跳频扩频简介

合集下载

跳频扩频简介.

跳频扩频简介.

域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳
变的。
15
规格严格 功夫到家
二、扩展频谱通信
3.跳频扩频技术(FHSS)的原理
采用2FSK调制的跳频扩频通信系统如图所示。
用扩频码序列去进行频移键控(FSK)调 制,使载波的频率不断地跳变,跳频系统 的跳变频率有多个。发端信息码序列与扩 频码序列组合以后按照不同的码字去控制 频率合成器。传送的信息与这些扩频码的 组合进行选择控制,在传送中频率在整个 频带上不断变化。 在接收端,由于有与发送端完全相同 的本地发生器发生完全相同的扩频码进行 解扩,然后通过解调才能正确地恢复原有 的信息。 跳频系统占用了比信息带宽要宽得多 的频带。
线性调制 非线性调制
调制
按正弦载波 的受调参量分
m(t )
幅度调制 频率调制 相位调制
调制器
sm (t )
按载波信号 c(t)的类型分
连续波调制 脉冲调制
c(t )
09
规格严格 功夫到家
一、调制的概念
5.数字频移键控(FSK)
数字调制:用数字基带信号控制载波某个参数的过程。

原理: 数字信号s(t)控制载波频率 波形:10n规Fra bibliotek严格 功夫到家
一、调制的概念
●2FSK的产生

模拟调频法:相邻码元之间的相位是连续变化的。 键控法:相邻码元之间的相位不一定连续。
振荡器1
f1
选通开关
s (t )
基带信号
反相器 振荡器2
f2
s (t )
相加器
e2FSK (t )
选通开关
特点:转换速度快、电路简单、产生的波形好、频率稳定度高。

跳频扩频通信技术资料整理

跳频扩频通信技术资料整理

3.1.3自适应跳频adaptive frequency hopping在WIA-PA超帧簇通信阶段的每个时隙,根据实际的信道状况更换通信信道。

3.1.20跳频frequency hopping收发信道切换方法,目的为抗干扰和减少信号衰落。

3.1.40时隙跳频timeslot hopping为了避免干扰和衰减,按照一定规律,在每个时隙改变收发频率。

AFH Adaptive Frequency Hopping 自适应跳频AFS Adaptive Frequency Switch 自适应频率切换FH Frequency Hopping 跳频TH Timeslot Hopping 时隙跳频WIA-PA 数据链路层支持基于时隙的跳频机制、重传机制、时分多路访问(TDMA)和载波侦听多路访问CSMA)混合信道访问机制,保证传输的可靠性和实时性。

---------------------------------------8.4.3 时隙通信8.4.5 信道跳频WIA-PA 支持跳频通信方式,跳频序列由网络管理者指定。

WIA-PA 支持以下3 种跳频机制:——自适应频率切换(AFS):在WIA-PA 超帧中,信标Beacon、CAP 和CFP 段在同一个超帧周期使用相同的信道,在不同的超帧周期根据信道状况切换信道。

信道质量差时,即丢包率高于“PLRThreshold”时设备改变通信信道。

参数“PLRThreshold”的容详见6.9.1.2.1;——自适应跳频(AFH):在WIA-PA 超帧的每个时隙,根据信道状况更换通信信道。

信道状况通过重传次数进行评价。

信道质量差时,如果发送端统计的重传次数达到了“ChannelThreshold”,则从可用信道“IntraChanel[ ]”中按顺序选择下一信道,同时在下一重传时隙利用主信道通知所在簇的接收端(通知过程详见图43)。

如果接收端没有接收到信道切换通知,继续统计接收端的重传次数,达到“ChannelThreshold”时从可用信道“IntraChanel[ ] ”中按顺序选择下一信道在第(ChannelThreshold+2)个重传时隙进行通信。

跳频扩频系统

跳频扩频系统

跳频扩频系统一、定义及原理跳频扩频系统:采用码序列控制信号的载波,使之在多个频率上跳变而产生扩频信号。

接收端产生一个与信号载波频率变化相同移频信号,用它作变频参考,再把信号恢复到原来的频带。

调频系统可随机选取的频率数通常是几百个或更多。

跳频系统的载频受一个伪随机码控制,不断地、随机地跳变,因此跳频系统可视作载频按照一定规律变化的多频频移键控(MFSK。

与直扩系统不同,跳频系统中的伪随机序列并不直接传输,而是用来选择信道。

跳频系统主要由PN码产生器和频率合成器两部分组成,快速响应的频率合成器是频率跳变系统的关键部件。

频率跳变系统的发射机在一个预定的频率集中,由PN码序列控制频率合成器,使发射频率能随机地由一个跳到另一个。

接收机中的频率合成器也按相同的顺序跳变,产生一个与发射频率只差一个中频的本振频率,经混频后得到固定的中频信号,该中频信号经放大后送到解调器,恢复传送的信息。

此处,混频器实际上担当了解调器角色,只要收发双方同步,就可将频率跳变信号转换为一个固定频率的信号。

二、跳频系统的结构发送端的波形接收端的波形四、跳频系统的优点跳频扩频技术的优点如下:(1)抗单频干扰,部分带宽干扰能力强跳频系统的抗干扰原理和直扩系统不同,直扩是靠频谱的扩展和解扩处理来提高信噪比的;跳频是靠躲避干扰,来达到提高信噪比的。

虽然不能像直扩系统那样,但由于载波频率是跳变的,减少了单频干扰和窄带干扰进入接收机的概率。

故调频系统具有抗单频及部分带宽干扰的能力。

当跳频的概率数目足够多、跳频的带宽足够宽时,其抗干扰能力是很强的。

(2)抗多径衰落的能力强利用载波频率的快速跳变,具有频率分集的作用,从而增强了系统抗多径衰落的能力。

(3)便于实现多址通信应用跳频通信可以很容易地组建一个多址网络,网络内的各个用户都被分配了一个互不相同的地址码,就像电话号码一样。

每个用户只能接收其他用户针对其地址码发送来的信息,对发送给其他用户的信息,则不会解调出来。

跳频扩频通信技术资料整理

跳频扩频通信技术资料整理

3.1.3自适应跳频adaptive frequency hopping在WIA-PA超帧簇内通信阶段的每个时隙,根据实际的信道状况更换通信信道。

3.1.20跳频frequency hopping收发信道切换方法,目的为抗干扰和减少信号衰落。

3.1.40时隙跳频timeslot hopping为了避免干扰和衰减,按照一定规律,在每个时隙改变收发频率。

AFH Adaptive Frequency Hopping 自适应跳频AFS Adaptive Frequency Switch 自适应频率切换FH Frequency Hopping 跳频TH Timeslot Hopping 时隙跳频WIA-PA 数据链路层支持基于时隙的跳频机制、重传机制、时分多路访问(TDMA)和载波侦听多路访问CSMA)混合信道访问机制,保证传输的可靠性和实时性。

---------------------------------------8.4.3 时隙通信8.4.5 信道跳频WIA-PA 支持跳频通信方式,跳频序列由网络管理者指定。

WIA-PA 支持以下3 种跳频机制:——自适应频率切换(AFS):在WIA-PA 超帧中,信标Beacon、CAP 和CFP 段在同一个超帧周期内使用相同的信道,在不同的超帧周期内根据信道状况切换信道。

信道质量差时,即丢包率高于“PLRThreshold”时设备改变通信信道。

参数“PLRThreshold”的内容详见6.9.1.2.1;——自适应跳频(AFH):在WIA-PA 超帧的每个时隙,根据信道状况更换通信信道。

信道状况通过重传次数进行评价。

信道质量差时,如果发送端统计的重传次数达到了“ChannelThreshold”,则从可用信道“IntraChanel[ ]”中按顺序选择下一信道,同时在下一重传时隙利用主信道通知所在簇的接收端(通知过程详见图43)。

如果接收端没有接收到信道切换通知,继续统计接收端的重传次数,达到“ChannelThreshold”时从可用信道“IntraChanel[ ] ”中按顺序选择下一信道在第(ChannelThreshold+2)个重传时隙进行通信。

1.跳频扩频(HFSS)物理层[共2页]

1.跳频扩频(HFSS)物理层[共2页]

第6章 WLAN 技术155图6-9 RTS 帧中的持续时间字段6.3 IEEE 802.11的物理层IEEE 802.11的物理层分为两个子层:物理层汇聚过程(PLCP )子层和物理媒体相关(PMD )子层。

PLCP 子层用于实现载波侦听并判断其结果,同时针对不同的物理层形成相应格式的分组。

PMD 子层用于识别相关媒体传输的信号,以及所使用的调制和编码技术。

在MAC 层和PHY 层,从高层接收到的数据有效载荷,在空中传输之前,都会加上头和尾。

从逻辑链路层(LLC )接收到的每一个MAC 层服务数据单元(MSDU )需要附加一个MAC 头和一个帧检测序列(FCS )尾,形成MAC 层协议数据单元(MPDU )。

此MPDU 一旦交付给物理层,就称为物理层服务数据单元(PSDU )。

然后物理层汇聚过程(PLCP )的前导码、头、合适的尾比特和填充比特被附加到PSDU 上,最后生成物理层协议数据单元(PPDU )供传输,如图6-10所示。

MAC 层协议数据单元到达PLCP 子层时,PLCP 加上合适的控制字段送往PMD 子层。

PMD 子层的传输方式主要有4种不同的物理传输技术,跳频扩频(FHSS )、直接序列扩频(DSSS )、扩散红外线(DFIR )和正交频分复用(OFDM ),对于每种选择,PLCP 都有专用的格式,与之相对应的物理层标准有:IEEE 802.11支持的跳频扩频(HFSS )物理层、直接序列扩频(DSSS )物理层和扩散红外线(DFIR )物理层;IEEE 802.11b 支持的高速率直接序列扩频(HR/DSSS )物理层;IEEE 802.11a 支持的正交频分复用(OFDM )物理层;IEEE 802.11g 支持的增强速率物理层(ERP )等。

1.跳频扩频(HFSS )物理层上层送来的MAC 协议数据单元(MPDU ),又称为物理层服务数据单元(PSDU ),经过白化(与伪随机序列模2加),即成为PLCP 的净荷。

扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。

通信系统的有效性,是指通信系统传输信息效率的高低。

这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。

在模拟通信系统中,多路复用技术可提高系统的有效性。

显然,信道复用程度越高,系统传输信息的有效性就越好。

在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。

通信系统的可靠性,是指通信系统可靠地传输信息。

由于信息在传输过程中受到干扰,收到的信息和发出的信息并不完全相同。

可靠性就是用来衡量收到信息和发出信息的符合程度。

因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。

在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。

在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。

扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了使用。

近年来,扩展频谱通信技术的理论和使用发展非常迅速,在民用通信系统中也得到了广泛的使用。

扩频通信是扩展频谱通信的简称。

我们知道,频谱是电信号的频域描述。

承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。

信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。

频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。

扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(和待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。

扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的基本原理(直接序列扩频、跳频等)

扩频通信的理论基础1.1扩频通信的基本概念通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。

通信系统的有效性,是指通信系统传输信息效率的高低。

这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。

在模拟通信系统中,多路复用技术可提高系统的有效性。

显然,信道复用程度越高,系统传输信息的有效性就越好。

在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。

通信系统的可靠性,是指通信系统可靠地传输信息。

由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。

可靠性就是用来衡量收到信息与发出信息的符合程度。

因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。

在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。

在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。

扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。

近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。

扩频通信是扩展频谱通信的简称。

我们知道,频谱是电信号的频域描述。

承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。

信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。

频域和时域的关系由式(1-1)确定:⎰∞∞--=t e t f f F ft j d )()(π2⎰∞∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(⎰∞∞-必须为有限值。

扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。

跳频扩频通信技术资料整理

跳频扩频通信技术资料整理

跳频扩频通信技术资料整理跳频扩频(FHSS)和直接序列扩频(DSSS)是无线通信中的两种主要扩频技术。

这些技术被广泛应用于军事通信、卫星通信、蓝牙、Wi-Fi和无线局域网等领域。

该技术可提供更高的数据传输速率和更强的抗干扰性能。

接下来,本文将对跳频扩频技术进行资料整理。

跳频扩频(FHSS)是一种位于物理层的扩频技术,其原理是将信号频率在信号传输的过程中快速变化。

跳频通信利用一组由发送者和接收者共同协商的序列来决定在哪个频率上进行通信。

这些序列会在发送数据的过程中跳跃到不同的频率上,从而使信号分散,并且更难以被干扰或窃听。

不同的跳频序列可以使用不同的跳频速率,使得信号速率可以根据需求进行调整。

这一技术提供了更大的带宽,并使用户能够在具有多通道干扰的环境中进行通信。

跳频扩频通信系统具有良好的抗干扰性能,不易被干扰或窃听。

直接序列扩频(DSSS)是通过对数据流进行编码和调制来实现的扩频技术。

在DSSS中,发送数据的二进制编码在传输前被直接扩展为长码。

长码的位数比原二进制编码数高得多,因此可以用来扩展数据,使其在频域上占用更多带宽。

在接收端,需要使用相同的长码来解码接收信号。

DSSS技术可以在信号传输过程中伪装数据,从而提高传输数据的安全性。

DSSS可以减少其他通信设备对传输信号的干扰,并提供全双工通信功能。

这一技术在高速数据传输和较短距离的无线连接等应用中广泛应用。

为了实现跳频扩频技术,需要使用一些特定的硬件和软件组件,包括跳频序列产生器、频道扫描机和信号误差控制器。

这些设备和组件可以提供更高的数据传输速率、更好的抗干扰性能和更安全的通信环境。

一般来说,跳频扩频技术的应用需要进行一定的设备配置和技术支持,在实际应用中需要谨慎考虑。

需要注意的是,跳频扩频技术并不是万能的,对其的攻击方式也会随着技术的发展而不断升级。

例如,攻击者可以利用定向天线、模拟拦截器、信号干扰发生器等设备对跳频扩频通信进行攻击。

因此,在实际应用中应该密切关注技术的演进,并将需要进行相应的安全措施和设备防御。

[精编]跳频扩频通信技术资料整理

[精编]跳频扩频通信技术资料整理

跳频扩频通信技术资料整理3.1.3自适应跳频adaptivefrequencyhopping在WIA-PA超帧簇内通信阶段的每个时隙,根据实际的信道状况更换通信信道。

3.1.20跳频frequencyhopping收发信道切换方法,目的为抗干扰和减少信号衰落。

3.1.40时隙跳频timeslothopping为了避免干扰和衰减,按照一定规律,在每个时隙改变收发频率。

AFHAdaptiveFrequencyHopping自适应跳频AFSAdaptiveFrequencySwitch自适应频率切换FHFrequencyHopping跳频THTimeslotHopping时隙跳频WIA-PA数据链路层支持基于时隙的跳频机制、重传机制、时分多路访问(TDMA)和载波侦听多路访问CSMA)混合信道访问机制,保证传输的可靠性和实时性。

---------------------------------------8.4.3时隙通信8.4.5信道跳频WIA-PA支持跳频通信方式,跳频序列由网络管理者指定。

WIA-PA支持以下3种跳频机制:——自适应频率切换(AFS):在WIA-PA超帧中,信标Beacon、CAP和CFP段在同一个超帧周期内使用相同的信道,在不同的超帧周期内根据信道状况切换信道。

信道质量差时,即丢包率高于“PLRThreshold”时设备改变通信信道。

参数“PLRThreshold”的内容详见6.9.1.2.1;——自适应跳频(AFH):在WIA-PA超帧的每个时隙,根据信道状况更换通信信道。

信道状况通过重传次数进行评价。

信道质量差时,如果发送端统计的重传次数达到了“ChannelThreshold”,则从可用信道“IntraChanel[]”中按顺序选择下一信道,同时在下一重传时隙利用主信道通知所在簇的接收端(通知过程详见图43)。

如果接收端没有接收到信道切换通知,继续统计接收端的重传次数,达到“ChannelThreshold”时从可用信道“IntraChanel[]”中按顺序选择下一信道在第(ChannelThreshold+2)个重传时隙进行通信。

跳频扩频简介

跳频扩频简介
线性调制 非线性调制
调制
按正弦载波 的受调参量分
m(t )
幅度调制 频率调制 相位调制
调制器
sm (t )
按载波信号 c(t)的类型分
连续波调制 脉冲调制
c(t )
09
规格严格 功夫到家
一、调制的概念
5.数字频移键控(FSK)
数字调制:用数字基带信号控制载波某个参数的过程。

原理: 数字信号s(t)控制载波频率 波形:
波长,Gt,Gr分别表示发射天线和接收天线增益,d为发射天 线和接收天线间的距离。
05
规格严格 功夫到家
一、调制的概念
●自由空间的电波传播
• 接收换算
P r (dBm) 10log P r (mW )
P r (dBW ) 10log P r (W ) P t • 自由空间的传播损耗 L 信号传播损耗与频率 P r 有关,因此需要在较
跳变的规律 由扩频码序 列决定
12
规格严格 功夫到家
二、扩展频谱通信
2.伪随机序列
伪随机序列可以应用于扩频通信中的扩频码序列 最长线性移位寄存器反馈序列——m序列
1) 伪随机性
m序列的性质
2) 均衡性 在m序列的一周期中,“1”和“0”的数目基本相等。“1”的个数比“0” 的个数多一个。 3)而且在长度为k的游程中[l≤k≤(n – 2)],连“ l”的游程和连“0” 的游程各占一 半。
10
n
规格严格 功夫到家
一、调制的概念
●2FSK的产生

模拟调频法:相邻码元之间的相位是连续变化的。 键控法:相邻码元之间的相位不一定连续。
振荡器1
f1
选通开关
s (t )

跳频扩频技术-毕业论文外文翻译

跳频扩频技术-毕业论文外文翻译

跳频扩频技术跳频扩频(FHSS)的传输无线电信号,通过快速切换方法的载波频率在许多渠道,使用伪随机序列发射器和接收器。

它是利用作为多址接入方法在跳频码分多址接入(FH-CDMA)的计划。

扩频传输提供一个固定的频率传输的三个主要优点:1.扩频信号是高抗窄带干扰。

重新收集传播信号的过程中展开的干扰信号,使其回落到后台。

2.扩频信号是难以拦截。

一个跳频信号只出现在窄带接收机的背景噪声的增加。

窃听者只能够拦截传输,如果被称为伪随机序列。

3.扩频传输,可以与许多传统的传输类型的频带,以最小的干扰。

扩频信号加噪音极小狭窄的高频通信,反之亦然。

作为一个结果,可以更有效地利用带宽。

历史跳频的概念跳频首次提到在1903年美国专利723188 美国专利725605 特斯拉在1900年7月。

特斯拉来到展示了世界上第一个无线电遥控潜水船在1898年,当它成为明显的控制无线信号的船需要的是从安全“受到干扰,拦截,或以任何方式干预后的想法。

”他的专利涉及两个根本不同的技术实现的抗干扰能力,这两个的作用,通过改变载波的频率或其他专属特性。

首先有一个发射器,同时在两个或两个以上的不同频率和一个接收器,在每一个人的传播频率进行调整,为了控制电路响应,工作。

第二种方法使用可变频率的发射器,由一个编码轮,在预定的方式改变发射频率控制。

这些专利描述跳频频率的基本原则和频分复用,电子与门的逻辑电路。

跳频无线电先驱乔纳森Zenneck的书无线电报(德国,1908年,英文翻译McGraw Hill出版社,1915)也提到,虽然Zenneck自己指出,德律风根已经尝试过了几年前。

zenneck的书是一个时间领先的文本,它是可能的,许多后来的工程师们意识到这一点。

德国军队在第一次世界大战中,英国的力量,没有技术,按照顺序,以防止窃听有限使用固定指挥点之间的通信跳频。

一位波兰工程师,伦纳德Danilewicz ,来到了在1929年的想法。

在20世纪30年代被其他几个专利,包括一个由威廉Broertjes(德国1929年,美国专利1869695 ,1932年)。

第五章 跳频扩频通信技术

第五章 跳频扩频通信技术

FH/MFSK信号的检测
❖ 设一跳频系统,在跳频频段内有1000个可用跳频数,在信道传输中可能有 50个Chip遭遇同频的强干扰,系统采用非相干8FSK快跳频方式,每个调制 符号用5个Chip传送,已知信息比特速率Ra=2.4kb/s。
(1)求MFSK的频谱占据的频带宽度BdF及系统总频带宽度。
(2)求MFSK解调采用“5中取3”大数判决的误符号率。
解:(1)取信道间隔Δf等于信息调制信道带宽400Hz,则有
N
B
400 106
106

f 400
(2)一个频率控制字是由k个二元PN码序列片确定的,故有
N

2k

k

lg106

lg 2


6

lg
2


20
若该PN码由m序列产生,则需满足在k=20位有全部排列组合方式,最少要
可传送2个调制符号(4比特信息)。
❖ 系统带宽
Bs

NBF

N
g(2k k
1)
gRa
基于MFSK调制的慢跳频
❖ 如图5-7所示,4FSK(N=6,Ts=kTa)慢跳频的时频关系图。2比特信码组合与 键控频移点fi的关系为:“00” f0,“01” f1,“10” f2,“11” f3
❖ 跳频图案{fj} :{f0,f3,f1,f4,f2,f5,f0,f3,f1,f4,f2,f5,...}
跳频系统基本构成
• 跳频频率在信道间随机跳变,频率跳变的示意图如图5-2所示。
跳频系统基本构成
• Tc:信号在某个跳变频率(信道)上的驻留时间 • T':由一个频率跳到另一个频率的时间

扩频及其技术特点

扩频及其技术特点

扩展频谱技术是一种常用的无线通讯技术,简称展频技术。

扩展频谱(Spread Spectrum)跳频技术(FHSS)直接序列展频技术(DSSS)扩展频谱(Spread Spectrum)扩展频谱技术主要又分为「跳频技术」及「直接序列」两种方式。

跳频技术(FHSS)跳频技术(Frequency-Hopping Spread Spectrum;FHSS)在同步、且同时的情况下,接受两端以特定型式的窄频载波来传送讯号,对于一个非特定的接受器,FHSS所产生的跳动讯号对它而言,也只算是脉冲噪声。

FHSS所展开的讯号可依特别设计来规避噪声或One-to-Many的非重复的频道,并且这些跳频讯号必须遵守FCC的要求,使用75个以上的跳频讯号、且跳频至下一个频率的最大时间间隔(Dwell Time)为400ms。

扩展频谱技术又称为扩频技术是近几年来发展很快的一种技术,不仅在军事通信中发挥出了不可取代的优势,而且广泛地渗漏到了通信的各个方面,如卫星通信、移动通信、微波通信、无线定位系统、无线局域网、全球个人通信等等。

扩展频谱技术是指发送的信息带宽的一种技术。

这样的系统就称之为扩展频谱系统或扩频系统。

扩展频谱技术包括以下几种方式:●直接序列扩展频谱,简称直扩,记为DS(Direct Sequence);●跳频,记为FH(Frequency Hopping);●跳时,记为TH(Time Hopping);●线性调频,记为Chiep。

扩展频谱技术具有以下特点:l、很强的抗干扰能力由于将信号扩展到很宽的频带上,在接收端对扩频信号进行相关处理即带宽压缩,恢复成窄带信号。

对干扰信号而言,由于与扩频用的伪随机码不相关,则被扩展到一很宽的频带上,使之进入信号通频带内的干扰功率大大降低,相应的增加了相关器的输出信号/干扰比,因此具有很强的抗干扰能力。

其抗干扰能力与其频带的扩展倍数成正比,频谱扩展得越宽,抗干扰的能力越强。

2、可进行多址通信扩展频谱通信本身就是一种多址通信方式,称为扩频多址(SSMA-Spread Specrum Multiple Access),实际上是码分多址(CDMA)的一种,用不同的扩频码组成不同的网。

跳频扩频

跳频扩频
下图为跳频的原理示意图。发端信息码序列与扩频码序列组合以后按照不同的码字去控制频率合成器。
历史
在90年代初,出现了基于模糊(Fuzzy)规则的跳频图案产生器。在这种系统中,由模糊规则、初始条件以及 采样模式共同来决定系统的输出序列。只要窃听者不知道模糊规则、初始条件、采样模式三者的任何一个,就无 法预测到系统的输出频率,由此就提高了系统的抗窃听能力和抗干扰能力。模糊跳频给出的跳频码序列与传统的 跳频码序列相比更加均匀,也更难预测。90年代末有人提出了混沌(chaotic)跳频序列。其基本思想是通过混沌 系统的符号序列来生成跳频序列。在这个混沌系统中要确定一个非线性的映射关系、初始条件和混沌规则,三者 唯一确定一个输出序列。由此确定的混沌跳频序列体现了良好的均匀性,低截获概率,良好的汉明相关特性以及 具有理想的线性范围。
原理
FHSS在同步、且同时的情况下,接受两端以特定型式的窄频载波来传送讯号,对于一个非特定的接受器, FHSS所产生的跳动讯号对它而言,也只算是脉冲噪声。FHSS所展开的讯号可依特别设计来规避噪声或One-toMany的非重复的频道,并且这些跳频讯号必须遵守FCC的要求,使用75个以上的跳频讯号、且跳频至下一个频率 的最大时间间隔(Dwell Time)为400ms。
应用
跳频(frequency hopping)是用于扩频信号传输中的两种基本调制技术中的一种。它在无线电传输过程中 反复转换频率,通常能将电子对抗(就是未经授权的对无线电通讯的中途拦截或人为干扰)影响减少到最小。它 也被认为是分配多重通路的调频代码(FH-CDMA)。
扩频调制(spread spectrum modulation)技术在近几年越来越普及。扩频能使信号通过频率带传输,这 个频率带比信息信号要求的最小带宽要宽很多。发送器“展开”最初集中于窄带的能量,通过在一个宽的电磁频 谱上的大量的频率带频道。优点包括改进私密性、减少窄带干扰以及增加信号容量。

直接序列扩频和跳频技术

直接序列扩频和跳频技术
建筑节能自然也变得更加的重要,因为建筑使用能耗,包括采暖、 空调、热水供应、炊事、照明、家用电器、电梯等方面的能耗,一般占该 国总能耗的 30%左右。
那么,试想如果我们能减少不可再生能源的使用,而大力发展可 再生能源的利用,势必会对我国的经济和社会的发展起到巨大的推动 作用。 因为没有了能源,就不用再提高速发展,因为能源的利用造成了 环境的污染,最终受到伤害将还是我们人类。
1.扩 频 通 信 技 术 基 本 原 理 扩频通信的理论基础是仙农定理:C=W Log 2 (1+S / N )。 式 中: C— ——信道容量,W— ——传输带宽,S / N— ——信号功率/噪声功率。 由此
可得:在信息速率一定时,可以用不同的信号带宽和相应的信噪比来 实现传输,即信号带宽越宽则传信噪比可以越低,甚至在信号被噪声 淹没的情况下也可以实现可靠通信。 因此,将信号的频谱扩展,则可以 实现低信噪比传输,并且可以保证信号传输有较好的抗扰干性和较高 的保密性。
生物质能在建筑采暖热水供应炊事方面的应用若采用固化方式使用为生物质压块专门设计的采暖系统工作原理如同家里的采暖炉只不过采用这里炉子是专门为生物质压块专门设计的采暖炉同时可以配套和普通热水或蒸汽采暖系统类似的散热器片实现和常规燃煤采暖炉相同的采暖效果
科技信息
○机械与电子○
SCIENCE & TECHNOLOGY INFORMATION
2.2.2 跳频扩频技术的优点如下: (1 ) 抗 干 扰 能 力 强 由于在实际通信中,通信频率一直是变化不定的,控制跳频的 PN 码序列其周期可以长达数年,跳变的频率可以达到成千上万个,因此 对于干扰信号来说基本上不可能捕捉到传输信号,对于固定频率干扰 也可以跳变一个频点避开。 相对于直序扩频,跳频技术具有更好的保 密性和抗干扰性能。 由于跳频通信本身也是属于宽带传输,按照仙农定理,它也可以 实现低信噪比传输,即信号可以淹没在噪声里传输。 (2 ) 系 统 兼 容 性 兼容性是指,跳频通信系统可以与一个不跳频的定频再带通信系 统在莫个固定频点上进行通信。 也可以在定频通信电台上增加跳频模 块使其具有跳频通信能力而与跳频电台进行通信。 (3 ) 便 于 实 现 多 址 通 信 应用跳频通信可以很容易地组建一个多址网络,网络内的各个用 户都被分配了一个互不相同的地址码,就象电话号码一样。 每个用户 只能接收其他用户针对其地址码发送来的信息,对发送给其他用户的 信息,则不会解调出来。 2.3 直序扩频技术与跳频扩频技术相比较 , 跳频通信技术具有比 较强的抗干扰能力,是特别适合于军事领域的通信手段。 正是它的独 特的优点使得它符合了现代信息战争中电子对抗的需求,因此在现代 军事通信中成为重要的通信手段。 在海湾战争中,多国部队就大量的 使用了采用跳频通信技术的通信设备。 目前,跳频 系 统 跳 速 基 本 水 平 是 :短 波 电 台-100 跳/秒 ,超 短 波 电 台-500 跳/秒。 每秒数千跳的扩频电台也已经问世,预计未来十年,跳 频电台的发展可以达到每秒几万甚至几十万,上百万跳。 目前,跳频系 统的同步时间基本在几百毫秒的水平,今后也必将越来越短。 同步时 间越短,信息被地方发现、截获和测向的概率越低 通信的保密性、 隐蔽性越好。 当然通信干扰与反干扰是一对矛盾, 互相制约又互相促进发展。 跳频通信可以有效的避开单频干扰和多频干扰,但是现在电子对抗中 的跟踪干扰是它的“天敌”,跟踪干扰的步骤是:侦听、处理、施放干扰。 当本方截获到地方的跳频序列后, 迅速以同样的跳频序列施放干扰, 由于跳频序列相同,预先设定的跳频序列就无法实现正常通信,这时 只有通过转换跳频序列才能恢复通信, 但是又会被从新跟踪并干扰。 因此只有提高系统性能,提高跳频速度,防止被敌方侦听到跳频序列, 才能达到反侦听目的,这又促进了研究更高速的跳频设备的竞赛。 由于受到技术条件、元器件技术的限制,跳频速度也不可能不限 制提高,今后的跳频通信应该会是跳频和直序扩频技术的综合,或者 跳频直序扩频、跳时技术的综合。 随着现代网络技术的发展和广泛应用,网络已经成为通信技术的 重要应用领域, 各种通信业务也都逐渐趋向于借助网络平台上实现。 现在 IP 电话技术已经比较成熟,也得到了广泛的应用,其传输质量也 得到了好评。IP 图象传输系统也由于传输效果比较好,设备简单,使用 方便,已经得到了广泛的应用。 因此,现代的网络技术为话音、数据、图 象的综合业务提供了良好的平台。 在此基础上,借助无线网络技术构 建移动网络平台,便可以实现一种新的移动话音、数据、图象传输系 统。 这种移动的网络平台可以提供移动工作条件下的快速、灵活建立 和应用, 可以根据需要建立在节点限制数量内的任意点数之间的通 信,还可以根据需要将网络设置成为无中心的网状工作模式,这种无 中心的模式为战争、自然灾害(水灾、地震等 )的 工 作 (下 转 第 141 页 )

跳频扩频原理

跳频扩频原理

跳频扩频原理跳频扩频技术(FHSS/DS)是一种广泛应用于近几十年来的人工无线通信中的数字信号传输技术。

它通过将信号转化为更宽带的带宽,并采用无线电频率跳跃技术来分散信号,从而达到抵御干扰和窃听攻击的目的。

跳频扩频技术被广泛应用于军事、民用、移动通信、工业自动化等领域,成为许多数字通信系统中最常见的技术之一。

跳频扩频技术有两种基本形式:扩频和跳频,其中扩频是将数据信息转换成一个更宽的频带,通过码序列进行编码分配的方式进行传输,达到了抗干扰和保密的目的。

而跳频技术则是将数据信息按照规定的频率顺序按照一定的规律进行跳变传输,从而使得频率难以被干扰和窃听攻击所感知。

由此可见,跳频扩频技术不仅具有高质量的信号传输能力,而且还具有防干扰和保密性的重要特点。

跳频扩频技术在数字通信系统中的原理,并不复杂,实现起来也相对简单。

跳频扩频技术的基本原理是,通过将数据信号在较短的时间内传输到较大的频带上,将其扩展成一个更宽的频带,在信号发送过程中将其随机和跳跃的变化频率进行传输,以达到正常通信数据传输的目的。

跳频扩频技术的系统中,数据经过多级编码和解码,最终被解码为原始数据信息。

在随机跳频频段的过程中,信号的转换和跳跃也对抗了干扰和窃听攻击。

1.在发送端,数据信号按照一定的规律通过加扰和功率控制经过扩频同步器,将原来窄带的信号转化为宽带信号。

2.在跳频序列生成器中,随机生成一个跳频序列,然后将其与数据信号进行按位异或运算,得到加密的数据信号。

3.通过根据规律时钟定时跳频,将加密后的信号发送出去。

4.当接收方收到加密的信号时,通过解密器进行解密,将加密的数据信号转化为原始数据信号。

跳频扩频技术是一种数字通信系统中重要的信号传输技术,具有高质量、高速率、防干扰和保密性等特点。

通过随机跳跃频率和扩频码的组合,可以实现防窃听、反干扰和无线电频率资源共享的目的。

在军用、民用和通信领域中,跳频扩频技术已成为基本的数字信号传输技术,发挥着越来越重要的作用,将随着科技的发展和技术的进步不断完善和逐步广泛应用。

跳频扩频的原理和应用

跳频扩频的原理和应用

跳频扩频的原理和应用1. 跳频扩频的原理跳频扩频(Frequency Hopping Spread Spectrum)是一种通过在通信中不断改变载波频率来实现抗干扰和安全性的技术。

它主要通过以下原理来实现:1.频率跳变:跳频扩频系统在通信过程中会周期性地改变使用的载波频率。

频率跳变可以将信号在不同频率上进行传输,以减少信号在特定频率上的干扰。

2.扩频技术:跳频扩频系统还会使用扩频技术,将原始信号进行扩频。

扩频技术会在发送端对原始信号进行调制,将其扩展到较宽的频带上。

接收端会利用和发送端相同的扩频码对信号进行解码,还原出原始信号。

3.码片序列:扩频技术中使用的扩频码片序列是跳频扩频系统中的核心要素。

这些码片序列在发送端与接收端之间必须保持同步。

扩频码片序列的特点是具有良好的相关性,使得接收端可以通过将收到的信号与预期的码片序列进行比较,从而检测出有效的信号。

跳频扩频技术的原理在一定程度上提高了系统的抗干扰能力和安全性,常用于无线通信、军事通信、无线局域网等领域。

2. 跳频扩频的应用跳频扩频技术在现代通信领域得到广泛应用,以下是几个常见的应用场景:2.1 无线局域网(WLAN)跳频扩频技术在无线局域网中使用,可以提供更可靠、稳定的数据传输。

由于跳频扩频技术能够在不同的频率上进行传输,可以避免单一频率上的干扰,从而提高无线网络的抗干扰能力和传输质量。

2.2 蓝牙技术蓝牙技术中的传输方式就是基于跳频扩频技术的。

蓝牙设备会在跳频序列中选择一段频率范围,然后进行频率跳变进行数据传输。

这种方式不仅提高了蓝牙设备之间的通信质量,也增强了蓝牙设备的抗干扰能力。

2.3 军事通信由于跳频扩频技术能够有效抵御敌人的频率干扰和窃听,因此在军事通信中得到广泛应用。

军方可以利用跳频扩频技术提供安全可靠的通信,保障敏感信息的传输。

2.4 移动通信跳频扩频技术在移动通信中也有广泛的应用,尤其是在CDMA(Code Division Multiple Access)系统中。

跳频和扩频通信

跳频和扩频通信

跳频通信和扩频通信跳频通信是扩频通信的一个分支,它的突出优点是抗干扰性强,因而很适用于军事领域。

当70年代末第一部跳频电台问世以后,就预示着其发展势头锐不可挡。

到了80年代,世界各国军队普遍装备跳频电台。

这十年是跳频电台发展速度最快的十年。

广泛使用跳频电台曾被誉为80年代VHF频段无线电通信发展的主要特征。

90年代,跳频通信如虎添翼,在军用跳频通信领域已相当成熟的同时,跳频通信的应用又拓宽到民用领域。

业内人士指出,跳频通信是对抗无线电干扰的有效手段,称其为无线电通信的“杀手锏”。

跳频通信是如此的神奇,以致于自其问世至今的短短30年间,倍受世界各国,特别是几大军事强国的青睐。

2 跳频通信的基本概念2.1 定义我们在用收音机收听某电台,当电台在中波和短波两个波段上播放同一个节目时,有这样的体会:若中波波段信号不好,则随即换到短波波段收听;当短波波段信号不好,则又换回到中波波段收听。

这种以更换波段的手段来改善收听效果的方法,就是跳频的通俗含义。

只不过这种跳频仅在接收端发生,而且是由人工干预来实施跳频的。

我们假设,当广播电台发送的频段也能“紧跟”收音机用户更换的话,那么,这种通信方式就是跳频通信。

因此,跳频通信可这样描述:通信收发双方同步地改变频率的通信方式称为跳频通信。

2.2 同步条件(通信条件)与定频通信相比,跳频通信的载波频率一直在跳变。

工作中,发方以相当快的速率(跳速)改变频率,收方必须与发方同步地改变频率,双方才能保持通信。

也就是说,跳频通信时,收发双方必须采用同一种跳频图案。

跳频电台之间要成功地进行跳频通信,收发双方必须同时满足三个条件:跳频频率相同;跳频序列相同;跳频的时钟相同(允许存在一定的误差)。

三个条件缺一不可,否则无法实现跳频通信。

3 跳频通信的主要特点3.1 抗干扰性强跳频通信抗干扰的机理是“打一枪换一个地方”的游击策略,敌方搞不清跳频规律,因而具有较强的抗干扰能力。

一方面,我方的跳频指令是个伪随机码,其周期可长达十年甚至更长的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16
规格严格 功夫到家
二、扩展频谱通信
4.跳频技术的分类
跳频可分为慢跳频和快跳频。慢跳频是指跳频速率低于信息比特
率,即每跳可传输连续几个信息比特。快跳频是指跳频速率高于信
息比特率,即一个信息比特需要多跳来传输。
17
规格严格 功夫到家
二、扩展频谱通信
5.跳频技术的优点
(1)保密性。即使是模拟话音的跳频通信,只要对方不清楚载频跳变的规律,就很难截获通信内 容。当跳频图案的密钥足够大时,具有抗截获的能力。 (2)具有抗单频及部分带宽干扰的能力。由于载波频率是跳变的,当跳变的频率数目足够多时,
波长,Gt,Gr分别表示发射天线和接收天线增益,d为发射天 线和接收天线间的距离。
05
规格严格 功夫到家
一、调制的概念
●自由空间的电波传播
• 接收换算
P r (dBm) 10log P r (mW )
P r (dBW ) 10log P r (W ) P t • 自由空间的传播损耗 L 信号传播损耗与频率 P r 有关,因此需要在较
域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳
变的。
15
规格严格 功夫到家
二、扩展频谱通信
3.跳频扩频技术(FHSS)的原理
采用2FSK调制的跳频扩频通信系统如图所示。
用扩频码序列去进行频移键控(FSK)调 制,使载波的频率不断地跳变,跳频系统 的跳变频率有多个。发端信息码序列与扩 频码序列组合以后按照不同的码字去控制 频率合成器。传送的信息与这些扩频码的 组合进行选择控制,在传送中频率在整个 频带上不断变化。 在接收端,由于有与发送端完全相同 的本地发生器发生完全相同的扩频码进行 解扩,然后通过解调才能正确地恢复原有 的信息。 跳频系统占用了比信息带宽要宽得多 的频带。
1 0 1 0
2FSK
t
s1 t cos 1t
t
s2 t an g (t nTs )
s2 t a n g (t nTs )
n
e2FSK (t ) s1 (t ) cos 1t s2 (t ) cos 2t
载波:一种高频周期振荡信号,如正弦波。 受调载波称为已调信号,含有消息信号特征。 解调:调制的逆过程,从已调信号中恢复消息信号。
03
规格严格 功夫到家
一、调制的概念
2.调制目的

为什么要 进行调制?
进行频谱搬移,匹配信道特性,减小天线尺寸; 实现多路复用,提高信道利用率;


改善系统性能(有效性、可靠性);
跳频扩频简介
01
规格严格 功夫到家
主讲人:xxx 2015年9月9日
主要内容 :

调制的概念
自由空间的电波传播 数字频移键控(FSK)

扩展频谱通信
伪随机序列 跳频扩频技术
02
规格严格 功夫到家
一、调制的概念
1.调制定义
比喻——货物运输:
将 货物 装载到 飞机/轮船 的某个仓位上
调制:把 消息信号 搭载到 载波 的某个参数上。
一、调制的概念
3.调制的一般模型
m(t )
调制过程 所涉及的 三种信号
sm (t )
调制信号 消息信号 基带信号
载 波 正弦波 脉冲序列 运载工具
08
已调信号
受调载波 含有m(t) 信息
多种形式
规格严格 功夫到家
一、调制的概念
4.调制分类
按调制信号m(t) 的类型分
模拟调制 数字调制
按已调信号 的频谱结构分
跳变的规律 由扩频码序 列决定
12
规格严格 功夫到家
二、扩展频谱通信
2.伪随机序列
伪随机序列可以应用于扩频通信中的扩频码序列 最长线性移位寄存器反馈序列——m序列
1) 伪随机性
m序列的性质
2) 均衡性 在m序列的一周期中,“1”和“0”的数目基本相等。“1”的个数比“0” 的个数多一个。 3)而且在长度为k的游程中[l≤k≤(n – 2)],连“ l”的游程和连“0” 的游程各占一 半。
至另一个频率时则不再受其影响。这一点,使跳频系统在移动通信中易于得到应用与发展。
18
规格严格 功夫到家
谢谢大家!
19
规格严格 功夫到家
4d 当Gt=Gr=1时, L
2
高的频带上传输
分贝式
L 32.45 20log f (Mhz) 20log d (km)
06
规格严格 功夫到家
一、调制的概念
3.调制的一般模型
m(t )
调制信号
调制器
sm (t )
已调信号
c(t )
载波信号
07
规格严格 功夫到家
是通过收发双方设备无线传输信号的载波频率按照预定算法或者规
律进行离散变化的通信方式,也就是说,无线通信中使用的载波频 率受伪随机变化码的控制而随机跳变。
从通信技术的实现方式来说,“跳频技术”是一种用码序列进
行频移键控的通信方式,也是一种码控载频跳变的通信系统。 从时域上来看,跳频信号是一个多频率的频移键控信号;从频
10
n
规格严格 功夫到家
一、调制的概念
●2FSK的产生

模拟调频法:相邻码元之间的相位是连续变化的。 键控法:相邻码元之间的相位不一定连续。
振荡器1
f1
选通开关
s (t )
基带信号
反相器 振荡器2
f2
s (t )
相加器
e2FSK (t )
选通开关
特点:转换速度快、电路简单、产生的波形好、频率稳定度高。
1, R( j ) 1 , m j 0 j 1,2,, m 1
14
规格严格 功夫到家
自相关函数也有周期性,周期也是m;自相关函数是偶函数。
二、扩展频谱通信
3.跳频扩频技术(FHSS)的原理
跳频技术(Frequency-Hopping Spread Spectrum,FHSS)
跳频带宽足够宽时,其抗干扰能力是很强。
(3)抗多径衰落。利用载波频率的快速跳变,具有频率分集的作用,从而使系统具有抗多径衰落 的能力。条件是跳变的频率间隔具要大于相关带宽。 (4)提高频带利用率。利用跳频图案的的正交性可构成跳频码分多址系统,共享频谱资源,并具
有承受过载的能力。
(5)兼容性。跳频系统能与现有的窄带系统兼容通信。当跳频系统处于某一固定载频时,可与现 有的定频窄带系统建立通信。另外,跳频系统对模拟信源和数字信源均适用。 (6)无明显的无近效应。这是因为当大功率信号只在某个频率上产生远近效应,当载波频率跳变
线性调制 非线性调制
调制
按正弦载波 的受调参量分
m(t )
幅度调制 频率调制 相位调制
调制器
sm (t )
按载波信号 c(t)的类型分
连续波调制 脉冲调制
c(t )
09
规格严格 功夫到家
一、调制的概念
5.数字频移键控(FSK)
数字调制:用数字基带信号控制载波某个参数的过程。

原理: 数字信号s(t)控制载波频率 波形:
实现频率分配
04
规格严格 功夫到家
一、调制的概念
●自由空间的电波传播
• 自由空间的传播损耗 在理想的、均匀的、各向同性的介质中传播,只存在电磁波 能量扩散而引起的传播损耗 • 接收功率
2Gr 式中,Pt为发射功率,以球面波辐射 , Ar 4 ,λ 为工作
Ar P P r t Gt 2 4d
11
规格严格 功夫到家
二、扩频通信原理
1.扩频技术概述
扩展频谱系统:是指其中传输的信号被扩展至占据一很宽的频带的 系统(其占用带宽远大于传输该原始信号所需的最小带宽)。 扩频技术分为三类: (1) 用一数字编码序列调制载波,此序列的比特率甚高,其带宽远 大于原始信号带宽。这类系统称为直接序列调制系统。 (2) 发射机的载波频率按照指令离散地跳变,即在一组预先指定的 频率上跳变。这类系统称为频率跳变系统。 (3) 线性调频或‘鸣声”调制。在这种系统中,载频在一给定的脉 冲时间中线性地扫过一个宽的频段。
13
规格严格 功夫到家
二、扩展频谱通信
2.伪随机序列
最长线性移位寄存器反馈序列——m序列
4) 移位相加特性 一个m序列Mp与其经任意次迟延移位产生的另一不同序列Mr模2相加,得 到的仍是Mp的某次迟延移位序列Ms ,即
m序列的性质
M p Mr Ms
m
5)自相关函数
R( j )
[ xi xi j 0]的数目 [ xi xi j 1]的数目
相关文档
最新文档