初中整式、分式、二次根式的总结
整式、分式、二次根式的性质和概念
1、整式的概念和指数: 与 统称为整式。
单项式包括: 、 、 ;一个单项式中所有字母的 叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
单项式中次数最 的项就是这个多项式的次数。
2、分式的概念和意义:一般地,形如式子BA ,且B ≠0叫做分式。
(1)、分式有意义的条件:(2)、分式无意义的条件:(3)、分式为0的条件:(4)、分式的基本性质:分式的分子与分母同时 (一个不等于0)的整式,分式的值不变。
(5)、约分:(6)、最简分式:一个分式的分子与分母没有公因式时,这种分式叫做最简分式。
(7)、通分:(8)、最简公分母:(9)、分母有理化:把分母中的根号化去,叫做分母有理化。
注意:分母有理化时,分子与分母需要同时乘分母的有理化因式。
3、二次根式的概念和意义:(1)、定义:形如a (a ≥0)的式子,叫做二次根式。
(2)、二次根式有意义的条件:二次根式无意义的条件:(3)、二次根式的性质:()a 2=a(a ≥0);a 2=a =⎪⎩⎪⎨⎧<-=>)0()0(0)0(a a a a a ab =a b ⋅ (a ≥0, b ≥0);④b a =ba ( a ≥0,b >0)。
(4)、最简二次根式: 中不含二次根式; 被开方数中不含能开得尽的因数或因式。
(5)、 同类二次根式:最简二次根式后,被开方数相同,叫做同类二次根式。
知识点二:代数式的运算(一)、整式的加减运算(1)、同类项:(2)、合并同类项法则:(3)、去括号法则:(4)、整式的加减的实质就是合并同类项。
(二)、整式的乘除(1)、同底数幂的乘法:a m ·a n= ,底数不变,指数相加.(2)、幂的乘方与积的乘方:(a m )n = ,底数不变,指数相乘;(3)、(ab)n = ,积的乘方等于各因式乘方的积.(4)、单项式的乘法:系数相乘,相同字母 ,只在一个因式中含有的字母,连同指数写在积里.(5)、单项式与多项式的乘法:m(a+b+c)= ,用单项式去乘多项式的每一项,再把所得的积相加.(6)、多项式的乘法:(a+b)·(c+d)= ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.(7)、乘法公式:平方差公式:(a+b)(a-b)= ,两个数的和与这两个数的差的积等于这两个数的平方差;完全平方公式:①(a+b)2= ,等于它们的,加上它们的积的2倍;② (a-b)2= ,等于它们的,减去它们的积的2倍;十字相乘法:x2+(m+n)x+mn=()()(8)、同底数幂的除法:a m÷a n= ,底数不变,指数相减.(9)、零指数与负指数公式:a0= (a≠0); a-n= ,(a≠0).注意:00,0-2无意义;(10).单项式除以单项式: (11).多项式除以单项式:★整式混合运算:先,后,最后,有括号先算括号内.★整式的化简:合并到不能再合并;首项不能为负数;★整式的因式分解(1)提共因式法:(2)公式法:(3)十字相乘法:(4)分组法,在循环运用“提十公分”法;(三)、分式的运算(1)、分式的加减法:①、同分母的分式相加减,分母,把分子相。
九年级数学知识点重点总结
九年级数学知识点重点总结九年级数学知识点重点总结一、二次根式1、二次根式:一般地,式子叫做二次根式。
注意:(1)若这个条件不成立,则不是二次根式。
(2)是一个重要的非负数,即;≥0。
2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。
3、二次根式比较大小的方法:(1)利用近似值比大小。
(2)把二次根式的系数移入二次根号内,然后比大小。
(3)分别平方,然后比大小。
4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
5、二次根式的除法法则:(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
6、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式。
①被开方数的因数是整数,因式是整式。
②被开方数中不含能开的尽的因数或因式。
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。
(4)二次根式计算的最后结果必须化为最简二次根式。
7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
8、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
二、一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。
2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。
数学第一单元知识点总结
数学第一单元知识点总结数学第一单元主要涵盖了数的概念与运算、整式与分式运算、二次根式与复数、函数与方程四个方面的内容。
下面将对这四个方面的知识点进行总结:一、数的概念与运算:1.自然数:自然数包括0、1、2、3等整数,用N表示。
2.整数:整数包括自然数及其相反数,用Z表示。
3.有理数:有理数包括整数及其相除得到的分数,用Q表示。
4.实数:实数包括有理数及无理数,用R表示。
5.数轴:数轴是一个将数按大小排列的直线,可以用来表示实数。
6.绝对值:绝对值是一个非负数,表示一个数与零的距离,用符号“|x|”表示。
7.数的四则运算:包括加法、减法、乘法和除法。
二、整式与分式运算:1.整式:整式是由常数、变量及其乘积相加(或相减)得到的代数式。
2.多项式:多项式是整式中的一个特殊形式,由变量及其幂次数不为负整数的乘积相加(或相减)得到。
3.分式:分式是一个整式的形式,包括分子和分母,分子和分母都是整式。
4.四则运算:包括分式的加法、减法、乘法和除法。
5.高次整式运算:包括整式的乘法、除法和开方运算。
三、二次根式与复数:1.二次根式:二次根式是形如√a的表达式,其中a是一个非负实数。
2.二次根式的运算:包括二次根式的加法、减法、乘法和除法。
3.复数:复数是由实数和虚数构成的数。
4.虚数单位:虚数单位是一个特殊的数,用符号“i”表示,定义为i²=-1。
5.复数的表示形式:包括代数形式、三角形式、指数形式等。
6.复数的运算:包括复数的加法、减法、乘法和除法。
四、函数与方程:1.函数的概念:函数是一个输入和输出之间的对应关系,常表示为y=f(x)。
2.自变量与因变量:自变量是函数的输入,通常用x表示;因变量是函数的输出,通常用y表示。
3.函数的图象:函数的图象是函数在坐标系中的表示,用来表示自变量与因变量之间的关系。
4.方程的概念:方程是由等号连接的两个代数式,通常用来表示未知数的取值。
5.一元一次方程:一元一次方程是一个未知数的次数为1的方程。
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
整式、分式、根式
第二节 整式、分式、根式的运算中学数学中,随着数的范围的扩充,目前运算范围扩充到有理数运算,实数运算,随着字母表示数,运算对象又由数发展到式,相应地引入了整式的运算,分式的运算,根式的运算,随着学习的深入,今后还要扩充到复数运算,熟练掌握这些运算的法则和运算技能,对学好中学数学起起到至关重要的作用.一、知识回顾1、 幂运算:①=⋅n m a a ②()=n m a ③()=mab ④=÷n m a a2、乘法公式:()=±2b a ()()=-+b a b a ()=±3b a ()=++2c b a3、一个正数有 个平方根,它们 ,0的平方根是 , 数没有平方根.4、在的符号应为被开方数中a ,a ,,=2a ,()=2a5、定义:(1)最简二次根式:①根号内不含分母;②被开方数的每个因式的指数小于2.(2)分母有理化:分子分母同时乘以分母有理化因式(或称共轭因式),化去分母中的根号的过程.(3)繁分式:在分式的分子或分母含有分式的式子.二、诊断练习1、=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛--222322322 .2、()的范围为则x x x ,112-=- . 3、估算:23250+的值在整数 和整数 之间. 4、=+=+x x ,xx 1212则若 .5、的值为则若221111,1ba ab +++= . 6、=++=+2241,51aa a a a 则 .三、例题讲解【例1】化简下列各式:()3281b a - ()721822-()35353+- ()xy y x x y xy ⋅⎪⎪⎭⎫ ⎝⎛+-24()()b a b a a<-22115【例2】:化简下列分式:(1)b a b a ba +-+-+11 (2)a ---11111四、训练巩固1、化简下列各式:(1)232- (2)aa a a 166-+- (3)1227- (4)()ab ab b a ab -+23 (5)3535-+ 2、化简下列分式:(1)111+-b b a (2)111111++-+++a a a a的值求时、当122115433+--=a a ,a . 的值求、33221,1,414xx x x x x -+=-. 的值求、若yxy x y xy x y x ---+=-2232,3115.。
(中考考点梳理)分式与二次根式-中考数学一遍过
考点03 分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式.(2)分式AB中,A 叫做分子,B 叫做分母. 【注意】①若B ≠0,则AB有意义;②若B =0,则AB无意义;③若A =0且B ≠0,则AB=0.学=科网2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C⋅=≠⋅或(0)A A CC B B C ÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则 (1)约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. (2)约分法则把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式. 4.最简分式分子、分母没有公因式的分式叫做最简分式.【注意】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则(1)通分根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分.(2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分.【注意】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.最简公分母几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.7.分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:((nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的. 二、根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中符号叫做二次根号,二次根号下的数叫做被开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0. (2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 2.二次根式的性质 (1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)a b =≥≥;(50,0)a b ≥>. 3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2)二次根式的乘除0,0)a b =≥≥;0,0)a b ≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一 分式的有关概念1.分式的三要素: (1)形如AB的式子; (2),A B 均为整式;学科!网 (3)分母B 中含有字母. 2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即0B ≠. (2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例1 x 的取值范围是 A .x ≠1B .x ≠0C .x >﹣1且≠0D .x ≥﹣1且x ≠0【答案】D【解析】根据题意得:100x x +≥⎧⎨≠⎩,解得:x ≥-1且x ≠0.故选:D .1.若分式21xx-在实数范围内无意义,则x 的取值范围是 A .x ≠1 B .x =1C .x =0D .x >1考向二 分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例2 分式233x yxy+中的x 、y 的值都扩大到原来的2倍,则分式的值为 A .扩大为原来2倍 B .缩小为原来的12倍 C .不变D .缩小为原来的14倍【答案】B【名师点睛】本题考查了分式的基本概念和性质的相关知识.这类题目的一个易错点是:在没有充分理解题意的情况下简单地通过分式的基本性质得出分式值不变的结论.对照分式的基本性质和本题的条件不难发现,本题不符合分式基本性质所描述的情况,不能直接利用其结论.因此,在解决这类问题时,要注意认真理解题意.2.不改变分式的值,下列变形正确的是A .2233a ab b -=-- B .33a ab b -=-- C .55a a b b=--D .7744a a b b=- 考向三 分式的化简与求值约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值; 2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例3 把分式x x y -,y x y +,222x y-的分母化为x 2-y 2后,各分式的分子之和是 A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy −y 2+2D .x 2−2xy +y 2+2【答案】C【解析】由平方差公式将x 2−y 2可化简为(x +y )(x −y ), 故将xx y-的分母化为x 2−y 2后可得()22x x y x y +-,将y x y+的分母化为x 2−y 2后可得()22y x y x y --, 所以分式的x x y -,y x y +,222x y-的分母化为x 2−y 2后,各分式的分子之和为 x (x +y )+y (x -y )+2,展开得x 2+xy +xy −y 2+2合并同类项,得x 2+2xy −y 2+2, 故选C.【名师点睛】本题考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.求最简公分母的方法是: (i )将各个分母分解因式; (ii )找各分母系数的最小公倍数;(iii )找出各分母中不同的因式,相同因式中取次数最高的. 满足(ii )(iii )的因式之积即为各分式的最简公分母.3.下列分式中,是最简分式的是A .2xyx B .222x y -C .22x yx y+- D .22xx + 考向四 分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例4 计算(1-1x)÷221x x x -+的结果是A .x -1B .11x - C .1xx -D .1x x-【答案】B【解析】原式=(x x −1x )÷()21x x -=1x x -. •()21x x -=11x -, 故选B .4.先化简,再求值:2221()211x x x x x x+÷--+-,其中x =4.考向五 二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例5 下列各式: ①;②;③;;;.其中一定是二次根式的有 A .4个 B .3个 C .2个D .1个【答案】B5的取值范围是 A . B. C .D .典例6 下列二次根式是最简二次根式的是 ABCD【答案】Cx 1x ≠1x ≥>1x 0x ≥6;.其中是最简二次根式的有 A .2个 B .3个C .4个D .5个考向六 二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号). 2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较; (2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较.典例7 下列计算正确的是A =B 6=C 5+=D 4=【答案】A【解析】A 、原式-B 、原式,错误;C 为最简结果,错误;D 、原式,错误, 故选:A .7.已知x =,y =,则y xx y +=_____________.典例8 比较大小:______5(填“>,<,=”). 【答案】>【解析】因为2228,525==,28>25,所以>5.【名师点睛】比较二次根式的大小,可以转化为比较被开方数的大小,也可以将两个数平方,计算出结果,再比较大小.8.设a ,b -1,c ,则a ,b ,c 之间的大小关系是 A .c >b >a B .a >c >b C .b >a >cD .a >b >c1.下列根式中属于最简二次根式的是A BCD 2.若分式24x x-的值为0,则x 的值是A .2或﹣2B .2C .﹣2D .03.如果把分式xyx y+中的x 和y 都扩大2倍,则分式的值 A .扩大4倍B .扩大2倍C .不变D .缩小2倍4A BCD5.下列关于分式的判断,正确的是A .当x =2时,12x x +-的值为零 B .当x ≠3时,3x x-有意义C .无论x 为何值,31x +不可能得整数值D .无论x 为何值,231x +的值总为正数6.若x 、y 为实数,且|2|0x +=,则2019x y ⎛⎫⎪⎝⎭的值为A .2B .−2C .1D .−17的被开方数相同,则a 的值为 A .1B .2C .23D .328.下列运算中,错误的是 A .x y y xx y y x--=-++ B .a ba b--+=−1C −1D a9.已知 1x <,则 化简的结果是A .1x -B .1x -C .1x --D .1x +10.下列分式是最简分式的是A BCD .22121x x x --+11.若分式11x x -+的值为0,则x 的值为 A .1 B .−1 C .±1D .无解12 A .2B .21x - C .23x -D .41x x --13.若x 、y ()2210y +-=,则x y +的值等于A .1B .32 C .2D .5214a =,则1x x +的值为A .22a - B .2a C .24a -D .不确定15=_____________. 16.当x =_____________时,分式323xx -+的值为零.17.比较大小:(填“>、<、或=”)18.当a =2_____________.19.已知a ,b 互为倒数,代数式222a ab b a b+++÷11a b ⎛⎫+⎪⎝⎭的值为_____________.20.已知::2:3:4x y z =,则23x y zx y z+--+的值为_____________.21.计算:(1)|1|+(2018−π)0;(2+((.22.先化简,再求值:221a b a b a b⎛⎫-÷ ⎪--⎝⎭,其中1a =+,1b =-.23.先化简,再求值:2-,其中,.24.先化简,再求值:2212111121m m m m m -⎛⎫-÷- ⎪+--+⎝⎭,其中m 为一元二次方程230x x +-=的根.1.(2018·德阳市)下列计算或运算中,正确的是A .=B =C .÷=D .-=2.(2018·兰州市)下列二次根式中,是最简二次根式的是A BCD3.(2018·绥化市)若y =x 的取值范围是 A .12x ≤且0x ≠ B .12x ≠C .12x ≤D .0x ≠4.(2018·绥化市)下列运算正确的是A .2235a a a +=B 5=-C .3412a a a ⋅=D .0(π3)1-=5.(2018·曲靖市)下列二次根式中能与合并的是ABCD6.(2018·上海市)的结果是A.4 B.3C.D7.(2018·日照市)计算:(12)−1+tan30°•sin60°=A.﹣32B.2C.52D.728.(2018·莱芜市)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是A.2xx y+-B.22yxC.3223yxD.()222yx y-9.(2018·陇南市)有意义的x的取值范围是____________.10.(2018·毕节市)观察下列运算过程:1========-……请运用上面的运算方法计算:+=____________.11.(2018____________.12.(2018·莱芜市)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是和2,则图中阴影部分的面积是____________.13.(2018·镇江市)=____________.14.(2018·梧州市)在实数范围内有意义,则 x 的取值范围是____________.15.(2018·巴彦淖尔市)化简3m m ++269m -÷23m -的结果是____________. 16.(2018·绥化市)当2x =时,代数式211()x x x x x+++÷的值是____________.17.(2018·大连市)计算:+2)2+22-.18.(2018·百色市)已知a 2=19,求22211118a a a --+-的值.19.(2018·福建省b 卷)先化简,再求值:2211(1)m m m m+--÷,其中m .20.(2018·锦州市)先化简,再求值: 233212,322x x x x x x +-+-÷=++(其中.21.(2018·毕节市)先化简,再求值:22214244aa a a a a ⎛⎫-÷⎪--++⎝⎭,其中a 是方程a 2+a ﹣6=0的解.22.(2018·兰州市)计算:101()(π3)1tan452--+-+-.23.(2018·甘孜州)(1()03.144cos45--π- ;(2)化简:2211x xx x x ÷---.24.(2018·益阳市)化简:2()y x y x y x y x+-+⋅+.25.(2018·莱芜市)先化简,再求值:233(111a aa a a -+÷--+,其中a +1.26.(2018·曲靖市)先化简,再求值(1a b -﹣22b a b -)÷2222+a ab a ab b --,其中a ,b 满足a +b ﹣12=0.27.(2018·梧州市)解不等式组36451102x xx x -≤⎧⎪++⎨<⎪⎩,并求出它的整数解,再化简代数式2321x x x +-+•(3x x +﹣239x x --),从上述整数解中选择一个合适的数,求此代数式的值.28.(2018·抚顺市)先化简,再求值:(1﹣x +31x +)÷2441x x x +++,其中x =tan45°+(12)−1.1.【答案】B 【解析】∵分式21xx-在实数范围内无意义, ∴1﹣x =0,即x =1, 故选:B .3.【答案】D 【解析】A 、2xy x =yx,错误; B 、222x y -=1x y -,错误;C 、22x y x y +-=1x y -,错误;D 、22xx +是最简分式,正确. 故选D .4.【答案】21x x -;163.【解析】2221()211x x x x x x+÷--+- =2(+1)2(111)()()x x x x x x x --÷-- =2()(+1)111)(x x x x x x -⋅-+ =21x x -, 当x =4时,原式=2416413=-. 5.【答案】B【解析】根据二次根式被开方数必须是非负数的条件知,要使.故选B .6.【答案】B= =, =,∴. 故选:B .8.【答案】D【解析】a −1),b ,c ), >1,∴a >b >c .故选D . 101x x -≥⇒≥【解析】A、该二次根式符合最简二次根式的定义,故本选项正确;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项错误;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项错误;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项错误;故选A.【名师点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【答案】A【解析】∵分式24xx-的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.3.【答案】B【解析】把分式xyx y+中的x和y都扩大2倍,则22222x y xyx y x y⋅=++,故选B.5.【答案】D【解析】A选项:当x=2时,该分式的分母20x-=,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义.显然,x=0满足x≠3.由此可见,当x≠3时,该分式不一定有意义,故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0,该分式的分子3>0.由此可知,无论x为何值,该分式的值总为正数,故D选项正确.故本题应选D.【名师点睛】本题考查了与分式概念相关的知识.分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零.分式的值为零的条件是分式的分母不等于零且分式的分子等于零.在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.【解析】由非负数的性质可得:x+2=0,y−2=0,即x=−2,y=2,∴2019xy⎛⎫⎪⎝⎭=(−1)2019=−1.故选C.7.【答案】D【解析】31+4,2a a a=-=解得,故选D.8.【答案】D【解析】A.x y y xx y y x--=-++,正确,故不符合题意;B.a ba b--+=−1,正确,故不符合题意;C−1,正确,故不符合题意;D=|a|,错误,故符合题意.故选D.9.【答案】B【解析】∵x<1,∴x-1<0x-1|=1-x.故选:B.10.【答案】C【解析】A选项:化简该分式,得()222a ba ab bam am m+++==,故A选项不符合题意.B选项:化简该分式,得623xy xya a=,故B选项不符合题意.C选项:对该分式的分子进行因式分解,得()()222111x xxx x+--=.由此可见,该分式的分子与分母没有公因式,符合最简分式的定义,故C选项符合题意.D选项:化简该分式,得()()()22211112111x xx xx x xx+--+==-+--,故D选项不符合题意.故本题应选C.11.【答案】A【解析】∵分式11x x -+的值为0,∴|x |−1=0,且x +1≠0,解得:x =1.故选A . 12.【答案】B(13x -−11x -)•(x −3)=13x -•(x −3)−11x -•(x −3)=1−31x x --=21x -.故选B . 15==. 16.【答案】3【解析】依题意得:3﹣x =0且2x +3≠0.解得x =3,故答案为:3.17.【答案】<【解析】将两式进行平方可得:(2=12,(2=18,因为12<18,所以<18.【答案】3- 【解析】∵()()2121214122121a a a a a a +--==-++,∴当a =2时,原式=1223-⨯=-.故本题应填写:3-.19.【答案】1 【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ab =, ∵a ,b 互为倒数,∴ab =1,∴原式=1.故本题应填写:1.20.【答案】411【解析】根据分式的性质(分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变)解答.∵::2:3:4x y z =,∴可设234x k y k z k ===、、,∴226444323121111x y z k k k k x y z k k k k +-+-===-+-+, 故答案为:411.21.【答案】(1);(2)【解析】(1)原式−1−+1=.(2)原式=3−−5=2−.22.【答案】化简见解析,结果为. 【解析】221a b a b a b ⎛⎫-÷ ⎪--⎝⎭ ()()a b a b a a b a b b+--+=⋅- ()()a b a b b a b b+-=⋅- a b =+,当1a =+,1b =时,原式11++-=23.【答案】8-+.【解析】原式2(2)x y x y =---+22x y x y =--+-2y =-.当34x y ==,时,原式=2−2×4=4 −8. 24.【答案】化简见解析,结果为13. 【解析】原式=()()()22122111111m m m m m m m --+--÷++-- =()()()()21121112m m m m m m m ---⋅++-- =()1111m m m m --++=()()11m m m m --+ =()11m m + =21m m +. 由m 是方程230x x +-=的根,得到23m m +=,所以原式=13. 【名师点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.1.【答案】B【解析】A 、=,此选项错误; B =,此选项正确;C 、÷=D 、-=,此选项错误;故选:B .2.【答案】B【解析】A =不是最简二次根式,错误;B 是最简二次根式,正确;C =不是最简二次根式,错误;D =不是最简二次根式,错误,故选B .3.【答案】A【解析】由题意可知:1200x x -≥⎧⎨≠⎩,解得:12x ≤且0x ≠, 故选A .4.【答案】D 【解析】A. 23a a +=5a ,故A 选项错误;B. =5,故B 选项错误;C. 347a a a ⋅=,故C 选项错误;D. 0(π3)1-=,故D 选项正确,故选D.5.【答案】B【解析】A =,不能与B 合并,故该选项正确;C =不能与D 3不能与故选B .6.【答案】C【解析】,故选C .7.【答案】C【解析】(12)−1+tan30°•sin60°=2+12 =52, 故选C .9.【答案】x >3有意义, ∴x ﹣3>0,∴x >3, ∴x 的取值范围是x >3,故答案为:x >3.10.【解析】原式=12﹣1)+12+12+ (12)+12=12…). 11.【答案】6【解析】原式.故答案为:6.12.【答案】2【解析】设正三角形的边长为a ,则12a 2解得a .则图中阴影部分的面积.故答案是2.13.【答案】2,故答案为2. 14.【答案】x ≥3【解析】由题意可得:x ﹣3≥0,解得:x ≥3,故答案为:x ≥3.15.【答案】1 【解析】3m m ++269m -÷23m - =()()63·3332m m m m m -+++- =333m m m +++ =1,故答案为1.16.【答案】3【解析】原式221()1x x x x x x +=+⋅+ =2(1)1x x x x +⋅+ 1x =+,当2x =时,原式213=+=,故答案为:3.17.【答案】294【解析】原式﹣14=294. 18.【答案】16- 【解析】原式=22121a a a ---()﹣118 =221a ---118, ∵a 2=19,∴原式=2191--﹣118=﹣318=﹣16.19.【解析】2211(1)m m m m+--÷ =()()2111m m m m m m +-⋅+- =()()111m m m m m +⋅+- =11m -,当m +1时,原式==. 20.【答案】11;12x -- 【解析】原式=()23322)21x x x x ++-⨯+-( , ()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x =3时,原式=113-=12-. 21.【答案】13 【解析】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭ =()()()()222222a a a a a a -++⋅+-=2222a a a a a--+⋅- =222a a a a-+⋅-, =2a a +,由a 2+a ﹣6=0,得a =﹣3或a =2,∵a ﹣2≠0,∴a ≠2,∴a =﹣3,当a =﹣3时,原式=32133-+=-. 22.1.【解析】101()(π3)1tan 2--+-+-45°=2111-++1=.(2)2211x x x x x ÷--- =()()211·1x x x x x+---x =x (x +1)-x=x 2.24.【答案】x 【解析】原式=222x y y x y x y x-++⋅+ =2x x y x y x+⋅+ =x .25.【答案】【解析】当a +1时,原式=()()333111a a a a a a++-+⨯-+=()()4111a a a a a+⨯-+ =41a -. 26.【答案】原式=1a b+=2 【解析】(1a b -﹣22b a b -)÷2222+a ab a ab b -- =()()()()2•a b a b b a b a b a a b -+-+-- =1a b+, 由a +b ﹣12=0,得到a +b =12, 则原式=112=2. 27.【答案】原式=11x -,当x =2,原式=1. 【解析】解不等式 3x ﹣6≤x ,得:x ≤3, 解不等式4510x +<12x +,得:x >0, 则不等式组的解集为 0<x ≤3,所以不等式组的整数解为 1、2、3, 原式=()231x x +-•[()()2333x x x x --+- ()()333x x x -+-] =()231x x +-•()()()()1333x x x x --+- =11x -, ∵x ≠±3、1,∴x =2, 则原式=1.28.【答案】-1 5【解析】原式=(21311xx x-+++)÷()221xx++=()()()2 221·12x x xx x +-+++=22xx -+,当x=tan45°+(12)−1=1+2=3时,原式=231235-=-+。
初中数学三条主线主要分支概括
初中数学三条主线初中数学学习有三条主线。
1.代数:以有理数,整式,分式为基础!有理数对应有理数运算,科学记数法,近似值,实数(平方立方),二次根式;整式对应整式单(多)项式,整式加减乘除运算,因式分解,化简求值!整式三件套:一元一次方程(函数,不等式);一元二次方程(函数,不等式)分式对应分式运算,化简求值,分式方程,反比例函数!2.几何:以三角形,圆为核心,穿插直线,射线,线段,平行线,坐标系,图形变换!三角形有关线段(中线,角平分线),全等(相似)三角形以及特殊三角形(等腰三角形,等边三角形,直角三角形性质)和勾股定理,三角函数(解三角形)等若干计算。
以三角形为基础衍生出平行四边形以及特殊平行四边形。
后面就是以圆压轴!3.统计概率:数据收集,处理,分析,涉及直方图,扇形图,中位数,众数,平均数,方差等!简单的概率计算,树形图!怎么学好初中数学?1.正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。
想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。
但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现基础不稳,成绩飘忽不定的现象,随着时间推移,学习逐渐吃力跟不上。
2.构建完整的知识框架是解决问题的基础。
由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础。
同时,能将所学融合贯通,温故知新,提纲挈领会提升学习能力,降低学习难度!如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。
只有基础扎实,解决问题才能得心应手,成绩才会提高。
3.注重数学方法、思想的总结、研究和应用,培养自主学习能力和数学学习兴趣。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式
分式的加减法/ 异分母的分式相加减,先通分,变成同分母的分
4、参数法∶当已经条件形如工-上=三,所要求值的代数式
是一个含x,y,z,a,b,c,而又不易化简的分式
时,通常设 艺-为=三*(k就是我们所说的参数),
分式
\式,然后相加减,b即 4d± 二b=dad ,bbdc_ adb±dbc
运算顺序
作商法 =1ea=b(a>0,b>0)
<1ea<b
(4) (ab)c=a(bc); n(5)a(b+c)=ab+ac
分级∶加减是一级运算,乘除是二级运算,乘方和开方是三级运算.
三级运算的顺序是三、二、一、(如果有括号,先算括号内的;如
果没有括号,在同一级运算中,要从左至右进行运算,无论何种
运算,都要注意先定符号后运算.)
学习误区
合并同类项
系数相加,所得的结果作为合并后的系数,字母和字母的指数 _不变叫做合并同类项.
整式的加减 就是合并同类项,遇到括号,一般先去掉括号,去 括号的方法是∶+(a+b-c)=a+b-c;-(a+b-c)=-a-b+c.
知能提升
整式有关概念
总并华结 梳知理识
整式 幂的运算法则 的运算 整式的乘法
中A,B,M/都是整式,特别要注意整式M的值不等于零.
2、分式的分子、分母与分式本身的符号,改变其中的任何
两个,分式的值不变如--=-为=号,再如一ba
知能提升
分式的概念
并总华结
知识
梳理
式子表述 告A部告告(u20,如为整式)
基本性质
同分母的分式相加减,分母不变,把分子相加减,
即号±8a±o,
3、分式有意义的条件是分母不为0;分式无意义的条件是
最新部编人教版初中八年级下册数学知识点总结
八年级数学(下册)知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.二次根式有意义的条件: 大于或等于0。
3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。
6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a ≥0,b ≥0);=(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(x例3、 在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b < 例1、比较35与53的大小。
整式、分式、二次根式
第二讲 整式、分式一、课标下复习指南 (一)代数式1.代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独一个数或表示数的字母也叫做代数式.2.求代数式的值用数值代替代数式里的字母,按照代数式指明的运算计算出结果,叫做求代数式的值. 3.代数式的分类(二)整式1.整式的有关概念(1)单项式及有关概念由数字和字母的积组成的代数式叫单项式,单独的一个数和单独的一个字母也叫单项式.单项式的数字因数叫做这个单项式的系数,所有字母的指数之和叫做这个单项式的次数.(2)多项式及有关概念几个单项式的和叫做多项式.在多项式中,每个单项式叫多项式的项,其中,不含字母的项叫做常数项.多项式里次数最高的项的次数叫多项式的次数.(3)同类项的概念 多项式中,所含字母相同,相同字母的指数也相同的项,叫做同类项.两个常数项也是同类项.2.整式的运算(1)整式的加减 ①合并同类项把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项.②添(去)括号法则如果括号前面是正号,括号里的各项都不变符号;如果括号前面是负号,括号里的各项都改变符号.③整式的加减几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项.(2)整数指数幂及其运算性质①整数指数幂正整数指数幂:⎪⎩⎪⎨⎧≥⋅⋅⋅⋅==),2(),1(为正整数个n n a a a a n aa n n零指数幂:10=a (a ≠0).负整数指数幂:n n aa 1=-(a ≠0,n 为正整数). ②整数指数幂的运算性质(以下四式中m ,n 都是整数) a m ·a n =a m +n : (a m )n =a mn ;(ab )m =a m ·b m . a m ÷a n =a m -n(a ≠0). (3)整式的乘法①单项式乘以单项式,把它们的系数、相同字母分别相乘;对于只在一个单项式里含的字母,连同它的指数作为积的一个因式.②单项式乘以多项式,根据分配律用这个单项式去乘多项式的每一项,再把所得的积相加.③多项式乘以多项式,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.④乘法公式:(a +b )(a -b )=a 2-b 2; (a ±b )2=a 2±2ab +b 2;常用的几个乘法公式的变形:a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ;(a -b )2=(a +b )2-4ab .(4)整式的除法(结果为整式的)①单项式除以单项式,把系数、同底数幂分别相除,作为商的因式,只在被除式里含有的字母,连同它的指数也作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.3.因式分解的概念 (1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解.②因式分解后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简,同时,每个因式的首项不含负号.③多项式的因式分解是多项式乘法的逆变形. (2)因式分解的方法 ①提公因式法:ma +mb +mc =m (a +b +c ). ②运用公式法: a 2-b 2=(a +b )(a -b ); a 2±2ab +b 2=(a ±b )2:*③十字相乘法:x 2+(a +b )x +ab =(x +a )(x +b ).④用一元二次方程求根公式分解二次三项式的方法:ax 2+bx +c =a (x -x 1)(x -x 2).(当b 2-4ac ≥0时,,2421a acb b x -+-=)2422aac b b x ---=(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用乘法公式分解;③对于二次三项式,可先尝试用十字相乘法分解;④检查每一个因式是否都已分解彻底,是否符合要求.必要时,可用多项式的乘法运算从结果逆推回去,以检验因式分解所得结果是否正确. 4.分式(1)分式的有关概念①分式:若A 和B 均为整式(其中B 中含有字母),则形如BA的式子叫做分式. 注意 对于一个分式BA,字母的取值必须使分母B 的值不为零. ②最简分式:分子、分母没有公因式的分式叫做最简分式. 注意 关于分式概念的应用,一般有以下几种: 分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0⇔⎩⎨⎧≠=.0,0分母分子分式值为1⇔⎩⎨⎧==.0,分母分母分子分式值为正⇔分子、分母同号. 分式值为负⇔分子、分母异号.(2)分式的基本性质分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.M B MA MB M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). (3)分式的运算①加减法:bd bc ad d c b a ±=±.特别地,当b =d 时,b c a b c b a ±=±. ②乘法:⋅=bdacd c b a . ③除法:bcadc d b a d c b a ==÷.(此法则将分式的除法转化为乘法). ④乘方:n nn b a ba =)((n 为正整数).二、例题分析例1 下列运算中,计算结果正确的个数是( ).(1)a 4·a 3=a 12;(2)a 6÷a 3=a 2;(3)a 5+a 5=a 10;(4)(a 3)2=a 9;(5)(-ab 2)2=ab 4;(6)⋅=-22212x x A .无 B .1个 C .2个 D .3个 解 A .说明 整数指数幂的运算性质是整式运算的基础,容易混淆.其原因是做题时不按性质做,而是跟着感觉走,必须培养良好的做题习惯.例2 如果关于x ,y 的单项式2ax my 与5bx 2m -3y 是同类项,(1)求(9m -28)2009的值;(2)若2ax m y +5bx 2m -3y =0,并且xy ≠0,求(2a +5b )2009的值. 解 ∵2ax m y 与5bx 2m -3y 是同类项, ∴2m -3=m .解得m =3. (1)(9m -28)2009=(9×3-28)2009=-1.(2)∵m =3,且2ax my +5bx 2m -3y =0, ∴2ax 3y +5bx 3y =0,即(2a +5b )x 3y =0. 又∵xy ≠0,∴2a +5b =0. ∴(2a +5b )2009=02009=0.说明 此题考查了同类项的概念,要注意同类项与单项式的系数无关.在合并同类项时,只要将它们的系数合并,而字母及字母的指数不变.例3 计算: (1);)3()41(212335a b a b a -⋅-÷ (2)(3xy 3-9x 4y 2)÷3xy -(x 2-2xy )·4x 2.解 (1)原式=23359)41(21a b a b a ⋅-÷.189)4(21242335b a a ba b a -=⋅-⨯=(2)原式=y 2-3x 3y -4x 4+8x 3y=y 2+5x 3y -4x 4.说明 正确运用幂的运算法则是进行幂的运算的关键.单项式相乘除时,要注意运算顺序,先做乘方,然后按从左到右的顺序做乘除法.例4 计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a +b -1)(a -b +1)-a 2+(b +2)2. 解 (1)原式=8x 2-(3x 2-5x -2)-2(x 2-4x -5) =8x 2-3x 2+5x +2-2x 2+8x +10 =3x 2+13x +12.(2)原式=[a +(b -1)][a -(b -1)]-a 2+(b +2)2 =a 2-(b -1)2-a 2+(b +2)2=(b +2)2-(b -1)2=(b +2+b -1)(b +2-b +1) =(2b +1)×3=6b +3.说明 在整式运算中,要注意:(1)灵活运用运算律、运算法则和乘法公式,寻找合理、简捷的运算途径;(2)利用乘法公式进行计算时,要分析式子的特点,正确选择公式,尤其要注意公式中字母的顺序及符号;(3)当几个多项式乘积前面出现负号时,处理负号的方法是可将负号视为(-1)先与其中的一个因式相乘,或将负号后面的多项式结合在一起先相乘,然后利用去括号法则去括号.例5 把下列各式分解因式:(1)6(a -b )2+8a (b -a ); (2)(x +y )2-4(x +y )+4; (3)16x 2-(x 2+4)2; (4).4412+-x 解 (1)原式=6(a -b )2-8a (a -b ) =2(a -b )[3(a -b )-4a ] =2(a -b )(3a -3b -4a ) =-2(a -b )(a +3b ).(2)原式=[(x +y )-2]2=(x +y -2)2. (3)原式=(4x )2-(x 2+4)2 =[4x +(x 2+4)][4x -(x 2+4)] =-(x 2+4x +4)(x 2-4x +4) =-(x +2)2(x -2)2.(4)原式)16(412--=x).4)(4(41-+-=x x说明 (1)分解因式必须进行到每一个因式都不能再分解为止(每个因式分别整理、化简后,一般要按降幂排列);(2)如果多项式最高次项的系数是负数,一般要提出负号,使括号内该项的系数是正数;(3)遇到有多项式乘方时,应注意下面的规律:(b -a )2k =(a -b )2k ;(b -a )2k +1=-(a -b )2k +1(k 为整数).(4)注意换元思想在因式分解中的应用:将题目中相同的代数式看成一个整体去提取公因式、运用乘法公式或进行十字相乘.例6 (1)当x 取何值时,分式6532+--x x x 无意义?(2)当x 取何值时,分式12922---x x x 有意义?值为零?解 (1)要使分式无意义,只需x 2-5x +6=0.解得x 1=2,x 2=3.∴当x =2或x =3时,分式无意义.(2)要使分式有意义,只要使x 2-x -12≠0,解得x ≠-3且x ≠4. ∴当x ≠-3且x ≠4时,分式有意义.要使分式的值为零,只⎪⎩⎪⎨⎧=/--=-.012,0922x x x解得⎩⎨⎧≠-=/-==.43,33x x x x 且或∴当x =3时,分式的值等于零.说明 (1)确定分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式;(2)只有当字母的取值使分子的值等于零且分母的值不等于零时,分式的值才等于零;(3)注意准确使用“或”和“且”字.例7 计算: (1)2121111x x x ++++-; (2)⋅--++--÷++-+296.4144222222x x x x x x x x x x 解 (1)原式212)1)(1(11x x x x x +++--++=)1)(1()1(2)1(21212222222x x x x x x +--++=++-= 414x-=. (2)原式.1)2)(2(.)2()2)(1(2--+++-=x x x x x x ⋅+++=++=-++1961)3()2)(1()3(222x x x x x x x x说明 对异分母的分式相加减时,一般先通分,变为同分母的分式,然后再加减.对于某些具体的分式运算也可以采取一些特殊的方法,如(1)题采用逐步合并的方法.对于分子、分母都是多项式的分式进行乘除运算时,一定要先将每个多项式分解因式,然后将除法统一为乘法,最后再进行约分,如(2)题.对于运算结果,一般的,二次的多项式应乘开.例8 已知12-=a ,化简求值:⋅+-÷++--+-24)44122(22a a a a a a a a解法一 原式42])2(1)2(2[2-+⨯+--+-=a a a a a a a 41)212(-⨯+---=a a a a a ⋅+=-⨯+-=)2(141)2(4a a a a a a .122,12+=+∴-=a a ∴原式.1)12)(12(1=+-=解法二 由12-=a ,得21=+a ,平方,移项,可得a 2+2a =1.∴将原式化简为aa 212+后,立即得其值为1. 例9 已知x +y =-4,xy =-12,求+++11x y 11++y x 的值. 解 原式)1)(1()1()1(22+++++=y x x y=1121222++++++++y x xy x x y y1)(2)(22)(2++++++-+=y x xy y x xy y x 将x +y =-4,xy =-12代入上式,∴原式⋅-=+--+-⨯++-=153414122)4(224)4(2说明 求代数式的值的问题,一般先将所求代数式进行化简,然后利用已知条件求值.在使用条件时有三种方式:(1)将已知条件直接代入计算;(2)将已知条件变形后再代入计算;(3)将已知条件整体代入再计算求值.例10 已知321=+xx ,求441x x +的值.解 2)1(122244-+=+xx x x2]2)32[(2]2)1[(2222--=--+=xx=102-2=98.说明 此题是反复运用完全平方公式把所求代数式变形,使问题得解. 三、课标下新题展示例11 在解题目“当x =1949时,求代数式x x x x x x x 122444.222-+-÷-+-+1的值.”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.解 聪聪说得有道理.∵原式11)2(2.)2)(2()2(2+--+-+-=xx x x x x x ,1111=+-=xx ∴只要使原式有意义,无论x 取何值,原式的值都相同,为常数1.例12 某种长途电话的收费方式如下:接通电话的第=分钟收费a (a <8)元,之后的每=分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .ba-8分钟 B .b a +8分钟 C .bba +-8分钟D .bba --8分钟解 C .说明 用代数式表示实际问题中的数量关系,是一类常见的考题.二次根式一、课标下复习指南 (一)二次根式的有关概念 1.二次根式形如)0(≥a a 的式子叫做二次根式. 2.最简二次根式(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 满足上述两个条件的二次根式叫做最简二次根式. (二)二次根式的主要性质1.)0(≥a a 是一个非负数; 2.);0()(2≥=a a a 3.⎩⎨⎧<-≥==);0(),0(||2a a a a a a4.);0,0(≥≥⋅=b a b a ab5.);0,0(>≥=b a ba ba6.若a >b ≥0,则.b a > (三)二次根式的运算1.二次根式的加减二次根式加减时,先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. *3.分母有理化把分母中的根号化去,分式值不变,叫做分母有理化.常用的二次根式的有理化因式: (1)a 与a 互为有理化因式;(2)b a +与b a -,一般的,b c a +与b c a -互为有理化因式;(3)b a +与b a -,一般的,b d a c +与b d a c -互为有理化因式. 二、例题分析例1 当x 为何值时,下列代数式有意义? .1)2(;322)1(232x x x x x -+----解 (1)欲使3222---x x x 有意义,只要使⎩⎨⎧=/--≥-.032,022x x x 即⎩⎨⎧≠-=/≥.31,2x x x 且 解得x ≥2且x ≠3. ∴当x ≥2且x ≠3时,3222---x x x 有意义.(2)欲使231x x -+-有意义,只要使-x 2≥0,解得x =0. ∴当x =0时,231x x -+-有意义.说明 代数式有意义的条件:分式有意义的条件是分式的分母不为零;二次根式有意义的条件是被开方数为非负数;由实际意义得到的代数式还要符合实际意义.例2 化简:(1);14962123xx x x x -+ *(2)已知1<x <2,化简122+-x x .442x x +-+ 解 (1)原式x x x x x x 4221-+=x x 23-=(2)∵1<x <2,∴x -1>0,2-x >0. 224412x x x x +-++-∴22)2()1(x x -+-==|x -1|+|2-x |=(x -1)+(2-x )=1.说明 (1)二次根式的化简要考虑最简二次根式的两个条件,根号内是多项式时,要考虑是否是完全平方式;(2)化简2a 时,要考虑字母a 的取值范围;(3)在二次根式运算中,根号外的因式可以平方后作为被开方数的因式移进根号内,从而使运算简化.例3 计算:(1);22)8321464(÷+- (2)+⋅-+-5()625()2332(202.)6219 解 (1)原式22)262264(÷+-=.232+=(2)原式=5)(625[()1861212(-++-62561230)625()]6219-+-=-⋅+.61435-=说明 整式和分式的运算性质在二次根式的运算中同样适用,乘法公式、分配律、约分等都有可能简化运算过程,要根据式子的结构特征灵活使用.例4 已知xy =3,求yxyx y x+的值. 分析 因为xy =3,所以x ,y 同正或同负,要分情况讨论. 解 当x >0,y >0时, 原式.322==+=xy xy xy 当x <0,y <0时,原式.322-=-=--=xy xy xy 综上可知,原式.32±= 三、课标下新题展示例5 若n 20是整数,则满足条件的最小正数n 为( ). A .2B .3C .4D .5解 D .说明 对于二次根式的性质:||);0()(22a a a a a =≥=,会有多种形式进行考查,要熟练掌握.例6 对正实数a ,b ,定义,*b a ab b a +-=若4*x =44,则x 的值是______. 解 依题意,得.4444=+-x x 整理,得.484=+x x 变形,得.4912)(2=++x x.49)1(2=+∴x71=+∴x 或,71-=+x 6=x 或8-=x (舍). ∴x =36.经检验,x =36是原方程的解. ∴x 的值是36.说明 此题考查了阅读理解能力、完全平方公式、二次根式的性质、配方法解方程,是一道代数综合题,要求每个基本知识点都熟练掌握.四、课标考试达标题(一)选择题1.下列各式中正确的是( ). A .-2(a -b )=-2a -b B .(-x )2÷x 3=xC .xyz ÷(x +y +z )=yz +xz +xyD .(-m -n )(m -n )=n 2-m 2 2.下列等式中不成立的是( ).A .y x y x y x -=--22 B .y x yx y xy x -=-+-222 C .y x yxyx xy -=-2 D .xyx y y x x y 22-=-3.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中是完全对称式的是( ). A .①②B .①③C .②③D .①②③ 4.用配方法将代数式a 2+4a -5变形,结果正确的是( ). A .(a +2)2-1B .(a +2)2-5C .(a +2)2+4 D .(a +2)2-95.已知411=-b a ,则ab b a b ab a 7222+---的值等于( ).A .6B .-6C .152D .72-(二)填空题6.某公司2009年5月份的纯利润是a 万元,如果每个月纯利润的增长率都是x ,那么预计7月份的纯利润将达到______万元(用代数式表示). 7.多项式9x 2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是______ (填上一个正确的即可).8.若2x=3,4y=5,则2x -2y的值为______. 9.观察下面的单项式:x ,-2x 2,4x 3,-8x 4,…根据你发现的规律,写出第7个式子是______.10.已知),3,2,1()1(12=+=n n a n , b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出b n 的表达式为b n =______.(用含n 的代数式表示) (三)解答题 11.求63)(41)(21ba b a b a b a --++++-的值,其中|a -1|=-(b +2)2.12.在实数范围内分解因式:(1)4x 4-1;(2)x 2+2x -5.13.观察下列等式:,322322,211211-=⨯-=⨯=.,433433 -=⨯(1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.14.按下列程序计算,把答案填写在表格内,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:(2)发现的规律是:(3)用简要的过程证明你发现的规律.(一)选择题1.在根式⑤④③②①;2;15;;5223ab a a -2;12a a ⑥中,最简二次根式是( ).A .②③⑤B .②③⑥C .②③④⑥D .①③⑤⑥2.如果最简根式ab b -3和22+-a b 是同类二次根式,那么a 、b 的值分别是( ).A .a =0,b =2B .a =2,b =0C .a =-1,b =1D .a =1,b =-23.下列各式中,运算正确的是( ). A .553322=+ B .236=÷ C .632=D .12233=-(二)填空题4.当x 满足______条件时,32++-x x在实数范围内有意义. 5.若式子|2|)1(2-+-x x 化简的结果为2x -3,则x 的取值范围是______. 6.已知x 为整数,且满足32≤≤-x ,则x =______.7.观察下列各式:=+=+412,312311514513,413=+…请你将发现的规律用含自然数n 的等式表示出来______.(n ≥1)(三)解答题 8.计算:.)2(xy yxxyxy ⋅+-9.化简:.)23(36329180-++--10.先化简,再求值:423)225(--÷---a a a a ,其中.33-=a。
人教版五四《轴对称,整式乘除因式分解,分式,二次根式》全册知识点
整式乘除及因式分解知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
5n m ,都是正整数)逆运算为:同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
________3=⋅a a ;________32=⋅⋅a a a 532)()()(b a b a b a +=+∙+,6n m ,幂的乘方,底数不变,指数相乘。
如:10253)3(=-23326)4()4(4==_________)(32=a ;_________)(25=x ;())()(334a a =7、积的乘方法则:n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-________)(3=ab ;________)2(32=-b a ;________)5(223=-b a8n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷________3=÷a a ;________210=÷a a ;________55=÷a a91。
p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
整式,分式,因式分解,二次根式解题技巧
1.整式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:ba 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.2. n 都是正整数)..()n ab =再把注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项. ①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+ ④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数).单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的 322a ⨯;1=+a a ,不是).123、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.4.分式一般的,用B A ,表示两个整式,B A ÷就可以表示成BA的形式.如果B 中含有字母,式子B A 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式.注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义; (3)当分子等于零而分母不等于零时,分式的值才是零.把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分.B A =这个“适解:(1)b a b a b a 34124131413132-=⨯⎪⎭⎫ ⎝⎛-⎭⎝=-; (2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568yx y x -+=. 1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcadc d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫⎝⎛(n 为整数).3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cba cbc a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:除运算,此类a 必①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式. 注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.把分母中的根号化去,叫分母有理化.如=+131)13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. (1))0()(2≥=a a a .(4)b a 号里的(例烦,解:6321263212--+++--232+=.例2、计算:()()()()751755337533225++++-+++-.分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a ba +-的值.分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< , 54<<∴x .一、例1故有a 例2于是可以发现3+22=()221+,且()21363+=+,通过因式分解,分子所含的1+32-的因式就出来了。
2024年初三数学上册课本知识点总结(2篇)
2024年初三数学上册课本知识点总结一、有理数1. 有理数的概念:正有理数、负有理数、绝对值2. 有理数的四则运算:加法、减法、乘法、除法3. 有理数的比较大小:同号比大小、异号比大小4. 有理数的混合运算:加减乘除综合运算5. 有理数的数轴表示:数轴的绘制和利用数轴表示有理数6. 有理数的应用:距离与温度的表示、有理数的正负性判断二、整式与分式1. 单项式与多项式:单项式的定义和运算、多项式的定义和运算2. 整式运算:加法、减法、乘法、常数乘多项式3. 幂的定义和运算:指数、底数、次方、乘方公式4. 分式的定义和运算:分式的基本性质和分式的加法、减法、乘法、除法5. 整式和分式的互化:整式化分式、分式化整式6. 整式和分式的应用:有分数根、负指数与多项式的运算三、方程与不等式1. 等式的基本性质:等式的性质、等式两边的加减、乘除运算2. 一元一次方程:含有一个未知数的一次方程、解方程的基本步骤、实际问题中的应用3. 等式的证明与解答:等式的性质与等式的证明、判断等式对错和解答问题4. 一元一次不等式:含有一个未知数的一次不等式、解不等式的基本步骤、实际问题中的应用5. 不等式的表示和应用:不等式的解法、不等式的混合运算、实际问题中的应用6. 二元一次方程组:含有两个未知数的一次方程组、消元法解一次方程组、实际问题中的应用四、图形的认识1. 基本图形的名称和性质:点、线、线段、射线、角、平行线、垂直线、相交线的性质和关系2. 直线与角的关系:垂直角、同位角、相交角、内错角和补角、共轭角和对顶角、实际问题中的应用3. 三角形的基本性质:三角形的定义和分类、角和边的关系、直角三角形和等腰三角形4. 三角形的面积:三角形面积的计算公式、直角三角形的面积、实际问题中的应用5. 多边形的认识:多边形的定义和分类、平行四边形、矩形、正方形、菱形6. 圆和圆的认识:圆的定义和性质、圆的周长和面积的计算、实际问题中的应用五、相似与全等1. 图形的相似:相似的定义和性质、相似比和相似比例、相似三角形的判定2. 图形的全等:全等的定义和性质、全等判定的条件、实际问题中的应用3. 图形的度量:长度的计算、角度的计算、平行线及其性质4. 图形的应用:相似和全等图形的应用、比例尺和图形的放缩六、数据的认识1. 数据的分类:随机数据与非随机数据、定性数据与定量数据、离散数据与连续数据2. 数据的收集与整理:数据的获取、数据的整理和分组、数据的分析和展示3. 数据的统计:频率和频率分布表、众数、中位数和平均数、四分位数和箱线图4. 数据的应用:数据的处理和分析、实际问题中的统计和概率以上是____年初三数学上册课本的知识点总结,总共约____字。
初中数学知识框架总结pdf
以下是初中数学的主要知识框架总结:
1.数与代数
-有理数:正数、负数、数轴、相反数、绝对值、有理数的运算。
-整式:单项式、多项式、整式的加减乘除运算。
-分式:分式的定义、基本性质、约分、通分、分式的加减乘除运算。
-二次根式:二次根式的化简、运算。
-方程与不等式:一元一次方程、二元一次方程组、一元二次方程、不等式及其解法。
2.几何
-几何基础:线段、射线、直线、角、平行线、三角形、四边形。
-三角形:三角形的性质、全等三角形、相似三角形。
-四边形:平行四边形、矩形、菱形、正方形的性质和判定。
-圆:圆的定义、圆的性质、圆周角、弧长和扇形面积。
3.函数
-函数基础:变量、函数的概念、函数的表示方法。
-一次函数:一次函数的图像、性质及其应用。
-反比例函数:反比例函数的图像、性质及其应用。
-二次函数:二次函数的图像、性质及其应用。
以上是初中数学的主要知识框架,每个知识点都有相应的公式、定理和概念需要掌握。
在学习过程中,要注重理解和应用,通过练习题和实际
问题来巩固所学知识。
同时,数学学科的逻辑性较强,需要逐步建立起知识之间的联系和推导过程,这样才能更好地掌握初中数学的整体知识框架。
初二下册数学难点归纳总结
初二下册数学难点归纳总结在初二数学学习的过程中,我们会遇到一些难点知识点,这些知识点通常需要更多的时间和精力来理解和掌握。
为了帮助同学们更好地应对数学学习难点,本文将对初二下册数学学习中的难点进行归纳总结,并提供相应的解决方法和技巧。
一、代数与方程1.二次根式二次根式是初中代数中的基础知识点,但其中的化简、合并以及开平方等操作经常会引发困惑。
要克服这个难点,建议同学们多进行练习,熟练掌握二次根式的基本化简法则,并能够正确使用公式进行开平方运算。
2.一元一次方程组对于一元一次方程组,解方程的过程中需要运用到消元法、代入法等解题方法。
在解题过程中,同学们应该耐心分析方程组的性质,根据题目给出的条件和要求,选择合适的解题方法,逐步推导并求解出正确答案。
3.二元一次方程组与一元一次方程组类似,求解二元一次方程组也需要应用到消元法、代入法等解题技巧。
同时,同学们还需要掌握代数法或图解法找到方程组的几何意义,进而进行解题分析。
多进行练习,并结合实际问题进行思考和解决。
二、几何与图形1.平行线与比例平行线与比例在几何学中是常见的难点。
对于平行线,同学们需熟悉平行线的性质以及与其他线段之间的关系,例如同位角、内错角等。
对于比例,重点掌握线段的比例与相似三角形的性质,建议同学们通过观察图形,从图形的各个部分找到相应的比例关系。
2.三角形的性质三角形作为几何学的基础图形,涉及到各种性质,如等腰三角形、直角三角形、等边三角形等。
解决三角形的难点,同学们要熟悉各种三角形的性质,同时也需要掌握相关证明方法。
多进行练习,掌握不同类型三角形的特点和求解技巧。
3.平面镜像与旋转平面镜像与旋转是几何变换中的重要内容,也是初中数学中的难点之一。
同学们需要了解镜像和旋转的定义、性质和变形规律,并能够运用到实际的几何问题中。
通过多做题和思考,熟悉镜像和旋转的操作方法和原理。
三、统计与概率1.频率与计数在统计学习中,频率和计数是常见的难点。
初中数学核心考点
初中数学核心考点数学是人类对事物的抽象结构与模式进行严格描写的一种通用手段,可以运用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
数学属于情势科学,而不是自然科学。
今天作者在这给大家整理了一些初中数学核心考点,我们一起来看看吧!初中数学核心考点代数式1、代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2、整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3、单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积-包括单独的一个数或字母) 几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区分开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
4、同类项及其合并条件:①字母相同;②相同字母的指数相同合并根据:乘法分配律。
5、根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
6、同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
初中数学考点总结二元一次方程组1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。
2、二元一次方程组的解法(1)代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采取因式分解法通过消元降次来解。
(3)配方法将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义
A 的形式, B 形如 的式子叫二次根式,其中 叫 A 如果除以 B 中含有字母,那么称 为分式, B 被开方数,只有当 是一个非负数时, 才
其中 A 称为分式的分子,B 称为分式的分母, 有意义. 对于任意的一个分式,分母 B 都不等于零。 1.分式的分子与分母都乘以(或除以)同一个 不为零的数,分式的值不变 ①
2 2 2
异分母
把分子相乘的积作为积的分子,分母相乘的 积作为积的分母, 即
运 算
乘法
b d bd a c ac
ቤተ መጻሕፍቲ ባይዱ
除法 乘方
1.单项式的除法: 2.多项式除以单项式:
把除式的分子和分母颠倒后再与被除式相 乘,即
(am bm cm) m am m bm m cm m a b c
性质
A 有意义的条件: B 0 ; B A 3. 分式 值为 0 的条件: A 0, B 0 B 4. 分式的符号,分母的符号,分子的符号三
2. 分式
② ③ ④ 把二次根式化简,然后把被开方数相同的二次 根式(即同类二次根式)的系数相加减,被开 方数不变。
者变两者,分式的值不变
同分母:
加法
合并同类项
1.单项式的乘法 2. 单项式乘以多项式:即 m(a b c) ma mb mc ( m, a, b, c 都是单项式) 3. 多项式与多项式相乘; 平方差公式: (a b)(a b) a 2 b 2 完全平方公式: (a b) a 2ab b
整式
1.单项式:由数与字母的乘积构成的代数式叫做单项式。单项式 的数字因数叫做单项式的系数,字母指数和叫单项式的次数。 2.多项式:几个单项式的和叫做多项式。多项式中每个单项式叫 多项式的项,次数最高项的次数叫多项式的次数。 3.整式:单项式和多项式统称整式
分式
整式 A 除以整式 B,可以表示成
运算二次根式
b d b c a c a d
1. 幂的乘方: (a m ) n a mn ( m, n 都是正整数)
2. 积的乘方: (ab) n a n b n ( n 是正整数)
北京东方奕英智能教育咨询中心