步远
图4-3-1
离圆心,F为实际提供向心力.如图4-3-1所表示.
第8页
2.向心运动 当提供向心力合外力不小于做圆周运动所需向心力时, 即F>mrω2,物体渐渐向圆心运动.如图4-3-1所表 示.
第23页
第24页
[典例启迪]
[例1] (·桂林质检)某种变速自行车,有六个飞轮和三个
链轮,如图4-3-6所表示,链轮和飞轮齿数下列表所表
示,前、后轮直径约为660 mm,人骑该种自行车行进速
度为4 m/s时,脚踩踏板做匀速圆周运动角速度最小值约

()
第25页
图4-3-6
名称
链轮
飞轮
齿数N/个 48 38 28 15 16 18 21 24 28

第3讲 圆周运动

第3讲 圆周运动
与所用时间之比(n),也叫频率(f)
①T=2vπr=
13
2π _ω__,单位:s
1
②f= 14 _T__,单位:15 __H__z__
③n 的单位:16 ____r_/s____、17
_____r_/_m_i_n______
定义、意义
公式、单位
向心加 速度
①描述速度 18 _方__向__变化 19 _快__慢___ 的物理量(an)
__指__向__圆__心____
②沿切线方向的分力 12 __F__t __,它改变速度
的 13 _大__小___
匀速圆周运动
变速圆周运动
运动 变加速曲线运动(加速度大小不 变加速曲线运动(加速度大小、方向
性质 变,方向变化)
都变化)
物理观念 离心现象 1.离心运动 (1)定义:做 01 __圆__周__运__动____的物体,在向心力突然消失或合力不足以 提供所需的 02 __向__心__力___时,所做的逐渐远离圆心的运动。 (2)本质:做圆周运动的物体,由于 03 _惯__性___,总有沿着 04 ___切__线__方__向___ 飞出去的倾向。
2.描述圆周运动的物理量
描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、
向心加速度、向心力等,具体如下:
定义、意义
公式、单位
①描述做圆周运动的物体沿圆弧运动
05 _快__慢___的物理量(v) 线速度
①v=ΔΔst= 06 __ω_r___
②是矢量,方向和半径垂直,沿切线方 ②单位: 07 ___m_/_s____
例1 (2021·全国甲卷)“旋转纽扣”是一种传统游戏。如图,先将纽 扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端, 纽扣正转和反转会交替出现。拉动多次后,纽扣绕其中心的转速可达50 r/s,此时纽扣上距离中心1 cm处的点向心加速度大小约为( )

第四章第3讲 圆周运动的基本规律及应用

第四章第3讲 圆周运动的基本规律及应用

一、描述圆周运动的物理量 定义、意义 ①描述做圆周运动的物体沿圆弧运 动快慢的物理量(v) ②是矢量,方向和半径垂直,沿圆周 切线方向 公式、单位 ①
s 2 πr v= = t T
②单位:m/s
定义、意义 描述物体绕圆心转动快慢的物 理量(ω ) ①周期是物体沿圆周运动一周 的时间(T) ②转速是物体单位时间转过的 圈数(n)
由列表比较可知,汽车在凹形桥上行驶对桥面及轮胎损
三、离心运动 1.本质:做圆周运动的物体,由于本身的惯性,总有沿着 切线方向 飞出去的倾向. 圆周 2.受力特点(如图所示) (1)当F= mrω2 时,物体做匀速圆周运 动; (2)当F=0时,物体沿 切线方向 飞出; (3)当F <mrω2时,物体逐渐远离圆 心,F为实际提供的向心力; (4)当F>mrω2时,物体逐渐向 圆心 靠近.
3. 如图所示,靠摩擦传动做匀速转动的大、小两 轮接触面互不打滑,大轮半径是小轮半径的2倍.A、 B分别为大、小轮边缘上的点,C为大轮上一条半径的 中点.则( D ) A.两轮转动的角速度相等 B.大轮转动的角速度是小轮的2倍 C.质点加速度aA=2aB D.质点加速度aB=4aC [解析] 两轮不打滑,边缘质点线速度大小相 等,vA=vB,而rA=2rB,故ωA=ωB/2,选项A、B错 误;由an=v2/r得:aA/aB=rB/rA=1/2,选项C错误;由an =ω2r得aA/aC=rA/rC=2, 则aB/aC=4,选项D正确.
2014届高考一轮物理复习课件必修(教科版)
第3讲 圆周运动及其应用
考纲展示
复习目标
1.知道描述圆周运动的物理量,掌 握各物理量之间的关系
1.匀速圆周运动、角 速度、线速度、向心 2.理解物体做匀速圆周运动的条件, 明确向心力是效果力,会分析和解 加速度.(Ⅰ) 决圆周运动问题 2.匀速圆周运动的向 3.知道离心运动以及产生离心运动 心力.(Ⅱ) 的条件.会根据离心运动产生条件 3.离心现象.(Ⅰ) 分析解决生产、生活中的离心运动 问题

2025版《师说》高中全程复习构想物理4.3

2025版《师说》高中全程复习构想物理4.3
c两处的高度差为h.要求运动员经过c点时对滑雪板的压力不大于自身
所受重力的k倍,运动过程中将运动员视为质点并忽略所有阻力,则c
点处这一段圆弧雪道的半径不应小于(
)
h
h
2h
2h
A.
B. C.
D.
k+1
答案:D
k
k
k−1
例 3 如图所示,竖直细杆O点处固定有一水平横杆,在横杆上有A、
B两点,且OA=AB,在A、B两点分别用两根等长的轻质细线悬挂两
自动识别区ab到a′b′的距离为8.4 m,汽车匀速驶入自动识别区,自动
π
识别系统识别的反应时间为0.1 s,闸杆转动的角速度为 rad/s.若汽车
8
可看成高1.6 m的长方体,闸杆转轴O与汽车左侧面的水平距离为0.6
m,要使汽车顺利通过闸杆(车头到达闸杆处视为通过闸杆),则汽车
匀速行驶的最大允许速度为(
场景,其简化图如图乙所示,已知A、B、C三个圆的半径分别为rA、
rB、rC,C每转一圈能将8个相同竹筒中的水(质量均为m)灌溉到农田中,
已知牛每分钟牵引中柱转动n圈,则一个小时内该牛车对农田灌溉水
的质量为(
)
480
60
A.

B. 2 m

60nrA
C.
m
rC
答案:A

480nrB
D.
加速度为g.以下说法正确的是(
)
A.武大靖转弯时速度的大小为
gR
tan θ
B.武大靖转弯时速度的大小为 gR tan θ
C.若武大靖转弯速度变大则需要增大蹬冰角
D.若武大靖转弯速度变大则需要减小蹬冰角
答案:AD

2020高考物理一轮总复习课时冲关十三圆周运动含解析新人教版

2020高考物理一轮总复习课时冲关十三圆周运动含解析新人教版

第3讲 圆周运动[A 级-基础练]1.科技馆的科普器材中常有如图所示的匀速率的传动装置:在大齿轮盘内嵌有三个等大的小齿轮.若齿轮的齿很小,大齿轮的半径(内径)是小齿轮半径的3倍,则当大齿轮顺时针匀速转动时,下列说法正确的是( )A .小齿轮逆时针转动B .小齿轮每个齿的线速度均相同C .小齿轮的角速度是大齿轮角速度的3倍D .大齿轮每个齿的向心加速度大小是小齿轮的3倍解析:C [大齿轮、小齿轮在转动过程中,两者的齿的线速度大小相等,当大齿轮顺时针转动时,小齿轮也顺时针转动,选项A 错误;速度是矢量,具有方向,所以小齿轮每个齿的线速度不同,选项B 错误;根据v =ωr ,且线速度大小相等,角速度与半径成反比,选项C 正确;根据向心加速度a =v 2r,线速度大小相等,向心加速度与半径成反比,选项D 错误.]2.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,则偏心轮转动过程中a 、b 两质点( )A .角速度大小相同B .线速度大小相同C .向心加速度大小相同D .向心力大小相同解析:A [同轴转动角速度相等,A 正确;由于两者半径不同,根据公式v =ωr 可得两点的线速度大小不同,B 错误;根据公式a =ω2r ,角速度相同,半径不同,所以向心加速度大小不同,C 错误;根据公式F =ma ,质量相同,但是加速度大小不同,所以向心力大小不同,D 错误.]3.2018年11月7日,首届FAI 世界无人机锦标赛在深圳圆满落幕.无人机携带货物正在空中水平面内转弯,其运动可看做匀速圆周运动,若其转弯半径为r ,转弯速度为v ,货物质量为m ,此时无人机对货物的作用力大小为( )A .m v 2rB .mgC .m v 2r+mgD .mg 2+v 4r2解析:D [根据牛顿第二定律有:F 合=m v 2r,根据平行四边形定则,如图.无人机对货物的作用力F = mg2+⎝ ⎛⎭⎪⎫m v 2r 2=m g 2+v 4r2,选项D 正确.]4.如图是摩托车比赛转弯时的情形,转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.若摩托车发生滑动,则下列论述正确的是( )A .摩托车一直受到沿半径方向向外的离心力作用B .摩托车所受合外力提供的向心力小于所需要的向心力C .摩托车将沿其线速度的方向沿直线滑出去D .摩托车将沿其半径方向沿直线滑出去解析:B [摩托车做圆周运动需要向心力,不受到沿半径方向向外的离心力作用,故A 错误;若摩托车发生滑动,摩托车做离心运动是因为所受外力的合力小于所需的向心力,故B 正确;摩托车受到与速度方向垂直的摩擦力的作用,即使该摩擦力小于需要的向心力,但仍然能够改变车的运动的方向,使车不会沿其线速度的方向沿直线滑出去,故C 错误;摩托车做圆周运动的线速度沿半径的切线方向,不可能会沿其半径方向沿直线滑出去,故D 错误.]5.(2019·吉安模拟)如图所示,一根细线下端拴一个金属小球P ,细线的上端固定在金属块Q 上,Q 放在带小孔(小孔光滑)的水平桌面上,小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图中P ′位置),两次金属块Q 都静止在桌面上的同一点,则后一种情况与原来相比较,下面的判断正确的是( )A.细线所受的拉力变小B.小球P运动的角速度变大C.Q受到桌面的静摩擦力变小D.Q受到桌面的支持力变小解析:B [设OP长度为l,与水平面的夹角为θ,竖直方向平衡,有F sin θ=mg,水平方向由牛顿第二定律得F cos θ=mω2l cos θ,由以上方程分析可得,随θ角减小,F增大,A错误;结合Q的受力平衡得Q受到桌面的静摩擦力变大,受到的桌面的支持力不变,C、D错误;F=mω2l,ω随F的增大而增大,B正确.] 6.如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( )A.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小解析:D [在转动过程中,A、B两座椅的角速度相等,但由于B座椅的半径比较大,故B座椅的速度比较大,向心加速度也比较大,A、B项错误;A、B两座椅所需向心力不等,而重力相同,故缆绳与竖直方向的夹角不等,C 项错误;根据F=mω2r判断A座椅的向心力较小,所受拉力也较小,D项正确.]7.(2019·衡阳模拟)轻杆一端固定有质量为m=1 kg的小球,另一端安装在水平轴上,转轴到小球的距离为50 cm,转轴固定在三角形的带电动机(电动机没画出来)的支架上,在电动机作用下,轻杆在竖直面内做匀速圆周运动,如图所示.若转轴达到某一恒定转速n时,在最高点,杆受到小球的压力为2 N,重力加速度g取10 m/s2.则( )A.小球运动到最高点时,小球需要的向心力为12 NB.小球运动到最高点时,线速度v=1 m/sC.小球运动到图示水平位置时,地面对支架的摩擦力为8 ND.把杆换成轻绳,同样转速的情况下,小球仍能通过图示的最高点解析:C [小球运动到最高点时,杆受到小球的压力为2 N ,由牛顿第三定律可知杆对小球的支持力F N =2 N ,在最高点,小球需要的向心力由重力和杆的支持力的合力提供,为F =mg -F N =8 N ,故A 错误;在最高点,由F =m v 2r 得,v =Fr m =8×0.51m/s =2 m/s ,故B 错误;小球运动到图示水平位置时,设杆对小球的拉力为F T ,则有F T =m v 2r =F =8 N ,则小球对杆的拉力F T ′=F T =8 N ,据题意知支架处于静止状态,由平衡条件可知地面对支架的摩擦力F f =F T ′=8 N ,故C 正确;把杆换成轻绳,设小球通过最高点的最小速度为v 0,由mg =m v 20r得,v 0=gr =10×0.5 m/s = 5 m/s >v ,所以在同样转速的情况下,小球不能通过图示的最高点,故D 错误.]8.如图所示的杂技演员在表演“水流星”的节目时,盛水的杯子经过最高点杯口向下时水也不洒出来,对于杯子经过最高点时水的受力情况,下列说法正确的是( )A .水处于失重状态,不受重力的作用B .水受平衡力的作用,合力为零C .由于水做圆周运动,因此必然受到重力和向心力的作用D .杯底对水的作用力可能为零解析:D [失重状态是物体对支持物(或绳)的弹力小于重力,但物体所受重力不变,选项A 错误;水受力不平衡,有向心加速度,选项B 错误;向心力不是性质力,本题中向心力由重力和弹力的合力提供,选项C 错误;当重力恰好提供水做圆周运动的向心力时,杯底对水的作用力为零,选项D 正确.]9.(2019·浙江模拟)有关圆周运动的基本模型,下列说法不正确的是( )A .如图甲,汽车通过拱桥的最高点处于失重状态B .如图乙所示是一圆锥摆,增大θ,若保持圆锥的高不变,则圆锥摆的角速度不变C .如图丙,同一小球在光滑而固定的圆锥筒内的A 、B 位置先后分别做匀速圆周运动,则在A 、B 两位置小球的角速度及所受筒壁的支持力大小相等D .火车转弯超过规定速度行驶时,外轨对火车轮缘会有挤压作用解析:C [A 项,汽车在最高点mg -F N =mv 2r知F N <mg ,故处于失重状态,故A 项正确;B 项,如题图乙所示是一圆锥摆,重力和拉力的合力F =mg tan θ=m ω2r ;r =h tan θ,知ω=gh,故增大θ,但保持圆锥的高不变,角速度仍不变,故B 项正确;C 项,根据受力分析知两球受力情况相同,即向心力相同,由F =m ω2r 知r 不同,角速度不同,故C 项错误;D 项,火车转弯超过规定速度行驶时,重力和支持力的合力不足以提供向心力,则外轨对轮缘会有挤压作用,故D 项正确.][B 级—能力练]10.(2019·杭州四中统测)有一长度为L =0.50 m 的轻质细杆OA ,A 端有一质量为m =3.0 kg 的小球,如图所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速度是2.0 m/s ,g 取10 m/s 2,则此时细杆OA 受到( )A .6.0 N 的拉力B .6.0 N 的压力C .24 N 的拉力D .24 N 的压力解析:B [设杆对小球的作用力为F N ,方向竖直向下,如图所示,由向心力公式得F N +mg =m v 2L,则F N =m v 2L -mg =⎝ ⎛⎭⎪⎫3.0×2.020.50-3.0×10N =-6 N. 负号说明F N 的方向与假设方向相反,即竖直向上. 由牛顿第三定律知应选B.]11.(多选)如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,则要使小球不脱离圆轨道运动,v 0应当满足(g =10 m/s 2)( )A .v 0≥0B .v 0≥4 m/sC .v 0≥2 5 m/sD .v 0≤2 2 m/s解析:CD [解决本题的关键是全面理解“小球不脱离圆轨道运动”所包含的两种情况: (1)小球通过最高点并完成圆周运动;(2)小球没有通过最高点,但小球没有脱离圆轨道.对于第(1)种情况,当v 0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg ≤mv 2r,又根据机械能守恒定律有mv 22+2mgr =mv 202,可求得v 0≥2 5 m/s ,故选项C 正确;对于第(2)种情况,当v 0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置处,速度恰好减为零,根据机械能守恒定律有mgr =mv 202,可求得v 0≤2 2 m/s ,故选项D 正确.]12.(2016·全国卷Ⅱ)小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度解析:C [A.小球摆动至最低点由动能定理:mgL =12mv 2,可得:v =2gL ,因L P <L Q ,故v P <v Q ,选项A 错误;B.由E k =mgL ,而m P >m Q ,则动能无法比较,选项B 错误;C.在最低点,F T -mg =m v 2L ,可得F T =3mg ,选项C 正确;D.a =v 2L=2g ,两球的向心加速度相等,选项D 错误,故选C.]13.(2019·定州市模拟)如图所示,圆筒的内壁光滑,一端B 固定在竖直转轴OO ′上,圆筒可随轴转动,它与水平面的夹角始终为30°,在筒内有一个用轻质弹簧连接的小球A (小球直径略小于圆筒内径),A 的质量为m ,弹簧的另一端固定在圆筒的B 端,弹簧原长为32L ,当圆筒静止时A 、B 之间的距离为L (L 远大于小球直径).现让圆筒开始转动,其角速度从0开始缓慢增大,当角速度增大到某一值时保持匀速转动,此时小球A 、B 之间的距离为2L ,重力加速度大小为g ,求圆筒保持匀速转动时的角速度ω0.解析:当圆筒静止时A 、B 之间的距离为L ,可知弹簧的形变量Δx =L2,根据平衡有mg sin 30°=k ·L2.当圆筒转动,AB 间距离为2L 时,受力如图,在竖直方向上,有N cos 30°=k L2sin 30°+mg ,水平方向上,有k L2cos 30°+N sin 30°=m ·2L sin 60°ω20, 联立解得ω0=2g 3L. 答案:2g 3L14.(2019·河南洛阳一中月考)某实验小组做了如下实验,装置如图甲所示.竖直平面内的光滑轨道由倾角为θ的斜面轨道AB 和圆弧轨道BCD 组成,将质量m =0.1 kg 的小球,从轨道AB 上高H 处的某点静止滑下,用压力传感器测出小球经过圆弧最高点D 时对轨道的压力F ,改变H 的大小,可测出相应的F 大小,F 随H 的变化关系如图乙所示.g =10 m/s 2.求:(1)圆轨道的半径R ;(2)若小球从D 点水平飞出后又落到斜面上,其中最低的位置与圆心O 等高,求θ值.解析:(1)小球经过D 点时,满足竖直方向的合力提供圆周运动向心力即:F +mg =m v 2R从A 到D 的过程中只有重力做功,根据动能定理有:mg (H -2R )=12mv 2 联立解得:F =m v 2R-mg=2mg H -2RR-mg =2mgRH -5mg由题图乙中给出的F -H 图象知斜率k =5-01.0-0.5 N/m =10 N/m 即2mgR=10 N/m所以可得R =0.2 m.(2)小球离开D 点做平抛运动,根据几何关系知,小球落地点越低平抛的射程越小,即题设中小球落地点位置最低对应小球离开D 点时的速度最小.根据临界条件知,小球能通过D 点时的最小速度为v = gR小球落地点在斜面上与圆心等高,故可知小球平抛时下落的距离为R ,所以小球平抛的射程s =vt =v2Rg=gR ×2Rg=2R由几何关系可知,角θ=45°. 答案:(1)0.2 m (2)45°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时规范训练[基础巩固题组]1.如图所示,乘坐游乐园的翻滚过山车时,质量为m 的人随过山车在竖直平面内旋转,下列说法正确的是( )A .过山车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B .人在最高点时对座位不可能产生大小为mg 的压力C .人在最低点时对座位的压力等于mgD .人在最低点时对座位的压力大于mg解析:选D .人过最高点时,F N +mg =m v 2R ,当v ≥gR 时,即使人不用保险带也不会掉下来,当v =2gR 时,人在最高点时对座位产生的压力为mg ,A 、B 错误;人在最低点时具有竖直向上的加速度,处于超重状态,故人此时对座位的压力大于mg ,C 错误,D 正确.2.(2019·江苏卷)(多选)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )A .运动周期为2πR ωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为m ω2R解析:选BD .座舱的周期T =2πR v =2πω,A 错.根据线速度与角速度的关系,v =ωR ,B 对.座舱做匀速圆周运动,摩天轮对座舱的作用力与重力大小不相等,其合力提供向心力,合力大小为F 合=m ω2R ,C 错,D 对.3.如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面,目测体重为G 的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g ,估算知该女运动员( )A .受到的拉力为GB .受到的拉力为2GC .向心加速度为3gD .向心加速度为2g解析:选B .对女运动员受力分析如图所示,F 1=F cos 30°,F 2=F sin 30°,F 2=G ,由牛顿第二定律得F 1=ma ,所以a =3g ,F =2G ,B 正确.4.风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为 r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnrΔtB .转速逐渐减小,平均速率为8πnrΔt C .转速逐渐增大,平均速率为4πnrΔtD .转速逐渐增大 ,平均速率为8πnrΔt解析:选B .根据题意,从题图(b)可以看出,在Δt 时间内,探测器接收到光的时间在增长,凸轮圆盘的挡光时间也在增长,可以确定圆盘凸轮的转动速度在减小;在Δt 时间内可以看出有4次挡光,即凸轮圆盘转动4周,则风轮叶片转动了4n 周,风轮叶片转过的弧长为l =4n ×2πr ,转动速率为:v =8πnrΔt,故选项B 正确.5.如图所示,有一竖直转轴以角速度ω匀速旋转,转轴上的A 点有一长为l 的绳子系有质量为m 的小球.要使小球在随转轴匀速转动的同时又不离开光滑的水平面,则A 点到水平面的高度h 最小为( )A .g ω2B .ω2gC .ω2gD .g 2ω2解析:选A .以小球为研究对象,小球受三个力的作用,重力mg 、水平面支持力F N 、绳子拉力F ,在竖直方向合力为零,在水平方向所需向心力为m ω2R ,设绳子与竖直方向的夹角为θ,则有:R =h tan θ,在竖直方向有:F cos θ+F N =mg ,在水平方向有:F sin θ=m ω2h tan θ;当小球即将离开水平面时,F N =0,此时F cos θ=mg ,F sin θ=mg tan θ=m ω2h tan θ,即h =gω2.故A 正确.6.图甲中表演的水流星是一项中国传统民间杂技艺术,在一根绳子上系着两个装满水的桶,表演者把它甩动转起来,犹如流星般,而水不会流出来.图乙为水流星的简化示意图,在某次表演中,当桶A 在最高点时,桶B 恰好在最低点,若演员仅控制住绳的中点O 不动,而水桶A 、B (均可视为质点)都恰好能通过最高点,已知绳长l =1.6 m ,两水桶(含水)的质量均为m =0.5 kg ,不计空气阻力及绳重,g 取10 m/s 2.求:(1)水桶在最高点和最低点的速度大小; (2)图示位置时,手对绳子的力的大小.解析:(1)设最高点的速度为v 1,最低点的速度为v 2,水桶做圆周运动的半径 R =l2=0.8 m水桶恰通过最高点时绳上的拉力为零,有mg =m v 21R解得v 1=2 2 m/s水桶从最高点运动到最低点有mgl +12m v 21=12m v 22解得v 2=210 m/s.(2)绳OA 对水桶A 的拉力为零,对最低点的桶B 受力分析可得F OB -mg =m v 22R解得F OB =30 N所以,手对绳子的力的大小为30 N. 答案:(1)2 2 m/s 210 m/s (2)30 N[能力提升题组]7.如图所示,B 为竖直圆轨道的左端点,它和圆心O 的连线与竖直方向的夹角为α.一小球在圆轨道左侧的A 点以速度v 0平抛,恰好沿B 点的切线方向进入圆轨道.已知重力加速度为g ,则A 、B 之间的水平距离为( )A .v 20tan αgB .2v 20tan αgC .v 20g tan αD .2v 20g tan α解析:选A .设小球到B 点时速度为v ,如图所示,在B 点分解其速度可知v x =v 0,v y =v 0tan α,又知小球在竖直方向做自由落体运动,则有v y =gt ,联立得t =v 0tan αg ,A 、B之间的水平距离为x AB =v 0t =v 20tan αg,所以A 项正确.8.(多选)如图所示,一位同学玩飞镖游戏.圆盘最上端有一P 点,飞镖抛出时与P 点等高,且距离P 点为L .当飞镖以初速度v 0垂直盘面瞄准P 点抛出的同时,圆盘绕经过盘心O 点的水平轴在竖直平面内匀速转动.忽略空气阻力,重力加速度为g ,若飞镖恰好击中P 点,则( )A .飞镖击中P 点所需的时间为Lv 0B .圆盘的半径为gL 22v 20C .圆盘转动角速度的最小值为2πv 0LD .P 点随圆盘转动的线速度可能为5πgL4v 0解析:选AD .飞镖水平抛出做平抛运动,在水平方向做匀速直线运动,因此t =Lv 0,故A 正确;飞镖击中P 点时,P 点恰好在圆盘最下方,则2r =12gt 2,解得圆盘的半径r =gL 24v 20,故B 错误;飞镖击中P 点,P 点转过的角度满足θ=ωt =π+2k π(k =0,1,2,…),故ω=θt =(2k +1)πv 0L ,则圆盘转动角速度的最小值为πv 0L ,故C 错误;P 点随圆盘转动的线速度为v =ωr =(2k +1)πv 0L ·gL 24v 20=(2k +1)πgL 4v 0,当k =2时,v =5πgL 4v 0,故D 正确.9.质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的B 点和A 点,如图所示,绳a 与水平方向成θ角,绳b 在水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是( )A .a 绳的张力可能为零B .a 绳的张力随角速度的增大而增大C .当角速度ω>g cot θl时,b 绳将出现弹力 D .若b 绳突然被剪断,则a 绳的弹力一定发生变化解析:选C .由于小球m 的重力不为零,a 绳的张力不可能为零,b 绳的张力可能为零,选项A 错误;由于a 绳的张力在竖直方向的分力等于重力,所以a 绳的张力随角速度的增大不变,b 绳的张力随角速度的增大而增大,选项B 错误;若b 绳中的张力为零,设a 绳中的张力为F ,对小球m ,F sin θ=mg ,F cos θ=m ω2l ,联立解得:ω=g cot θl,即当角速度ω>g cot θl,b 绳将出现弹力,选项C 正确;当ω=g cot θl时,b 绳突然被剪断,a 绳的弹力不发生变化,选项D 错误.10.如图所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g ,当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析:选C .设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R ,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力F T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为F T ′=F T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误.11.如图所示,AB 是长为L =1.2 m 、倾角为53°的斜面,其上端与一段光滑的圆弧BC 相切于B 点.C 是圆弧的最高点,圆弧的半径为R ,A 、C 两点与圆弧的圆心O 在同一竖直线上.物体受到与斜面平行的恒力作用,从A 点开始沿斜面向上运动,到达B 点时撤去该力,物体将沿圆弧运动,通过C 点后落回到水平地面上.已知物体与斜面间的动摩擦因数μ=0.5,恒力F =28 N ,物体可看成质点且m =1 kg.重力加速度g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6,求:(1)物体通过C 点时对轨道的压力大小;(结果保留一位小数) (2)物体在水平地面上的落点到A 点的距离.解析:(1)根据题图,由几何知识得,OA 的高度H =L sin 53°=1.5 m圆轨道半径R =Ltan 53°=0.9 m物体从A 到C 的过程,由动能定理得(F -μmg cos 53°)L -mg (H +R )=12m v 2解得v =2 3 m/s物体在C点,由牛顿第二定律得F N+mg=m v2R由牛顿第三定律得物体通过C点时对轨道的压力大小F N′=F N=3.3 N.(2)物体离开C点后做平抛运动在竖直方向:H+R=122gt在水平方向:x=v t解得x=2.4 m.答案:(1)3.3 N(2)2.4 m。

相关文档
最新文档