A NEW TUNING METHOD FOR TRAVELING WAVE STRUCTURES
RF tuning and beam commissioning of CW RFQ for Chi
RF tuning and beam commissioning of CW RFQ for China-ADSInjector-IHua Shi 1•Huafu Ouyang 1•Shengchang Wang 1•Ningchuang Zhou 1•Gang Wu 1Received:8February 2018/Revised:8April 2018/Accepted:7May 2018ÓShanghai Institute of Applied Physics,Chinese Academy of Sciences,Chinese Nuclear Society,Science Press China and Springer Nature Singapore Pte Ltd.2018Abstract A 325-MHz continuous-wave (CW)four-vane radiofrequency quadrupole (RFQ)is employed in Injector-I of the China Accelerator-Driven Subcritical System.The radiofrequency tuning and beam commissioning were performed from January 2014to January 2017.In a cold test,a stability study showed that the design of the seg-mented resonantly coupling and dipole stabilizer rods can shift the harmful quadrupole and dipole mode from the fundamental mode to above 2.6MHz.We also found a simplified tuning method for the field unflatness,involving changing the inserted length of a few plug tuners.For achieving CW-beam commissioning,two full-size RFQs were constructed successively.The commissioning results indicate that the beam transmission rate decreased by approximately 3%as the normalized field unflatness decreased by 1%.A 10-MeV CW proton beam with an average beam current of 2.1mA was achieved at the target of Injector-I,and the output beam energy of the RFQ was 3.18MeV.Keywords RFQ ÁRF tuning ÁCW-beam commissioning Ábeam transmission rate1IntroductionThe China Accelerator-Driven Subcritical System (China-ADS)Injector-I is designed to operate in the con-tinuous-wave (CW)mode at 325MHz.It employs an electron cyclotron resonance (ECR)ion source,a low-en-ergy transport line,a radiofrequency quadrupole (RFQ)accelerator,and a superconducting section with energy of 10MeV and a beam current of 10mA [1].A four-vane RFQ accelerator has been developed to accelerate proton beams from 35keV to 3.2MeV.In a dynamic study,two-dimensional (2D)and three-dimensional (3D)radiofrequency (RF)design and thermal analysis were performed.The main design parameters are summarized in Table 1[2].The output beam current is 15mA,which is higher than the operation value of 10mA for a possible upgrade.The RF power dissipation with an inter-vane voltage of 55kV is approximately 194.96kW,and the maximum surface field is 28.88MV/m,as given by Superfish [3].Considering the contribution of the 3D structure,the actual cavity power dissipation is generally 1.2–1.4times the Superfish 2D value.The beam trans-mission rate is proposed to be [98.7%for reducing the CW-beam power loss.The output normalized root-mean-square (rms)emittances (x /y /z )are 0.2/0.2/0.0612(p mm mrad/p mm mrad/MeV deg),and a small growth of emittances is required.The 4.7-m-long RFQ is composed of four modules each \1.2m long,which are easily fab-ricated,as well as a water-cooling system.It is very important to restrict the beam loss and reduce the emittance growth for the CW-mode high-intensity RFQ;thus,the RFQ requires good field unflatness of D EE Æ2:5%[4–6]and high stability [7–10].To achieve these requirements,the machining and alignment errors&Hua Shishih@1Key Laboratory of Particle Acceleration Physics and Technology,Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,ChinaNUCL SCI TECH (2018) 29:142https:///10.1007/s41365-018-0478-xshould be controlled within±15and±10l m,respec-tively,and several other stability designs and methods must be adopted.In addition to the coordinate machine mea-surement,alignment survey,cooling-waterflow,and vac-uum checking,RF measurement is a necessary procedure throughout the fabrication,installation,and commission-ing.After a process isfinished,a bead-pull measurement is taken,and the plug tuners are adjusted according to the testing results of RF measurement;then,the expectedfield unflatness can be achieved after several tuning procedures. Additionally,RF measurement is a valid method for assessing the deviation before and after a process,and the proper processing technology can be chosen with the help of RF measurement.CW-mode high-power conditioning is also very impor-tant for a high-intensity RFQ[11,12].Two full-size RFQs based on the same physical design were fabricated for CW-beam commissioning.The inner surface of thefirst RFQ (RFQ-1)was severely damaged in high-power conditioning owing to the lack of conditioning experience;thus,CW-beam operation cannot be achieved.However,for the second RFQ(RFQ-2),3.18-MeV CW proton beams have been achieved with the proper conditioning parameters and procedures.The RF tuning of the RFQ is introduced.It includes four parts:(1)the RFQ structure;(2)the test facility;(3)a stability study,in which the method of increasing the mode frequency separation between harmful modes(dipole, quadrupole modes)and the operation quadrupole mode is determined,and the simulation and testing results of the final mode frequency separation values are presented;(4)a field unflatness tuning study,in which the method of improving thefield unflatness is discussed in detail.A detailed high-power RF conditioning scheme is given in Sect.3,and the problems in the RF conditioning and cor-responding methods for improvement are presented.The beam-commissioning results of two RFQs are presented in Sect.4,and the quantified relationship between the beam transmission rate and thefield unflatness is discussed.2RF tuning2.1RFQ structureA side view of the RFQ is shown in Fig.1.Two seg-ments are joined with a resonant coupling gap,and each segment includes two modules that are connected by flanges.The beam direction is from module1to module4. Four couplers are installed in modules2and3,and16 vacuum ports lie inside modules1and 4.In the four modules,64plug tuners with a diameter of55mm are uniformly distributed.Two testing cables are usually con-nected to the tuners of adjacent upper quadrants with two RF pickups in the middle of a single module or the whole RFQ.2.2Test facilityAs shown in Fig.2,the test facility is composed of a single module(or whole RFQ),a vector network analyzer (VNA,Agilent E8720ES),a control computer,a bead-pull apparatus,a servomotor,etc.[13].The computer commu-nicates with the VNA through a general-purpose interface bus.The dielectric bead is pulled by a nylon wire via the servomotor across the vane gap near the top of the four quadrants one by one,where a strong electricfield is located,as shown in Fig.3.The four symmetric wire positioning slots are cut in the two end plates in order to ensure the accurate position.The bead-pull measurement setup with a single RFQ module is shown in Fig.4,and the module isfixed in the marble platform.The main measurement parameters are the frequency spectrum,electric-field phase,and Q-value,for both aTable1Main RFQ designparameters[2]Parameters ValueFrequency(MHz)325Particle H?Injection energy(keV)35Output energy(MeV)*3.2Output beam current(mA)15(10operation)Beam duty factor100%Inter-vane voltage(kV)55Maximum surf.field(MV/m)(Superfish)28.88(Kilpatrick factor=1.62)Cavity power dissipation(kW)(Superfish)194.96Beam transmission rate98.7%Output norm.rms emittance(x/y/z)(p mm mrad/p mm mrad/MeV deg)0.2/0.2/0.0612Accelerator length(cm)469.95142 Page2of9H.Shi et al.single module and the whole RFQ.Two programs are written,as follows.1.Spectrum measurement program.This can give not only the spectrum of the fundamental quadrupole mode and neighboring harmful modes but also the frequency of modes after the measurement bandwidth is reduced.Figure 5shows the frequency spectrum of the RFQ,two quadrupole modes Q 1and Q 2,and two dipole modes D 1and D 2.2.Phase acquisition program.The S 21phase distribution curve for the fundamental mode is acquired,while the bead is pulled along the RFQ.When the cavity is in resonance,the field deviation caused by the bead is proportional to the square root of theperturbedFig.1RFQ sideviewFig.2RFQ testfacilityFig.3Position of thebeadFig.4Bead-pull apparatussetupFig.5Frequency spectrum of the RFQRF tuning and beam commissioning of CW RFQ for China-ADS Injector-I Page 3of 9142frequency deviation,i.e.,the S21phase deviation.Thus, we measure the perturbed S21phase distribution instead of thefield distribution.Before the measure-ment,the sweeping time when the bead is moving from one end plate to another should be tested.When all the fixed copper tuners are installed and thefield unflatness satisfies the requirement,the phase deviation is\1°, except for a2°step at the coupling plate,as shown in Fig.6.As shown later,with this phase deviation,the field distribution unflatness is better than±2.5%. 2.3Stability studyBecause the length of the RFQ is approximatelyfive times the wavelength of the operation mode,the mode frequency separation between the harmful modes and the fundamental quadrupole mode is so small that the struc-tural asymmetry resulting from errors in fabrication and installation can easily cause mode coupling.Thus,stabi-lization techniques should be employed to improve the longitudinal and transverse beam instability caused by mode coupling[7–10].In China-ADS Injector-I,we adopted the following techniques.(1)Segment resonant coupling design.Two approximately 2.35-m-long RFQ segments are resonantly coupled together,and a small gap between the vane tips provides capacitive coupling.The frequency of the nearest quadrupole modes can be moved farther away from the operation mode by tuning the width of the gap.Figure7shows thefinal optimized size of the coupling cell,where the gap width is1.4mm,the thickness of the coupling plate is18.2mm,and the distance between the two vane undercuts is79.8mm.(2)Dipole stabilizer rod design.Four rods are located in each end plate of two segments.The frequency of the nearest dipole modes can be moved farther away from the operation mode by tuning the length of the rods.Figure8shows the coupling plate with dipole rods.The optimized length of the rods is 169mm,according to simulation and cold-test results.According to results obtained using3D Computer Simulation Technology[14],the mode frequency separa-tion values from the nearest quadrupole and dipole mode to the operation mode are approximately1.5and0.2MHz, respectively,without the resonant coupling of segments and the dipole stabilizer rod design.Considering the two techniques,according to the simulation results shown in Table2,the mode frequency separation values increase to approximately3.4MHz(quadrupole modes)and5.4MHz (dipole modes)[2],respectively,where f n is the frequency of each mode,and f0is that of the operation mode.Because of the inevitable fabrication and assembly errors,the test-ing results are all lower than the simulation results for RFQ-1and RFQ-2.However,all the testing-mode fre-quency separation values are[2.6MHz,which isacceptable.Fig.6Phase distribution withfixed copper tuners and the requiredfieldunflatnessFig.7Size of the coupling cell(unit:mm)Fig.8Coupling plate with dipole rods(unit:mm)142 Page4of9H.Shi et al.2.4Field unflatness tuning studyAlthough the tolerance is strictly controlled,there are errors in each fabrication procedure.Thus,numerous slug tuners are designed to tune and compensate the localfield in order to achieve the requiredfield unflatness.The local-field tuning program is written using perturbation and lumped-circuit theory[4–6].This program can give the field distribution of the current test and calculate the adjustment of each slug tuner.Thefield unflatness can be gradually achieved after several adjustments.Figure9shows thefinal normalized electricfield of RFQ-1,where Quad-1–Quad-4represent Quadrants1–4,and D EE is-2.50%to?2.44%.Figure10shows the nor-malized electricfield of RFQ-2withfixed copper tuners,and D EE is-2.65%to?2.05%.Both of these configura-tions satisfy the design requirement.However,there were two coaxial couplers with the wrong coupling-factor values in RFQ-2,and the value in Quadrant4coupler of module3,which is opposite Quad-rant2,had a large deviation.The normalized electricfield worsened to-5.62%to?8.09%after the tuning of the coupling factor.A magnetic-coupling coupler is adopted for the RFQ,and a different coupling factor means a different local inductance and therefore a different local frequency.The local-frequency deviation in Quadrant4 affects not only thefield distribution in Quadrant4but also thefield distribution in opposite Quadrant2for the inten-sive coupling between Quadrants4and2.Physically,the local-frequency deviation caused by the coupler can be restored by the tuners near the coupler.As shown in Fig.11a,the mainfield distortion arises from the signifi-cantly higherfield value in Quadrant2,and consequently, the fundamental frequency increases from325.013to 325.044MHz,which agrees with the relationship between the local frequency and the local electricfield in a cell for a coupling cavity with many cells[15].Because allfixed copper tuners were machined and it is impossible to refabricate all the copper tuners and retune thefield within the constraints of the project schedule and budget,it is necessary to improve thefield unflatness by only replacing severalfixed tuners.According to the simulation results[2],the relationship between the local-frequency adjustment and the insertion length of one tuner is approximately3.93kHz/mm,and the two tuners in Quadrant2of module3should be the main influencing factors.When the two tuners are both pulled out by approximately4mm,the resonant frequency shouldTable2Comparison of mode frequency and separation values between simulation and measurement resultsModes Simulation results[2]Measurement results(RFQ-1)Measurement results(RFQ-2) Frequency(MHz)f n–f0(MHz)Frequency(MHz)f n–f0(MHz)Frequency(MHz)f n–f0(MHz)D2319.638-5.400318.860-5.936318.983-6.050Q2321.451-3.587322.160-2.636321.048-3.985 Fundamental mode325.0380324.7960325.0330Q1328.454?3.416328.660 3.864327.926 2.893D1330.588?5.550329.670 4.874329.9124.879Fig.9Final normalized electric-field distribution ofRFQ-1Fig.10Normalized electric-field distribution of RFQ-2withfixedcopper tunersRF tuning and beam commissioning of CW RFQ for China-ADS Injector-I Page5of9142recover.The fixed turners were replaced with two tunable aluminum tuners,and the lengths that the tuners were pulled out were identified to be 4.53and 3.66mm by tuning and testing the field and frequency locally.Fig-ure 11b shows the final normalized electric field.The field unflatness and resonant frequency returned to -2.63%to ?4.75%and 325.018MHz,respectively.The beam transmission rate was predicted to decrease to 92–93%;however,this is acceptable.3High-power RF conditioningThe RF power of CW conditioning depends on the simulation and cold-test results.A high-frequency structure simulator [16]is used to achieve the following values:a quality factor of Q 0=9163,power dissipation of P =205.6kW,and a relationship of Q 0µ1/P between them.In the cold test,for example,the Q 0of RFQ-2decreased to 7833;accordingly,P increased to approxi-mately 240kW.The RF power was set as 270–280kW in low-duty factor (\30%)conditioning and 250–260kW in high-duty factor or CW conditioning,and the additional power dissipation caused by the difference between the measurement and theory was considered.The RF conditioning of RFQ-1started on May 15,2014,but several accidents or problems stopped the RF condi-tioning and resulted in a decrease in the RFQ performance [17].On June 12,2014,vacuum leakage occurred at the welding port in the entrance plate at a 71%RF duty factor and 250-kW power owing to the lack of cooling water,which resulted in a large temperature difference between the plate and rods.Figure 12a shows the damaged entrance plate.On June 20,2014,vacuum leakage occurred at the welding port in the coupling plate at an 80%RF duty factor and 257-kW power,possibly because of a welding problem due to the complicated structure of the cooling-waterchannels.On July 20,2014,an arc accompanied by a very low vacuum pressure was detected at coupler #4[18].After disassembling the coupler,a burned RF contact spring was found,as shown in Fig.12b.The loose contact of the spring was thought to be the main reason;in this case,the fingers of the spring easily caused discharge under high-power conditioning.In April 2015,RFQ-1could not be easily operated at a high RF duty factor,and vacuum interlock occurred frequently at or below the required RF power.Inner-surface damage of a large area was observed using an endoscope,as shown in Fig.12c.This is mainly attributed to the lack of reflected power interlock protec-tion,because the vacuum interlock with a millisecond reaction time was too slow to stop the discharge extending between the adjacent vanes.Another possible reason is that the purity of the copper was insufficient.Considering the failures of RFQ-1,the new RFQ-2was fabricated with higher-purity copper and several improve-ments,as follows.(1)It had simplified cooling-water channels in the end plates and coupling plate,as shown in Fig.13a.Thermal analysis was performed using ANSYS [19],as shown in Fig.13b,and the maximum temperature in the rod was \29°C at a water velocity of 2m/s.The newly designed plates were tested in RFQ-1[17].(2)The RF contact spring was canceled in the new couplers [18],and a copper vacuum flange gasket was used for the RF contact.(3)New reflected power interlock protection was applied,and the protection strategy varied according to the RF pulse width and pulse duty factor.The RF conditioning of RFQ-2started on October 18,2016,and the procedure from the pulse mode to the CW mode is shown in Fig.14.It began with a very low-duty factor of 0.4%and high RF power of 280kW.Then,the duty factor was extended to 40%with the same RF power by increasing the pulse width or repetition rate.From the 40%duty factor to the CW mode,the RF power and rep-etition rate were kept at 250–260kW and 50Hz,Fig.11Normalized electric-field distribution of RFQ-2:a before and b after tuning two tuners142 Page 6of 9H.Shi et al.respectively,and the pulse width was increased from 8to 20ms because it is easy to transit from a long pulse to the CW mode.On November 17,2016,the maximum RFpower in the CW mode reached approximately 275kW,but the electron flow near the ceramic window of one RF coupler was high;thus,the RF power decreased over the remaining 15min.In the CW mode,RFQ-2operated steadily for [13h at a 250–260-kW RF power.4Beam commissioningThe beam commissioning of RFQ-1started on August 7,2014,and the beam transmission rate reached approxi-mately 97%below a 1%duty factor [20].The beam commissioning above a 50%beam duty factor of RFQ-1in 2014is detailed in Table 3[21].The output peak current was [10mA for each duty factor,and the maximum RF power reached 314kW.The beam transmission rate was 95%at a 70%beam duty factor and 90%at a 90%beam duty factor.The maximum average beam power was approximately 31kW.The beam commissioning of RFQ-2started on Decem-ber 4,2016,and the transmission rate below a 1%dutyFig.12Damage in RFQ-1commissioning:a entrance plate with damaged rods,b coupler #4with a burned RF contact spring,and c inner-surface damage status ofRFQ-1Fig.13a Cooling-water channel design and b thermal analysis of the end plates and couplingplateFig.14RFQ-2conditioning procedureRF tuning and beam commissioning of CW RFQ for China-ADS Injector-I Page 7of 9142factor is shown in Fig.15.The maximum transmission rate was90.7%at a275-kW RF power,which is lower than the predicted value of approximately92%.The main reason for this discrepancy is likely that the beam from the ECR proton ion source was not at the center of the aperture.In early2017,China-ADS Injector-I achieved a CW beam with beam energy of10MeV and an average beam current of2.1mA,and the output energy of RFQ-2was3.18MeV. RFQ-2was considered to be able to deliver a beam current of up to10mA,but the SC section could not handle a high beam current[22].On the basis of the beam-commissioning results of the two RFQs,with a very low RF duty factor and beam duty factor(almost no cavity deformation),at the same input RF power,the relationship between the beam transmission rate and the nominalfield unflatness was97%@-2.50%to ?2.44%for RFQ-1and90.7%@-2.63%to?4.75%for RFQ-2.In this case,the difference in the beam transmis-sion rate mainly arises from thefield distribution unflat-ness.Thus,we estimate that the beam transmission rate decreased by approximately3%with thefield unflatness decreasing by1%.Certainly,the exact relationship between the beam transmission rate and thefield distribu-tion unflatness can be determined via simulations.5ConclusionA bead-pull apparatus setup was constructed,and testing programs were written.The stability was studied,and segments with resonant coupling and dipole stabilizer rods were adopted.The testing results for the mode frequency separation values between the harmful neighboring modes and the fundamental quadrupole mode were all [2.6MHz,which is sufficient for preventing mode cou-pling.A simplified tuning method for thefield unflatness based on the perturbation theory and simulation results was developed.The normalized electricfield of RFQ-2was improved from-5.62%to?8.09%to-2.63%to ?4.75%using this method.The relationship between thefield unflatness and the beam transmission rate was estimated according to the beam-commissioning results of the two RFQs.A1% decrease in the normalizedfield unflatness corresponded to a decrease of approximately3%in the beam transmission rate.The beam commissioning of the325-MHz four-vane RFQ in China-ADS Injector-I was successfully performed in both the pulse and CW modes.For RFQ-1,the maxi-mum average beam power was31kW with a95%RF pulse and a90%beam-pulse duty factor,and the beam transmission rate was90%.For RFQ-2,the output energy in the CW mode was 3.18MeV at an approximately 260-kW RF power.Acknowledgements The authors acknowledge the beam-commis-sioning group of China-ADS Injector-I for the cooperation and help in the beam commissioning.References1.J.Y.Tang,Z.H.Li et al.,Conceptual physics design on theC-ADS accelerators.IHEP-CADS-Report/2012-01E(2012)2.H.F.Ouyang,S.L.Pei,Physics design on C-ADS injector-1RFQ.Prog.Rep.China Nucl.Sci.Technol.2,66–73(2011)3.Superfish./laacg/services/download_sf.phtml4.S.N.Fu,Software development for the RF measurement andanalysis of RFQ accelerator.HEP&NP26(7),735–741(2002).(in Chinese)5.S.N.Fu,Study on thefield tuning method of a resonantly coupledRFQ.HEP&NP26(8),870–875(2002).(in Chinese)Table3Beam commissioning of RFQ-1[21]Beam duty factor50%60%65%70%90% Transmission rate95%95%95.6%95%90% RFQ output peak current(mA)11.110.910.910.611 RFQ pulse width/repetition frequency(ms/Hz)11/5013/5014/5015/5019/50 Power in the cavity(kW)289305314298300 Experiment date2014/9/12014/9/12014/9/12014/9/22014/9/25 Fig.15Beam transmission rate in the pulse-beam mode of RFQ-2142 Page8of9H.Shi et al.6.H.F.Ouyang,S.N.Fu,Tuning and measuring of RFQ with res-onantly coupled segments.HEP&NP27(6),551–554(2003).(in Chinese)7.H.F.Ouyang,S.N.Fu,X.L.Guan et al.,Study on the design of anintense-beam RFQ with stabilization.HEP&NP28(7),753–757 (2004).(in Chinese)8.H.F.Ouyang,T.G.Xu,X.L.Guan et al.,Computer simulationstudy on the design of the coupling cell in an RFQ with intense beams.High Power Laser Part.Beams15(2),195–198(2003).(in Chinese)9.S.N.Fu,H.F.Ouyang,T.G.Xu,Study on the function of dipolestabilizer rods in an RFQ accelerator.HEP&NP29(3),295–300 (2005)10.L.M.Young,Segmented resonantly coupled Radio-FrequencyQuadrupole(RFQ),in Proceedings of PAC,Washington DC, USA(1993),pp.3136–3138.https:///10.1109/pac.1993.30957811.L.M.Young,D.E.Rees,L.J.Rybarcyk et al.,High power RFconditioning of the LEDA RFQ,in Proceedings of PAC,New York,USA(1999),pp.881–883.https:///10.1109/pac.1999.79538712.E.Fagotti,L.Antoniazzi,A.Palmieri et al.,High-power RFconditioning of the TRASCO RFQ,in Proceedings of LINAC, Tel-Aviv,Israel(2012),pp.828–83013.H.Shi,H.F.Ouyang,G.Wu et al.,Cold measurement and CWconditioning of RFQ for China-ADS Injector-I,in Proceeding ofThe Eighth proseminar of Chinese Microwave and Radio Fre-quency Technology for Accelerator,Chendu,China(2016), pp.6–11(in Chinese)puter Simulation Technology(CST).https://15.C.G.Yao,Electron Linear Accelerator(Scientific Press,Beijing,1986).(in Chinese)16.High Frequency Structure Simulator(HFSS).http://www.ansys.com/products/electronics/ansys-hfss17.H.Shi,H.F.Ouyang,High-power RF conditioning of China ADS325MHz RFQ,in HPPA Mini-Workshop,Lanzhou,China(2015) 18.T.M.Huang,Q.Ma,W.M.Pan et al.,High power input couplersfor China ADS project,in HPPA Mini-Workshop,Lanzhou, China(2015)19.ANSYS./20.C.Meng,S.C.Wang,J.S.Cao et al.,Beam commission ofC-ADS injector-I RFQ accelerator,in Proceedings of IPAC, Richmond,VA,USA(2015),pp.3827–382921.F.Yan,Front end commissioning for China-ADS Injector-I testfacility,in ICFA Mini-Workshop on Beam Commissioning for High Intensity Accelerators,Dongguan,Guangdong,China (2015)22.F.Yan,H.P.Geng,C.Meng et al.,Commissioning and operationexperience with the China ADS Injector-I CW linac.arXiv:1705.05068v1(2017)RF tuning and beam commissioning of CW RFQ for China-ADS Injector-I Page9of9142。
A NEW METHOD FOR THE PREDICTION OF NON-LINEAR RELATIVE WAVE MOTIONS
on At '?? 1/c^-^U^M5W-lfcA NEW METHOD FOR THE PREDICTION OFNON-LINEAR RELATIVE WAVE MOTIONSBas BuchnerMaritime Research Institute NetherlandsABSTRACTThe problem of green water on the bow decks of floating offshoreproduction units in large survival waves is an important designproblem. An accurate description of the relative wave motions aroundthe bow is important for the prediction of green water on the deck. Inthe paper a new method is presented to predict these relative wavemotions, which are highly non-linear. Input for the method is thecalculation of the relative wave motions in front of the bow withlinear (3D) diffraction theory. Based on this input the proposedmethod is able to account for the non-linearities which occur as aresult of the non-linearity in the waves, the influence of the abovewater hull shape (bow flare) and the effect of green water on deck onthe ship motions. The method is based on a modification of theRaleigh distribution and allows a fast evaluation of the effect of theabove water hull shape (bow flare angle and freeboard height) on therelative wave motions. The prediction of the extreme relative wavemotions can be used for the prediction of the required bow height fordry fore decks or to determine the maximum freeboard exceedence asinput to the study of green water on the deck.NOMENCLATUREa-ffb H.LM eM(P(r)P(r>R) rRsT PzPT parameters in new expression for probability ofexceedence of relative wave motions, dependent onwave period and bow flare anglefreeboard height from still waterline to top bulwark inmsignificant wave height in mship length between perpendiculars in mwave exciting moment in kNmgreen water moment in kNmprobability of occurrence in percent/100probability of exceedence in percent/100relative wave motion at centreline bow in mextreme value in relative motions in mstandard deviationpeak period of wave spectrum in slocal vertical motion in mvalue in expression for probability of exceedencefactor in expression for probability of exceedenceco = wave frequency in rad/s£ = wave elevation in mX = deep water wave length in mINTRODUCTIONWith the trend to use Floating Production Storage and Offloading(FPSO) units in increasingly harsh environments, the problem of solidgreen water on the bow (or deck wetness) becomes an importantdesign aspect. Due to the weathervaning characteristic of turretmoored systems the bow of an FPSO is always exposed to the waves.Recent experience with FPSOs at the North Sea confirmed that greenwater loading can cause serious damage in the bow region. Becausegreen water loading is a major aspect in the safety of FPSOs, it shouldbe taken into account in the design. This requires an optimum designof the hull shape and the (protecting) structures at the deck.However, due to the complex nature of the green water phenomena,there are no state-of-the-art methods that can predict green wateraccurately and efficiently. In recent years the author carried outextensive research on the subject of green water and FPSOs(Buchner, 1995/1996). The research focused in the first place on thedescription of the occurring phenomena. Based on this research it ispresently investigated if new numerical methods can be used topredict the complex and non-linear phenomena green water problem(Buchner and Cozijn, 1997, Ortloff and Krafft, 1997). However, thesenumerical methods still have significant limitations and drawbacks.Their capability to give reliable predictions is not clear yet, they aresometimes very sensitive to small changes in the input, they requireheavy computational equipment and they still need extensivevalidation with model tests after their development. This type ofmethods is not expected to be reliable design tools for green waterprediction on FPSOs for numbers of years.To take into account the aspect of green water loading in newdesigns of FPSOs for harsh environments, the Joint Industry ProjectP(P)SO Green Water Loading' has been carried out with widesupport of the industry. The JIP was based on extensive model testsand computations. It covered a wide range of topics: from relativewave motion prediction to the impact loading on structures with different structural shapes at the deck.This paper -based on the JIP results- focuses on the input to the green water problem: the prediction of the strong non-linear relative wave motions around the bow. A new method will be presented which can be used to predict the required bow height for dry foredecks, or to predict the amount of water on the deck. The new method is developed and validated with a large number of model tests with a full elliptical bow. The wateriine of this bow is given in the Figure 1 and its main particulars are given in Table 1. This full elliptical bow represents the base case for both new designs as well as traditional tanker bows. Most of the existing tankers can be seen as a variation (in flare) of this base shape. The effect of the bow shape above the still wateriine was investigated too. Keeping the underwater part of the ships constant, bow flare angles (with the vertical) of 0, 10, 30 and 50 degrees were investigated. The body plan with a bow flare of 30 degrees is shown in Figure 1. The bow flare angle was defined in a plane perpendicular to the wateriine.Tests were carried out in regular as well as irregular waves. Regular wave tests were carried out for different wave lengths (X/L=0.75, 1.0 and 1.25) and wave heights (50-115% of a reference wave height. For 50% and 70% there is no water on the deck). Irregular wave tests were carried out in a significant wave height of 13.5 m with spectral peak periods 12,14 and 16 s (JONSWAP).The relative wave motions (r) in this paper were measured with a ship fixed vertical wave probe at the centreline of the ship, 1.0 m in front of the bulwark (see Figure 1). The ship was moored in a horizontal soft spring mooring system (stiffness in x-direction 430 kN/m) and was free to move in six degrees of freedom. The water depth was 150 m. s is the standard deviation of the linear motion response in the wave spectrum.OBSERVATION OF NON-LINEARITIESHowever, it was found in this and previous studies (Buchner, 1995/1996) that the actual relative wave motions in large survival waves are highly non-linear. Figure 2 shows the probability of exceedence of the relative wave motions in front of the bow for a bow flare angle of 30 degrees for the different irregular waves (Peak periods T p of 12, 14 and 16 s). In the figures both the measured probability of exceedence as well as the linear narrow banded Rayleigh distribution according to expression (2) are shown.As can be seen from this Figure, the measured distribution deviates significantly from the Rayleigh distribution. The Rayleigh distribution underpredicts the probability of exceedence of small crests, but overpredicts the probability of exceedence of the larger crests. The difference between the Rayleigh and measured distributions is depend-ent on the wave period. In short waves the differences are larger than in long waves. A close study of the measured distributions shows that they all have a clear discontinuity at the freeboard height. This aspect is important in the new method that is developed in this study. The non-linearity is confirmed by the comparison between measured and calculated pitch and relative wave motion RAOs in Figure 3. The figure shows the calculated response as well as the measured response in regular waves of different amplitudes (50%-l 15% of a reference wave height of 100%). In general the measurements approach the calculations when the wave amplitude decreases, which confirms the validity of diffraction analysis for small wave heights.The physical background of the observed non-linearities can be related to the effect of:RELATIVE WAVE MOTIONSThe relative wave motions around the bow are the input to the green water problem. They should therefore be predicted accurately to obtain a reliable prediction of green water occurrence and loading. The relative motions of the waves with respect to the ship are defined as the difference between the local vertical vessel motion z and the local wave motions C, according to:r =;-z (1) FPSO motions and relative wave motions are nowadays generally calculated with linear diffraction analysis. Diffraction analysis is based on the main assumptions of small sinusoidal waves and vessel motions. The interaction between structure and fluid is limited to the part below the still wateriine, which implies that the bow shape above the wateriine is considered to be vertical ('wall sided', no bow flare).The Response Amplitude Operators (RAOs) from diffraction theory can be used to determine the linear response in an irregular wave spectrum. Applying the assumptions of a narrow banded linear motion response to Gaussian distributed waves, Ochi (1964) developed the following expression for the probability of exceedence P of a certain value R of a peak of the relative wave motions: - die water on deck on the ship motions- the above water hull shape at bow and stem- die non-linearities in the wavesThe effect of the water on deck on the ship motionsIn (Buchner, 1995b) a study was carried out to investigate the sensitivity of the pitch motions for water on the deck. The load of the water on the deck has a large moment arm with respect to the centre of gravity, resulting in a significant green water moment M g. In this study it was found that the pitch motion changes significantly as a result of the green water in short waves, whereas the effect in the longer waves is small. This is due to the ratio between the wave exciting moment M6 and the moment due to the green water M g. This ratio is large for the longer waves and small for the shorter waves. These results are supported by the results of the present study.Based on the measurements of the water heights on the deck at three positions and the vertical acceleration of the deck at the related positions, the green water moment M( was estimated for three regular waves with different ratios between wave length X and ship length L, In the Table 2 the maximum values of M( and the linear wave moment M e are summarised. It will be clear from these numbers that the green water moment can have a large effect on the ship motions, especially in short waves. Its final effect is dependent on the phase of this moment compared to the ship motions and wave exciting moment (Buchner, 1995b).p(r>R) = exp2s J(2)The effect of the above water hull shape at bow and stern Another important aspect in the non-linearity of the relative wave motions is the effect of the hull shape above the still wateriine in large waves. When the waves and ship motions are large, the bow and stem of the vessel are pushed into the water and the effect of the above water shape cannot be neglected any more. The additional buoyancy and wave loading result in an effect on the ship motions, such as pitch.The above water bow flare also has a significant disturbance on the wave panem around the bow. Figure 4 shows die wave contours in front of the full elliptical bow with a bow flare of 30 degrees. This figure clearly shows the disturbance of the wave in a ripple dial is progressing away from the bow. This ripple is clearly due to the above water hull shape and has its effect on the relative motions. The flared wedge that is pushed in die water with a certain velocity results in a swell up around the bow.In Figure 5 the time traces are shown of die relative motion in front of the bow in regular wave tests on the full elliptical bow with flare angles of 10,30 and 50 degrees. It is clear from these time traces that the ripple on the relative wave signal is increasing with the flare angle. With hardly any flare (10 degrees) the time traces are almost sinusoidal, but going to 30 and 50 degrees the disturbance in the main signal is growing. It should be noted that the disturbance of the bow flare stops at die moment that the relative motion comes above me deck edge. After such a freeboard exceedence the ripple progresses away from the bow and does not effect the relative motions around die deck edge any more, see Figure 4. If we now consider the effect of this wave disturbance on me peaks in die relative motion time traces in Figure 6 for different wave heights (30 degrees bow flare), we see that the effect on the peak values for large freeboard exceedences is small. However, for smaller maxima in the relative motions, which do not come (high) above the deck edge, me effect of the bow flare is relatively large. We see that for the largest amplitude the bow flare disturbance is a ripple on the time trace, without an effect on the maximum amplitude. However, for the smaller relative wave motions in the other lime traces we see that the disturbance starts to effect the maximum amplitudes. In irregular wave spectra something similar happens, where the small maxima below die freeboard are increased by die above water flare angle, whereas the larger maxima are not affected. This is confirmed by the probability of exceedence plots of die relative motions in Figure 2.The effect of die bow flare on the wave disturbance generally increases die relative wave motions. However, the effect of the buoyancy and wave loads on die bow flare tends to reduce the ship motions.The effect of the non-llnearitv In the wavesThe incoming waves can, as the input to the green water problem, be an important source of non-linearities in die relative wave motion result In Figure 7 the probability of exceedence is shown for a survival wave spectrum (Hs=13.5 m, Tp=14 s). Also the theoretical line based on the linear Rayleigh distribution is shown.This Figure clearly shows dial for diis type of survival waves the wave crests do not follow the Rayleigh distribution (Kriebel and Dawson, 1993). In fact, me Rayleigh distribution underestimates die probability of exceedence of extreme wave crests significanüy, see Figure 7. This result is surprising because me measured relative wave motions wiui respect to the vessel are all overestimated by the Rayleigh distribution for large extremes, see Figure 2. This suggests that the water on deck and die above water hull shape have an opposite effect dian the non-linearities in the waves. The water on deck and the above water hull shape decrease die relative wave motions in large waves, whereas die non-linearity in die waves increases me relative wave motions. This makes die description of the combined non-linearity even more complex.DEVELOPMENT OF NEW METHODThe number of methods for die description of non-linearities in literature is significant, but these metiiods are generally unable to describe phenomena that have a significant discontinuity as the present problem at die freeboard height. Therefore a new metiiod had to be developed. The following requirements were considered in the development of this method:a The method should allow a fast, flexible and accurate evaluationof die relative wave motions to determine the required freeboardheight for dry foredecks or to determine the maximum exceedence of the freeboard if water is allowed on die deck.b The method should be able to include die effect of the main(underwater) hull shape, above water hull shape and freeboardheight. The discontinuity at die freeboard level has a largeeffect on die distribution of the extreme relative motions.c The probability of exceedence of die relative motions in dieexpression should continuously decrease with increasing relativemotions.Based on diese requirements die new metiiod was developed. A schematic overview of the steps die new method is given in Figure 8 and die summary below.1. For die (underwater) hull shape of die ship tiiat has to beinvestigated, the Response Amplitude Operator (RAO) of the relative wave motion in front of die bow is calculated widi linear(3D) diffraction theory. In this method the ship motions are determined together with me incoming, reflected (diffracted) and radiated waves. Linear diffraction analysis is a reliable, validatedand fast metiiod that is widely available in die offshore industry.The results presented in this study show differences in large survival waves between measurements and diffraction calculations, but still it is clear tiiat diffraction dieory predicts themain trends correctly. Especially die results in small waves confirm the validity of die mediod.2. Based on the RAO from the linear diffraction calculations thelinear relative motion response in die applicable wave spectrum isdetermined, with its standard deviation (s) and typical period (T).3. Based on die linear standard deviation, die extreme relative wavemotions are now calculated based on die new non-linear expression for the probability of exceedence, taking into accountthe above bow flare angle, wave period and freeboard height.In this way the present mediod is based on a decomposition of the problem in the determination of die main ship and wave motions (with linear dieory) and die correction for non-linearities as a result of local flow effects and large waves.Expression for relative motions below the freeboardBased on the observation mat linear dieory predicts die relative motion very well in small waves, it was decided to develop for step 3 a modified Rayleigh distribution for die relative motions below die freeboard. We start with the assumption that die relation between die non-linear result r and die linear result r t can be expressed as die following third order polynomial function:f] =a.r + b.r2+c.r3 (3) This expression is always going through zero, which implies that for small motions the linear result and non-linear result are approaching each other as expected based on linear theory. An example is shown in Figure 9 below for a scries of regular wave tests with different wave heights. This expression is slightly different from what is usual in perturbation methods, where the non-linearity is a function of the linear result. The present formulation is, however, essentially the same and allows a more efficient formulation of the method, see equation 6. P(r>R) = l-| a.r +b.r2+c.r3Which is equal to:.exp(a.r + b.r2+c.r3)22s'P(r > R) = exp.(a+2.b.r + 3.c.r)(--*—).(a + b.R+c.R2)2.s2(10)(11)For narrow band linear systems the probability of occurrence p(r,) can be expressed as (Kriebel and Dawson, 1993, Ochi, 1964):p(r i)=-r e x P2s'(4)The probability of exceedence is equal to the well known Rayleigh distribution in this case, see expression (2). The probability of occurrence of the non-linear amplitude p(r) can now be obtained from expressions (3) and (4) by transformation of random variables, see for instance Kriebel et al. (1993) and Tayfun (?):dr,p(D = p(r,)-i-dr(5) Therefore we write:—!-=a + 2.b.r + 3.c.r'dr(6)This results in the following expression for the probability of occurrence of the non-linear relative motion r.P(r) = a.r + b.r + c.r.exp(a.r + b.r2+c.r3)22s J (7).(a + 2.b.T + 3.c.r l)The probability of exceedence of a certain value R can now be expressed as:P(r>R) = ] a.r + b.r + c.r .exp (a.r + b.r2+c.r3)22s J (8).(a + 2.b.T + 3.c.r*) For a=l, b=0 and c=0 this reduces as expected to the Rayleigh distribution in expression (2). Next the discontinuity around the freeboard has to be accounted for.Expression for relative motions above the freeboardAfter an extensive evaluation of the problem it was decided to develop an additional expression for extremes above the freeboard. Starting point is the probability of exceedence at the freeboard level (fb), which is expressed in a factor P as follows:P(r > fb) = exp (--^-).(a + b.fb + c.fb2)2.s2= exp[P] (12)For the probability of exceedence of relative motions above the freeboard the following additional expression was developed:P(r > R) = exp p+TfcR-fb).d+(R-fb)2.e + (R-fb)3.f] (13)orP(r>R) = exp 2.s(-^T).(a + b.ib + c.fb2) + T[(R-fb).d+ (R-fb)2.e + (R-fb)3.f](14)This expression describes the non-linearity above the freeboard again as a third order polynomial non-linearity. The matching of the distribution above and below the freeboard is guaranteed with this formulation, whereas the discontinuity at the freeboard level can be taken into account. The factor x corrects for the fact that the distribution above the freeboard in expressions (13) and (14) is influenced by the value of p at the freeboard height, which is a disadvantage of the present method, T is dependent on the ratio between the standard deviation of the linear relative motion (s) and the freeboard height (fb), which in the present test series was equal tofb/s=1.3 At present a linear relation is assumed between T and fb/s according to:To come to a closed form solution, this is converted according to:P(r > R) = 1 - P(r < R) (9)T=1.0 + 0.83.(—-1.3)s(15)Using the standard deviation from linear theory (s) and the applicable freeboard height, (fb) the expressions (11) and (14) can now be fitted through the measured probability of exceedences of the relative motions.In this way the parameters a-f were determined for each bow flare angle (0, 10, 30 and 50 degrees) and peak period of the spectrum. In Figure 10 below an example is shown of a measured and fitted probabi-lity of exceedence for a bow flare angle of 30 degrees. This figure makes clear that the chosen expressions are able to describe successful-ly the observed non-linear distributions with their different behaviour above and below die freeboard.Validation of developed expressionGoing back to the sequence in Figure 8, die developed method should now be able to predict the non-linearity in other situations with other hull dimensions or underwater shapes, but with similar above water flare angles. For this validation two cases were used with a bow flare of 30 degrees (Tp=14.0s):• Case 1 with a different stem but with a same bow and bow flare angle - Case 2 with an enlarged freeboard heightIn Case 1 there is a significant variation in standard deviation s in the linear diffraction theory motions, from 8.03 m for the original (tanker type) stem to 7.17 m for the full (box type) stem. In Case 2 there was a significant variation in freeboard height (fb) from 10.5 to 15.5 m, with the same linear standard deviation (the situation below the still waterline is identical).The predicted and measured distributions for Case 1 are shown in Figure 11, together with the Rayleigh distribution. It shows a good comparison between measurements and predictions. In Figure 12 a comparison is made between the original distribution (10.5 m freeboard) and die distribution with enlarged freeboard height from Case 2 (15.5 m freeboard). This Figure confirms a general observation in tests of FPSOs: if after a test with much green water on me deck an enlarged freeboard is applied to prevent green water, the relative motions seem the increase too. The enlarge freeboard height is not completely effective. This is due to the reduced amount of water on the deck, the reduced lowering of the wave height around the bow due to a reduced flow onto the deck and the increased swell up effect of the flare on the wave motions. In Figure 13 it is shown that the new method is able to predict this effect of the increased freeboard accurately. The comparisons in Case 1 and 2 make clear that the chosen expression is able to predict the non-linear distribution of extremes with a good accuracy.Effect of currentCurrent can have a significant increasing effect on the green water on FPSOs (Buchner, 1995a). This is not due to the effect of the current velocity on the flow onto die deck, but a result of the increased relative wave motions in current (when it is collinear with the waves). This effect is mainly due to the increased pitch motions in current. These increased pitch motions are due to the increase in wave length if the same earth fixed wave frequency is used in current (Buchner, 1995a). Due to this increase in wave length, the wave exciting forces on the tanker increase, whereas the wave period comes closer to the pitch natural period of the F(P)SO. This combined effect, taking into account the influence of the current on added mass and damping, results in the increase of vessel motions. These effects can be calculated with linear theory, as was shown for instance by Huijsmans and Dallinga (1983) and Beck and Loken (1989).Using the linear RAOs in current from mis method, the linear standard deviation was determined in a current speed of 2.0 knots. This standard deviation was included in expressions (11) and (14) for a bow flare angle of 30 degrees (determined without current). In Figure 14 the predicted and measured probabilities of exceedence areshown for the 2.0 knots current situation. The predicted probability ofexceedence shows a very good comparison widi the measurement.This confirms that the presently proposed method can be used to takeinto account the effect of current on die relative motions of the bow.APPUCATIONIn die Joint Industry Project the expressions were determined forbow flare angles of 0, 10, 30 and 50 degrees. Spectral peak periods of12, 14 and 16 s were considered. As an example Figure 15 shows theprobability of exceedence based on expressions (11) and (14) for allbow flare angles with a freeboard height of 10.5 m and a spectralpeak period of 14.0 s. The related linear Rayleigh distribution isshown too.With the new expressions for the probability of exceedence designvalues for the maximum relative wave motions can be determined, suchas the Most Probable Maximum (MPM) value. The MPM value is therelative wave motion value for which the following relation applies:PCr>R M PM> = 17 <16) N is die total number of relative motion maxima in the total stormduration. Taking die situation in Figure 15 and assuming 100 waveoscillations (N=100, P=0.01) we find the overview of Most ProbableMaximum relative motions and freeboard exceedences for thissituation in Table 3, P(r>MPM=0.01). It can be concluded that theRayleigh distribution in this case is conservative with respect to die measurements. The results also show the influence of the bow flareangle on the relative wave motions.Widi die developed expressions it is possible to study the effect ofdesign decisions with respect to die above water hull shape (bow flareangle and freeboard height) on the relative wave motions. It should benoted that die bow flare angle not only influences the relative wavemotions. It also influences the relation between the exceedence of thefreeboard and die water height on die deck, the water velocity overthe deck and die impact loading on structures are influenced by thebow flare angle. This will be studied and presented in a future paper.CONCLUSIONBased on the results presented in this paper it can be concluded thatthe developed meüiod is very useful for the prediction of the extremerelative wave motions. These can be used for the prediction of therequired bow height for dry fore decks or to determine die maximumfreeboard exceedence as input to the study of the green waterbehaviour on die deck. It allows a fast evaluation of the effect of theabove water hull shape (bow flare angle and freeboard height) on therelative wave motions.ACKNOWLEDGEMENTSThe author wishes to thank the participants of the Joint IndustryProject 'F(P)SO Green Water Loading' for die cooperation in die projectand the permission for publication of mis paper ABB OffshoreTechnology, Bluewater Engineering, BP, Chevron, Conoco, Exxon,FMC Sofec, Germanischer Lloyd, Health & Safety Executive (HSE),Maersk Contractors, Mobil, Samsung Heavy Industries, SBM, GustoEngineering, Shell and Texaco. Gert van Ballegoyen of MARIN isacknowledged for his continuous support in die analysis of die results.。
音响英语词汇
专业英语词汇A (1)专业英语词汇B (7)专业英语词汇C (10)专业英语词汇D (14)专业英语词汇E (19)专业英语词汇F (22)专业英语词汇G (25)专业英语词汇H (26)专业英语词汇I (28)专业英语词汇J (30)专业英语词汇K (31)专业英语词汇L (31)专业英语词汇M (34)专业英语词汇N (38)专业英语词汇O (39)专业英语词汇P (40)专业英语词汇Aampler 取样装置AAC automatic ampltiude control 自动幅度控制AAD active acoustic devide 有源声学软件AB AB制立体声录音法ABC auto base and chord 自动低音合弦Abeyancd 暂停,潜态A-B repeat A-B重复ABS absolute 绝对的,完全的,绝对时间ABS american bureau of standard 美国标准局ABSS auto blank secrion scanning 自动磁带空白部分扫描Abstime 绝对运行时间A.DEF audio defeat 音频降噪,噪声抑制,拌音静噪ADJ adjective 附属的ADJ Adjust 调节ADJ acoustic delay line 声延迟线Admission 允许进入,供给ADP acoustic data processor数据处理机ADP(T) adapter 延配器,转接器ADRES automatic dynamic range expansion system 动态范围扩展系统ADRM analog to digital remaster 模拟录音、数字处理数码唱盘ADS audio distribution system 音频分配系统A.DUB audio dubbing 配音,音频复制,后期录音ADV advance 送入,提升,前置量ADV adversum 对抗ADV advancer 相位超前补偿器Adventure 惊险效果AE audio erasing 音频(声音)擦除AE auxiliary equipment 辅助设备Aerial 天线AES audio engineering society 美国声频工程协会AF audio fidelity 音频保真度AF audio frequency 音频频率AFC active field control 自动频率控制AFC automatic frequency control 声场控制Affricate 塞擦音AFL aside fade listen 衰减后(推子后)监听A-fader 音频衰减AFM advance frequency modulation 高级调频AFS acoustic feedback speaker 声反馈扬声器AFT automatic fine tuning 自动微调AFTAAS advanced fast time acoustic analysis system 高级快速音响分析系统After 转移部分文件Afterglow 余辉,夕照时分音响效果Against 以……为背景AGC automatic gain control 自动增益控制AHD audio high density 音频高密度唱片系统AI advanced integrated 预汇流AI amplifier input 放大器输入AI artificial intelligence 人工智能AI azimuth indicator 方位指示器A-IN 音频输入A-INSEL audio input selection 音频输入选择Alarm 警报器ALC automatic level control 自动电平控制ALC automatic load control 自动负载控制Alford loop 爱福特环形天线Algorithm 演示Aliasing 量化噪声,频谱混叠Aliasing distortion 折叠失真Align alignment 校正,补偿,微调,匹配Al-Si-Fe alloy head 铁硅铝合金磁头Allegretto 小快板,稍快地Allegro 快板,迅速地Allocation 配置,定位All rating 全(音)域ALM audio level meter 音频电平表ALT alternating 震荡,交替的ALT alternator 交流发电机ALT altertue 转路ALT-CH alternate channel 转换通道,交替声道Alter 转换,交流电,变换器AM amperemeter 安培计,电流表AM amplitude modulation 调幅(广播)AM auxiliary memory 辅助存储器Ambience 临场感,环绕感ABTD automatic bulk tape degausser 磁带自动整体去磁电路Ambient 环境的Ambiophonic system 环绕声系统Ambiophony 现场混响,环境立体声AMLS automatic music locate system 自动音乐定位系统AMP ampere 安培AMP amplifier 放大器AMPL amplification 放大AMP amplitude 幅度,距离Amorphous head 非晶态磁头Abort 终止,停止(录制或播放)A-B TEST AB比较试听Absorber 减震器Absorption 声音被物体吸收ABX acoustic bass extension 低音扩展AC accumulator 充电电池AC adjustment caliration 调节-校准AC alternating current 交流电,交流AC audio coding 数码声,音频编码AC audio center 音频中心AC azimuth comprator 方位比较器AC-3 杜比数码环绕声系统AC-3 RF 杜比数码环绕声数据流(接口)ACC Acceleration 加速Accel 渐快,加速Accent 重音,声调Accentuator 预加重电路Access 存取,进入,增加,通路Accessory 附件(接口),配件Acryl 丙基酰基Accompaniment 伴奏,合奏,伴随Accord 和谐,调和Accordion 手风琴ACD automatic call distributor 自动呼叫分配器ACE audio control erasing 音频控制消磁A-Channel A(左)声道ACIA asynchronous communication interface adapter 异步通信接口适配器Acoumeter 测听计Acoustical 声的,声音的Acoustic coloring 声染色Acoustic image 声像Across 交叉,并行,跨接Across frequency 交叉频率,分频频率ACST access time 存取时间Active 主动的,有源的,有效的,运行的Active crossover 主动分频,电子分频,有源分频Active loudspeaker 有源音箱Active page 活动页Activity (线圈)占空系数,动作Actual level 有效电平ACTV advancde compatible television 与普通电视兼容的高清晰度电视系统ACU automatic calling unit 自动呼叫装置Adagio 柔板(从容地)ADAP Adapter 适配器,外接电源A/D audio to digital 模拟/数字ADC audio digital conversion 模拟数字转换ADD address 地址Adder 混频器AMS 跳曲播放AMS audio monitor selection 音频监听选择AMS Acoustic measuriment system 音响测量系统AMS automatic music sensor 自动音乐传感器AMSS automatic music select system 自动音乐选择系统Analog(ue) 模拟的,模型,类似Analog cueing track 模拟提示轨迹Analog audio master tape 模拟原版录音带Analog cassette tape 模拟磁带录机Analyzer 分析仪ANG automatic noise canceller 自动噪声消除器Anechoic chamber 消声室,无回声室Angle 角度ANL automatic noise limiter 自动噪声抑制器Announciator 报警器Anode 阳极,正极ANRS automatic noise reduction system 自动降噪系统ANT antenna 天线Antihum 哼声消除Anti-hunt 阻尼,反搜索Anti-noise 抗干扰AOM acoustic optical modulator 声光调制器AP automatic pan 自动声像(控制)APC automatic phase control 相位自动控制APC automatic power control 自动功率控制APCM adaptive PCM 自适应性脉冲编码调制Aperture distortion 孔径失真APLD automatic program locate device 自动选曲APN allochthonous 声像漂移APO automatic power off 自动电源关断Append 附加,插入APS automatic program search 自动节目搜索APSS auto program search system 自动选曲系统APSS automatic program pause system 自动节目暂停系统APSS automatic program search system 自动节目搜索系统APU audio playback unit 音频重放装置AR assisted resonance 接受共振(声场控制方式)AR audio response 音频响应ARC automatic record control 自动录音控制(系统)ARC automatic remote control 自动遥控Architectural acoustics 建筑声学Armstrong MOD 阿姆斯特朗调制ARP azimuth reference pulse 方位基准脉冲Arpeggio 琶音Articulation 声音清晰度,发音Artificial 仿……的,人工的,手动(控制)Architectural acoustics 建筑声学Arm motor 唱臂唱机Arpeggio single 琶音和弦,分解和弦ARL aerial 天线ASC automatic sensitivity control 自动灵敏度控制ASGN Assign 分配,指定,设定ASP audio signal processing 音频信号处理ASS assembly 组件,装配,总成ASSEM assemble 汇编,剪辑ASSEM Assembly 组件,装配,总成Assign 指定,转发,分配Assist 辅助(装置)ASSY accessory 组件,附件AST active servo techonology 有源伺服技术A Tempo 回到原速Astigmatism method 象散法Asynchronous bit-stream 非同步比特流AT antenna 天线AT attenuator 衰减器ATC automatic timing correction 自动定时校正器ATC automatic tone correction 自动音调调整ATD automatic tape degausser 磁带自动去磁器ATF automatic track finding 自动寻迹ATRAC adaptive transform. acoustic coding 自适应转换声学编码ATS automatic tuning system 自动调谐系统ATSC advancde television systems committee 美国数字电视标准ATT attenuator 衰减器Attack 启动时间Attack delay 预延时Attenuater 衰减网络,屏蔽材料Attenuation 衰减AHD audio high density 音频高密度唱片AU Adapter unit 适配器AUD audio 音频的,音频,音响Audible sound 可听声Audience area 听众区Audifier 声频放大器Audio 音频Audiophile 音响发烧友Audition 试听发音,播音前试音Aural Exciter 听觉激励器Auricle effect 耳廓效应AUTO automatic 自动的,自动Auto fade 自动电平衰减Automatch 自动匹配Auto-changer 自动换片器Auto-reset overload protector 自动复原过载保护器Auto reverse 自动翻转Auto-select 自动选择Auto-space 自动插入空白信号Auto-sweep 自动扫描,自动搜寻Autotune 自动调谐AUTP autopunch 自动穿插录音AUX auxiliary 辅助输出,辅助输入AV audio/video 音视频,音像系统AV audio visual 视听,视听系统AVAL available volume control 自动音量控制AVC automatic volume control 自动音量控制Average value 平均值,平衡,抵消AVG average 平均值AV MUTING 音像系统静噪AWCS acoustic wave cannon system 声波管系统A-weighting A-计权AWG acoustic wave guide 声波导AWGN additive white gaussion noise 相加白高斯噪声AWM audio wave from memory 音频波形记忆AWM automatic writinf machine 自动写入机Axis 轴向的,轴线的Azimuth loss 方位损失APTWG copy protection technical working group 复制保护技术工作级专业英语词汇BB band 频带B Bit 比特,存储单元B Button 按钮Babble 多路感应的复杂失真Back 返回Back clamping 反向钳位Back drop 交流哼声,干扰声Background noise 背景噪声,本底噪声Backing copy 副版Backoff 倒扣,补偿Back tracking 补录Back up 磁带备份,支持,预备Backward 快倒搜索Baffle box 音箱BAL balance 平衡,立体声左右声道音量比例,平衡连接Balanced 已平衡的Balancing 调零装置,补偿,中和Balun 平衡=不平衡转换器Banana jack 香蕉插头Banana bin 香蕉插座Banana pin 香蕉插头Banana plug 香蕉插头Band 频段,Band pass 带通滤波器Bandwidth 频带宽,误差,范围Band 存储单元Bar 小节,拉杆BAR barye 微巴Bargraph 线条Barrier 绝缘(套)Base 低音Bass 低音,倍司(低音提琴)Bass tube 低音号,大号Bassy 低音加重BATT battery 电池Baud 波特(信息传输速率的单位)Bazooka 导线平衡转接器BB base band 基带BBD Bucket brigade device 戽链器件(效果器)B BAT Battery 电池BBE 特指BBE公司设计的改善较高次谐波校正程度的系统BC balanced current 平衡电流BC Broadcast control 广播控制BCH band chorus 分频段合唱BCST broadcast (无线电)广播BD board 仪表板Beat 拍,脉动信号Beat cancel switch 差拍干扰消除开关Bel 贝尔Below 下列,向下Bench 工作台Bend 弯曲,滑音Bender 滑音器BER bit error rate 信息差错率BF back feed 反馈BF Backfeed flanger 反馈镶边BF Band filter 带通滤波器BGM background music 背景音乐Bias 偏置,偏磁,偏压,既定程序Bidirectional 双向性的,8字型指向的Bifess Bi-feedback sound system 双反馈系统Big bottom 低音扩展,加重低音Bin 接收器,仓室BNG BNC连接器(插头、插座),卡口同轴电缆连接器Binaural effect 双耳效应,立体声Binaural synthesis 双耳合成法Bin go 意外现象Bit binary digit 字节,二进制数字,位,比特(二进制单位)Bitstream 数码流,比特流Bit yield 存储单元Bi-AMP 双(通道)功放系统Bi-wire 双线(传输、分音)Bi-Wring 双线BK break 停顿,间断BKR breaker 断电器Blamp 两路电子分音Blanking 关闭,消隐,断路Blaster 爆裂效果器Blend 融合(度)、调和、混合Block 分程序,联动,中断Block Repeat 分段重复Block up 阻塞Bloop (磁带的)接头噪声,消音贴片BNC bayonet connector 卡口电缆连接器Body mike 小型话筒Bond 接头,连接器Bongo 双鼓Boom 混响,轰鸣声Boomy 嗡嗡声(指低音过强)Boost 提升(一般指低音),放大,增强Booth 控制室,录音棚Bootstrap 辅助程序,自举电路Both sides play disc stereo system 双面演奏式唱片立体声系统Bottoming 底部切除,末端切除Bounce 合并Bourclon 单调低音Bowl 碗状体育场效果BP bridge bypass 电桥旁路BY bypass 旁通BPC basic pulse generator 基准脉冲发生器BPF band pass filter 带通滤波器BPS band pitch shift 分频段变调节器BR b-register 变址寄存器BR Bridge 电桥Break 中止(程序),减弱Breathing 喘息效应B.Reso base resolve 基本解析度Bridge 桥接,电桥,桥,(乐曲的)变奏过渡Bright 明亮(感)Brightness 明亮度,指中高音听音感觉Brilliance 响亮BRKRS breakers 断路器Broadcast 广播BTB bass tuba 低音大喇叭BTL balanced transformer-less 桥式推挽放大电路BTM bottom 最小,低音BU backup nuit 备用器件Bumper 减震器Bus 母线,总线Busbar 母线Buss 母线Busy 占线BUT button 按钮,旋钮BW band width 频带宽度,带度BYP bypass 旁路By path 旁路BZ buzzer 蜂音器B/C type Dolby System 杜比BC型系统专业英语词汇CC cathode 阴极,负极C Cell 电池C Center 中心C Clear 清除C Cold 冷(端)CA cable 电缆Cable 电缆Cabinet 小操纵台CAC coherent acoustic coding 相干声学编码Cache 缓冲存储器Cal calando 减小音量CAL Calendar 分类CAL Caliber 口径CAL Calibrate 标准化CAL Continuity accept limit 连续性接受极限Calibrate 校准,定标Call 取回,复出,呼出Can 监听耳机,带盒CANCL cancel 删除CANCL Cancelling 消除Cancel 取消Cannon 卡侬接口Canon 规则Cap 电容Capacitance Mic 电容话筒Capacity 功率,电容量CAR carrier 载波,支座,鸡心夹头Card 程序单,插件板Cardioid 心型的CATV cable television 有线电视Crispness 脆声Category 种类,类型Cartridge 软件卡,拾音头Carrkioid 心型话筒Carrier 载波器Cartridge 盒式存储器,盒式磁带Cascade 串联Cassette 卡式的,盒式的CAV constant angular velocity 恒角速度Caution 报警CBR circuit board rack 电路板架CC contour correction 轮廓校正CCD charge coupled device 电荷耦合器件CD compact disc 激光唱片CDA current dumping amplifier 电流放大器CD-E compact disc erasable 可抹式激光唱片CDG compact-disc plus graphic 带有静止图像的CD唱盘CD constant directional horn 恒定指向号角CDV compact disc with video 密纹声像唱片CE ceramic 陶瓷Clock enable 时钟启动Cell 电池,元件,单元Cellar club 地下俱乐部效果Cello 大提琴CEMA consumer electronics manufacturer'sassociation (美国)消费电子产品制造商协会CENELEC connector 欧洲标准21脚AV连接器Cent 音分Central earth 中心接地CES consumer electronic show (美国)消费电子产品展览会CF center frequency 中心频率Cross fade 软切换CH channel 声道,通道Chain 传输链,信道Chain play 连续演奏Chamber 密音音响效果,消声室CHAN channel 通道Change 交换Chapter 曲目Chaper skip 跳节CHAE character 字符,符号Characteristic curve 特性曲线Charge 充电Charger 充电器Chase 跟踪Check 校验CHC charge 充电CH - off 通道切断Choke 合唱Chromatic 色彩,半音Church 教堂音响效果CI cut in 切入CIC cross interleave code 交叉隔行编码CIRC circulate 循环Circuit 电路CL cancel 取消Classic 古典的Clean 净化CLR clear 归零Click 嘀哒声Clip 削波,限幅,接线柱CLK clock 时钟信号Close 关闭,停止CLS 控制室监听Cluster 音箱阵效果CLV ceiling limit value 上限值CMP compact 压缩CMPT compatibility 兼容性CMRR common mode rejection ratio 共模抑制比CNT count 记数,记数器CNTRL central 中心,中央CO carry out 定位输出Coarse 粗调Coax 同轴电缆Coaxial 数码同轴接口Code 码,编码Coefficient 系数Coincident 多信号同步Cold 冷的,单薄的Color 染色效果COM comb 梳状(滤波)COMB combination 组合音色COMBI combination 组合,混合COMBO combination 配合,组合Combining 集合,结合COMM communication 换向的,切换装置Command 指令,操作,信号COMMON 公共的,公共地端Communieation speed 通讯速度选择COMP comparator 比较器COMP compensate 补偿Compact 压缩Compander 压缩扩展器Compare 比拟Compatibility 兼容Compensate 补偿Complex 全套设备Copmoser 创意者,作曲者Compressor 压缩器COMP-EXP 压扩器Compromise (频率)平衡Computer 计算机,电脑CON concentric cable 同轴电缆CON console 操纵台CON controller 控制器Concentric 同轴的,同心的Concert 音乐厅效果Condenser Microphone 电容话筒Cone type 锥形(扬声器)CONFIG 布局,线路接法Connect 连接,联络CORR correct 校正,补偿,抵消Configuration 线路布局Confirmation 确认Consent 万能插座Console 调音台Consonant 辅音Constant 常数CONT continuous 连续的(音色特性)CONT control 控制,操纵Contact 接触器Content 内容Continue 连续,继续Continue button 两录音卡座连续放音键Contour 外形,轮廓,保持Contra 次八度Contrast 对比度Contribution 分配Controlled 可控的Controller 控制器CONV conventional 常规的CONV convert 变换CONV convertible 可转换的Copy 复制Correlation meter 相关表Coupler 耦合Cover 补偿Coverage 有效范围CP clock pulse 时钟脉冲CP control program 控制程序CPU 中央处理器CR card reader 卡片阅读机CRC cyclic redundancy check 循环冗余校验Create 建立,创造Crescendo 渐强或渐弱Crispness 清脆感CRM control room 控制室CROM control read only memory 控制只读存储器Crossfader 交叉渐变器Cross-MOD 交叉调制Crossover 分频器,换向,切断Cross talk 声道串扰,串音Crunch 摩擦音C/S cycle/second 周/秒CSS content scrambling system 内容加密系统CST case style. tape 盒式磁带CT current 电流CTM close talking microphone 近讲话筒CU counting unit 计数单元Cue 提示,选听Cue clock 故障计时钟Cueing 提示,指出Cursor 指示器,光标Curve (特性)曲线Custom 常规CUT 切去,硬切换Cut-in 断-通Cut-off 切去Cut-out 中断Cut-over 开通,转换Cutter 切换器CV converters 变换器CVD china video disc 中国数字视盘CW continuous wave 连续波CX cancel 删除,消除噪声Cyclelog 程序调节器Cmoscope 检波器专业英语词汇DD double 双重的,对偶的D drum 鼓,磁鼓DA delayed action 延迟作用D/Adigital/analog 数字/模拟DAB digital audio broadcasting 数字音频广播Damp 阻尼DASH digital audio stationar head 数字固定磁头Dashpot 缓冲器,减震器DAT digital audio tape 数字音频磁带,数字录音机DATA 数据DATAtron 数据处理机DATE 日期DB(dB) decibel 分贝DB distribution 分线盒DBA decibel asolute 绝对分贝DBA decibel adjusted 调整分贝DBB dynamic bass boost 动态低音提升DBK decibels referred to one kilowatt 千瓦分贝DBm decibel above one milliwatt in 600 ohms 毫瓦分贝DBS direct broadcast satellite 直播卫星DBX 压缩扩展式降噪系统DC distance controlled 遥控器DCA digital command assembly 数字指令装置DCE data circuit terminating equipment 数据通讯线路终端设备DCF digital comb filter 数字梳状滤波器DCH decade chorus 十声部合唱DCP date central processor 数据中心处理器DD direct drive 直接驱动DD dolby digital 数字杜比DDC direct digital control 直接数字控制DDS digital dynamic sound 数字动态声DDT data definition table 数据定义表Dead 具有强吸声特性的房间的静寂DEC decay 衰减,渐弱,余音效果Decibel 分贝Deck 卡座,录音座,带支加的,走带机构Deemphasis 释放Deep reverb 纵深混响De-esser 去咝声器DEF defeat 消隐,静噪Delete 删除Delivery end 输入端DEMO demodulator 解调器Demo 自动演奏Demoder 解码器Density 密度,声音密度效果Detune 音高微调,去谐DepFin 纵深微调Depth 深度Denoiser 降噪器Design 设计Destroyer 抑制器DET detector 检波器Deutlichkeit 清晰度DEV device 装置,仪器DEX dynamic exciter 动态激励器DF damping factor 动态滤波器DFL dynamic filter 动态滤波DFS digital frequency synthesizer 数字频率合成器DI data input 数据输入Diagram 图形,原理图Dial 调节度盘Difference 不同,差别DIFF differential 差动Diffraction 衍射,绕射Diffuse 传播Diffusion 扩散DIG digit 数字式Digital 数字的,数字式,计数的Digitalyier 数字化装置DIM digital input module 数字输入模块DIM diminished 衰减,减半音Dimension 范围,密度,尺寸,(空间)维,声像宽度Din 五芯插口(德国工业标准)DIN digital input 数字输入DIR direct 直接的,(调音台)直接输出,定向的Direct box 指令盒,控制盒Direct sound 直达声Directory 目录Direction 配置方式Directional 方向,指向的Directivity 方向性DIS display 显示器DISC disconnect 切断,开路DISC discriminator 鉴相器Disc 唱盘,唱片,碟Disc holder 唱片抽屉Disc recorder 盘片式录音机Dischage 释放,解除Disco 迪斯科,迪斯科音乐效果Discord 不谐和弦Disk 唱盘,碟DISP display 显示器,显示屏Dispersion 频散特性,声音分布Displacement 偏转,代换Distortion 失真,畸变DIST distance 距离,间距DIST district 区间Distributer 分配器,导向装置DITEC digital television camera 数字电视摄像机Dim 变弱,变暗,衰减DIV divergence 发散DIV division 分段DIV divisor 分配器Diversity 分集(接收)Divider 分配器Divx 美国数字视频快递公司开发的一种每次观看付费的DVDDJ Disc Jocker 唱片骑士DJ dust jacket 防尘罩DJ delay 延迟DLD dynamic linear drive 动态线性驱动DLLD direct linear loop detector 直接线性环路检波器DME digital multiple effector 数字综合效果器DMS date multiplexing system 数据多路传输系统DMS digital multiplexing synchronizer 数字多路传输同步器DMX data multiplex 数据多路(传输)DNL dynamic noise limiter 动态噪声抑制器DNR dynamic noise reduction 动态降噪电路DO dolly out 后移DO dropout 信号失落DOB dolby 杜比DOL dynamic optimum loudness 动态最佳响度Dolby 杜比,杜比功能Dolby Hx Pro dolby Hx pro headroom extension system 杜比Hx Pro动态余量扩展系统Dolby NR 杜比降噪Dolby Pro-logic 杜比定向逻辑Dolby SR-D dolby SR digital 杜比数字频谱记录Dolby Surround 杜比环绕Dome loudspeaker 球顶扬声器Dome type 球顶(扬声器)DOP doppler 多普勒(响应)Double 加倍,双,次八度Doubler 倍频器,加倍器Double speed 倍速复制D.OUT direct output 直接输出Down 向下,向下调整,下移,减少DPCM differential pulse code modulation 差动脉冲调制DPD direct pure MPX decoder 直接纯多路解调器DPL dolby pro logic 杜比定向逻辑DPL duplex 双工,双联DPLR doppler 多普勒(系统)D.Poher effect 德.波埃效应Dr displacement corrector 位移校准器,同步机DR distributor 分配器DR drum 磁鼓Drain 漏电,漏极DRAM direct read after write 一次性读写存储器Drama 剧场效果DRAW 只读追忆型光盘Dr.Beat 取字时间校准器DRCN dynamic range compression and normalization 动态范围压缩和归一化Drive 驱动,激励Dr.Rhythm 节奏同步校准器DRPS digital random program selector 数字式节目随机选择器DDrum 鼓Drum machine 鼓机Dry 干,无效果声,直达声DS distortion 失真DSC digital signal converter 数字信号转换器DSL dynamic super loudness 低音动态超响度,重低音恢复DSM dynamic scan modulation 动态扫描速度调制器DSP digital signal processor 数字信号处理器DSP display simulation program 显示模拟程序DSP digital sound processor 数字声音处理器DSP digital sound field processor 数字声场处理器DSP dynamic speaker 电动式扬声器DSS digital satellite system 数字卫星系统DT data terminal 数据终端DT data transmission 数据传输DTL direct to line 直接去线路DTS digital theater system 数字影剧院系统DTS digital tuning system 数字调谐系统DTV digital television 数字电视Dual 对偶,双重,双Dub 复制,配音,拷贝,转录磁带Dubbing mixer 混录调音台Duck 按入,进入Dummyload 假负载DUP Duplicate 复制(品)Duplicator 复制装置,增倍器Duration 持续时间,宽度Duty 负载,作用范围,功率Duty cycle 占空系数,频宽比DUX duplex 双工DV device 装置,器件DVC digital video cassette 数字录象带DVD digital video disc 数字激光视盘DX 天线收发开关,双重的,双向的DYN dynamic 电动式的,动态范围,动圈式的Dynamic filter 动态滤波(特殊效果处理)器Dynamic Microphone 动圈话筒Dynamic range 动态范围Dynode 电子倍增器电极专业英语词汇EE early warning 预警E earth 真地,接地E error 错误,差错(故障显示)EA earth 地线,真地EAR early 早期(反射声)Earphone 耳机Earth terminal 接地端EASE electro-acooustic simulators for engineers 工程师用电声模拟器,计算机电声与声学设计软件Eat 收取信号EBU european broadcasting union 欧洲广播联盟EC error correction 误差校正ECD electrochomeric display 电致变色显示器Echo 回声,回声效果,混响ECL extension zcompact limitter 扩展压缩限制器ECM electret condenser microphone 驻极体话筒ECSL equivalent continuous sound level 等级连续声级ECT electronec controlled transmission 电控传输ED edit editor 编辑,编辑器Edit 编辑Edge tone 边棱音EDTV enhanced definition television 增强清晰度电视(一种可兼容高清晰度电视)E-DRAW erasable direct after write 可存可抹读写存储器EE errors excepted 允许误差EFF effect efficiency 效果,作用Effector 操纵装置,效果器Effects generator 效果发生器EFM 8/14位调制法EFX effect 效果EG envelope generator 包络发生器EIA electronec industries association (美国)电子工业协会EIAJ electronic industries association Japan 日本电子工业协会EIN einstein 量子摩尔(能量单位)EIN equivalent input noise 等效输入噪声EIO error in operation 操作码错误Eject 弹起舱门,取出磁带(光盘),出盒EL electro luminescence 场致发光ELAC electroacoustic 电声(器件)ELEC electret 驻极体Electret condenser microphone 驻极体话筒ELF extremely low frequency 极低频ELEC electronec 电子的Electroacoustics 电声学EMI electro magnetic interference 电磁干扰Emission 发射EMP emphasispo 加重EMP empty 空载Emphasis 加重EMS emergency switch 紧急开关Emulator 模拟器,仿真设备EN enabling 启动Enable 赋能,撤消禁止指令Encoding 编码End 末端,结束,终止Ending 终端,端接法,镶边ENG engineering 工程Engine 运行,使用ENG land 工程接地Enhance 增强,提高,提升ENS ensemble 合奏ENS envelope sensation 群感Eensemble 合奏ENT enter 记录Enter 记入,进入,回车Entering 插入,记录Entry 输入数据,进入ENV envelope 包络线Envelopment 环绕感EOP electronic overload protection 电子过载保护EOP end of program 程序结束EOP end output 末端输出EOT end of tape 磁带尾端EP extend playing record 多曲目唱片EP extended play 长时间放录,密录EPG edit pulse generator 编辑脉冲发生器EPS emergency power supply 应急电源EQ equalizer 均衡器,均衡EQ equalization 均衡EQL equalization 均衡Equal-loudness contour 等响曲线Equipped 准备好的,已装备Equitonic 全音Equivalence 等效值ER erect 设置ER error 错误,误差ERA earphone 耳机Eraser 抹去,消除Erasing 擦除,清洗Erasure 抹音Erase 消除,消Er early 早期的ERCD extended resolution CD 扩展解析度CDEREQ erect equalizer 均衡器(频点)位置(点频补偿电路的中点频率)调整ERF early reflection 早期反射(声)Ernumber 早期反射声量Error 错误,出错,不正确ES earth swith 接地开关ES electrical stimulation 点激励Escqpe 退出ETER eternity 无限Euroscart 欧洲标准21脚AV连接器Event 事件EVF envelope follower 包络跟随器(音响合成装置功能单元)EX exciter 激励器EX exchange 交换EX expanding 扩展EXB expanded bass 低音增强EXC exciter 激励器EXCH exchange 转换Exclusive 专用的Excursion 偏移,偏转,漂移,振幅EXP expender 扩展器,动态扩展器EXP export 输出Exponential horn tweeter 指数型高音号角扬声器Expression pedal 表达踏板(用于控制乐器或效果器的脚踏装置)EXT extend 扩展EXT exterior 外接的(设备)EXT external 外部的,外接的EXT extra 超过EXTN extension 扩展,延伸(程控装置功能单元)Extract 轨道提出EXTSN extension 扩展,延伸(程控装置功能单元)专业英语词汇FF fast 快(速)F feedback 反馈F forward 向前F foot 脚踏(装置)F frequency 频率F function 功能Ffactor 因子,因素,系数,因数Fade 衰减(音量控制单元)Fade in-out 淡入淡出,慢转换Fader 衰减器Fade up 平滑上升Failure 故障Fall 衰落,斜度Faraday shield 法拉第屏蔽,静电屏蔽FAS full automatic search 全自动搜索Fast 快速(自动演奏装置的速度调整钮)Fastener 接线柱,闭锁Fat 浑厚(音争调整钮)Fattens out 平直输出(指频响特性曲线为一条直线时的信号输出)Fault 故障,损坏Fader 衰减器,调音台推拉电位器(推子)Fading in 渐显Fading out 渐显False 错误Fancier 音响发烧友Far field 远场FatEr 丰满的早期反射FB feedback 反馈,声反馈FB fuse block 熔丝盒F.B fiver by 清晰FBO feedback outrigger 反馈延伸FCC federal communications commission (美国)联邦通信委员会FD fade depth 衰减深度FD feed 馈入信号FDR fader 衰减器FeCr 铁铬磁带Feed 馈给,馈入,输入Feeder 馈线Feed/Rewind spool 供带盘/倒带盘Ferrite head 铁氧体磁头F.&B. forward and back 前后FET field effect technology 场效应技术FF flip flop 触发器FF fast forward 快进FG flag generator 标志信号发生器FI fade in 渐进Field 声场Field pickup 实况拾音File 文件,存入,归档,数据集,(外)存储器Fill-in 填入FILT filter 滤波器Final 韵母Fine 微调Fingered 多指和弦Finger 手指,单指和弦FIN GND 接地片Finish 结束,修饰FIP digital frequency display panel 数字频率显示板FIR finite-furation impulse response 有限冲激响应(滤波器)Fire 启动Fix 确定,固定Fizz 嘶嘶声FL fluorescein 荧光效果Flange 法兰音响效果,镶边效果Flanger 镶边器Flanging 镶边Flash 闪光信号Flat 平坦,平直Flat noise 白噪声Flat tuning 粗调Flex 拐点FLEX flexible cord 软线,塞绳FLEX frequency level expander 频率扩展器FLEXWAVE flexible waveguide 可弯曲波导管FLG flanger 镶边器Flip 替换,调换Floating 非固定的,悬浮式的Floppy disc 软磁盘FLTR filter 滤波器Fluorescent display 荧光显示器Flute 长笛Flutter 一种放音失真,脉冲干扰,颤动FLW follow 跟踪,随动FLY 均衡器FM fade margin 衰落设备FM frequency modulation 调频广播FM/SW telescopic rod aerial 调频/短波拉杆天线FO fade out 渐隐Focus 焦点,中心点Foldback 返送,监听Foot(board) 脚踏板(开关控制)Fomant 共振峰Force 过载,强行置入Format 格式,格式化,规格,(储存器中的)信息安排Forward 转送FPR floating point routine 浮点程序FPR full power response 全功率响应FR frequency 频率FR frequency response 频率响应Frame. 画面,(电视的)帧Frames 帧数Free 剩余,自由Free echoes 无限回声(延时效果处理的一种)Free edge 自由折环(扬声器)FREEQ frequency 频率F.Rew fast rewind 快倒Freeze 凝固,声音骤停,静止Frequency divider 分频器Frequency shifter 移频器,变频器Fricative 擦音Front 前面的,正面的Front balance 前置平衡Front process 前声场处理FRU field replaceable unit 插件,可换部件FS frequency shift 频移,变调FS full short 全景FT facility terminal 设备(输出)端口FT fine tuning 微调FT foot 脚踏装置FT function tist 功能测试FT frequency tracke 频率跟踪器FTG fitting 接头,配件FTS faverate track selection 最佳声迹选择Full 丰满,饱和Full auto 全自动Full effect recording 全效果录音Full range 全音域,全频Fullness 声音的丰满度Fully compatible player 全制式兼容(激光)唱机FUNC function 功能,操作Function 功能,作用Fundamental tone 基音Fuse 保险丝,熔断器Fuzz 杂乱声FX effect 效果FX foreign exchange 外交换FZ fuze 保险丝专业英语词汇GG gate 门(电路)G ground 接地GA general average 总平均值Gain 增益,提衰量Game 卡拉OK音响效果Gamut 音域Gap 间隔,通道Gate 噪声门,门,选通Gated Rev 选通混响(开门的时间内有混响效果)GB 吉字节Gear 风格,格调GEN generator (信号)发生器General 综合效果Generator 信号发生器GEQ graphie equalizier 图示均衡器GD ground 接地Girth 激励器的低音强度调节Glide strip 滑奏条(演奏装置)GLLS-sando 滑降(演奏的效果)Global 总体设计GM genertal MIDI 通用乐器数字接器GND ground 地线,接地端GP group 编组GPR general purpose receiver 通用接收机GPI general purpose interface 通用接口设备Govern 调整,控制,操作,运转GR group 组合Gramophone 留声机,唱机Graphic equalizer 图示均衡器,图表均衡器GRND ground 接地Groove 光盘螺旋道的槽Group 编组(调音台),组Growler 线圈短路测试仪GT gate 门,噪声门GT gauge template 样板GTE gate 门(电路)GTR gate reverb 门混响Guard 保护,防护装置GUI graphical user interface 图形用户接口Guitar 吉它Guy 拉线Gymnasium 体育馆效果Gyrator 回旋器专业英语词汇HH hard 硬的(音响效果特征)H horizonal 水平(状态)H hot 热(平衡信号端口的“热端”)Hall 厅堂效果Handle 手柄,控制HAR harmonec 谐波Hard knee 硬拐点(压限器)Harmonic 谐波Harmonic distortion 谐波失真Harmonic Generator 谐波发生器Harmonize (使)和谐,校音Harmony 和谐Harp 竖琴Hash 杂乱脉冲干扰Hass effect 哈斯效应HD harmonic distortion 谐波失真HDCD high definition compatible digital 高分辨率兼容性数字技术HDTV hight definiton television 高清晰度电视Head 录音机磁头,前置的,唱头Head azimuth 磁头方位角Head gap 磁头缝隙Headroom 动态余量,动态范围上限,电平储备Headphone 头戴式耳机Headset 头带式耳机Heavy metel 重金属HeiFin 垂直微调Hearing 听到,听觉Heat sink 散热板Help (对程序的)解释HF high frequency 高频,高音Hi hign 高频,高音HI band 高频带Hi-end 最高品质,顶级Hi-BLEND 高频混合指示High cut 高切High pass 高通Highway 总线,信息通道Hi-Fi high fidelity 高保真,高保真音响Hiss 咝声Hi-Z 高阻抗HL half reverb 大厅混响Hoghorn 抛物面喇叭Hoisting 提升Hold 保持,无限延续,保持时间Holder 支架,固定架Hold-off 解除保持Home 家庭,实用Home theatre 家庭影院Horizontal 水平的,横向的Horn 高音号角,号筒,圆号Hornloaded 号角处理Hot 热端,高电位端Hour 小时Howling 啸叫声Howlround 啸叫H.P headphone 头戴式耳机HPA haas pan allochthonous 哈斯声像漂移HPF high pass filter 高通滤波器HQ high quality 高质量,高品位HQAD high quality audio disc 高品位音频光盘HR handing room 操作室HR high resistance 高阻抗(信号端子的阻抗特性)HRTF head-related transfer function 人脑相关转换功能HS head set 头戴式耳机HS hybrid system 混合系统HT home theater 家庭影院,家庭剧场。
哈尔滨工程大学学报_总第207_218期_2014年总目次
哈尔滨工程大学学报第35 卷( 总第207 ~ 218 期) 2014 年2014 年总目次浮筏隔振及声辐射同步定相控制研究………………周刘彬,杨铁军,M ichael J.BRENNAN,刘志刚( 1,1)舰载机甲板调运过程避碰路径规划研究………………………………张智,林圣琳,夏桂华,朱齐丹( 1,9)基于倒谱和偏相干分析的噪声源分离方法………………………杨德森,韩闯,时胜国,于树华,时洁(1,16)平板喷气流场特性影响因素试验…………………………………………………叶青,董文才,欧勇鹏( 1,25)载人潜器载人舱布局优化………………………………………………………刘峰,韩端锋,韩海辉( 1,30)水下爆炸冲击波作用下船体刚体动态响应特性………………………………王军,郭君,孙丰,杨棣(1,38)高速滑行艇在规则波中的纵向运动数值研究…………………………王硕,苏玉民,庞永杰,刘焕兴( 1,45)磁性目标干扰下的舰船磁场建模……………………………………姚振宁,刘大明,周国华,喻洲( 1,53)新型船用螺旋桨加工装置刀具位姿控制算法……………………………………………………王瑞( 1,58)超音速横向流作用下射流的二次破碎模型研究…………杨东超,朱卫兵,陈宏,郭金鑫,刘建文( 1,62)船舶燃气轮机发电机组实时仿真新方案……………………………………李淑英,李铁磊,王志涛( 1,69)幅度与频率联合测量的LOFAR浮标定位算法………………………………陶林伟,王英民,苟艳妮( 1,74)小Kasami 序列的正交码元移位键控扩频水声通信…………………………………于洋,周锋,乔钢( 1,81)基于二阶差分滤波器的水下目标纯方位角跟踪适用于宽波束的多接收阵SAS 波数域成像算法…………………………………………王宏健,徐金龙,么洪飞,张爱华( 1,87)张学波,唐劲松,钟何平,张森( 1,93)FrFT 解线调浅剖信号增强算法及FPGA 实现………………………………朱建军,李海森,杜伟东( 1,102)利用相对时钟实现水声通信网络时分复用………………………………………………章佳荣,乔钢( 1,109)混流式喷水推进泵台架试验……………………………………………………………靳栓宝,王永生( 1,115) M 元仿海豚叫声隐蔽水声通信…………………………………………刘凇佐,刘冰洁,尹艳玲,乔钢( 1,119)非静压方程与波作用谱模型的波浪传播嵌套模拟……………………………………邹国良,张庆河( 1,126)渤海湾风浪预报数值模式的研究………………………………………李大鸣,潘番,罗浩,解以扬( 1,132)前视声呐多特征自适应融合跟踪方法…………………………………马珊,庞永杰,张铁栋,张英浩( 2,141)基于小波矩的自主式水下机器人目标识别………………………………万磊,黄蜀玲,张铁栋,王博( 2,148)钢悬链线立管与海底相互作用和疲劳分析………………REZAZADEH Kosar,陆钰天,白勇,唐继蔚( 2,155)水平管道内冰浆流动阻力特性实验研究…………………………王继红,王树刚,张腾飞,贾廷贵( 2,161)沿海进港航道通航水位仿真优化…………唐国磊,王文渊,郭子坚,于旭会,宋向群,王秉昌,张冉( 2,166) SH 波入射覆盖层半空间圆孔及圆夹杂的动力分析……………………………………陈冬妮,齐辉( 2,171)基于特征参数准则的舰船燃机燃烧室贫熄预测……………………………张智博,郑洪涛,李雅军( 2,177)一种水平蒸汽发射系统的基本性能优化设计…………………………………严志腾,金家善,朱泳( 2,184)台架试验的生物柴油发动机使用特性……………………刘玉梅,张敬师,崔丽,熊明烨,宋捷,李梦( 2,189)复合控制导弹的模糊控制算法及实现…………………………………史震,马文桥,张玉芳,林强( 2,195)双均流母线的均流电路及其控制方法……………………………………张强,张敬南,姚绪梁,霍虹( 2,202)浅海中单矢量水听器高分辨方位估计方法…………………………双卷流燃烧室与油束夹角匹配对柴油机排放的影响李楠松,朴胜春宋海岩,张海刚( 2,208)………………………………………………………高浩卜,李向荣,耿文耀,赵陆明,刘文鹏,刘福水( 2,216)基于产形线切齿法的弧齿锥齿轮精确建模……………………………豆书强,呼咏,荣国灿,杨兆军( 2,221)高速切削锯齿形切屑形成过程的有限元模拟………………………………段春争,王肇喜,李红华( 2,226)辅助起立机器人人体运动学建模与试验研究……………………王志强,姜洪源,KAMNIK Roman ( 2,233)一种用于高光谱图像特征提取的子空间核方法………………………………刘振林,谷延锋,张晔( 2,238)基于P SO-RV M 算法的发动机故障诊断…………………………………………毕晓君,柳长源,卢迪( 2,245) TinySBSec—新型轻量级WSN 链路层加密算法………………………………………白恩健,朱俊杰( 2,250)隐性知识对企业竞争优势作用机理的实证研究…………………………………………肖振红,李妍( 2,256)基于参数化小波的主冷却剂泵故障特征识别………………………………………………李彬,夏虹( 2,261)基于预测模型的模糊参数自寻优S 面控制器…………………………何斌,万磊,姜大鹏,张国成( 3,267)正交各向异性功能梯度夹层板的自由振动分析……………………李华东,朱锡,梅志远,张颖军( 3,274)泥浆快速化学脱稳与固液分离试验研究…………………………………冷凡,庄迎春,刘世明,陈兵( 3,280) MEMS 型水听器的自噪声分析………………………………………………方尔正,洪连进,杨德森( 3,285)单矢量水听器频域极化加权MUSIC 算法……………………………………刘伟,朴胜春,祝捍皓( 3,289)潜礁上孤立波传播的数值模拟……………………………房克照,刘忠波,唐军,邹志利,尹继伟( 3,295)台风浪对掠海飞行安全性的影响………………………………………无人水下航行器近海底空间路径规划方法……………………………郑崇伟,邵龙潭,林刚,潘静( 3,301)严浙平,邓超,赵玉飞,李本银( 3,307)大件运输中简支梁桥的动力响应分析及监测……………………刘波,王有志,王涛,丛侃,徐永芝(3,313)单侧有限宽度开缝竖通道内的旋转热流体特性…………………………霍岩,邹高万,李树声,郜冶( 3,320)面向起飞质量的小型飞航导弹参数优化方法………………………………陈阳阳,陈卫东,吴限德( 3,325)对冲式止回阀低流量关闭过程动态特性分析………………杨志达,陈炳德,黄伟,韩伟实,张志明( 3,331)蒸汽发生器多目标优化设计……………………………………………………陈磊,阎昌琪,王建军( 3,336)单井循环系统在不同初始地温下的特性……………………………………………宋伟,倪龙,姚杨( 3,342)泵用不可压缩流体密封刚度系数分析…………………………………张盟,王晓放,徐胜利,万学丽( 3,347)大数据分区管理模型及其应用研究…………………………………………张文燚,项连志,王小芳( 3,353)旋成体环形射流表面优化设计与减阻机理分析…………………………………赵刚,李芳,臧东阳( 3,361)快速高效无损图像压缩系统的低功耗硬件实现………………………………薛金勇,黑勇,陈黎明( 3,368)模拟退火遗传禁忌搜索的多用户检测算法…………………………………………………刁鸣,邹丽( 3,373)冻融循环对沥青混合料力学性能的影响……………………………李兆生,谭忆秋,吴思刚,杨福祺( 3,378)有无稀土CuCrSnZn 合金形变时效组织和性能……………苏娟华,杨哲,任凤章,魏世忠,陈志强( 3,383)水平轴潮流能水轮机设计与数值模拟…………………………………………盛其虎,赵东亚,张亮( 4,389)有限元/间接边界元法求解浸水板振动特性……………………………………刘城,洪明,刘晓冰( 4,395)浅海温跃层对水声传播损失场的影响………………潘长明,高飞,孙磊,王璐华,王本洪,李璨( 4,401)基于基面力的有限变形广义拟Hamilton 原理…………………………………刘宗民,梁立孚,樊涛( 4,408)简谐成分的盲源分离适用性研究………………………………………董建超,杨铁军,李新辉,代路( 4,413)不同边界条件正交各向异性圆柱壳结构固有振动分析…… 张爱国,李文达,杜敬涛,代路,杨铁军( 4,420)长输油气管道裂纹初始扩展特性………………………………………………………马有理,赵丽丽( 4,426)混合距离算法在蒸汽发生器优化设计中的应用………………………………阎昌琪,陈磊,王建军( 4,432)压力容器外部冷却两相自然循环特性理论分析……………………………赵国志,曹欣荣,石兴伟( 4,437)舰载机着舰的动力学建模…………………………………………………高旋弹丸背景涡流磁场建模与补偿………………………………………车用柴油机瞬态工况试验及性能评价方法………………………………夏桂华,董然,孟雪,朱齐丹( 4,445) 向超,卜雄洙,祁克玉,于靖( 4,457) 张龙平,刘忠长,田径,许允( 4,463)发动机多工况有机朗肯循环中混合工质研究……………尉庆国,王震,杨凯,杨富斌,张健,张红光( 4,469) Mindlin 矩形板在任意弹性边界条件下的振动特性分析………薛开,王久法,李秋红,王威远,王平(4,477)消除冗余循环前缀的水声信道OFDM 频域均衡算法………………………冯成旭,许江湖,罗亚松( 4,482)提高系统稳定性的可控串联补偿控制策略……………………………罗远翔,杨仁刚,蔡国伟,刘铖( 4,488)钢结构建筑物磁场特征定量评估………………………………………………………郭成豹,刘大明( 4,493)采用椭球波脉冲的多波段超宽带性能研究………………………………………陈丽丽,于欣,窦峥( 4,499)基于平均场均衡的Ad hoc 网络路由协议…………………………………张旭,钱志鸿,刘影,王雪( 4,504)铝合金微弧氧化放电火花对膜层粗糙度的影响……………………刘兴华,朱立群,刘慧丛,李卫平( 4,510) MWCNT 纳米纸/形状记忆聚合物复合材料导电性能研究……………………………张阿樱,吕海宝( 4,516)多桨型船舶轴频电磁场在浅海中传播特性分析………………………刘德红,王向军,朱武兵,嵇斗( 5,521)声矢量阵自适应抵消稳健波束形成算法…………………………………………梁国龙,陶凯,范展( 5,527)实船阻力及流场数值预报方法…………………………………………易文彬,王永生,杨琼方,李剑( 5,532)高速电磁阀动态响应特性响应面预测模型的研究………刘鹏,范立云,马修真,王昊,白云,宋恩哲( 5,537)全息数据外推与插值技术的极限学习机方法………………………弹性地基复合曲梁抗弯力学性能研究………………………………孙超,何元安,商德江,刘月婵( 5,544)郝扣安,王振清,周利民,王欣( 5,552)近断层地震激励下的隔震桥梁参数优化………………………………………………马涌泉,邱洪兴( 5,558)微小型自主式水下机器人系统设计及试验…………魏延辉,田海宝,杜振振,刘鑫,郭志军,赵大威( 5,566)舰载机阻拦过程动力学仿真…………………………………张智,闻子侠,朱齐丹,张雯,喻勇涛( 5,571)封锁雷智能防排系统………………………………………………孙宇嘉,王晓鸣,贾方秀,于纪言( 5,580)具有输入与状态时变时滞线性系统的鲁棒H∞控制……………………………侯晓丽,邵诚,李永凤( 5,585) LTS 仿真模型组合验证方法……………………………………………………冯晓宁,王卓,王金娜( 5,589)支持高效查询检索的大数据资源描述模型…………………………………张文燚,项连志,王小芳( 5,594)类人型五指手构型的优化设计…………………………樊绍巍,陈川,姜力,曾博,刘宏,邱景辉( 5,602)齿轮激光跟踪在位测量的姿态调整模型………………………………………张白,石照耀,林家春( 5,607)圆筒型永磁直线电机齿槽力解析………………………………………………黄克峰,李槐树,周羽( 5,613)微型二维光流传感器设计……………………………………………张洪涛,张广玉,李隆球,王林( 5,619)头型对回转体非定常空化流动特性影响的实验研究…………………………………胡常莉,王国玉( 5,624)基于多因素模糊判决的多模型机动目标跟踪……………………………………刘扬,闫新庆,国强( 5,630)利用独立性约束非负矩阵分解的高光谱解混算法……………………………………杨秀坤,王东辉( 5,637)遮光剂对SiO2气凝胶热辐射特性影响的理论研究…………………………苏高辉,杨自春,孙丰瑞( 5,642)造船供应链利益分配问题的Shapley 值法分析…………………………………………范德成,胡钰( 5,649)企业产学研合作原始创新系统的演化机制……………………………………李柏洲,罗小芳,苏屹( 5,654) GPU 在SPH 方法模拟溃坝问题的应用研究……………………………杨志国,黄兴,郑兴,段文洋( 6,661)水面舰船风浪环境适应性模糊综合评价方法………………………………焦甲龙,孙树政,任慧龙( 6,667)基于总体坐标法的大变形锚泊线的静力分析…………………………………………… 桅杆RCS 可视化计算方法改进……………………………………………………………马刚,孙丽萍( 6,674)崔俊伟,杨飏( 6,679)深海中潜艇腐蚀相关磁场全空间分布特征分析………………………陈聪,李定国,蒋治国,龚沈光( 6,684)基于弹性基础梁理论的球壳承压能力分析……………………………………………熊志鑫,罗培林( 6,690) EMD 与样本熵在往复压缩机气阀故障诊断中的应用………………张思阳,徐敏强,王日新,高晶波( 6,696)基于模型预测控制的动力定位过驱动控制设计……………………………梁海志,李芦钰,欧进萍( 6,701)不确定条件下海上危化品运输安全演变机理…………………………………李建民,齐迹,郑中义( 6,707)功能梯度热障涂层热应力的有限体积法研究……………龚京风,张文平,宣领宽,明平剑,韩春旭( 6,713)点源模型在旋转声源声场计算中的推广应用……………………………………………付建,王永生( 6,719)新型轮机仿真平台实操考试自动评估算法…………………………张巧芬,孙建波,史成军,孙才勤( 6,725)基于椭球约束的载体三维磁场补偿方法……………………………………于振涛,吕俊伟,稽绍康( 6,731)基于双主交替领航的多AUV 协同导航方法……………………………高伟,刘亚龙,徐博,唐李军( 6,735)迭代寻优的稳健波束形成…………………………………………………王燕,吴文峰,范展,梁国龙( 6,741)基于Schmidt 正交单位化的稀疏化定位算法……………………………赵春晖,许云龙,黄辉,崔冰( 6,747)联合多元信道编码调制-网络编码方案………………………………………佟宁宁,赵旦峰吴宇平( 6,753)高光谱图像的同步彩色动态显示………………………………………………刘丹凤,王立国,赵亮( 6,760) Deltamax 高压缓冲器的研制…………………………………………………………………谢飞,李格( 6,766)加速加载条件下沥青路面结构动力响应……………………………陈静云,刘佳音,刘云全,周长红( 6,771)中国航空航天制造业自主创新效率研究……………………………………………………陈伟,周文( 6,777)摇摆对单相强迫循环流量波动特性的影响机理……………………………幸奠川,阎昌琪,孙立成( 6,784)岸式振荡水柱波能转换装置的数值模拟………………………………基于水动力-结构模型的波浪载荷计算方法…………………………宁德志,石进,滕斌,赵海涛( 7,789)任慧龙,孙葳,李辉,童晓旺( 7,795)基于改进人工鱼群算法的无人艇控制参数优化…………………………廖煜雷,刘鹏,王建,张铭钧( 7,800)气体燃料船用主机工作过程三维数值模拟…………………………冯立岩,田江平,翟君,隆武强( 7,807)多孔介质内预混合燃烧的二维数值模拟……………………………………刘宏升,张金艳,解茂昭( 7,814)欠驱动水面船舶非线性信息融合航迹跟踪控制………………………………胡洲,王志胜,甄子洋( 7,820)柔性飞艇及其悬挂屏体系结构力学性能分析……………………陈宇峰,陈务军,何艳丽,张大旭( 7,826)渤海海域软表层土的动力特性…………………………………………………………荣棉水,李小军( 7,833)加筋土拉拔界面作用的离散元细观模拟………………………………王家全,周健,吴辉琴,徐华( 7,839)木结构组合板蒙皮效应研究…………………………王卫锋,崔楠楠,颜全胜,黄仕平,朱竞翔,夏珩( 7,846)地震总输入能量谱峰值估计……………………………………………………………李亚楠,王国新( 7,851)改进的分水岭图像分割算法…………………………………………………孙惠杰,邓廷权,李艳超( 7,857)多属性决策的IPv6 移动网络路由选择算法………………………………赵蕾,李小平,谭帅帅,石磊( 7,865)实现连续柔性成形的临界摩擦系数的研究……………………………王蜜,蔡中义,李琳琳,李明哲( 7,871)具有复杂缓冲的分段多流水车间调度问题……………………………………张志英,代乙君,隋毅( 7,875) TBM 刀盘支撑筋结构设计及静动态特性分析………………………………霍军周,杨静,孙伟,张旭( 7,883)柔性滤波驱动机构的自适应动态面模糊控制…………………………罗绍华,王家序,李俊阳,石珍( 7,889)基于ANSYS 二次开发的风力机叶片结构优化…………………陈进,马金成,汪泉,郭小锋,李松林(7,895)基于四叉树的海浪磁场快速仿真算法………………………………熊雄,杨日杰,韩建辉,郭新奇( 7,901)自适应匹配追踪的OFDM 系统窄带干扰检测……………………………………………毕晓君,邵然( 7,908)共形阵列天线超宽频带波达方向实时估计………………司伟建,万良田,刘鲁涛,田作喜,蓝晓宇( 7,913)制造业企业产品与工艺创新知识流耦合过程与控制……………………………………毕克新,黄平( 7,919)改进的单轴旋转SINS 初始对准方法……………………………………………………王东,李国林( 8,925)浅海中船舶尾流产生的感应电磁场…………………………………………张伽伟,姜润翔,龚沈光( 8,931)钢结构厚板及其对接焊缝Z 向性能试验……………………………………王元清,张元元,石永久( 8,936)基于逐步等效平面法的可靠性敏度分析方法………………………………王杰方,安伟光,宋向华( 8,942)柴油机缸内辐射换热三维数值模拟………………………………付丽荣,张文平,明平剑,罗跃生( 8,948)多谐次相位法在柴油机故障诊断上的应用……………………肖小勇,向阳,钱思冲,李瑞,周强( 8,954)基于Petri 网的情境感知服务建模及干扰发现…………………………………………胡志芳,卢涛( 8,961)动态部署与分块存储策略的数据恢复模型…………………………………黄春梅,姜春茂,曲明成( 8,968)工程陶瓷脆性域旋转超声磨削加工切削力研究…………………………魏士亮,赵鸿,薛开,荆君涛( 8,976)直立柔性窄结构上的海冰挤压同时破坏………………………………………………王译鹤,岳前进( 8,982)四缸双作用斯特林发动机平衡改进设计…………………………霍军周,李涛,张旭,杨静,路林( 8,987)弹性支撑阶梯柱侧向位移与稳定性的精确分析…………………………………都亮,陆念力,兰朋( 8,993)基于粗集理论桥式起重机能效模糊评价……………………………叶伟,童一飞,李东波,李向东(8,997)谐振式微型管道机器人设计与实验……………………………………刘磊,李娟,李伟达,秦佳( 8,1002)基于MUSIC 算法多脉冲采样的ARM 抗诱饵测向误差分析…………………司伟建,朱曈,张梦莹( 8,1008)微带天线对高功率电磁脉冲响应的时域分析……………………………………………李磊,张昕( 8,1015)分块GPCA 和多视点图像融合………………………………………………吴远昌,孙季丰,李万益( 8,1022)中国地方政府税收竞争行为特性与激励机制……………………………………………梁河,西宝( 8,1028)厚规格铝压型板辊弯成型工艺与裂纹缺陷分析……………………………陈泽军,李军超,黄光杰( 8,1035)周期力场下窄通道内汽泡滑移实验研究………………李少丹,谭思超,高璞珍,许超,胡健,郑强( 8,1040)液舱晃荡与船体非线性时域耦合运动计算………………黄硕,段文洋,游亚戈,姜金辉,王文胜( 9,1045)欠驱动船舶简捷鲁棒自适应路径跟踪控制…………………………………张国庆,张显库,关巍( 9,1053)不同头型弹体低速入水空泡试验研究……………………………杨衡,张阿漫,龚小超,姚熊亮( 9,1060)带支腿浮式结构水动力建模及波浪力分析…………………………………黄亚新,武海浪,陈徐均( 9,1067)船用电缆剩余寿命快速检测方法研究………………………………王鹤荀,纪玉龙,李根,孙玉清( 9,1076)舰船抗沉性的抗鱼雷攻击极限能力分析………………………………………郭君,孙丰,曹冬梅( 9,1082)云重心方法在舰炮维修性评价中的应用………………………………………刘勇,徐廷学,孙臣良( 9,1087) Myring 型回转体直航阻力计算及艇型优化…………………………庞永杰,王亚兴,杨卓懿,高婷( 9,1093)自主式水下机器人故障特征增强方法……………………………张铭钧,刘维新,殷宝吉,王玉甲( 9,1099)竖直窄矩形通道内弹状流特性的实验研究…………………闫超星,阎昌琪,孙立成,王洋,周艳民( 9,1106)多管火箭弹射击精度的复合形法优化……………王巍,陈卫东,张宝财,吴限德,路胜卓,于佳( 9,1112)提高轴系扭振信号时频转换精度的方法………………郭宜斌,李玩幽,蔡鹏飞,卢熙群,吕秉琳( 9,1117)双线圈点火系统特性仿真与试验研究……………………………马修真,靖海国,杨立平,宋恩哲( 9,1124)低快拍下MIMO 雷达收发角度联合估计方法………………………王咸鹏,王伟,马跃华,王君祥( 9,1129)电动汽车复合制动系统过渡工况协调控制策略………………………………朱智婷,余卓平,熊璐( 9,1135)高速公路汽车追尾碰撞预警关键参数估计………………………………………宋翔,李旭,张为公( 9,1142)面向聚类分析的邻域拓扑势熵数据扰动方法…………………………张冰,杨静,张健沛,谢静( 9,1149)基于梯度增强和逆透视验证的车道线检测…………………………王超,王欢,赵春霞,任明武( 9,1156)面向虚拟手术的碰撞检测优化算法…………………………于凌涛,王涛,宋华建,王正雨,张宝玉( 9,1164)基于可拓理论的低碳服务业集聚竞争力评价…………………………………………………贾立江( 9,1171)污泥改良盐碱土中污染物的淋滤行为……………………………………孟繁宇,姜珺秋,赵庆良,王琨,刘纯甫,马立,杨俊晨,郑振( 9,1176)复合材料天线罩螺栓连接结构损伤失效分析………………………杨娜娜,王伟,董一帆,姚熊亮( 10,1183)海上超大型浮体的水弹性响应预报…………………………………………万志男,翟钢军,程勇( 10,1189)舰载风速仪测量误差与安装位置的关系研究……………郜冶,谭大力,李海旭,王金玲,刘长猛( 10,1195)已服役20 年预应力结构现存预应力的试验研究……………………………………黄颖,房贞政( 10,1201)碳纳米管在水性体系中的分散性能及机理……………………………王宝民,韩瑜,葛树奎,张源( 10,1206)曲线箱梁桥的空间传递矩阵…………………………………………………………闫仙丽,李青宁( 10,1212)利用船舶运动数据估计海浪方向谱的研究……………赵大威,丁福光,谢业海,杭栋栋,边信黔( 10,1219)基于相位校正的零点约束直达波抑制方法………………………黄聪,张殿伦,孙大军,兰华林( 10,1224)抗扰动移动对等覆盖网的构建及性能评价…………………………………李军,张国印,王向辉( 10,1231)相似度质心多层过滤策略的动态文摘方法………………………于洋,范文义,刘美玲,王慧强( 10,1236)基于小波变换和陀螺的高旋弹角运动测量技术…………杨登红,李东光,申强,曾广裕,杨瑞伟( 10,1242)基于Bloom 滤波器的快速路由查找方法……………………………………于明,王振安,王东菊( 10,1247)基于干扰对齐的自适应频谱共享算法…………………………………………李记,赵楠,殷洪玺( 10,1253)宽零点约束的圆阵宽带波束形成研究…………………………………张曙,栾晓明,李亮,蒋毅( 10,1260)基于L 邻域分割的结构性纹理合成方法…………………………张雨禾,耿国华,刘伦椿,周子骏( 10,1265)战场宽带数据链分布式虚拟骨干网的构建…………………………陶凯,杨春兰,史海滨,范立耘( 10,1272)全驱动式自主水下航行器有限时间编队控制………………………………袁健,张文霞,周忠海( 10,1276)基于贝叶斯压缩感知多目标定位算法………………………………吴哲夫,许丽敏,陈滨,覃亚丽( 10,1282)基于贝叶斯网络的海洋工程装备故障诊断模型…………………………赵金楼,成俊会,岳晓东( 10,1288)介质阻挡放电辅助甲烷蒸汽重整的动力学分析…………………………刘倩,郑洪涛,杨仁,陈曦( 10,1294)矩形通道弹状流液膜特性…………………………………王洋,阎昌琪,孙立成,闫超星,刘国强( 10,1301)环流理论与泵理论相结合的导管桨设计优化………………………刘业宝,苏玉民,赵金鑫,张赫( 11,1307)海上风机半潜式基础概念设计与水动力性能分析……………………唐友刚,桂龙,曹菡,秦尧( 11,1314)饱和海床土渗流-应力耦合损伤及液化破坏规律( Ⅰ)…………刘红军,李洪江,王虎,吕小辉( 11,1320)水声阵列信号处理对角减载技术…………………………………赵安邦,周彬,宋雪晶,毕雪洁( 11,1327) Park-Ang 三维损伤模型的参数确定和性能等级划分…………………郭进王君杰韩鹏王文彪( 11,1332)公路减隔震桥梁的地震反应简化分析………………………………………李闯,叶爱君,余茂峰( 11,1339)改善型波形钢腹板PC 组合梁抗弯强度试验研究……………………………充量温度对某中速柴油机燃烧和NO x 排放的影响逯彦秋,安关锋,程进( 11,1345)……………………冷先银,魏胜利,田江平,何爽,隆武强,郭海娥,张旭东,钟兵,李焕英( 11,1351)散射体旋转角对二维声子晶体带隙结构影响分析………………………杜敬涛,贺彦博,冯浩成( 11,1358)遥现中基于显著特征的深度图像滤波算法……………………………………………冯策,戴树岭( 11,1364)带极点约束离散广义分段仿射系统的H!保性能控制……………………王茂,周振华,王学翰( 11,1369)多自由度微陀螺结构参数对其动态性能影响分析……………………………郝燕玲,刘博,胡钰( 11,1378)低重力模拟系统控制策略…………………………………………………朱齐丹,陈力恒,卢鸿谦( 11,1384)一种面向不确定图的SimRank 算法………………………………董宇欣,王莹洁,宁鹏飞,张耀元( 11,1390)基于雅可比旋量统计法的发动机三维公差分析……………陈华,唐广辉,陈志强,李志敏,金隼( 11,1397)不同模式下TBM 刀群三维回转切削仿真与优化设计………………霍军周,杨静,孙伟,李庆宇( 11,1403)考虑周期预防性维护的异速并行机集成调度研究………………………江才林,陆志强,崔维伟( 11,1409)机械弹性车轮结构参数对牵引性能的影响……………臧利国,赵又群,李波,陈月乔,李小龙( 11,1415)并联六自由度机构运动学与动力学标定对比………………………………皮阳军,王骥,胡玉梅( 11,1422)补0 的TD-AltBO C 多信号分量联合捕获方法………………………网络下遥感影像实时压缩及渐进传输系统设计……………………杨建雷,金天,黄智刚,秦红磊( 11,1427)石翠萍,张钧萍,曲海成,张晔( 11,1434)北方地区供暖情况下室内热环境数值分析………………………Mg /A l 液固双金属复合材料的界面及相组成王烨,王靖文,王良璧,张文霞( 11,1441)………………………………………………赵成志,李增贝,张贺新,杜德顺,符策鹄,余娇娇( 11,1446)水翼剖面多目标粒子群算法优化………………………………………………黄胜,任万龙,王超( 12,1451)阻抗梯度变化介质的声学特性………………………………杨德森,孙玉,胡博,韩闯,靳仕源( 12,1458)可刚性固定的同振圆柱型矢量水听器的设计…………………………刘爽,李琪,贾志富,刘勇( 12,1467) AUV 水声跳频通信调制解调器的设计与实现……………………范巍巍,张殿伦,董继刚,张友文( 12,1473)饱和海床土渗流-应力耦合损伤及液化破坏规律( Ⅱ)……………李洪江,刘红军,王虎,张冬冬( 12,1480)腐蚀预应力钢绞线的疲劳试验分析……………………………………余芳,贾金青,姚大立,吴锋( 12,1487)管间距对水平管降膜蒸发流动形态和传热的影响………沈胜强,陈学,牟兴森,王耀萱,高宏达( 12,1492) Lock-up 装置的作用机理与分析模型………………………………………夏修身,崔靓波,李建中( 12,1497)磁弹性理论中的守恒定律和路径无关积分………………………………刘宗民,周健生,宋海燕( 12,1503)壳装高能固体推进剂的殉爆实验与数值模拟…………………………………路胜卓,罗卫华,陈卫东,王巍,张丰超,于艳春,李广武( 12,1507)配筋活性粉末混凝土梁抗剪承载力………………………………………邓宗才,周冬至,程舒锴( 12,1512)基于全量补偿算法的结构损伤识别………………………王凤刚,凌贤长,徐训,张锋,赵莹莹( 12,1519)叶片积垢对压气机性能衰退的影响…………………………王松,王国辉,韩青,王忠义,任翱宇( 12,1524)复杂形状波力直线发电装置的优化……………………林礼群,吴必军,王幸,吴春旭,王文胜( 12,1529)光纤捷联惯导系统的双轴旋转调制方案………………………………………………于飞,阮双双( 12,1536)活塞航空发动机复合增压技术仿真分析…………………………………潘钟键,何清华,张祥剑( 12,1543)磁力弹簧式压电振动送料器的设计与试验…………………田晓超,杨志刚,刘勇,沈燕虎,吴越( 12,1548)船舶主尺度设计的高维多目标多方向进化算法………………………毕晓君,张永建,苍岩,肖婧( 12,1553)基于特征空间算法的非圆相干信源DOA 估计…………………刁鸣,丁兆明,高洪元,李晨琬( 12,1559) GNSS 信号捕获的包络损耗及其补偿方法………………………………………………李健,陈杰( 12,1564)核安全级仪控软件可靠性评估模型构建………………………………………( 第35 卷卷终)迟淼,史丽萍,刘盈( 12,1570)Journal of Harbin Engineering UniversityVol.35( Sun N o.207~218) 2014ContentsOn synchrophasing control of vibration and sound radiation for a floating raft vibration isolation system ……………………………………ZHO U Liubi n,YANG T i ejun,M i c hae l J.BRE NNAN,LIU Zhigang( 1,1) Collision avoidance path planning for an aircraft in scheduling process on deck…………………………………………………ZHA NG Zhi,LIN Shenglin,XIA Guihua,ZHU Qi dan( 1,9) Separation of noise sources based on the cepstrum and partial coherence theor y…………………………………YANG Desen,HAN Chuang,S HI Shengguo,YU Shuhua,SHI Jie( 1,16)An experimental study of the flow field around the flat plate with air injection………………………………………………………………Layout optimization of a human occupied vehicle manned cabin ………………………………………………………………YE Q i ng,DONG W encai,O U Y ongpeng( 1,25) LIU F eng,HA N Duanfeng,HA N Haihui( 1,30)Dynam ic response of the rigid ship's hull subjected t o under w ater shock w aves…………………………………………………………WA NG J un,GUO J un,S UN Feng,YA NG Di( 1,38) Numerical study on longitudinal m otions of a high-speed planing craft in regular waves……………………………………………WANG Shuo,SU Yumin,PANG Yongjie,LIU Huanxi ng( 1,45)Research on the m odeling method f or a ship's magnetic f ield w ith magnetic target's inter f erence ……………………………………………YA O Z henning,LIU D aming,ZHOU G uohua,Y U Z hou( 1,53) The cutter position control algorithms for a new marine propeller processing deviceModeling the secondary breakup of a liquid jet in supersonic cross flows…………WA NGRui( 1,58)…………………………YANG D ongchao,ZHU W eibing,CHE N H ong,GUO J i nxin,LIU J i anwen( 1,62)A new scheme for real-time simulation of a marine gas tur bine generator set……………………………………………………………………LI Shuying,LI Tielei,WANG Zhitao( 1,69) LOFAR sonobuoy localization algorithm based on the measurements of am plitude and frequency ……………………………………………………………TA O Linwei,W A NG Y i ngmin,G O U Y anni( 1,74) Orthogonal code shift keying spread spectrum underwater acoustic communications employing the small Kasami se-quence …………………………………………………………………Y U Yang,ZHOU Feng,QIAO Gang( 1,81) Research on second order divided difference filter algorithm for underwater target bearing-only tracking …………………………………………WANG Hongjian,XU Jinlong,YAO Hongfei,ZHANG Aihua( 1,87) Wavenumber-domain imaging algorithm for wide-beam multi-receiver synthetic aperture sonar …………………………………………ZHA NG Xuebo,TANG Jinsong,ZHONG Heping,ZHANG Sen( 1,93) FrFT dechirping sub-bottom profiling signal enhancement algorithm and FPGA implementation ………………………………………………………………ZHU Jianjun,LI Haisen,DU W eidong( 1,102)A relative clock based TDMA protocol f or underwater acoustic communication networks…………………………………………………………………………ZHA NG Jiarong,QIAO Gang( 1,109) Bench test of the mixed-flow waterjet pump…………………………JIN S huanbao,WA NG Y ongsheng( 1,115) M-ray covert underwater acoustic communication by mimicking dolphin sounds…………………………………………………LIU S ongzuo,LIU B ingjie,YIN Y anling,QIAO G ang( 1,119) Simulation of wave transformation by nesting the non-hydrostatic equation and wave action spectrum model ………………………………………………………………………A study of the numerical forecast model of wind waves in Bohai BayZOU Guoliang,ZHA NG Qi nghe( 1,126) ………………………………………………………LI Daming,PAN Fan,LUO Hao,XIE Yiy ang( 1,132) An adaptive fusion method used in forward looking sonar multi-feature tracking……………………………………MA Shan,PANG Yongjie,ZHANG Tiedong,ZHANG Yi nghao( 2,141) Object recognition system for an autonomous underwater vehicle based on the wavelet invariant moment …………………………………………WAN Lei,HUANG Shuling,ZHANG Tiedong,WANG Bo( 2,148) The interaction between the steel catenary riser and the seabed and the analysis of fatigue…………………………………………RE ZA ZA DE H K osar,LU Y utian,BAI Y ong,TA NG J i wei( 2,155)。
Chapter_14_Sound
The sensation of loudness is logarithmic in the human hear β is the intensity level or the decibel level of the sound I 10 log Io
Io is the threshold of hearing
This area is called a rarefaction
Using a Tuning Fork, final
பைடு நூலகம்
As the tuning fork continues to vibrate, a succession of compressions and rarefactions spread out from the fork A sinusoidal curve can be used to represent the longitudinal wave
Ultrasonic ranging unit for cameras
Speed of Sound in a Liquid
In a liquid, the speed depends on the liquid’s compressibility and inertia
v
B
B is the Bulk Modulus of the liquid ρ is the density of the liquid Compares with the equation for a transverse wave on a string
Multiplying a given intensity by 10 adds 10 dB to the intensity level
可调太赫兹超材料吸波结构设计与仿真
关键词:太赫兹波,超材料吸波器,频率调控
I
华中科技大学硕士学位论文
Abstract
Metamaterial is a new kind of composite material with periodic structure. Due to the fact that its equivalent permittivity and permeability can be designed, it shows the surprising electromagnetic properties and has been widely concerned by researchers. In lack of effective terahertz wave sources and detectors, the research on terahertz wave lags behind the other bands and it was known as the terahertz gap. The metamaterial is designed to be able to respond to terahertz waves. Therefore, the study of metamaterials plays an important role in the research on terahertz wave.
中英文超声无损检测名词术语
中英文超声无损检测名词术语Acceptance limits 验收范围Acceptance level 验收水平Acceptance standard 验收标准Accumulation test 累积检测Acoustic emission transducer 声发射换能器〔声发射传感器〕Acoustic impedance 声阻抗Acoustic impedance matching 声阻抗匹配Acoustic impedance method 声阻法Acoustic wave 声波Acoustical lens 声透镜Acoustic—ultrasonic 声-超声〔AU〕Adequate shielding 安全屏蔽Amplitude 幅度Angle beam method 斜射法Angle of incidence 入射角Angle of reflection 反射角Angle of spread 指向角Angle of squint 偏向角Angle probe 斜探头Area amplitude response curve 面积幅度曲线Area of interest 评定区Artificial discontinuity 人工不连续性Artifact 假缺陷Artificial defect 人工缺陷Artificial discontinuity 标准人工缺陷A-scan A型扫描A-scope; A-scan A型显示Attenuation coefficient 衰减系数Attenuator 衰减器Automatic testing 自动检测Evaluation 评定Beam 声束Beam ratio 光束比Beam angle 束张角Beam axis 声束轴线Beam index 声束入射点Beam path location 声程定位Beam path; path length 声程Beam spread 声束扩散Bottom echo 底面回波Bottom surface 底面Boundary echo<first> 边界一次回波Broad-beam condition 宽射束B-scan presentation B型扫描显示B-scope; B-scan B型显示C- scan C型扫描Calibration,instrument 设备校准pressional wave 压缩波Continuous emission 连续发射microstructureContinuous linear array 连续线阵Continuous method 连续法Continuous spectrum 连续谱Continuous wave 连续波Contract stretch 对比度宽限Contrast 对比度Contrast sensitivity 对比灵敏度Control echo 监视回波Control echo 参考回波Couplant 耦合剂Coupling 耦合Coupling losses 耦合损失Creeping wave 爬波Critical angle 临界角Cross section 横截面Cross talk 串音Cross-drilled hole 横孔Crystal 晶片C-scope; C-scan C型显示Curie point 居里点Curie temperature 居里温度Curie<Ci> 居里Dead zone 盲区Decibel<dB> 分贝Defect 缺陷Defect resolution 缺陷分辨力Defect detection sensitivity 缺陷检出灵敏度Definition 清晰度Definition, image definition 清晰度,图像清晰度Direct contact method 直接接触法Directivity 指向性Discontinuity 不连续性Distance- gain- size-German A VG 距离- 增益- 尺寸〔DGS德文为A VG〕Distance marker; time marker 距离刻度Double crystal probe 双晶片探头Double probe technique 双探头法Double transceiver technique 双发双收法Double traverse technique 二次波法D-scope; D-scan D型显示Dual search unit 双探头Dynamic range 动态范围Echo 回波Echo frequency 回波频率Echo height 回波高度Echo indication 回波指示Echo transmittance of sound pressure 往复透过率Echo width 回波宽度Equivalent 当量Equivalent method 当量法Evaluation 评定Examination area 检测范围Examination region 检验区域Final test 复探Flat-bottomed hole 平底孔Flat-bottomed hole equivalent 平底孔当量Flaw 伤Flaw characterization 伤特性Flaw echo 缺陷回波Flexural wave 弯曲波Focal spot 焦点Focal distance 焦距Focus length 焦点长度Focus size 焦点尺寸Focus width 焦点宽度Focused beam 聚焦声束Focusing probe 聚焦探头Focus-to-film distance<f.f.d> 焦点-胶片距离〔焦距〕Frequency 频率Frequency constant 频率常数Fringe 干涉带Front distance 前沿距离Front distance of flaw 缺陷前沿距离Fundamental frequency 基频Gain 增益Gap scanning 间隙扫查Gate 闸门Gating technique 选通技术Gauss 高斯Grazing incidence 掠入射Grazing angle 掠射角Group velocity 群速度Half life 半衰期Half-value method 半波高度法Harmonic analysis 谐波分析Harmonics 谐频Head wave 头波Image definition 图像清晰度Image contrast 图像对比度Image enhancement 图像增强Image magnification 图像放大Image quality 图像质量Imaging line scanner 图像线扫描器Immersion probe 液浸探头Immersion rinse 浸没清洗Immersion testing 液浸法Impedance 阻抗Impedance plane diagram 阻抗平面图Imperfection 不完整性Indicated defect area 缺陷指示面积Indicated defect length 缺陷指示长度Indication 指示Initial pulse 始脉冲Initial pulse width 始波宽度Inspection 检查Inspection medium 检查介质Inspection frequency/ test frequency 检测频率Interface boundary 界面Interface echo 界面回波Interface trigger 界面触发Interference 干涉Interpretation 解释Lamb wave 兰姆波Lateral scan 左右扫查Lateral scan with oblique angle 斜平行扫查Limiting resolution 极限分辨率Line scanner 线扫描器Linear scan 线扫查Location 定位Location accuracy 定位精度Location puted 定位,计算Location marker 定位标记Longitudinal wave 纵波Longitudinal wave probe 纵波探头Longitudinal wave technique 纵波法Loss of back reflection 背面反射损失Loss of back reflection 底面反射损失Magnetostrictive effect 磁致伸缩效应Magnetostrictive transducer 磁致伸缩换能器Main beam 主声束Manual testing 手动检测MA-scope; MA-scan MA型显示Micrometre 微米Micron of mercury 微米汞柱Mode 波型Mode conversion 波型转换Mode transformation 波型转换Multiple back reflections 多次背面反射Multiple reflections 多次反射Multiple back reflections 多次底面反射Multiple echo method 多次反射法Multiple probe technique 多探头法Multiple triangular array 多三角形阵列Narrow beam condition 窄射束Near field 近场Near field length 近场长度Near surface defect 近表面缺陷Noise 噪声Nominal angle 标称角度Nominal frequency 标称频率Nondestructive Examination〔NDE〕无损试验Nondestructive Evaluation〔NDE〕无损评价Nondestructive Inspection〔NDI〕无损检验Nondestructive Testing〔NDT〕无损检测Normal incidence 垂直入射〔亦见直射声束〕Normal beam method; straight beam method 垂直法Normal probe 直探头Parallel scan 平行扫查Parasitic echo 干扰回波Pattern 探伤图形Penetrant flaw detection 渗透探伤Phantom echo 幻象回波Phase detection 相位检测Plane wave 平面波Plate wave 板波Plate wave technique 板波法Point source 点源Probe test 探头检测Probe index 探头入射点Probe to weld distance 探头-焊缝距离Probe/ search unit 探头Pulse 脉冲波Pulse 脉冲Pulse echo method 脉冲回波法Pulse repetition rate 脉冲重复率Pulse amplitude 脉冲幅度Pulse echo method 脉冲反射法Pulse energy 脉冲能量Pulse envelope 脉冲包络Pulse length 脉冲长度Pulse repetition frequency 脉冲重复频率Pulse tuning 脉冲调谐Quadruple traverse technique 四次波法Range 量程Rayleigh wave 瑞利波Rayleigh scattering 瑞利散射Reference block 参考试块Reference block 对比试块Reference block method 对比试块法Reference standard 参考标准Reflection 反射Reflection coefficient 反射系数Reflector 反射体Refraction 折射Refractive index 折射率Reject; suppression 抑制Rejection level 拒收水平Resolution 分辨力Sampling probe 取样探头Saturation 饱和Saturation,magnetic 磁饱和Scan on grid lines 格子线扫查Scan pitch 扫查间距Scanning 扫查Scanning index 扫查标记Scanning directly on the weld 焊缝上扫查Scanning path 扫查轨迹Scanning sensitivity 扫查灵敏度Scanning speed 扫查速度Scanning zone 扫查区域SE probe SE探头Second critical angle 第二临界角Sensitivity va1ue 灵敏度值Sensitivity 灵敏度Sensitivity of leak test 泄漏检测灵敏度Sensitivity control 灵敏度控制Shear wave 切变波Shear wave probe 横波探头Shear wave technique 横波法Signal to noise ratio 信噪比Single crystal probe 单晶片探头Single probe technique 单探头法Single traverse technique 一次波法Sizing technique 定量法Sound diffraction 声绕射Sound insulating layer 隔声层Sound intensity 声强Sound intensity level 声强级Sound pressure 声压Sound scattering 声散射Sound transparent layer 透声层Sound velocity 声速Source 源Specified sensitivity 规定灵敏度Standard 标准Standard 标准试样Standard test block 标准试块Standardization instrument 设备标准化Standing wave; stationary wave 驻波Subsurface discontinuity 近表面不连续性Suppression 抑制Surface echo 表面回波Surface wave 表面波Surface wave probe 表面波探头Surface wave technique 表面波法Surplus sensitivity 灵敏度余量Sweep 扫描Sweep range 扫描范围Sweep speed 扫描速度Swept gain 扫描增益Swivel scan 环绕扫查System exanlillatien threshold 系统检验阈值System noise 系统噪声Tandem scan 串列扫查Test block 试块Test frequency 试验频率Test range 探测范围Test surface 探测面Testing,ultrasonic 超声检测Third critical angle 第三临界角Through transmission technique 穿透技术Through penetration technique 贯穿渗透法Through transmission technique; transmission technique 穿透法Transducer 换能器/传感器Transmission 透射Transverse wave 横波Traveling echo 游动回波Travering scan; depth scan 前后扫查Triangular array 正三角形阵列Trigger/alarm condition 触发/报警状态Trigger/alarm level 触发/报警标准Triple traverse technique 三次波法True continuous technique 准确连续法技术Ultrasonic noise level 超声噪声电平Ultrasonic field 超声场Ultrasonic flaw detection 超声探伤Ultrasonic flaw detector 超声探伤仪Variable angle probe 可变角探头Vertical linearity 垂直线性Vertical location 垂直定位Visible light 可见光Wave 波Wave train 波列Wave from 波形Wave front 波前Wave length 波长Wave node 波节Wave train 波列Wedge 斜楔Wheel type probe; wheel search unit 轮式探头Working sensitivity 探伤灵敏度Zigzag scan 锯齿扫查。
宽带寄生单极天线设计
[ 1 -4 ]
2
理论分析
文献 [ 1] 给出了设计经验 : ( 1) 简单的振子组合也可以有宽带效果, 不同的
作者简介 : 周彬 ( 1977 - ) , 女 ( 汉族 ) , 湖北武汉人 , 中国传媒大学在 读博士生 . E mail: zb200169@ gmail. com.
第3 期
周彬等 : 宽带寄生单极天线设计
31
振子可以在不同的频率发生谐振, 如果振子的谐振 点比较近, 则可以实现宽带效果 ; ( 2) 对称的天线结构可能具有水平全向的辐射 特性; ( 3) 对天线进行加载可以使天线在有限的尺寸 内实现宽带化; ( 4) 对于振子天线来说, 振子的直径、 长度等是 影响其谐振点的主要因素。 假设长振子 长度为 L。 , 短振子长度为 L, 根据 单极子天线的基本理论 , 它们所对应的频带范围大 约为: 4c /L1 < f < 4c / L2 ( 式中 c 为光速) 从上式中可以看到, 天线的带宽受到振子长度 的限制。 天线由于引入了近似无限大导体面使得振子的 长度约为 0 / 4; 天线 的频带 宽度约 为 ( 4c / L1, 4c / L2) , 其中 L1、 L2 分 别为长振 子和短 振子的 长度。 天线尺寸还不能满足天线宽带及小型化的要求 , 需 要进一步采用上述展宽频带的技术 的设计目标。
Abstract: The novel wideband antenna presented in this paper is the monopole with parasitic elements to achieve the wideband frequencies by arranging the elements of strategy. There are wider bandwidth range between 60MHz and 210MHz for the impedance below - 10dB for the test and horizontally direction of this kind of antenna, which agrees with the simulation results. The antenna structure is simple and easy to get the wider application in the mobile and radio in the vehicles. Keywords: wideband; parasitic elements; monopole 全向辐射等特点, 但是高度有限的无加载单极天线
Travelling Wave Solutions for a coupled KdV equations
(1.4)
where g1 and g2 are integral constants. Thus, we have two Hamiltonian systems dv dy g1 + ac − 3αa2 + (bc − 6αab + 3)v 2 − 3αb2 v 4 − 2bαy 2 = y, = , dξ dξ 2bαv (1.5)
(Grant Nos.
2011jjA10047, 2012GXNSFAA053003), China. Corresponding author: Shengqiang Tang, E-mail address: tangsq@
1
Traveling Wave Solutions for a coupled KdV equations
−cu′ + 6αuu′ − 6vv ′ + αu′′′ = 0, −cv ′ + 3αuv ′ + αv ′′′ = 0,
(1.3)
where ”′” is the derivative with respect to ξ . To remove the coupled relationship of (1.3), let u = a + bv 2 , substituting it into (1.3) and integrating once, we obtain
斜拉桥损伤可识别性传感器的优化布置方法
第53卷第1期2018年2月西南交通大学学报J O U R N A L O F S O U T H W E S T J IA O T O N G U N IV E R S IT YVol. 53 No. 1Feb. 2018文章编号:0258-2724(2018)01~0173-09D O I:10. 3969/j. issn. 0258-2724. 2018.01.021斜拉桥损伤可识别性传感器的优化布置方法刘杰1,’3,王海龙2’4,张志国\张瑞云\曹立辉\王国安1(1.石家庄铁道大学土木工程学院,河北石家庄050043; 2.西南交通大学土木工程学院,四川成都610031;3.石家庄铁道大学道路与铁道工程安全保障省部共建教育部重点实验室,河北石家庄050043;4.河北建筑工程学院土木工程学院,河北张家口075000)摘要:为使布置在斜拉桥上的传感器识别出的模态参数对结构损伤足够敏感,从传感器优化布置的损伤可识别性要求出发,应用参数试验法和参数相关性舰,提出并得到一种包含所有单元损伤信息的节点自由度损伤信息指标,对该指标排序可获得节点自由度包含损伤信息多少的次序,晦个自由度的损伤敏感性排名,此过程无需优化迭代.在此基础上利用传感器优化布置的第1类方法继续分析,避免了迭代或优化效率低下等缺陷,可得到既满足损伤可识别,也满足模态可观测性的传感器布置位置.在单塔双索面斜拉桥上,展示了本文方法的实现过程,与E I(effective in d ep en d en ce)法相比,损伤信息总量:3阶时高出589;阶时高出582;阶时高出591.关键词:传感器优化布置;斜拉桥;健康监测;损伤可识别;模态可观测性中图分类号:U448.27;U311.3文献标志码:AOptimum Sensor Placement Method for Cable-Stayed BridgesBased on Damage IdentifiabilityLIU Jie1’,’3,WANG Hailong2;,ZHANG Zhiguo1,ZHANG Ruiyun1,CAO Lihui1,WANG Guoan1(1. School of Civil E ngineering’ Shijiazhuang Tiedao U niversity,Shijiazhuang 050043 ’ C hina;2. School of CivilE ngineering’ Southwest Jiaotong U niversity’ Chengdu 610031,C h in a;3. Key Laboratory of Roads and Railway Engineering Safety C ontrol’ Shijiazhuang Tiedao U niversity ’ M inistry of E d u catio n’ Shijiazhuang 050043,C hina;4. School of Civil E ngineering,H ebei U niversity of A rchitecture,Zhangjiakou 075000, C hina)A b s t r a c t:In o rd e r to m a k e th e m o d a l p a ra m e te rs id e n tifie d b y th e sensors on c a b le-s ta y e d b rid g e s th a tare s u ffic ie n tly s e n s itiv e to s tru c tu ra l dam age’a da m a g e in fo rm a tio n in d e x o f th e n o d e d e gree o ffre e d o m c o n ta in in g th e dam age in fo rm a tio n o f a ll e le m e n ts w as p ro p o se d a n d o b ta in e d,c o n s id e rin g th edam age id e n tifia b ility re q u ire m e n ts fo r o p tim u m sensor p la c e m e n t,a n d u s in g th e m e th o d o f p a ra m e te rs tu d y a n d p a ra m e te r c o rre la tio n th e o ry.T h e dam age in fo rm a tio n re g a rd in g th e d egrees o f fre e d o m o f th en odes c o u ld b e o rd e re d b y ra n k in g th e in d e x,i.e.b y ra n k in g th e dam age s e n s itiv ity o f e a ch d e g re e o ffre e d o m.T h is pro ce ss d id n o t re q u ire th e use o f a n y o p tim iz a tio n ite ra tiv e a lg o rith m.B ased on th isp ro p o s a l,th e fir s t s u ch m e th o d fo r o p tim u m sensor p la c e m e n t,w h ic h ca n a v o id d e fe c ts su ch asin e ffic ie n t ite ra tio n s a n d o p tim iz a tio n,c o u ld be a n a ly s e d.F in a lly,th e lo c a tio n o f th e s e n s o r,w h ic h收稿日期:2016林06基金项目:国家自然科学基金资助项目(51408379);河北省自然科学基金资助项目(E2013210125,E2013210104,E2016210087);河北省交 通厅重点项目(Y-2010024);河北省科学技术厅项目(09276914 )河北省桥梁与隧道工程重点学科建设项目(081406)作者简介:刘杰(977—),男,博士研究生,研究方向为钢筋混凝土结构行为,E-mail:liudingwen@引文格式:刘杰,王海龙,张志国,等.斜拉桥损伤可识别性传感器的优化布置方法[J].西南交通大学学报,2018,53(1) : 173-181.LIU Jie ’ WANG Hailong,ZHANG Zhiguo ’ et al. Optimum sensor placement method for cable-stayed bridges based on damage identifiability[J]. Journal of Southwest Jiaotong University, 2018 , 53(1):173-181.174西南交通大学学报第53卷c o u ld p ro v ide s a tis fa c to ry da m a g e id e n tifia b ility a n d m o d a l o b s e rv a b ility,w as o b ta in e d.T h e fe a s ib ilityo f th e p ro p o se d m e th o d w as d e m o n s tra te d u s in g a s in g le-to w e r d o u b le-c a b le-p la n e c a b le-s ta y e d b rid g e.A c o m p a ris o n o f th e re s u lts w ith those o b ta in e d u s in g th e E l m e th o d (e ffe c tiv e in d e p e n d e n c e m e th o d)re v e a le d th a t th e to ta l da m a g e in fo rm a tio n o b ta in e d u s in g th e p ro p o se d m e th o d is g re a te r b y fa c to rs o f 589, 582, a n d 591 fo r th e 3r d, 4t h,a n d 5th o rd e rs,re s p e c tiv e ly.K e y w o r d s:o p tim u m sensor p la c e m e n t;ca b le-sta ye d b rid g e;h e a lth m o n ito rin g;dam age id e n tifia b ility;m o d a l o b s e rv a b ility传感器系统[1]是桥梁结构健康监测系统的重要组成部分.根据传感器系统采集的振动数据进行环境激励下的模态参数识别[2],所获得的模态参数(包括频率和测点振型值)是进行动力损伤识别[3]的基础.斜拉桥跨度大、体型巨大、型式复杂,加上现场条件和健康监测系统建造、维护费用的限制以及海量数据处理的困难,只能布置有限数量的传感器.将有限的传感器布置在斜拉桥上,是否能准确识别出斜拉桥的模态錄(简称模态可观测性)以及准确识别模态参数是否对结构损伤足够敏感(简称损伤可识别性),是需要考虑的两大问题,也是关系损伤识别有效性的关键因素[4].因此,传感器优化布置(类型、数量和位置)[5]的研究具有十分重要的意义.近二三十年来,基于振动模态测试的传感器优化布置研究逐渐受到重视,瓶取得了许多重要的研究进展,可归纳为[4]:第i类,基于模态可观测性的传感器优化布置方法,该类方法可观测的模态应具有一定的准确性和线性无关性,包括有效独立法(E I法)、G u y a n模型缩减法、奇异值分解法、模态保证标准法(M A C法)、基于模态运动能法、智能算法优化法[]、混合法等;第2类,基于损伤可识别性的传感器优化布置方法,该类方法是指获取的模态参数对结构的局部损伤和状态退化足够敏感,包括基于损伤灵敏度分析法和基于易损性分析布设法[]等.第1类中,各种方法存在相互不能满足要求、优化陷入局部最优、优化效率低等缺陷[8],且无法考虑模态参数对局部损伤的敏感性情况以及反映传感器位置对结构损伤识别的影响,也即不满足损伤可识别性的要求.第2类中,损伤灵敏度法需要对结构损伤灵敏度F is h e r信息矩阵求逆,而F is h e r阵的逆矩阵不一定存在,为避免对损伤灵敏度F is h e r信息矩阵求逆,采取分解每个自由度对F is h e r信息阵迹的贡献来选择最佳测点,该方法获得测点模态满足不了模态可观测性的要求,即点模态测不出[];基于易损性分析布设法由于对损伤部位及失效路径的预测与复杂的实际情况难免出现偏差等局限性.当前传感器优化布置研究大多分别基于两类方法单独进行优化方法,存在优化易陷入局部最优、优化效率低等缺陷,而且满足模态可观测性并不一定满足损伤可识别性[].而对于以损伤识别为目的的健康监测系统,传感器优化布置的损伤可识别性特别重要.本文从传感器优化布置的损伤可识别性要求出发,利用参数试验法和参数相关性理论,提出并得到一种包含所有梁段损伤信息的节点自由度损伤信息指标,该指标通过计算所有梁段单元的损伤因子与节点自由度振型值之间的相关麵获得.对该指标排序可获得节点自由度包含损伤信息多少的次序,即每个自由度的损伤敏感性排名.此过程无需优化迭代.该方法可避免对结构进行大范围的优化计算,可避免优化陷入局部最优、优化效率低等缺陷.1节点自由度损伤信息指标法根据文献[10],本文采用节点自由度振型值、曲率值等任意动力指纹节点自由度损伤信息指标法,其核心思想是:利用节点自由度振型响应(或 曲率等)与单元损伤因子(可指损伤率)的之间相关性,可反映损伤因子对自由度振型值影响程度的性质,利用相关性构造出一种全新的指标,新指标可以实现传感器优化布置的损伤可识别性的目标.损伤因子是指改变单元的弹性模量或截面特性用来模拟损伤情况,即仿真试验中改变的输入设计参数.有限元模拟不但适用于梁单元,也适用于实体单元,不因响应类型或单元类型变化而影响其使用.新指标中所指自由度的数目与所提取的响应方向有关,可提取节点的所有位移自由度,也可仅提第1期刘杰,等:斜拉桥损伤可识别性传感器的优化布置方法175取感兴趣或可提取的有限个位移自由度.确定新指标时,根据试验方法不同,设定单元的损伤因子,利用有限元软件计算节点自由度的振型响应(或曲率等),获得节点自由度振型响应(或 曲率等)与单元损伤因子之间的相关性指标,对指标排序可获得节点自由度包含损伤信息多少的次序,即每个自由度的损伤每敏性排名.本文利用参数试验法[11]进行参数的显著性检验,研究所有梁段单元的损伤因子对节点自由度振型值的影响.参数显著性检验具有全局性,克服了敏雜分析的缺陷[12].参数试验法是指在其它因子都保持在基働情况下,使每个因子独立的变化所有指定水平进行研究,确定每一个设计因子独立于其它所有因子情况下对响应的敏感生,可在多个水平上研究多个因子,只需对较少的设计点进行评估.参数试验需要进行A n s y s有限元仿真分析,其分析次数为Nm= =i/,+1,⑴i=1式中^为因子个数;A为第i个因子的水平数.式⑴中,因子是指试验中改变的输入设计参数,是造成试验指标按某种规律发生变化的那些原因,如引起结构损伤的材料弹性模量、尺寸或质量的改变等;水平是指因子的不同状态,即输入设计参数的数值,如材料弹性模量的改变量(或改变率)等.计算时可根据分析内容结合计算效率有针对性的选择因子、因子个数及因子的水平.参数之间的相关性分析是参数显著性检验的重要方法之一[13],本文根据参数的相关性分析构造了可反映结构损伤信息程度的指标,构造指标的过程主魏括计算錄间相关性与求和.⑴计算錄间的相关性为了全面评估主梁所有梁段单元的损伤对节点自由度振型值的影响情况,需要计算所有输入参数对某个输出参数的相关性.参数间的相关性^计算见式(2).i(X-X)( Y-Y)槡(X-T)(Y-珔)2(2式中:X、Y为任意两参数錄;珔珔为参数的统计平均值;「XY分别对应正相关和负相关,介于- I到1之间,其绝对值越接近1,两参数关联程度越强,其绝对麵接近〇,两参数关联程度越弱.⑵求和获得节点自由度的损伤信息指标取损伤因子对应参数X,节点自由度振型值对应錄Y,两参数相关性越大,说明损伤因子与节点自由度振雖相互联越密切,员細子对自由度振型值的影响越大;反之,该自由度振型值所包含的结构损伤信息就越多.正相关与负相关所反映的信息程度意义上是一样的.为了衡量哪阶振型哪个节点自由度所包含的损伤信息程度,构造包含损伤信息指标为&= i丨^1,⑶i=1式中中i为第y阶模态第a自由度的损伤信息指标;毛为第i个损伤因子;^为损伤因子的个数;Y,为第;阶模态a自由度的振型响应.可反映錄Y,包含的损伤信息量的大小程度,雜越大表示第y阶模态第a测点自由度的振型值所包含的损伤信息就越大,就越能显著的识别结构的损伤情况.对于利用多阶模态情况,构造指标为A= i Z I%I,⑷=1 i=1式中:为所考察的模态阶数.对所有节点自由位置上的该指标进行排序,具体細时,根据所需要的自由度数目以及模态阶数计算相应的込指标进行排序,可获得节点自由度损伤信息指标序列! A1,其中,a E [ 1,]区间中的某种组合,为节点自由度总数,取关注的前几阶模态的前几个测点自由度.本文将该指标命名为节点自由损伤信息指标,如拟监测的模态阶数为5阶,节点自由度总数为85,监测41个梁段损伤情况,则第3个节点自由度的损伤信息指标为D3= X i^rX iY,3I•()=1 i=1求出所有节点自由的损伤信息指标排序,获得满意布点数的测点位置序列•2传感器优化布置第1类方法根据节点自由度损伤信息指标法确定每个自由度的损伤敏感性排名后,根据满意的传感器数量,依次序提取自由度位置.设满意的传感器自由176西南交通大学学报第53卷度数为10个,可提取前20个自由度位置,然后按照传感器优化布置第1类方法进行再计算,确定最终的传感器优化布置方案.利用M a t la b软件编制了改进的有效独立法(E l,e ffe c tiv e in d e p e n d e n c e)M、模态保证标准法(M A C,m o d a l assurance c r ite r io n)、和遗传算法(G A法)[6,_进行分析.3斜拉桥传感器优化布置及检验斜拉桥及创建基准有限元模型的方法同文献[19],斜桥结构模型如图1所示.为了与振型实测情况吻合,动力分析时,采用主梁测点最大元素归一化方法提取竖向位移振型,提取前5阶模态,基准有限元模型与采用环境激励测得的成桥竖向频率如表1所示.由表1可知,基准有限元模型与实测频率较为吻合,最大误差为1. 4%,表明本文创建的基准有限元模型是可行的,基于基准有限元模型的后续动力分析及损伤识别是有效的.图1斜拉桥结构模型Fig. 1 Structural m odel of the cable-stayed bridge表i基准有限元模型与实测频率对比Tab. 1 Com parison betw een calculated andm easured frequencies阶数实测频率/H z基准有限元模型频率/H z误差/%10.4699510.464782 1.120.7819070.791290-1.230. 903 7520.891099 1.441.114 995 1.100 500 1.351.136 485 1.147850-1.0将全梁共85个节点的前5阶归一化振型值作为响应.采用全梁所有梁段的单元弹性模量改变率共计41个损伤因子.为识别健康监测最有意义的早期损伤,损伤因子取0.00、0.01和0.02各3个水平.采用参数试验法进行试验设计,由式⑴计算可知,共有124次仿真试验,设计矩阵如表2所示,限于篇幅,仅提供前10次和后10次部分因子的仿真试验设计矩阵数据.表2中,D10_1z(y)表示左(右)跨10#块单元对应的弹性模量改变率.通过表2的设计矩阵进行A n s y s仿真试验,求取前5阶归一化振型数据如表3所示,限于篇幅,仅提供部分节点(6个节点)的前10次和后10次部分因子的仿真试验设计矩阵数据.表3中,n1_13为第1阶第13个节点(主梁按大小排序的第13个节点)的归一化竖向位移振型值.由式⑵计算所有损伤因子与所有主梁节点各阶模态振型值之间的相关系数;由式⑶计算各节点对应的总绝对相关度,此值综合反映主梁损伤程度,是损伤可识别性较灵敏的参数.根据选取的模态阶数;由式⑷计算对应节点位置的节点自由度损伤信息指标并排序,根据满意的传感器布点数,从大到小依次选取.模态阶数为3〜5,满意的传感器布点数为20个时,对应的布点位置如表4和图2所示.特别说明,A n s y s建模时未对主梁节点进行排序,为描述清晰起见,将主獅应的节点编号转化为从1开 始自左至右编号,共计85个节点.第1期 刘杰,等:斜拉桥损伤可识别性传感器的优化布置方法177表2提取不同模态数时较大的损伤信息指标及对应节点Tab.2 Partial data of the design m atrix obtained usingthe parameter study method编号D0_1 D1_1y D1_1z D10_1y D10_1z D11_1y D11_1z D12_1y D12_1z D13_1y1 21101111111111111111131111111111 42111111111 51110111111 61111111111 71112111111 81111011111 91111111111 101111211111 1151111111111 1161111111111 1171111111111 1181111111111 1191111111111 1201111111111 1211111111111 1221111111111 1231111111111 1241111111111表3仿真试验部分节点的前5阶归-化振型值Tab.3 Normalized mode shape values of the first five orders ofthe partial nodes obtained via simulation m编号n1_10n1_11n1_12n1_13n1_14n1_151-0.378 680 36-0.325 459 430.381 806 590. 327 921 69-0.483 310 82-0.431 545 09 2-0.378 650 13-0.325 432 840. 381 763 700.327 884 42-0.483 275 11-0.431 511 80 3-0.378 680 36-0.325 459 430. 381 806 590. 327 921 69-0.483 310 82-0.431 545 09 4-0.378 711 20-0.325 486 550. 381 850 310. 327 959 68-0.483 347 22-0.431 579 04 5-0.378 649 96-0.325 436 720. 381 794 240. 327 910 07-0.483 258 80-0.431 504 99 6-0.378 680 36-0.325 459 430. 381 806 590. 327 921 69-0.483 310 82-0.431 545 09 7-0.378 711 35-0.325 482 570. 381 819 170. 327 933 54-0.483 363 83-0.431 585 96 8-0.378 659 60-0.325 440 350. 381 756 870. 327 883 06-0.483 287 81-0.431 523 01 9-0.378 680 36-0.325 459 430. 381 806 590. 327 921 69-0.483 310 82-0.431 545 09 10-0.378 701 53-0.325 478 880. 381 857 270. 327 961 07-0.483 334 27-0.431 567 60 115-0.378 757 57-0.325 521 090. 381 843 800. 327 955 16-0.483 426 98-0.431 640 48 116-0.378 638 92-0.325 422 160. 381 717 470. 327 850 20-0.483 262 92-0.431 500 08 117-0.378 680 36-0.325 459 430. 381 806 590. 327 921 69-0.483 310 82-0.431 545 09 118-0.378 722 62-0.325 497 430. 381 897 460. 327 994 58-0.483 359 65-0.431 590 98 119-0.378 625 12-0.325 416 080.381 781 030. 327 898 45-0.483 224 64-0.431 475 60 120-0.378 680 36-0.325 459 430. 381 806 590. 327 921 69-0.483 310 82-0.431 545 09 121-0.378 736 68-0.325 503 630. 381 832 650. 327 945 38-0.483 398 66-0.431 615 93 122-0.378 647 64-0.325 429 820. 381 733 810. 327 863 89-0.483 273 47-0.431 509 78 123-0.378 680 36-0.325 459 430. 381 806 590. 327 921 69-0.483 310 82-0.431 545 09 124-0.378 713 72-0.325 489 620.381 880 800. 327 980 62-0.483 348 89-0.431 581 09178西南 交通大 学学报第53卷43 66 67 68 69 70 7172 73 74 75 76 77 78 79 80 81 82 83 84节点号(b ) 4阶模态2345 6789 10 1143 76777879 80 81 82 83 84节点号()3阶模态3 4 5 6 43686971727475 767778798081828384节点号()5阶模态图2提取模态数不同时的节点 及其损伤信息指标Fig. 2 High dam age inform ation index and its nodesw ith different m odal orders对应的M A C 法矩阵值如图3所示.由图3可 见,满足损伤可识别性的前提下,部分M A C 法矩阵 非对角线元素比较大,说明存在夹角比较小的振型 向量,该值保证了模态可观测性,是在本文指标法 排序筛选的基础上对传统M A C 法的优化.特别说 明,M A C 法本身与损伤并没有直接关系,但经过本文方法基础上再进行M A C 法的优化,使得所获得 的传感器布置方案不但具有损伤可识别性而且满 足模态可观测性.( a ) 3 阶模态()4阶模态()5阶模态图3不同的模态时的M A C 值Fig. 3 MAC values for different m odal order num bers由表5可见,考虑的模态阶数不同,布置位置 有别.模态阶数越高,节点损伤信息指标所包含的 信息越多.但随着所要求识别的模态阶数的提高, 对歸监测系统软硬件的要求越高.目前的模态参 数识别水平下,对于低阶模态的模态参数更易精确 识别.实桥应用时可综合考虑这些矛盾因素选择模 态阶数.表5最终的传感器布点位置Tab. 5 Final sensor locations提取模 态数/个传感器布点位置324681043777981844436668707274767880845354368717577808284表4不同模态阶数时传感器布点位置Tab. 4 Sensor locations for different m ode shape orders提取模 态数/个传感器布点位置323456789101143767778798081828384436667686970717273744757677787980818283843456436869717274575767778798081828384由图2可知,提取的模态阶数不同时,选取的 20个节点不同,提取的振型数目会影响节点包含 的损伤信息.提取的振型数目越大,相同测点数目 情况下,所包含的结构损伤信息越大.8 6 4 20 93.2.2.2.2.2.12 22 2 2 2 0.6 4 2 08 6118.18.18.18.17.17.n1 1、13.3.3.3.2.r 1± 1± 1± 1± 1X1第1期刘杰,等:斜拉桥损伤可识别性传感器的优化布置方法179在此基础上进行E I法和G A法分析,排除无法识别的测点后,获得传感器优化布置结果一致,如表5所示,相应测点点矩阵值如图4所示,M A C 值如图5所示.(a)关注3阶模态(b)关注4阶模态()关注5阶模态图4不同模态阶数时£值(进一步分析后)Fig. 4 E values for different m odalorder num bers ( after further analysis)由图4可见,所得测点最大程度的保持了相应模态向量间的线性独立性.由表5可见,模态阶数不同时,传感器布置位置有较大差别,究其原因是在构造指标仏时取绝对值之故,使得指标仏损伤可识别性较灵敏.此原因也导致了当模态阶数为3时,布点2、4、6、8、10 比较集中等问题.实桥应用时,可适当删减或采用选择主梁对称的另一端节点等方式进行处理即可.由图5可见,非对角线元素非常小,远低于0.25,基本达到0的优良标准,保证了所监测振型的正交性,模态可分辨程度非常高.说明先由节点自由损伤信息指标排序,再经由E I法、M A C法和G A法等传感器优化布置第一类方法处理,非常容易得出满足要求的一致的加速度优化布置方案.振型阶数( a) 3 阶模态振型阶数( b) 4 阶模态振型阶数()5阶模态图5不同模态阶数时M A C值(进一步分析后)Fig. 5 MAC values for different m odal ordernum bers ( after further analysis)为进一步论证论文所提方法的正确性和优越性,单独采用有效独立法(E I法)进行传感器优化布置.模态阶数分别是3、4、5时,满意的布点数10个时优化布置传感器结果如表6所示.表6 E I法的传感器布点位置Tab. 6 Sensor locations using the E I m ethod34820224243646678824618202242436466688055151820226466687181经过验证优化测点无法保证模态正交性,且与本文所提出的方法相比,自由度损伤信息指标总和:阶时高出589;阶时高出582;阶时高出591. E I法优化测点所包含的损伤信息量少,较难灵敏识别结构的损伤情况.180西南交通大学学报第53卷4结论(1)基于损伤可识别性的要求,提出并实现了一种传感器优化布置方法,将该方法命名为节点自由度损伤信息指标法.该方法无需优化,可避免优化陷入局部最优、优化效率低等缺陷.该方法在国内外该领域的提出尚属首次,且经过舰与仿真分析,证明了可行性和有效性.⑵本文提出的节点自由度损伤信息指标法属于传感器优化布置的第2类方法,这种方法在满足损伤可识别性的前提下,结合第1类方法,可以快速得到既满足损伤可识别性又满足模态可观测性的传感器优化布置方案.⑶本文从解决斜拉桥主梁损伤可识别性角度出发,进行了传感器优化布置方法的研究,若是斜拉索损伤、支座或者边界伸缩缝损伤的可识别性问题,只需在利用本文所提出的节点自由度损伤信息指标法时采用相应的损伤因子和响应即可.参考文献:[1]张明金,李永乐,余显全,等.桥塔上风传感器安装位置对量结果的影响[J].西南交通大学学报,015,50(4):617-662.ZHANG M ingjin,LI Y ongle,YU X ianq uan,et al.Influence of w ind sensor location on bridge tower onm easurem ent result [ J ]. Journal of Southwest JiaotongU niversity, 2015, 50(4):617-662.[]蒲黔辉,秦世强,施洲,等.环境激励下钢筋混凝土拱桥模态参数识别[].西南交通大学学报,012,47(4):539-545.PU Q ianhui,QIN S hiqiang,SHI Z ho u,et al. Modalparam eter identification of reinforced concrete archbridge under am bient excitation [ J ]. Journal ofSouthwest Jiaotong U niversity,2012,47(4): 539-545. []吴向男,徐岳,梁鹏,等.桥梁结构损伤识别研究现状与展望[].长安大学学报:自然科学版,2013,33(6) :49-58.W U X iangnan, XU Y ue, LIANG P eng, et al. R esearchstatus and prospect of bridge structure dam ageidentification [ J ]. Journal of Chang’an U niversity :N atural Science E d itio n,2013,33(6) :49-58.[]孙小猛,冯新,周晶.基于损伤可识别性的传感器优化布置方法[J].大连理工大学学报,010,0(2):264-270.SUN X iaom eng,FEN G X in,ZHOU Jing. A m ethod foridentifiability [ J ]. Journal of D alian U niversity ofT echnology, 2010, 50(2):264-270.[]刘国华,吴志根.引人信息熵理论的砼结构损伤动力识别思路[].振动与冲击,2011,0(6):162171.LIU G uohua,W U Zhigen. New thought on dynam icidentification technology for dam age detection of RCstructures by introducing inform ation entropytheory[ J].Journal of V ibration and S hock,2011,30 (6):162-171.[]单德山,王振华,李乔.大跨度铁路钢桁斜拉桥传感器优化布置[J].土木建筑与环境工程,2011,33(增刊1) :156-160.SHAN D eshan,W ANG Z hen hua,LI Qiao. Optim alsensors placem ent for long-span railway steel trusscable-stayed bridge[ J]. Journal of C ivil,A rchitectural& Environm ental E ngineering,2011,33 ( S1 ) :156160.[]杨伟,孙利民.针对结构易损场景监测的传感器优化布置方法[J].同济大学学报:自然科学版,015,43(11) :1670-1676.YANG W ei,SUN Lim in. Optim al sensor placem ent form onitoring structural vulnerable scenarios [ J] . Journalof Tongji U niversity:N atural S cience,2015,43 ( 11 ):1670-1676.[]伊廷华,张旭东,李宏男.基于分布式猴群算法的传感器优化布置方法研究[J].工程力学,2014,31(3) :93-100.YIN T ing hua,ZHANG X udong,Li H ongnan.D istributed m onkey algorithm for optim al sensorplacem ent[ J]. Engineering M echanics, 2014, 31(3):93-100.[]赵建华,张陵,孙清.利用粒子群算法的传感器优化布置及结构损伤识别研究[j].西安交通大学学报,2015,49(1) :79-85.ZHAO Jia n h u a,ZHANG L ing,SUN Qing. Optim alplacem ent of sensors for structural dam age identificationusing im proved particle swarm optim ization) J]. Journalof X i’an Jiaotong U niversity,2015,49(1):79-85. [10]相阳,罗永峰,廖冰,等.球面网壳地震动输人与振型响应的相关性[j].浙江大学学报:工学版,2016,50(6) :1040-1047.XIANG Y ang,LUO Y ongfeng,LIAO B ing,et al.Correlation betw een seism ic input and m odal responseof spherical latticed shell [ J ]. Journal of ZhejiangU niversity: Engineering S cience,2016,50(6) : 10401047.optim um sensor placem ent based on dam age [11] 刘江南,洪义海.三轴数控平面磨床几何精度分析第1期刘杰,等:斜拉桥损伤可识别性传感器的优化布置方法181与稳健设计[J].湖南大学学报:自科学版,2016,43(4): 1-8.LIU Jiang nan, HONG Y iha. A nalysis and robustdesign of geom etric accuracy of a three-axis CNCsurface grinding m achine [ J ]. Journal of H unanU niversity :N atural Sciences, 2016, 43(4):1-8. [12]单德山,孙松松,黄珍,等.基于试验数据的吊拉组合模型桥梁有限元模型修正[].土木工程学报,2014,47(10) :88-95.SHAN D eshan, SUN Songsong, HUANG Z hen, et al.Finite elem ent m odel updating of com bined cable-stayed suspension m odel bridge based on experim entald a ta[ J]. C hina Civil Engineering Jou rnal, 2014,47(10) : 88-95.[13]马建,孙守增,杨琦,等.中国桥梁工程学术研究综述-2014[J].中国公路学报,2014,27(5):1-96.MA Jia n, SUN Shouzeng, YANG Q i, et al. Review onC hina’s bridge engineering re sea rch: 2014 [ J]. ChinaJournal of Highway and T ran sport,2014,27(5) : 1-9.[14]江祥林,程高.基于E f I法的桥梁模态测试中传感器优化布置[].桥梁建设,2012,42(2): 59-65.JIA N G X ianglin, CH ENG Gao. O ptim al sensorplacem ent for bridge m odal testing based on efim ethod [ J ]. Bridge C onstruction, 2012, 42 ( 2 ):59-65.[15]唐勇,陈志坚.大型群桩基础安全监测传感器选型优化[].西南交通大学学报,2011,42(2): 247251.TANG Y ong, CHEN Zhijian. Sensor selectionoptim izaion for m onitoring system of large-scale group-pile foundation [ J ]. Journal of Southwest JiaotongU niversity,2011,42(2): 247-251.[16] LI B B, LI D S, ZHAO X F, et al. Optim al sensorplacem ent in health m onitoring of suspensionbridg e[ J]. Science C hina: Technology S ciences,2012, 55(7): 2039-2047.[17] M OORE E Z, M URPHY K D, NICHOLS J M.O ptim ized sensor placem ent for dam age param eterestim ation: experim ental results for a crackedplate [ J ]. Structural H ealth M onitoring, 2013 ,12(3) : 197-206.[18] LIU W, GAO W C, SUN Y, et al. Optim al sensorplacem ent for spatial lattice structure based on geneticalgorithm s[ J]. Journal of Sound and V ibration, 2008,317:175-189.[19]王海龙,刘杰,王新敏,等.建立斜拉桥基准有限元模型的新方法与实现[J].振动•测试与诊断,2014,34(3) : 458-462.W ANG H ailong, LIU Jie, W ANG X inm in, et al. Anew m ethod and it’s im plem entation of buildingbaseline FE m odel of cable-stayed b rid g e[J]. Journalof V ibration, M easurem ent & D iagnosis, 2014,34(3) : 458462.(编辑:秦瑜)。
Method and apparatus for converting marine wave en
专利名称:Method and apparatus for convertingmarine wave energy by means of adifference in flow resistance form factorsinto electricity发明人:Seppo Ryynänen,Mikko Ryynänen申请号:US12303186申请日:20060602公开号:US08206113B2公开日:20120626专利内容由知识产权出版社提供专利附图:摘要:The invention relates to a method and apparatus for gradually convertingmarine wave energy into electricity. The energy reserve provided by wind power holds enough energy for the needs of the entire mankind. The invention provides an efficient means of putting this energy reserve to practical use. Mounted on a rotating power shaft is a pair of form parts, the convex and concave shape, especially the round-pointed open V-shape of which reverses its orientation by 180 degrees, i.e. turns from convex to concave, whenever the power shaft makes a rotation of 180 degrees. The circular motion of water occurring in a wave drives such a turbine effectively while the wave dies out. The pair of convex and concave form parts extends helically around the power shaft, whereby water currents in all directions, which come to contact with the pair of form parts, produce a rotative moment.申请人:Seppo Ryynänen,Mikko Ryynänen地址:Kuusankoski FI,Vantaa FI国籍:FI,FI代理机构:Ostrolenk Faber LLP更多信息请下载全文后查看。
S波段10 MeV辐照用行波电子加速器研究
•加速器专辑•S波段10MeV辐照用行波电子加速器研究高渐!孟祥聪,施嘉儒,查皓,陈怀璧(清华大学工程物理系,北京100084#摘要:清华大学加速器实验室研制了10MeV行波直线加速器,并成功应用在了辐照加工领域。
在对该加速管的束流崩溃现象进行了理论和实验研究后,确定了提高阈值电流、优化结构的方案,完成了腔间相移变化的新型聚束段结构%该结构能够有效降低聚束段受困高阶模对电子的横向作用,同时不影响主模的加速性能,可以提高该行波加速管的束流崩溃阈值电流。
依照该方案进行了加速管的加工、成管焊接、冷测及高功率实验,冷测及高功率实验结果与模拟设计符合得很好,阈值电流提高了约40mA,证明了该设计的可行性%该工作为行波加速器解决束流不稳定性问题,进一步提高靶流功率提供了新的方法%关键词10MeV行波直线加速器;束流崩溃;聚束段;受困高阶模;阈值电流中图分类号:TL53文献标识码:A文章编号:1002-8935(2021)01-0038-06doi:10.16540/11-2485/tn.2021.01.07Study of an S-Band Travelling-Wave Electron Linacfor IrradiationGAO Jian,MENG Xiang-cong,SHI Jia-ru,ZHA Hao,CHEN Huai-bi(..Department of Engineering Physics,Tsinghua University,Beijing100084,China#Abstract:A10MeV travelling-wave linac has been developed by Tsinghua University and then applied in irradiation processing successfully.After theoretical and experimental study on the beam breakup (BBU#phenomenon,ChebunchingsecionwasredesignedCoincreaseCheouCpuCChresholdcurrenC.Byad-jusCingChegeomeCricalparameCersofbunchingsecCion,anovelbunchingsCrucCurewiChvaryingphaseshifC amongcaviieswascompleCed.ThisdesigncouldimproveCheChresholdcurrenCofCheCrave l ing-wavelinac wiChouCa f ecCingChedomainmode,dueCoChelessCransversee f ecConelecCrons.AfCermechanicaldesign, processing and brazing ofChe new disk-load sCrucCures,coldandhigh-powerCesCsofCheacceleraCorwere carriedouC.TheCesCresulCs were in good agreemenCwi hChe simula ion,andCheChresholdcurrenCin-creasedbyabouC40mA,whichprovedChefeasibiliyofChedesign.Thisworkprovidesanew meChodCo solveChebeaminsCabiliCyandfurCherincreaseCheouCpuCpowerofCheCraveling-wavelinac.Keywords:10MeVCrave l ing-wavelinac,Beam breakup,BunchingsecCion,Trap modes,Threshold currenC在当前工业及医疗领域中,MeV能量级别的电子束应用,包括辐、集装$冶疗等%电子加速器的各,加速管岀口处的岀束功率是最重要的之一,该接决定了器的应用场景和效应%影响管岀口处流功率的较多,包括出束电子能量、靶流流强、靶流脉宽、工作重频等%去里多研究结果表明束流崩溃(BBU,Beam breakup)是限电子器的岀束功率进一步提高的之一(1—3)。
Equilibrium and traveling-wave solutions of plane Couette flow
To be submitted to J.Fluid Mech.1Equilibrium and traveling-wave solutions ofplane Couette flowBy J.H A L C R O W,J. F.G I B S O N A N D P.C V I T A N O V I ´C School of Physics,Georgia Institute of Technology,Atlanta,GA 30332,USA (Printed 25August 2008)We survey equilibria and traveling waves of plane Couette flow in small periodic cells at moderate Reynolds number Re ,adding in the process eight new equilibrium and two new traveling-wave solutions to the four solutions previously known.Bifurcations un-der changes of Re and spanwise period are examined.These non-trivial flow-invariant unstable solutions can only be computed numerically,but they are ‘exact’in the sense that they converge to solutions of the Navier-Stokes equations as the numerical resolution increases.We find two complementary visualizations particularly insightful.Suitably cho-sen sections of their 3D -physical space velocity fields are helpful in developing physical intuition about coherent structures observed in moderate Re turbulence.Projections of these solutions and their unstable manifolds from ∞-dimensional state space onto suit-ably chosen 2-or 3-dimensional subspaces reveal their interrelations and the role they play in organizing turbulence in wall-bounded shear flows.1.Introduction In Gibson et al.(2008b )(henceforth referred to as GHC )we have utilized exact equilib-rium solutions of the Navier-Stokes equations for plane Couette flow in order to illustrate a visualization of moderate Re turbulent flows in an infinite-dimensional state space,in terms of dynamically invariant,intrinsic and representation independent coordinate frames.The state space portraiture (figure 1)offers a visualization of numerical (or ex-perimental)data of transitional turbulence in boundary shear flows,complementary to 3D visualizations of such flows (figure 2).Side-by-side animations of the two visualiza-tions illustrate their complementary strengths (see Gibson (2008b )online simulations).In these animations,3D spatial visualization of instantaneous velocity fields helps elu-cidate the physical processes underlying the formation of unstable coherent structures,such as the Self-Sustained Process (SSP)theory of Waleffe (1990,1995,1997).Running concurrently,the ∞-dimensional state space representation enables us to track unstable manifolds of equilibria of the flow,the heteroclinic connections between them (Halcrowet al.2008),and gain new insights into the nonlinear state space geometry and dynamics of moderate Re wall-bounded shear flows such as plane Couette flow.Here we continue our investigation of exact equilibrium and traveling-wave solutions of Navier-Stokes equations,this time tracking them adiabatically as functions of Re and periodic cell size [L x ,2,L z ]and,in the process,uncovering new invariant solutions,and determining new relationships between them.The history of experimental and theoretical advances is reviewed in GHC ,Sect.2;here we cite only the work on equilibria and traveling waves directly related to this investigation.Nagata (1990)found the first pair of nontrivial equilibria,as well as the first traveling wave in plane Couette flow (Nagata 1997).Waleffe (1998,2003)computed a r X i v :0808.3375v 1 [p h y s i c s .f l u -d y n ] 25 A u g 20082J.Halcrow,J.F.Gibson,and P.Cvitanovi´cFigure1.A3-dimensional projection of the∞-dimensional state space of plane Couetteflow in the periodic cellΩW03at Re=400,showing all equilibria and traveling waves discussed in§4.Equilibria are marked: EQ0,◦EQ1,•EQ2, EQ3, EQ4,♦EQ5, EQ7, EQ9,EQ10, EQ11.Traveling waves trace out closed orbits:the spanwise-traveling TW1(blue loops),streamwise TW2(green lines),and TW3(red lines).In this projection the latter twostreamwise traveling waves appear as line segments.The EQ1→EQheteroclinic connectionsand the S-invariant portion of EQ1and EQ2unstable manifolds are shown with black lines.The cloud of dots are temporally equispaced points on a long transiently turbulent trajectory, indicating the natural measure.The projection is onto the translational basis(3.13)constructed from equilibrium EQ2.Nagata and other equilibria guided by the SSP theory.Other traveling waves were com-puted by Viswanath(2008)and Jim´e nez et al.(2005).Schmiegel(1999)computed and investigated a large number of equilibria.His1999Ph.D.provides a wealth of ideas and information on solutions to plane Couetteflow,and in many regards the published lit-erature is still catching up this work.GHC added the dynamically important‘newbie’u NB equilibrium(labeled EQ4in this paper)to the stable.We review plane Couetteflow in§2and its symmetries in§3.The main advance reported in this paper is the determination of a number of new moderate-Re plane Couetteflow equilibria and traveling waves(§4),as well as explorations of the Re(§5) and spanwise cell aspect dependence(§6)of these solutions.Outstanding challenges are discussed in§7.Detailed numerical results such as stability eigenvalues and symmetries of corresponding eigenfunctions are given in Halcrow(2008),while the complete data sets for the invariant solutions can be downloaded from .2.Plane Couetteflow–a reviewPlane Couetteflow is comprised of an incompressible viscousfluid confined between two infinite parallel plates moving in opposite directions at constant and equal velocities, with no-slip boundary conditions imposed at the walls.The plates move along in the streamwise or x direction,the wall-normal direction is y,and the spanwise direction is z.Thefluid velocityfield is u(x)=[u,v,w](x,y,z).We define the Reynolds number as Re=Uh/ν,where U is half the relative velocity of the plates,h is half the distance between the plates,andνis the kinematic viscosity.After non-dimensionalization,the plates are positioned at y=±1and move with velocities u=±1ˆx,and the Navier-StokesEquilibria and traveling waves of plane Couetteflow3Figure2.A snapshot of a typical turbulent state in a large aspect cell[L x,2,L z]=[15,2,15], Re=400.The walls at y=±1move away/towards the viewer at equal and opposite velocities U=±1.The color indicates the streamwise(u,or x direction)velocity of thefluid:red shows fluid moving at u=+1,blue,at u=−1.The colormap as a function of u is indicated by the laminar equilibrium infigure4.Arrows indicate in-plane velocity in the respective planes:[v,w] in(y,z)planes,etc.The top half of thefluid is cut away to show the[u,w]velocity in the y=0 midplane.See Gibson(2008b)for movies of the time evolution of such states.equations are∂u ∂t +u·∇u=−∇p+1Re∇2u,∇·u=0.(2.1)We seek spatially periodic equilibrium and traveling-wave solutions to(2.1)for the do-mainΩ=[0,L x]×[−1,1]×[0,L z](orΩ=[L x,2,L z]),with periodic boundary conditions in x and z.Equivalently,the periodicity of solutions can be specified in terms of their fundamental wavenumbersαandγ.A given solution is compatible with a given domain ifα=mL x/2πandγ=nL z/2πfor integer m,n.In this study the spatial mean of the pressure gradient is heldfixed at zero.Most of this study is conducted at Re=400in one of the two small aspect ratio cells:ΩW03=[2π/1.14,2,2π/2.5]≈[5.51,2,2.51]≈[190,68,86]wall unitsΩHKW=[2π/1.14,2,2π/1.67]≈[5.51,2,3.76]≈[190,68,128]wall units(2.2) where the wall units are in relation to a mean shear rate of ∂u/∂y =2.9in non-dimensionalized units computed for a large aspect ratio simulation at Re=400.Em-pirically,at this Reynolds number theΩHKWcell sustains turbulence for arbitrarily longtimes(Hamilton et al.1995),whereas theΩW03cell(Waleffe2003)exhibits only short-lived transient turbulence(GHC).Unless stated otherwise,all calculations are carriedout for Re=400and theΩW03cell.In the notation of this paper,the Nagata(1990) solutions have wavenumbers(α,γ)=(0.8,1.5)andfit in the cell[2π/0.8,2,2π/1.5]≈[7.85,2,4.18].†Schmiegel(1999)’s study of plane Couette solutions and their bifurca-tions was conducted in the cell of sizeΩ=[4π,2,2π]≈[12.57,2,6.28].We were not able to to obtain data for Schmiegel’s solutions,or to continue more than a few of our solutions to his much larger cell size.Although the cell aspect ratios studied in this paper are small,the3D states explored by equilibria and their unstable manifolds explored here are strikingly similar to typical states in larger aspect cells,such asfigure2.Kim et al.(1971)observed that stream-†Note also that Reynolds number in Nagata(1990)is based on the full wall separation and the relative wall velocity,making it a factor of four larger than the Reynolds number used in this paper.4J.Halcrow,J.F.Gibson,and P.Cvitanovi´cwise instabilities give rise to pairwise counter-rotating rolls whose spanwise separation is approximately100wall units.These rolls,in turn,generate streamwise streaks of high and low speedfluid,by convectingfluid alternately away from and towards the walls. The streaks have streamwise instabilities whose length scale is roughly twice the roll separation.These‘coherent structures’are prominent in numerical and experimental observations(seefigure2and Gibson(2008b)animations),and they motivate our inves-tigation of how equilibrium and traveling-wave solutions of Navier-Stokes change with Re and cell size.Fluid states are characterized by their energy E=12 u 2and energy dissipation rateD= ∇×u 2,defined in terms of the inner product and norm(u,v)=1VΩd x u·v, u 2=(u,u).(2.3)The rate of energy input is I=1/(L x L z)dxdz∂u/∂y,where the integral is taken overthe upper and lower walls at y=±1.Normalization of these quantities is set so thatI=D=1for laminarflow and˙E=I−D.In some cases it is convenient to considerfields as differences from the laminarflow.We indicate such differences with hats:ˆu=u−yˆx.3.Symmetries and isotropy subgroupsIn an infinite domain and in the absence of boundary conditions,the Navier-Stokes equations are invariant under any3D translation,3D rotation,and x→−x,u→−u inversion through the origin,which we shall callσxz(Frisch1996).In plane Couette flow,the counter-moving walls restrict the rotation symmetry to rotation byπabout the z-axis,which we shall callσz.Theσxz andσz symmetries generate a discrete dihedral group D1×D1={e,σx,σz,σxz}of order4,whereσz[u,v,w](x,y,z)=[u,v,−w](x,y,−z)σx[u,v,w](x,y,z)=[−u,−v,w](−x,−y,z)(3.1)σxz[u,v,w](x,y,z)=[−u,−v,−w](−x,−y,−z).The walls also restrict the translation symmetry to2D in-plane translations.With pe-riodic boundary conditions,these translations become the SO(2)x×SO(2)z continuous two-parameter group of streamwise-spanwise translationsτ( x, z)[u,v,w](x,y,z)=[u,v,w](x+ x,y,z+ z).(3.2) The equations of plane Couetteflow are thus invariant under the group GPCF=O(2)x×O(2)z=D1,x×SO(2)x×D1,z×SO(2)z,where x subscripts indicate streamwise trans-lations and(x,y)→(−x,−y)inversion,and z subscripts indicate spanwise translations and z→−z inversion.The invariance of the equations does not imply invariance of their solutions.In general, a solution u of an invariant equation is only equivariant;that is,the action of the symme-try group G maps u into a set of distinct but equivalent solutions G u.However,solutions of an equation can be invariant under a subgroup of the equations’full symmetry group. Such subgroups are called‘isotropy’or‘stabilizer’subgroups(Marsden&Ratiu1999; Golubitsky&Stewart2002;Gilmore&Letellier2007).For example,a typical turbulent trajectory u(x,t)has no symmetry beyond the identity,so its isotropy group is{e}. At the other extreme is the laminar equilibrium,whose isotropy group is the full planeCouette symmetry group GPCF.In between,the isotropy subgroup of the Nagata equilibria and most of the equilibriaEquilibria and traveling waves of plane Couetteflow5 reported is S={e,s1,s2,s3},wheres1[u,v,w](x,y,z)=[u,v,−w](x+L x/2,y,−z)s2[u,v,w](x,y,z)=[−u,−v,w](−x+L x/2,−y,z+L z/2)(3.3)s3[u,v,w](x,y,z)=[−u,−v,−w](−x,−y,−z+L z/2).These particular combinations offlips and shifts match the symmetries of instabilities of streamwise-constant streakyflow(Waleffe1997,2003)and are well suited to the wavy streamwise streaks observable infigure2.But S is one choice of amongst intermediate isotropy groups,and other subgroups might also play important role in the dynamics.In this section we provide a partial classification of the isotropy groups of GPCF,sufficient to classify all invariant solutions encountered so far and to guide the search for new solutions with other symmetries.We focus on isotropy groups involving at most half-cell shifts. The main result is that,among these,there are onlyfive inequivalent isotropy groups in which we should expect tofind equilibria.3.1.Flips and half-shiftsA few observations will be useful in what follows.First,we note the key role played by the inversion and rotation symmetriesσx andσz(3.1)in the classification of solutions and their isotropy groups.The invariance of plane Couetteflow under continuous translations allows for traveling-wave solutions,i.e.,solutions that are steady in a frame moving with a constant velocity in[x,z].In state space,such solutions either trace out circles or wind around tori,and are both continuous-translation and time invariant.The sign changes underσx,σz,andσxz,however,imply particular centers of symmetry in x,z, and both x and z,respectively,and thusfix the translational phases of afield having these symmetries.Thus the presence ofσx orσz in an isotropy group prohibits traveling waves in x or z,and the presence ofσxz prohibits any form of traveling wave.Guided by this observation,we will seek equilibria whose isotropy subgroups contain theσxz inversion symmetry.Second,the periodic boundary conditions on the domain impose discrete translation symmetries ofτ(L x,0)andτ(0,L z)on the velocityfields.In addition to this full-period translation symmetry,a solution can also be invariant under a rational translation,such asτ(mL x/n,0)or a continuous translationτ( x,0).Invariance under continuous trans-lation implies thefield is constant along the given spatial variable.Invariance under rational translationτ(mL x/n,0)implies symmetry underτ(mL x/n,0)for m∈[1,n−1] as well,provided that m and n are relatively prime.For this reason the subgroups of the continuous translation SO(2)x consist of the discrete cyclic groups C n,x for n=2,3,4,... together with the trivial subgroup{e}and the full group SO(2)x itself,and similarly for z.For rational shifts x/L x=m/n we simplify the notation a bit by rewriting(3.2)asτm/n x =τ(mL x/n,0),τm/nz=τ(0,mL z/n).(3.4)Since m/n=1/2will loom large in what follows,we omit exponents of1/2:τx=τ1/2x ,τz=τ1/2z,τxz=τxτz.(3.5)Invariance of afield u under a rational shiftτ(L x/n)implies periodicity on the smaller spatial domain x∈[0,L x/n].For this reason we can exclude from our searches all equi-librium whose isotropy subgroups contain rational translations in favor of equilibria computed on smaller domains.However,as we need to study bifurcations into states with wavelengths longer than the initial state,the linear stability computations need to be carried out in the full[L x,2,L z]cell.For example,if EQ is an equilibrium so-lution in theΩ1/3=[L x/3,2,L z]cell,we refer to the same solution repeated thrice in6J.Halcrow,J.F.Gibson,and P.Cvitanovi´cΩ=[L x,2,L z]as“spanwise-tripled”or3×EQ.Such solution is by construction invariantunder C3,x={e,τ1/3x ,τ2/3x}subgroup.Third,some isotropy groups are equivalent under coordinate transformations.Note that O(2)is not an abelian group,since reflectionsσand translationsτalong the same axis do not commute(Harter1993).Insteadστ=τ−1σ.Rewriting this relation as στ2=τ−1στ,we note thatσxτx( x,0)=τ−1( x/2,0)σxτ( x/2,0).(3.6) The right-hand side of(3.6)is a similarity transformation that translates the origin of coordinate system.For x=L x/2we haveτ−1/4 x σxτ1/4x=σxτx,(3.7)and similarly for the spanwise shifts/reflections.Thus in classifying subgroups we can trade shift-reflectσxτx in favor of reflectionσx in a shifted coordinate system.However,if bothσx andσxτx are elements of a subgroup,neither can be eliminated,as the similarity transformation simply interchanges them.Fourth,for x=L x,we haveτ−1x σxτx=σx,so that,in the special case of half-cellshifts,σx andτx commute.The same considerations apply to reflections and translations in z,soσz andτz commute as well,and the order-16isotropy subgroupG=D1,x×C2,x×D1,z×C2,z⊂GPCF(3.8) is abelian.3.2.The67-fold pathWe now undertake a partial classification of the lattice of isotropy subgroups of plane Couetteflow.We focus on isotropy groups involving at most half-cell shifts,with SO(2)x×SO(2)z translations restricted to order4subgroup of spanwise-streamwise translations (3.5)of half the cell length,T=C2,x×C2,z={e,τx,τz,τxz}.(3.9)All such isotropy subgroups of GPCFare contained in the subgroup G(3.8).Let usfirst enumerate all subgroups H⊂G.The subgroups can be of order|H|= {1,2,4,8,16}.A subgroup is generated by multiplication of a set of generator elements, with the choice of generator elements unique up to a permutation of subgroup elements.A subgroup of order|H|=2has only one generator,since every group element is its own inverse.There are15non-identity elements to choose from,so there are15subgroups of order2.Subgroups of order4are generated by multiplication of two group elements. There are15choices for thefirst and14choices for the second.Equivalent subgroup generators can be picked in3·2different ways,so there are(15·14)/(3·2)=35subgroups of order4.Subgroups of order8have three generators.There are15choices for thefirst, 14for the second,and12for the third(If the element were the product of thefirst two,we would get a subgroup of order4).There are7·6·4ways of picking equivalent generators,so there are(15·14·12)/(7·6·4)=15subgroups of order8.In summary: there is the group itself,of order16,15subgroups of order8,35of order4,15of order 2,and1(the identity)of order1,or67subgroups in all(Halcrow2008).This is whole lot of subgroups to juggle;fortunately,the observations of§3.1reduce this number to5 inequivalent isotropy subgroups that suffice to describe all equilibria studied here.The equivalence ofσxτx toσx under coordinate transformation(3.7)(and similarly for z)allows the15order-2groups to be reduced to the8groups generated individually byEquilibria and traveling waves of plane Couetteflow7 the8generatorsσx,σz,σxz,σxτz,σzτx,τx,τz,andτxz.Of these,the latter three imply periodicity on smaller domains.Of the remainingfive,σx andσxτz support traveling waves in z,σz andσzτx support traveling waves in x.Only a single isotropy subgroup of order2,{e,σxz},(3.10) generated by inversionσxz,supports equilibria.EQ9,EQ10,and EQ11described below are examples of equilibria with isotropy group{e,σxz}.Of the35subgroups of order4we need to identify here only those that containσxz and thus support equilibria.Four isotropy subgroups of order4are generated by picking σxz as thefirst generator,andσz,σzτx,σzτz orσzτxz as the second generator(R for reflect-rotate):R={e,σx,σz,σxz}={e,σxz}×{e,σz}R x={e,σxτx,σzτx,σxz}={e,σxz}×{e,σxτx}(3.11)R z={e,σxτz,σzτz,σxz}={e,σxz}×{e,σzτz}R xz={e,σxτxz,σzτxz,σxz}={e,σxz}×{e,σzτxz} S.These are the only inequivalent subgroups of order4containingσxz and no isolated trans-lation elements.Together with{e,σxz}these yield the total of5inequivalent isotropy subgroups in which we can expect tofind equilibria.The R xz isotropy subgroup is particularly important,as the Nagata(1990)equilibria are invariant in R xz or an equivalent subgroup(Waleffe1997;Clever&Busse1997;Wal-effe2003),as are most of the solutions reported here.The‘NBC’isotropy subgroup of Schmiegel(1999)and S of Gibson et al.(2008b)are equivalent to R xz under quarter-cell coordinate transformations.In keeping with previous literature,most of our results are presented in terms of the isotropy subgroup S={e,s1,s2,s3}={e,σzτx,σxτxz,σxzτz} rather than the equivalent R xz.Schmiegel’s‘I’isotropy group is equivalent to our R z; Schmiegel(1999)contains many examples of R z-invariant equilibria.R-invariant equi-libria were found by Tuckerman&Barkley(2002)for plane Couetteflow in which the translation symmetries were broken by a streamwise ribbon.We have not searched for R x-invariant solutions,and are not aware of any published in the literature.The remaining subgroups of orders4and8all involve{e,τi}factors and by(3.4) are equivalent by translation to a state repeated twice spanwise,streamwise,or both. For example,the isotropy subgroup of EQ7and EQ8studied below is S×{e,τxz} R×{e,τxz}and thus these are repeats of solutions on half-domains.For the detailed count of all67subgroups,see Halcrow(2008).3.3.State-space visualizationGHC presents a method for visualizing low-dimensional projections of trajectories in the infinite-dimensional state space of the Navier-Stokes equations.Briefly,we construct an orthonormal basis{e1,e2,···,e n}that spans a set of physically importantfluid states ˆu A,ˆu B,...,such as equilibrium states and their eigenvectors,and we project the evolv-ingfluid stateˆu(t)=u−yˆx onto this basis using the L2inner product(2.3).It is convenient to use differences from laminarflow,sinceˆu forms a vector space with the laminar equilibrium at the origin,closed under addition.This produces a low-dimensional projectiona(t)=(a1,a2,···,a n,···)(t),a n(t)=(ˆu(t),e n),(3.12) which can be viewed in2d planes{e m,e n}or in3d perspective views{e ,e m,e n}.The state-space portraits are dynamically intrinsic,since the projections are defined in terms8J.Halcrow,J.F.Gibson,and P.Cvitanovi´cof intrinsic solutions of the equations of motion,and representation independent,since the inner product(2.3)projection is independent of the numerical or experimental repre-sentation of thefluid state data.Such bases are effective because moderate-Re turbulence explores a small repertoire of unstable coherent structures(rolls,streaks,their mergers), so that the trajectory a(t)does not stray far from the subspace spanned by the key structures.There is no a priori prescription for picking a‘good’set of basisfluid states,and construction of{e n}set requires some experimentation.The plane Couette system at hand has a total of29known equilibria within the S-invariant subspace:four translated copies each of EQ1-EQ6,two translated copies of EQ7(which have an additionalτxz symmetry),plus the laminar equilibrium EQ0at the origin.As shown in GHC,the dynamics of different regions of state space can be elucidated by projections onto basis sets constructed from combinations of equilibria and their eigenvectors.In this paper we present global views of all invariant solutions in terms of the or-thonormal‘translational basis’constructed in GHC from the four translated copies of EQ2:τxτzτxze1=c1(1+τx+τz+τxz)ˆuEQ2+++e2=c2(1+τx−τz−τxz)ˆuEQ2+−−(3.13)e3=c3(1−τx+τz−τxz)ˆuEQ2−+−e4=c4(1−τx−τz+τxz)ˆuEQ2−−+,where c n is a normalization constant determined by e n =1.The last3columns indicate the symmetry of the basis vector under half-cell translations;e.g.±1in theτx column impliesτx e j=±e j.4.Equilibria and traveling waves of plane CouetteflowWe seek equilibrium solutions to(2.1)of the form u(x,t)=uEQ(x)and traveling-waveor relative equilibrium solutions of the form u(x,t)=uTW(x−c t)with c=(c x,0,c z). Let F NS(u)represent the Navier-Stokes equations(2.1)for the given geometry,boundaryconditions,and Reynolds number,and f tNSits time-t forward map∂u ∂t =F NS(u),f t NS(u)=u+tdτF NS(u).(4.1)Then for anyfixed T>0,equilibria satisfy f T(u)−u=0and traveling waves satisfy f T(u)−τu=0,whereτ=τ(c x T,c z T).When u is approximated with afinite spectral expansion and f t with CFD algorithm,these equations become set of nonlinear equations in the expansion coefficients for u and,in the case of traveling waves,the wave velocities (c x,0,c z).Viswanath(2007)presents an algorithm for computing solutions to these equations based on Newton search,Krylov subspace methods,and an adaptive‘hookstep’trust-region limitation to the Newton steps.This algorithm can provide highly accurate so-lutions from even poor initial guesses.The high accuracy stems from the use of Krylov subspace methods,which can be efficient with105or more spectral expansion coeffi-cients.The robustness with respect to initial guess stems from the hookstep algorithm. The hookstep limitation restricts steps to a radius r of estimated validity for the local linear approximation to the Newton equations.As r increases from zero,the hookstep varies smoothly from the Krylov-subspace gradient direction to the Newton step,so thatEquilibria and traveling waves of plane Couette flow9Figure 3.Four projections of equilibria,traveling waves and their half-cell shifts onto trans-lational basis (3.13)constructed from equilibrium EQ 4.Equilibria are marked EQ 0,◦EQ 1,•EQ 2, EQ 3, EQ 4,♦EQ 5, EQ 7, EQ 9, EQ 10,and EQ 11.Traveling waves trace out closed loops.In some projections the loops appear as line segments or points.TW 1(blue)is a spanwise-traveling,symmetry-breaking bifurcation offEQ 1,so it passes close to different translational phases of ◦EQ 1.Similarly,TW 3(red)bifurcates off EQ 3and so passes near its translations.TW 2(green)was not discovered through bifurcation (see §4);it appears as the shorter,isolated line segment in (a 1,a 4)and (a 2,a 4).The EQ 1→EQ 0relaminarizing hetero-clinic connections are marked by dashed lines.A long-lived transiently turbulent trajectory is plotted with a dotted line.The EQ 4-translational basis was chosen here since it displays the shape of traveling waves more clearly than the projection on the EQ 2-translational basis of figure 1.the hookstep algorithm behaves as a gradient descent when far away from a solution and as the Newton method when near,thus greatly increasing the algorithm’s region of convergence around solutions,compared to the Newton method (J.E.Dennis,Jr.,&Schnabel 1996).The choice of initial guesses for the search algorithm is one of the main differences between this study and previous calculations of equilibria and traveling waves of shear flows.Prior studies have used homotopy,that is,starting from a solution to a closely related problem and following it through small steps in parameter space to the problem of interest.Equilibria for plane Couette flow have been continued from Taylor-Couette flow (Nagata 1990),Rayleigh-B´e nard flow (Clever &Busse 1997),and from plane Couette with imposed body forces (Waleffe 1997).Equilibria and traveling waves have also been found using “edge-tracking”algorithms,that is,by adjusting the magnitude of a perturbation of the laminar flow until it neither decays to laminar nor grows to turbulence,but instead converges toward a nearby weakly unstable solution (Skufca et al.(2006);Viswanath (2008);Schneider et al.(2008)).In this study,we take as initial guesses samples of velocity fields generated by long-time simulations of turbulent dynamics.The intent is to10J.Halcrow,J.F.Gibson,and P.Cvitanovi´cfind the dynamically most important solutions,by sampling the turbulentflow’s natural measure.We discretize u with a spectral expansion of the formu(x)=Jj=−JKk=−KL=03m=1u jkl T (y)e2πi(jx/L x+kz/L z),(4.2)where the T are Chebyshev polynomials.Time integration of f t is performed with aprimitive-variables Chebyshev-tau algorithm with tau correction,influence-matrix en-forcement of boundary conditions,and third-order backwards differentiation time step-ping,and dealiasing in x and z(Kleiser&Schuman(1980);Canuto et al.(1988);Peyret (2002)).We eliminate from the search space the linearly dependent spectral coefficients of u that arise from incompressibility,boundary conditions,and complex conjugacies that arise from the real-valuedness of velocityfields.Our Navier-Stokes integrator,im-plementation of the Newton-hookstep search algorithm,and all solutions described in this paper are available for download from website(Gibson2008a). For further details on the numerical methods see GHC and Halcrow(2008).Solutions presented in this paper are use spatial discretization(4.2)with(J,K,L)= (15,15,32)(or32×33×32gridpoints)and roughly60k expansion coefficients.The esti-mated accuracy of each solution is listed in table1.As is clear from Schmiegel(1999) Ph.D.thesis,ours is almost certainly an incomplete inventory;while for anyfinite Re,finite-aspect ratio cell the number of distinct equilibrium and traveling wave solutions isfinite,we know of no way of determining or bounding this number.It is difficult to compare our solutions directly to those of Schmiegel since those solutions were computed in a[4π,2,2π]cell(roughly twice our cell size in both span and streamwise directions) and with lower spatial resolution(2212independent expansion functions versus our60k for a cell of one-fourth the volume).We expect that many of Schmiegel’s equilibria could be continued to higher resolution and smaller cells.4.1.Equilibrium solutionsOur primary focus is on the S-invariant subspace(3.3)of theΩW03cell at Re=400.We initiated28equilibrium searches at evenly spaced intervals∆t=25along a trajectory in the unstable manifold of EQ4that exhibited turbulent dynamics for800nondimension-alized time units after leaving the neighborhood of EQ4and before decaying to laminar flow.The solutions are numbered in order of discovery,adjusted so that lower,upper branch solutions are labeled with consecutive numbers.EQ0is the laminar equilibrium,EQ1and EQ2are the Nagata lower and upper branch,and EQ4is the uNBsolution reported in GHC.The rest are new.Only one of the28searches failed to converge onto an equilibrium;the successful searches converged to equilibria with frequencies listed in table1.The higher frequency of occurrence of EQ1and EQ4suggests that these arethe dynamically most important equilibria in the S-invariant subspace for theΩW03cell at Re=400.Stability eigenvalues of known equilibria are plotted infigure7.Tables of stability eigenvalues and other properties of these solutions are given in Halcrow(2008), while the images,movies and full data sets are available online at .All equilibrium solutions have zero spatial-mean pressure gradient,which was imposed in theflow conditions,and,due to their symmetry,zero mean velocity.EQ1,EQ2equilibria.This pair of solutions was discovered by Nagata(1990),recom-puted by different methods by Clever&Busse(1997)and Waleffe(1998,2003),and found multiple times in randomly initiated searches as described above.The lower branch EQ1 and the upper branch EQ2are born together in a saddle-node bifurcation at Re≈218.5.。
航空发动机中央锥齿轮声振特性试验研究
第35卷第1期燃气涡轮试验与研究Vol.35,No.1 2022年2月Gas Turbine Experiment and Research Feb.,2022严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严严收稿日期:2021-01-09作者简介:文璧(1983-),男,四川绵阳人,高级工程师,硕士,主要从事发动机噪声测试及故障诊断技术研究。
1引言航空发动机中央锥齿轮是匹配发动机和附件机构的重要部件,其主要作用是将发动机主轴转速按一定比例与转向传递给发动机附件装置[1]。
目前,中央锥齿轮在设计中主要是作为刚体处理,忽略轮齿受载后的弹性变形,这种方法满足强度、疲劳寿命、质量、体积等条件的静态设计,但其工作在高温、高转速、交变大载荷等恶劣环境,锥齿轮盘形结构易在工作中产生行波共振的动态现象,造成齿轮成块破裂失效故障。
因此,开展锥齿轮的声振特性研究就摘要:航空发动机锥齿轮声振特性的确定对于锥齿轮的研制具有重要意义。
为研究航空发动机中央锥齿轮的声振特性,根据齿轮声振信息辨识原理,利用声导管技术在齿轮部件试验器中获取原始空气声。
分析发现,啮合频率幅值的变化能够对齿轮行波共振特性实现完全表述,不仅可反映从动轮的声振特性,同时也能反映主动轮的声振特性,边频信息则反映了齿轮的故障信息。
与应变片测量结果和设计计算结果对比分析证明,声学测试是获取齿轮声振特性的有效方法。
关键词:航空发动机;中央锥齿轮;声振特性;声学测试;行波共振中图分类号:V223文献标识码:A文章编号:1672-2620(2022)01-0036-05Experimental study on acoustic and vibration characteristicsof central bevel gears of aero-enginesWEN Bi1,3,LIU Yuan-shi2,XU Yong-qiang2,DU Jun2(1.Areo Engine High Altitude Simulation Key Laboratory,Mianyang621000China;2.AECCSichuan Gas Turbine Research Institute,Mianyang621000China;3.School ofMechanical Engineering,Xi’an Jiaotong University,Xi’an710049China)Abstract:The determination of the acoustic and vibration characteristics of aero-engine bevel gears is of great significance for the development of bevel gears.In order to study the acoustic and vibration character⁃istics of the aero-engine central bevel gear,the original air sound was obtained in the gear component tester using the acoustic dust technology according to the principle of the gear acoustic information identification. Analysis results show that the variation of the meshing frequency amplitude can fully express the traveling wave resonance characteristics of the gear,which can not only reflect the acoustic and vibration characteris⁃tics of the driving wheel,but also reflect the acoustic and vibration characteristics of the driven wheel,while the side frequency information reflects the gear fault pared with the measurement results of the strain gauges and the design calculations,the acoustics test is an effective method to obtain the acoustic vibration characteristics of the teeth.Key words:aero-engine;bevel gears;acoustic and vibration characteristics;acoustic test;traveling wave resonance36燃气涡轮试验与研究第35卷显得十分重要。
开始从事的英语短语
开始从事的英语短语1. Take upYou know, I decided to take up English last year. It was like starting on an exciting adventure. I was all like, "Hey, I'm gonna take up this English thing and see where it takes me." For example, my friend Tom was really into French, but I thought, "Well, I'll take up English instead." And now, I can have basic conversations with foreigners. It's so cool!2. Set aboutI set about learning English when I was in high school. It felt like I was embarking on a long journey into a whole new world. Imagine you're in a forest, and learning English is like finding a new path. I set about it with determination. Like when I had to write an English essay, I set about researching all kinds of topics. And you know what? I got a really good grade in the end.3. Get down toI finally got down to seriously studying English when I realized how important it was for my future. It was like a wake - up call. I was like, "Oh man, I can't keep messing around. I gotta get downto this." For instance, every day after school, I got down to practicing my English grammar. Just like a builder gets down to building a house, I was building my English skills.4. Embark onEmbarking on learning English was one of the best decisionsI've ever made. It's like sailing into the unknown. My sister was skeptical at first. She was like, "Why are you embarking on this? It's so hard." But I was like, "Nah, I'm gonna do it." So, I embarked on this English - learning journey. I started reading English novels, and it was like opening a door to a whole new universe.5. Commence withI commenced with learning basic English vocabulary. It was like laying the first bricks of a big building. I remember my teacher saying, "You gotta commence with the simple things." And I did. For example, I commenced with words like "apple", "book", and "cat". And then, slowly but surely, I added more and more words to my vocabulary. It's amazing how it all started with just those simple words.6. Start in onWhen I start in on my English study routine, I feel really focused. It's not always easy, though. Sometimes I'm like, "Ugh, do I really have to start in on this today?" But then I think about all the opportunities it'll bring. Like when I'm preparing for an English test, I start in on reviewing all the materials. It's like getting ready for a big battle.7. Begin withI always begin with listening when I study English. It's like tuning into a radio station from another country. My classmates often ask me, "Why do you always begin with listening?" And I'm like, "Because it helps me get the rhythm of the language." For example, I listen to English podcasts every morning. Beginning with listening has really improved my English skills overall.8. Launch intoI launched into learning English idioms last month. It was like diving into a pool of interesting expressions. My friend was all, "What are you doing?" And I said, "I'm launching into learning English idioms." For instance, "raining cats and dogs" is such a fun idiom. By launching into learning idioms, I can make my Englishmore colorful and native - like.9. Kick offI kicked off my English - speaking practice by joining an English club. It was like starting a party. Everyone there was so friendly. I was a bit nervous at first, like, "Oh, can I really do this?" But then I just kicked off. We had conversations, and it was great. Just like a football game starts with a kick - off, my English - speaking improvement started with that first step in the club.10. Go aboutI go about learning English in a very practical way. It's like building a toolbox. I collect all kinds of skills and knowledge. My parents are always curious, "How do you go about learning English?" And I tell them, "I go about it by using every opportunity to practice." For example, I go about chatting with tourists in English when I'm traveling.In conclusion, all these English phrases about starting to do something are really useful in the process of learning English. They can help us describe our journey of English learning in different ways, and also give us more motivation to keep going.。
一个无穷维动力系统的行波解
NONLINEARITY doi:10.1088/0951-7715/24/10/012
Travelling wave solutions for an infection-age structured epidemic model with external supplies
Arnaud Ducrot and Pierre Magal
2 ∂t S(t, x) = dS ∂x S(t, x) +
− γ S(t, x),
for t > 0,
x ∈ R,
(1.1)
where the parameter > 0 represents the entering flux of susceptible individuals, while γ > 0 is the rate at which individuals die or leave the population. If we assume that the process of contamination occurs by mass action law, then the model we will consider in this work reads as
ቤተ መጻሕፍቲ ባይዱ
where the function β(a) denotes the infection age-specific contamination rate and the function µ(a) represents an additional mortality (or exit) rate due to the disease. Here the diffusion coefficients dS > 0 and dI > 0 describe the spatial motility of each class. Note that the diffusion coefficients may be different from susceptible to infected depending on the disease. Throughout this work, we will make the following assumption. Assumption 1.1. We assume that dS , dI , and γ are positive constants, and the maps a → β(a) and a → µ(a) are almost everywhere bounded, and, respectively, belong to L∞ (0, ∞) and L∞ loc ([0, ∞)). The corresponding spatially homogeneous system reads as
基于频率可调驻波振荡器的芯片时钟系统设计
基于频率可调驻波振荡器的芯片时钟系统设计张伟;胡友德;郑立荣【摘要】介绍采用基于反型金属氧化物半导体场效应晶体管(IMOS)的变容二极管(varactor)实现频率可调节驻波振荡器的设计结构,通过仿真对比驻波振荡器中可变电容集总式分布和离散式分布对频率调节范围和功耗的影响.在65 nm工艺下的仿真结果表明,集总式分布的可变电容可以使驻波振荡器以较小的功耗增长获得更大的频率调节范围,频率调节范围可以达到20%.基于该振荡器提出全局同步芯片、全局异步局部同步芯片中时钟系统设计结构,通过仿真测试这些时钟系统在不同温度波动、电压波动和工艺偏差下的频率变化.仿真结果表明,这些结构可以实现高频时钟在指定芯片区域内的高可靠、可调节传输.%A new frequency tunable standing-wave oscillator architecture using inversion mode MOSFET (IMOS) as varactors was introduced.The frequency tuning range and power of oscillator were simulated when varactors were placed in lumped mode and distributed mode.In 65 nm technology,the simulation results showed that lumped mode had wider tuning range than the distributed mode with a little more power dissipation,and the tuning range achieved 20%.Newchip-level clock systems were designed for global synchronous chip and global asynchronous local synchronous chip using frequency tunable standingwave oscillator with lumped varactors.Simulation results of different process voltage temperature (PVT)settings show that these clock systems can distribute high frequency clock signal with high reliability.【期刊名称】《浙江大学学报(工学版)》【年(卷),期】2017(051)001【总页数】9页(P168-176)【关键词】驻波振荡器;可变电容;时钟分布【作者】张伟;胡友德;郑立荣【作者单位】复旦大学信息科学与工程学院,上海200433;复旦大学信息科学与工程学院,上海200433;复旦大学信息科学与工程学院,上海200433【正文语种】中文【中图分类】TN402随着芯片面积的增大和工作频率的提升,在芯片内部实现稳定、低偏斜的同步时钟信号传输成为一项极具挑战性的工作.传统时钟系统为了确保芯片各区域时钟负载点的时钟信号偏斜满足要求,需要加入大量的时钟驱动器,这些时钟驱动器将引入可观的时钟功耗.这些时钟驱动器容易受到所在区域实际工作电压、工作温度的影响,导致时钟偏斜大于预期结果.同时,分布广泛的时钟驱动器在生产过程中受工艺偏差的影响很大,导致芯片不同部分的时钟偏斜进一步加大.多时钟源设计、全局异步局部同步等新型时钟结构部分缓解了时钟偏斜、时钟功耗等方面的问题,但面临着高频信号的反射问题,难以彻底解决传统时钟面临的设计困难.采用振荡方式生成和分布时钟具有低功耗、低偏斜、高可靠等优点,长期以来受到了广泛的关注和研究.这些结构包括了LC耦合振荡器[1-2]、分布振荡器[3]、行波振荡器(travalling-wave oscillator, TWO)[4]、驻波振荡器(standing-wave oscillator, SWO)[5-10]等.Gauthaus等[11-12]分析了各类振荡时钟的设计方法以及面临的主要挑战,其中驻波振荡器可以在较大范围内提供相位偏差接近于0的高频时钟信号,具有容忍电压、温度波动和工艺偏差的特性[13],因此更适合应用在集成电路设计中.由于芯片实际使用时往往要求工作在一定频率范围内,将驻波振荡器作为芯片时钟源必须解决在较宽的频率范围内进行调节的难题.本文设计基于反型金属氧化物半导体场效应晶体管(inversion mode MOSFET,IMOS)的变容二极管(varactor)结构并集成在驻波振荡器中,通过仿真分析该结构可变电容的不同分布方式对频率调节范围和功耗的影响.本文基于该驻波振荡器,设计针对不同类型芯片的时钟系统,通过仿真测试了这些时钟系统在不同温度、电压波动和工艺偏差下的频率变化.结果表明,这些系统具有高可靠性的特点.1.1 基本结构图1列出多种驻波振荡器的结构示意图,根据传输线长度与振荡频率的关系,可以分为λ/4驻波振荡器、λ/2驻波振荡器和kλ/2驻波振荡器.所有的驻波振荡器均由两部分组成:差分传输线和交叉耦合反相器组(CCIP).振荡频率为式中:Lw、Cw为驻波振荡器的寄生电感和寄生电容,C为各类负载的源漏电容和栅电容.一旦驻波振荡器的基本参数确定,振荡频率就已经确定.为了实现频率调节,必须找到动态改变Lw、Cw和C的方法.针对各类驻波振荡器,学术界已经进行了大量的研究,不同种类驻波振荡器的结构、振荡条件和关键模块设计方法都得到了详细阐述[5-8],覆盖更大范围的驻波振荡器结构有了多种研究成果[9-10].其中借鉴行波振荡器的莫比乌斯(Mobius)结构可以实现λ/2驻波振荡器[9],在此基础上可以进一步实现kλ/2驻波振荡器[10].1.2 设计与仿真基于65 nm工艺,构建了λ/4驻波振荡器的仿真结构,如图2所示.图中,传输线采用HSPICE仿真工具中的基本传输线单元(U-element)来进行模拟.该驻波振荡器传输线总长度为5 440 μm,共采用17个基本传输线单元.图2中,驻波振荡器的基本参数如表1所示,各基本传输线单元起始点波形的仿真结果如图3所示.可以看出,不同位置的振荡信号相位基本一致.仿真结果表明,驻波振荡器频率达到5.3 GHz,功耗为12.2 mW.维持工作电压为1 V,针对NMOS/PMOS在(typical/typical, slow/slow, fast/fast)三种工艺角(corner)和25、75、125 ℃三种温度不同组合下的仿真发现,该驻波振荡器的工作频率仅有极微小的变化,符合对驻波振荡器工艺偏差容忍性的分析[13].可以认为在一定的设计参数范围内,该结构具有良好的容忍工艺偏差和温度波动的特性.工作电压的变化在一定范围内,将导致振荡频率的明显变化.如图4所示,当维持NMOS/PMOS在Typical/Typical工艺角和75 ℃条件,工作电压由0.91 V升至1.1 V时驻波振荡器工作频率由5.19 GHz升至5.43 GHz.当工作电压低于0.9 V 时,驻波振荡器不能正常工作,高于1.1 V时驻波振荡器的工作频率变化很小.这是因为交叉耦合反相器组的寄生电容可以视作驻波振荡器的负载,该电容与连接点的电压有关,且电容的显著变化局限在一定电压范围内.与传统基于时钟驱动器的时钟传播方式相比,驻波振荡器具有对电压变化更好的容忍性[13].一般情况下,各类处理器的工作频率要求有20%~50%的调节范围.式(1)表明,要实现驻波振荡器的频率调节,需要找到动态改变Lw、Cw或C的方法.其中Lw、Cw 主要由传输线的结构与参数确定,难于实现动态调整.有的研究通过配置多个差分传输线中处于工作状态的差分线数目来改变Lw、Cw,从而实现了频率的粗粒度调节[14-15].本文主要通过调节负载电容C来实现驻波振荡器的频率调节.2.1 可变电容设计采用变容二极管来实现驻波振荡器频率调节的思想由来已久[6,8],在CMOS工艺中,谐振电路常用MOS管来实现变容二极管.基于MOS管的变容二极管分为普通MOS管、反型MOS管和累积型MOS管3种.对3种变容二极管的大信号分析表明,反型MOS管具有单调的可变电容,更可靠且在正常工作电压下电容的变化范围最大[16].采用反型MOS管来实现变容二极管,并采用背靠背的连接方式形成连接驻波振荡器差分信号线的负载,结构如图5所示.其中A、B端分别接驻波振荡器差分信号线的对应点,EN0端接电压调节端.当EN0端电压为0 V时,电容最大;当EN0端电压为1 V时,电容最小.65 nm工艺提供了4种不同阈值电压的晶体管,由高到低分别为高阈值、普通阈值、低阈值和零阈值.通过仿真发现,阈值越低,电容的变化范围越大,因此选择零阈值的NMOS晶体管zvtnfet来构建变容二极管.驻波振荡器中传输线不同位置的信号幅值不同,变容二极管电容与A、B端与EN0端的电压有关,因此该变容二极管应用于驻波振荡器不同位置,对频率调节的影响效果不同.设置变容二极管中NMOS的宽度为47.5 μm,设置EN0端电压为0 V,基于图2的仿真结构和表1的参数,仿真该变容二极管位于传输线0 μm、2 150 μm核5 120 μm处时的等效电容以及对应的驻波振荡器振荡频率,结果如图6所示.当变容二极管的摆放位置由位置0 μm移向最远端时电容变小,振荡频率由4.8 GHz提高到5.19 GHz,而功耗由14.5 W降低为13.6 W.这是由于在位置0 μm处传输线上的电压最大,A、B端电压和EN0端电压差值的变化范围最大,因此电容的可变范围最大.驻波振荡器的主要功耗来自于交叉耦合反相器组,当变容二极管位于不同位置时振荡器频率不同.频率越低,则反向器组的充电和放电速度越慢,从而导致功耗越大.变容二极管放在位置0的功耗最高.通过不同工艺角和温度条件的组合仿真发现,该变容二极管对驻波振荡器频率的影响很小.如式(1)所示,驻波振荡器的振荡频率主要取决于传输线的参数,因此该结构具有很好的容忍工艺和温度偏差的特性.2.2 频率调节结构图7显示了变容二极管集成在驻波振荡器中的两种结构.如图7(a)所示为集总(lumped)式,如图7(b)所示为分布(distributed)式,其中分布式结构采用均匀分布方式.根据2.1节的分析表明,集总式分布的变容二极管的电容变化范围更大,因此频率调节范围更大,同时驻波振荡器的功耗更高.当采用了16级的变容二极管结构,每个NMOS管宽度设置为9.5 μm时,集总结构频率最高为5 GHz,最低为4 GHz,调节范围为20%,对应的功耗分别为12.8和13.5 mW.均匀分布时,最高频率为5.3 GHz,最低为4.9 GHz,调节范围为7.5%,对应的功耗分别为12.2和13.1 mW.集总式分布有利于在更大范围内调节频率,但振荡器最高频率下降,功耗增加.集总式分布的频率调节方式在于改变了振荡的边界条件,降低了振荡器的Q.分布式调节方式的本质是改变信号在传输线上的传输速度,对Q的影响小.这两种调节方式适用于其他类型的驻波振荡器.如表2所示为其他结构驻波振荡器采用集总式变容二极管时的仿真结果.表2中,λ/4驻波振荡器基本参数与表1一致,λ/2驻波振荡器和莫比乌斯驻波振荡器的交叉耦合反相器组尺寸比λ/4驻波振荡器增加了1倍.2.3 基于驻波振荡器的PLL将频率可调节驻波振荡器应用于芯片时钟系统设计时,面临着时钟频率的配置方式问题.目前,基于PLL的时钟系统根据参考时钟和配置信号来实现频率的自动锁定,基于驻波振荡器的PLL可以采用同样方式实现时钟的配置[14-15],本文中基于驻波振荡器的PLL(SPLL)的结构如图8所示.该结构中的鉴频鉴相器(PFD)、电荷泵、滤波结构(loop filter)和分频结构(freq divider)与传统的PLL完全一致,只是用驻波振荡器替换了压控振荡器;同时,为了进行频率相位比较,增加了时钟恢复模块(clock recover)用于将驻波振荡器的正弦信号转化为方波信号.该结构的接口信号除了包含普通PLL的复位信号、参考时钟和分频配置信号外,还增加了一组用于控制驻波振荡器中变容二极管的配置信号(EN*).驻波振荡器的变容二极管采用集总式结构,分为固定信号配置部分和动态电压调节部分.根据目标频率,可以通过粗粒度配置信号(EN*)设置驻波振荡器达到目标频率附近的一定范围,由PLL鉴频鉴相结果控制的可变电平输出,控制变容二极管的动态电压调节部分进行快速锁频.如图9所示为SPLL的电路图,其中DECODE和VCBOX是数字控制逻辑,VCLSFT为模拟信号数字信号转换逻辑,PLLVABOX包含了鉴频鉴相器、电荷泵、滤波结构、驻波振荡器.除驻波振荡器外,其他逻辑已经过流片验证.SPLL的仿真采用基于电路的前仿真方式.SPLL的工作过程与普通PLL的类似,图10显示了在(slow/slow,0.9 V,125 ℃), (typical/typical,1 V,75 ℃)(fast/fast,1.1 V, 25 ℃)3种条件下的锁定过程.所用的EN*信号配置为高电平,参考时钟为300 MHz,分频配置系数为16,因此目标频率为4.8 GHz.可以看出,选择合适的驻波振荡器设计参数后,SPLL可以在较宽的工艺、温度和电压偏差下正常工作.其他采用驻波振荡器实现的PLL[14],调节方式采用了粗粒度调节和细粒度调节方式.粗粒度调节通过打开过关闭参与振荡器的固定宽度的传输线数目来实现频率的调节,细粒度频率调节通过控制衬底的偏置电压来实现.该PLL与本文描述的PLL的比较,如表3所示.SPLL可以直接用于在一定的范围内进行时钟信号的高质量、可靠传播,适用于全局异步局部同步特性的芯片(global asynchronous local synchronous,GALS).由于每个较小区域内可以只由1个PLL生成和传播同步时钟,避免了多个PLL共同生成1个时钟时锁定过程不一致的情况.为了尽可能扩大该PLL的作用范围,可以选择λ/2驻波振荡器来作为振荡源.2.4 自定义频率调节结构尽管全局异步局部同步结构有利于芯片时钟系统设计,但目前部分芯片要求在全芯片范围内布局同步时钟信号.当驻波振荡器用于该类时钟系统设计时,需要多个驻波振荡器耦合形成全局时钟分布网络.该网络不能直接采用PLL的频率调节方式,因为在大范围内传输电流源输出信号存在可靠性和延迟问题,为此设计了全数字的频率自动调节结构和流程.如图11所示为自动锁频的驻波振荡器结构,可以根据输入参考时钟的指示将频率锁定到参考时钟频率.驻波振荡器的频率调节分为固定信号配置部分和动态电压调节部分.根据目标频率,可以通过类似于图8的粗粒度配置信号设置粗粒度的变容二极管,使振荡频率达到目标频率的一定范围内,由频率比较结果生成动态配置信号,控制细粒度的变容二极管,使振荡频率在最接近目标频率时保持锁定.动态配置信号的生成由频率比较模块(freq cmp)控制,采用计数比较的方式来比较经过分频后的振荡时钟和参考时钟的频率差异,但不能比较相位.通过固定时间内两个时钟周期的计数值来判断频率的差异,固定时间由参考时钟周期计数值来表示,可以保存在配置寄存器(num)中.如图12所示为该结构的频率锁定流程.复位结束后,每隔配置寄存器指定的参考时钟周期检查振荡时钟周期计数.如果小于配置寄存器的数据表明,振荡时钟慢于目标频率,调整使能信号(enable*)的1位由低电压变为高电压,以提高振荡时钟频率;如果大于配置寄存器的数据,则反向调整.若反复直至两个时钟周期计数相等(或差值在给定范围内),则此时时钟处于锁定状态,不再进行计数比较.可以看出,该结构锁定后,频率与目标频率有一定的误差,具体误差与1位使能信号控制的变容二极管大小有关.为了验证该算法的正确性,采用集总式变容二极管结构来进行仿真,其中驻波振荡器的长度为8 500 μm,其余参数与2.2节一致,振荡频率为3.0~3.6 GHz.为了加快仿真速度,参考时钟选择3.3 GHz,配置寄存器保存的数据为1;预先通过粗粒度配置信号,将驻波振荡器初始频率调整为3.2 GHz,以使得频率尽快锁定.如图13所示为整个锁定过程,选择2个时钟第4位计数来显示两者的频率差异.可以看出,经过4次调节,驻波振荡器的振荡频率超过参考时钟后,系统进入锁定状态,而驻波振荡器频率调节粒度决定了整个频率逼近的精度与速度.3.1 全局异步局部同步芯片时钟设计全局异步局部同步结构可以减小芯片级高频时钟的设计难度.以多核处理器为例,每个处理核心都有自己的PLL,各个核心之间的时钟没有时钟偏斜的控制要求,因此不需要设计复杂的全局时钟网络.如图14(a)所示为多核芯片中核心内SPLL的示意图.对多数芯片而言,λ/2驻波振荡器可以覆盖核心的面积.该SPLL不但可以提供稳定的时钟源,而且本身实现了区域内的时钟分布.如图14(b)所示为多核心芯片中SPLL 的分布.4个核心、2个PCIE模块、2个DDR模块、一个互联模块都有各自独立的SPLL,各部分之间不需要控制时钟的频率和相位.可以看出,SPLL对全局异步局部同步类型的芯片具有很好的适用性.3.2 全局同步芯片时钟设计当前,大量芯片需要在全芯片范围内共享同步的时钟信号,其中很多芯片尺寸已经达到或超过了20 mm×20 mm.在单个驻波振荡器中,传输线长度有限,无法覆盖整个芯片,因此需要在全芯片分布多个驻波振荡器.在这种情况下,一般采用驻波振荡器耦合的方式实现特定结构的分布,如阵列结构[5]、蛇形线结构[17]等.Mandal等[10]的研究表明,不将驻波振荡器进行耦合,采用统一的启动信号来控制各个驻波振荡器的初始振荡条件,可以使各个驻波振荡器的振荡过程保持一致.如图15所示为A、B、C三个驻波振荡器通过将相同位置两两互连,从而使各个驻波振荡器的振荡频率与相位保持一致.各个驻波振荡器耦合的强度取决于耦合的位置,离传输线短路端的距离越近,耦合强度越弱.研究表明,当距离短路端的距离为传输线长度的15%~20%时,可以保证足够的耦合强度.耦合后的振荡器由于存在相位平均效应,各个驻波振荡器之间不匹配造成的时钟偏斜以及电压变化造成的时钟抖动都会减小[6-7].针对4个采用图15的耦合方式构成的网格(grid)结构驻波振荡器的理论分析和仿真结果都表明,调节其中两个相邻的驻波振荡器10%的传输线长度,将导致10 ps的振荡周期差异,但4个振荡器中心点的时钟偏斜只有1 ps.仿真了图15中的3个振荡器处于不同工作电压时的振荡频率差异,仿真结果如图16所示.图中,fA、fB、fC分别为A、B、C驻波振荡器的频率.仿真结果表明,当3个驻波振荡器的工作电压不同时,耦合结构有助于缩小相互之间的频率差异.例如当A、B、C工作电压分别为1.1、0.9和1.1 V时,耦合后的振荡频率分别为5.54、5.74和5.56 GHz,频率误差为3.5%.在正常情况下,A、B、C全部工作在1.1和 0.9 V条件下,驻波振荡器的振荡频率差异为12%.耦合结构有利于控制大范围分布的驻波振荡器的频率差异,从而有利于高频时钟的低偏斜分布.以λ/2驻波振荡器为基本单元,采用多个驻波振荡器互连方式来组成整个芯片的时钟分布网络.为了节省资源,没有采用阵列的方式,采用蛇形的结构来完成多个驻波振荡器在全芯片内的分布.如图17所示为采用该方式,利用多个驻波振荡器构建全芯片的时钟分布结构.其中只包含一个频率比较模块,该模块选择一个驻波振荡器的频率输出作为基准,与参考时钟进行对比,但生成的频率调节使能信号给所有驻波振荡器使用.由于计数周期较长,使能信号有充分的时间传播给各个驻波振荡器使用.由于使能信号到达不同驻波振荡器的延迟不一致,每次使能信号调节的集总式变容二极管的大小应足够小,这样相邻驻波振荡器的频率差异有限,再通过驻波振荡器耦合的相位平均效应可以保证不同驻波振荡器的频率一致和不同位置间时钟偏差可控. (1)基于反型金属氧化物半导体场效应晶体管的变容二极管应用于驻波振荡器,可以实现频率的调节,最大频率调节范围达到20%.(2)集总式变容二极管比分布式变容二极管更适合有较大范围频率调节需求的应用,但功耗略增加,最高频率降低.(3)基于该频率可调驻波振荡器可以实现频率的自动调节与锁定,其中SPLL结构可以实现传统PLL的功能,而自定义频率锁定方式可以实现全数字方式的频率锁定.(4)基于该频率可调驻波振荡器设计的时钟系统具有容忍电压和温度波动以及工艺偏差的特性,可以实现高频时钟信号的低偏斜、可靠传播.【相关文献】[1] CHAN S C, RESTLE P J, SHEPARD K L, et al. A4.6 ghz resonant global clock distribution network [C] ∥Proceedings of IEEE International Solid-State Circuits Conference (ISSCC). San Fransisco: IEEE. 2004:341-343.[2] CHAN S C, SHEPARD K L, RESTLE P J. Design of resonant global clock distributions [C]∥ Proceedings of IEEE International Conference on Computer Design (ICCD). San Jose: IEEE, 2003: 238-243.[3] DRAKE A, NOWKA K J, NGUYEN T Y, et al. Resonant clocking using distributed parasitic capacitance [J]. IEEE Journal of Solid-State Circuits, 2004,39(9): 1520-1528.[4] WOOD J, EDWARDS T C, LIPA S. Rotary traveling-wave oscillator arrays: a new clock technology [J]. IEEE Journal of Solid-State Circuits, 2001, 36(11): 1654-1665.[5] ANDRESS W, HAM D. Recent developments in standing-wave oscillator design: review[C]∥ Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers. Forth Worth: IEEE, 2004: 119-122.[6] MAHONY F O. 10 ghz global clock distribution using coupled standing-wave oscillators [D]. Palo Alto: Stanford University, 2003.[7] MAHONY F O, YUE C P, HOROWITZ M A, et al. A 10 ghz global clock distribution using coupled standing wave oscillators [J]. IEEE Journal of Solid-State Circuits, 2003, 38(11): 1813-1820.[8] ANDRESS W, HAM D. Standing wave oscillators utilizing wave-adaptive tapered transmission lines [J]. IEEE Journal of Solid-State Circuits, 2005, 40(3): 638-651.[9] CODERO V H, KHATRI S P. Clock distribution scheme using coplanar transmission lines[C]∥ DATE’08. Munich: IEEE, 2008: 985-990.[10] MANDAL A, KARKALA V, KHATRI S, et al.Interconnected tile standing wave resonant oscillator based clock distribution circuits [C]∥ 24th Annual Conference on VLSI Design. Chennai: IEEE, 2011: 82-87.[11] GAUTHAUS M R, TASKIN B. High-performance, low-power resonant clocking: embedded tutorial[C]∥ IEEE/ACM International Conference on Computer-Aided Design. San Jose: IEEE, 2012: 742-745.[12] HONKOTE V, TASKIN B. Skew analysis and design methodologies for improved performance of resonant clocking [C]∥ 2009 International SoC. Busan: IEEE, 2009: 165-168.[13] HONKOTE V, NAGARAJAN R D. Process variation sensitivities of rotary traveling wave and mobius standing wave oscillators [C]∥ International Symposium onElectronic System Design. Singapore: IEEE, 2013: 6-10.[14] KARKALA V, BOLLAPALLI K C,GARG R, et al. A PLL design based on a standing wave resonant oscillator [C]∥ IEEE International Conference on Computer Design (ICCD). Lak e Tahoe: IEEE, 2009: 511-516.[15] MANDAL A,BOLLAPALLI K C,JAYAKUMAR N,et al. A low-jitter phase-locked resonant clock generation and distribution scheme [C]∥ IEEE 31st International Conference on Computer Design (ICCD). Asheville: IEEE, 2013: 487-490.[16] BUNCH R L, RAMAN S. Large-signal analysis of MOS varactors in CMOS-Gm LC VCOs [J]. IEEE Journal of Solid-State Circuits, 2003, 38(8): 1325-1332.[17] SHEN Mei-gen, ZHENG Li-Rong, TJUKANOFF E, et al. Concurrent chip package design for global clock distrib ution network using standing wave approach[C]∥ 6th International Symposium on Quality of Electronic Design. San Jose: IEEE, 2005: 573-578.。
船舶动力定位系统的数学模型
高频的纵荡 、横荡位置和艏摇角度 。
式中矩阵定义为 :
Ai 0 0
0
1
A H = 0 A i 0 A i = - 2ξω0 - ω20
0 0 Ai
(10)
EH = [0 k1 0 k2 0 k3 ] T
(11)
010000
CH = 0 0 0 1 0 0
(12)
000001
2 环境干扰力模
=
s2
+
Kws
2ξω0 s
+ ω20
(8)
式中 ,参数 Kw 与海况有关 , 相对阻尼系数 ξ小于 1. 0 ,一般取 0. 05~0. 3 ,ω0 表示波浪 P2M 谱中的主
要频率 , 与波浪的有义波高有关 。可见参考文献
[5]。
对于式 (8) 将其转化为状态空间形式可得如下
噪声 ;ωL 代表三维扰动变量 。矩阵定义如下 :
AL =
03 ×3 03 ×3
I3 ×3 - M - 1 D ; BL =
03 ×3 ;
M-1
EL =
03 ×3 M-1
; CL
= [ I3 ×3 03 ×3 ]
(7)
1. 3 高频运动模型
船舶的高频运动主要是由于一阶波浪力引起
的 ,并且认为纵荡 、横荡 、和艏摇三个自由度上的高 频运动是没有耦合的 。根据文献[ 1 ] ,这三个自由度 的高频运动可以分别看作是附加了阻尼项的二阶谐
因此 ,建立一个完整的合理的数学模型是船舶 动力定位系统控制的首要条件 。本文给出了针对船 舶动力定位控制系统所应用的船舶运动模型 ,包括 低频运动模型 ,高频运动模型 ,同时还给出了作为环 境干扰力的风 、流等数学模型以及考虑动态特性的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I. INTRODUCTION
To decrease the cost for cavity production the dimensional tolerances are relaxed by oversizing the resonators and tuning after brazing. The resonance frequencies of the cells after brazing of the section are lower by 200-1500 kHz compared to the operating frequency. Four tuning holes are machined with 10mm diameter and 1mm thickness in the wall of each cup (fig. 1.1). Figure 2.1. Bead-pull measurement. In the centers of the cells the longitudinal gradient of the phase is smallest with ∆ϕ/∆z<0.9°/mm. The transverse gradients, for deviations not larger than ∆x < 2 mm and ∆y < 2 mm from the axis of the section, are of the order of ∆ϕ/∆x<0.03°/mm and ∆ϕ/∆y< 0.03°/mm for the phase, (∆A/A)/∆x<0.05%/mm and (∆A/A)/∆y<0.05%/mm for
amplitude. To decrease the required time for one measurement of the 150-180 cell section the field distribution is measured only in the center of the cells. For precise determination of the position Z1 of the first cell center and distance ∆Z between the centers the complete field profile is measured in the 3 first and 3 last cells of the section (with the exception of coupler II. BEAD-PULL FIELD DISTRIBUTION and load cells). After data processing the accuracy for MEASUREMENTS positioning in the first cell center is approximately 0.1 mm The traveling wave field distribution measurement is based and for cell to cell length ≈0.002 mm for the 5 m section. The on a non-resonant perturbation theory [3]. In this technique minimal step ∆L given by the step motor for bead positioning the measurements of the reflection coefficient S11 are is not small enough (≈0.14mm) and therefore the field is measured at the same frequency with and without a measured in 2 positions (Zn1=int(Zn /∆L)*∆L and perturbing object placed at the point at which the field Zn2=Zn+∆L), close to the optimum position Zn= Z1 + (n-1) parameters have to be determined. On the axes of the section ∆Z. The amplitude and the phase in the center of n-th cell are the magnetic component of the field is zero and the approximated with the formula: An=(A(Zn1)( Zn2- Zn)+ (A(Zn2)( Zn- Zn1))/ ∆L, 2.2 dependence of the reflection coefficient from the electric ϕn=(ϕ(Zn1)( Zn2- Zn)+ (ϕ(Zn2)( Zn- Zn1))/ ∆L. 2.3 component of the field is expressed by the following formula:
A NEW TUNING METHOD FOR TRAVELING WAVE STRUCTURES
T.Khabiboulline, V.Puntus, Institute for Nuclear Research, INR, Profsojuznaja 7a, 117312 Moscow, Russia. M.Dohlus, N.Holtkamp, G. Kreps, Deutsches Elektronen-Synchrotron, DESY, Notkestr. 85, 22603 Hamburg, Germany. S.Ivanov, Moscow Engineering Physics Institute, MEPI, Kashirskoe shosse, 31, 115409 Moscow, Russia. K.Jin, National Synchrotron Radiation Laboratory, USTC, Heifei, Anhui 230029, P. R. China.
Figure 1.1. One of the cups. For the measurement of the traveling wave field distribution (amplitudes and phases in the center of the cells) a bead-pull method is used in the section. The tuning method is based on the calculation of the field distribution of the scattered wave from each cell of the structure. During the tuning procedure the amplitudes of the scattered waves are minimized.
At DESY S-Band accelerating structures are under development since 1993. Fourteen 5.2 meter long sections have to be replaced in the injector linac (LINAC II)[1] and overall four 6 meter long sections have to be build for the SBand test facility at DESY[2]. A new tuning procedure for the accelerating structure after brazing has been developed which uses bead-pull field distribution measurements instead of a detuning plunger. Amplitude and phase of the field are measured simultaneously along the structure without touching the surface on a 13 meter long horizontal bench. 2Pi (S11p-S11a)=-jωkEa2 2.1 with Pi - the input power, S11p - the reflection coefficient in the presence of a perturbing object, S11a - the reflection coefficient in the absence of the perturbing object, k depends on the electric parameters and the geometry of the object and Ea=Aejϕ - the electric component of the field. The perturbing object being used was a metallic needle with a diameter 0.4mm and a length 5mm (fig. 2.1), oriented parallel to the axis of the section. The needle can be moved along the axis of the section using a step motor with a step size about ∆L=0.14 mm.
section is changed. This effect is used for the automatization of the tuning process. The process of the tuning is controlled in real time by a computer code. Before tuning of each cell, a computer receives from the Network Analyzer (NWA) the reflected wave value S110. While tuning the reflected wave value S11 is analyzed, so that the calculated value of S11 - S110 should be achived: Un=S11-S110=Re(Snej(θn+π/2))*Kn 3.7 where Kn - is a coefficient to correlate the calculated and measured values for the cell number n: Kn=S11*/a2*Cn 3.8 The S11* - amplitude of the reflected wave from the structure measured after detuning of the input coupler cavity, characterizes the amplitude of the input power from the NWA. Cn - is the loss factor or attenuation coefficient of the wave, which traveled from n-th cell to the beginning of the structure. If we take into account the nonuniformity of the amplitude distribution in the structure the expression (3.8) can be rewritten for a constant impedance structure: Kn=(S11*/an)*(An /a3)2 3.9 For the constant gradient structure: Kn=(S11*/a3)*(AMODEL OF THE FIELD DISTRIBUTION IN THE SECTION