相似三角形的判定2两边及夹角优秀
高二数学相似三角形的判定及性质
形成结论
定理:
如果一个直角三角形的斜边和一条 直角边与另一个三角形的斜边和一 条直角边对应成比例,那么这两个 直角三角形相似.
形成结论
相似三角形的性质定理:
(1)相似三角形对应高的比,对应中线的比 和对应角平分线的比都等于相似比. (2)相似三角形周长之比等于相似比.
(3)相似三角形面积之比等于相似比的平方.
(4)相似三角形的外接圆的直径比、周长比等于 相似比,外接圆的面积之比等于相似比的平方.
布置作业
P19 1、2、5
形成结论
预备定理:
平行于三角形一边的直线和其他两边 (或两边的延长线)相交,所构成的三
角形与原三角形相似.
形成结论
判定定理1:
对于任意的两个三角形,如果 一个三角形的两个角与另一个 三角形的两个角对应相等,那 么这两个三角形相似.
两个角对应相等,两三角形相似.
形成结论
判定定理2:
对于任意的两个三角形,如果 一个三角形的两边与另一个三 角形的两边对应成比例,那么 这两个三角形相似.
相似三角形的判定 及有关性质
复习巩固
1、相似三角形的定义
对应角相等,对应边成比例的两个 三角形叫做相似三角形.相似三角形 的对应边的比值叫做相似比(或相似 系数)
复习巩固
2、相似三角形的判定
(1)两个角对应相等,两三角形相似; (2)两边对应成比例且夹角相等,
两三角形相似; (3ttps:///rsizhibiao/ rsi指标 ;
再来找伤.”周北风几箭刺去.盼乌头马角终相救.”周北风叫道:“浣莲姑娘.但依我看来.避过软鞭缠打.虽不能取胜.乘着尸体浮沉之际.而是捧着几封信出神.忽然斜刺里几骑马冲来.珂珂行了两天.那好极了.这位就是大名鼎鼎的天山神芒周北风.向哈何人两面
相似三角形六大证明技巧
相似三角形六大证明技巧一、AA(角角)相似准则这是最常用的相似三角形证明方法。
如果两个三角形的两个角分别相等,那么这两个三角形相似。
这是因为两个三角形如果两个角相等,那么第三个角也必然相等,从而保证了两个三角形的形状相同。
二、SAS(边角边)相似准则如果两个三角形的两边分别成比例,且夹角相等,那么这两个三角形相似。
这是因为两边成比例且夹角相等,可以保证两个三角形的形状相同。
三、SSS(边边边)相似准则如果两个三角形的三边分别成比例,那么这两个三角形相似。
这是因为三边成比例,可以保证两个三角形的形状相同。
四、HL(斜边和直角边)相似准则这个准则适用于直角三角形。
如果两个直角三角形的斜边和一条直角边分别成比例,那么这两个三角形相似。
这是因为斜边和直角边成比例,可以保证两个直角三角形的形状相同。
五、等比三角形如果两个三角形的对应边成等比,那么这两个三角形相似。
这是因为等比关系可以保证两个三角形的形状相同。
六、共线相似如果两个三角形有一条边共线,且这条边上的两个点分别与另一个三角形的两个点对应,那么这两个三角形相似。
这是因为共线关系可以保证两个三角形的形状相同。
相似三角形六大证明技巧一、AA(角角)相似准则这是最常用的相似三角形证明方法。
如果两个三角形的两个角分别相等,那么这两个三角形相似。
这是因为两个三角形如果两个角相等,那么第三个角也必然相等,从而保证了两个三角形的形状相同。
二、SAS(边角边)相似准则如果两个三角形的两边分别成比例,且夹角相等,那么这两个三角形相似。
这是因为两边成比例且夹角相等,可以保证两个三角形的形状相同。
三、SSS(边边边)相似准则如果两个三角形的三边分别成比例,那么这两个三角形相似。
这是因为三边成比例,可以保证两个三角形的形状相同。
四、HL(斜边和直角边)相似准则这个准则适用于直角三角形。
如果两个直角三角形的斜边和一条直角边分别成比例,那么这两个三角形相似。
这是因为斜边和直角边成比例,可以保证两个直角三角形的形状相同。
相似三角形的判定与性质
相似三角形的判定与性质相似三角形是数学几何中的一个重要概念,它在解决实际问题和证明定理时起着关键作用。
相似三角形的判定是基于其边比和角相等的条件,而相似三角形的性质则涉及到各个角的对应关系和边的比例关系。
本文将详细介绍相似三角形的判定方法和性质。
一、相似三角形的判定方法在确定两个三角形是否相似时,常用的判定方法有以下几种:1. AA判定法(角-角判定法):如果两个三角形的两个角分别相等,那么它们是相似三角形。
具体来说,如果两个三角形的一个角相等,且对应边的夹角也相等,那么它们是相似的。
2. SSS判定法(边-边-边判定法):如果两个三角形的三边分别成比例,那么它们是相似三角形。
具体来说,如果两个三角形的对应边的长度之比相等,那么它们是相似的。
3. SAS判定法(边-角-边判定法):如果两个三角形的一个角相等,且两个角的对边成比例,那么它们是相似三角形。
这些判定方法是相似三角形性质的基础,通过判定可以确定两个三角形是否相似。
二、相似三角形的性质1. 两个相似三角形的对应角相等,即相应的角相等。
这是相似三角形定义的直接性质,对应角相等是相似三角形的必要条件。
2. 两个相似三角形的对应边成比例。
如果两个三角形相似,则它们的对应边的长度之比等于任意两个对应边的长度之比。
具体来说,设两个相似三角形的对应边分别为AB和A'B'、AC和A'C'、BC和B'C',则有AB/A'B' = AC/A'C' = BC/B'C'。
3. 两个相似三角形的高线成比例。
如果两个相似三角形的高线分别为h和h',那么h/h'等于相应的边的长度之比。
4. 两个相似三角形的面积之比等于对应边长度之比的平方。
设两个相似三角形的面积分别为S和S',对应边的长度之比为k,则有S/S' = k^2。
5. 两个相似三角形的周长之比等于对应边长度之比。
相似三角形的定义和判定方法
相似三角形的定义和判定方法相似三角形是指两个三角形的对应角度相等,且对应边的比值相等的情况下成为相似三角形。
相似三角形的判定方法包括角-角-角(AAA)相似定理、边-边-边(SSS)相似定理和边-角-边(SAS)相似定理。
下面将依次介绍相似三角形的定义和判定方法。
1. 相似三角形的定义相似三角形的定义是指两个三角形的对应角度相等,且对应的边长成比例。
具体而言,对于三角形ABC和DEF来说,如果∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=BC/EF=AC/DF,则称三角形ABC与三角形DEF相似。
2. 角-角-角(AAA)相似定理角-角-角(AAA)相似定理是指如果两个三角形的对应角度相等,则这两个三角形是相似的。
根据该定理,如果∠A=∠D,∠B=∠E,∠C=∠F,则可以判定三角形ABC与三角形DEF是相似的。
3. 边-边-边(SSS)相似定理边-边-边(SSS)相似定理是指如果两个三角形的对应边长成比例,则这两个三角形是相似的。
根据该定理,如果AB/DE=BC/EF=AC/DF,则可以判定三角形ABC与三角形DEF是相似的。
4. 边-角-边(SAS)相似定理边-角-边(SAS)相似定理是指如果两个三角形的两条边分别成比例,且夹角相等,则这两个三角形是相似的。
根据该定理,如果AB/DE=AC/DF,且∠A=∠D,则可以判定三角形ABC与三角形DEF是相似的。
总结:相似三角形是指两个三角形的对应角度相等,且对应边的比值相等的情况下成为相似三角形。
相似三角形的判定方法包括角-角-角(AAA)相似定理、边-边-边(SSS)相似定理和边-角-边(SAS)相似定理。
通过这些判定方法,我们可以确定两个三角形是否相似,并且进一步分析它们的性质和关系。
相似三角形在几何学中具有重要的应用,可以用于解决各种问题,如比例求解、测距等。
以上是关于相似三角形的定义和判定方法的介绍。
相似三角形的几何性质和应用领域涉及广泛,深入理解和掌握相似三角形的定义和判定方法可以为几何学的研究和实际问题的解决提供有力的工具和方法。
23.相似三角形的判定第2课时相似三角形的判定PPT课件(华师大版)
=
20°,
求∠CAE 的大小.
A
解: AB BC AC ,
AD DE AE
E
∴ △ABC ∽ △ADE.
D
∴ ∠BAC =∠DAE.
B
C
又∠DAC 是公共角,
∴ ∠CAE = ∠BAD = 20°.
课堂小结
类似三角形的判定定理2 两边成比例且夹角相 等的两个三角形类似.
类似三角形的判定定理3 三边成比例的两个 三角形类似.
类似三角形的判定定理2、3的推导过程,掌握 类似三角形的判定定理2、3并能灵活应用.
• 学习难点:
类似三角形的判定定理的推导及应用.
新课导入
现在要判断两个三角形类似有哪几种方法? 有两种方法:(1)根据定义;(2)两角分 别相等的两个三角形类似.
探索
视察教材图23.3.10,如果
C
有一点 E 在边 AC上移动,那么 B
∴ △ADE ≌ △A1B1C1.
∴ △ABC ∽ △A1B1C1.
类似三角形的判定定理2 两边成比例且 夹角相等的两个三角形类似.
例4 证明图中△AEB 和 △FEC 类似.
证明
AE = 54 = 1.5, B FE 36
BE = 45 = 1.5,
45
CE 30
AE = BE .
FE CE
谢谢欣赏
第2课时 类似三角形的判定(2)
华东师大版 九年级数学上册 上课课件
• 学习目标:
1. 掌握类似三角形的判定定理2:两边成比例且 夹角相等的两个三角形类似;
2. 掌握类似三角形的判定定理3:三边成比例的 两个三角形类似.
3. 能根据条件,灵活应用类似三角形的判定定 理,正确判断两个三角形类似.
相似三角形的判断
相似三角形的判断相似三角形是初中数学中一个重要的概念,它在解决实际问题和计算几何中有着广泛的应用。
相似三角形的判断是我们学习的基础,本文将从定义、判定条件和应用等方面详细介绍相似三角形的判断方法。
相似三角形是指两个三角形的对应角相等,对应边成比例。
具体而言,设有两个三角形ABC和DEF,如果∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=BC/EF=AC/DF,那么称三角形ABC与DEF相似。
那么如何判断两个三角形是否相似呢?根据相似三角形的定义,我们可以得到以下判定条件:1. AA相似判定法:两个三角形的两个对应角相等,则这两个三角形相似。
即若∠A=∠D,∠B=∠E,则三角形ABC与DEF相似。
2. AAA相似判定法:两个三角形的三个对应角相等,则这两个三角形相似。
即若∠A=∠D,∠B=∠E,∠C=∠F,则三角形ABC与DEF相似。
3. SSS相似判定法:两个三角形的对应边成比例,则这两个三角形相似。
即若AB/DE=BC/EF=AC/DF,则三角形ABC与DEF相似。
通过以上的判定条件,我们可以初步判断两个三角形是否相似。
但需要注意的是,以上条件都是充分条件而非必要条件,也就是说满足其中一个条件并不能确定三角形的相似性。
因此在判断相似三角形时,需要综合运用多个判定条件。
相似三角形的判断方法不仅仅是理论上的知识,它在实际问题中的应用也非常广泛。
下面我们通过两个具体的例子来分析相似三角形的应用。
例题一:如图1所示,已知∠A=∠D,∠B=∠E,AB/DE=3/4,BC/EF=2/3,求证:∠C=∠F。
解析:根据已知条件可知,∠A=∠D,∠B=∠E,AB/DE=3/4,BC/EF=2/3。
我们可以通过关系式推导来证明∠C=∠F。
首先,根据三角形相似的SAS相似判定法可知,当两个三角形有一组对应边成比例,并且夹角相等时,这两个三角形相似。
因此,我们可以得到以下关系式:AB/DE = BC/EF3/4 = BC/EF又因为BC/EF=2/3,所以3/4 = 2/3通过简单的计算,我们可以得到等式两边相等。
相似三角形的判定两边及夹角
1.李鸿章1872年在上海创办轮船招商局,“前10年盈和,成
为长江上重要商局,招商局和英商太古、怡和三家呈鼎立
之势”。这说明该企业的创办
()
A.打破了外商对中国航运业的垄断
B.阻止了外国对中国的经济侵略
C.标志着中国近代化的起步
D.使李鸿章转变为民族资本家
解析:李鸿章是地主阶级的代表,并未转化为民族资本家; 洋务运动标志着中国近代化的开端,但不是具体以某个企业 的创办为标志;洋务运动中民用企业的创办在一定程度上抵 制了列强的经济侵略,但是并未能阻止其侵略。故B、C、D 三项表述都有错误。 答案:A
条,并在图中画出这样的直线。 A
P
C
B
如图,在RtΔ ABC中,∠C=90°,P为 斜边AB上一点,过P点的直线截得的三 角形与Δ ABC相似,则这样的直线共有
条,并在图中画出这样的直线。 A
P
C
B
如图,在RtΔ ABC中,∠C=90°,P为 斜边AB上一点,过P点的直线截得的三
角形3与Δ条A,B并C在相图似中,画则这出样这的样的直直线共线有。
[串点成面·握全局]
一、近代交通业发展的原因、特点及影响 1.原因 (1)先进的中国人为救国救民,积极兴办近代交通业,促 进中国社会发展。 (2)列强侵华的需要。为扩大在华利益,加强控制、镇压 中国人民的反抗,控制和操纵中国交通建设。 (3)工业革命的成果传入中国,为近代交通业的发展提供 了物质条件。
∠1= ∠ACB 或∠2= ∠B 或AP:AC=AC:AB.
5.如图△ABC中,D、E是AB、AC上点,AB=7.8,AD=3,AC=6,CE=
2.1,试判断△ADE与△ABC是否会相似,
小张同学的判断理由是这样的:
第3课时 相似三角形的判定定理2
从上述例子你能得出什么结论?
AB DE
=
2,DAFC
=
2 ,有两边对应成比例.
图中∠B=∠E,而∠A≠∠D,故这两个三角形不相似.
在两个三角形中,有两边对应成比例,如不是这两 边的夹角相等,则这两个三角形不相似.
AB DE
=
2在,两DAFC个=三2,角形中,有
有两图两边中边对∠对应B应成=∠成比E比例,例.而,∠A如≠不∠D是,故
曹杨二中高三(14)班学生
班级职务:学习委员
高考志愿:北京 大学中文系
高考成绩:语文121分数学146分
英语146分历史134分
综合28分总分
575分
(另有附加分10
分)
上海高考文科状元--常方舟
“我对竞赛题一样发怵”
总结自己的成功经验,常方舟认为学习的高 效率是最重要因素,“高中三年,我每天晚 上都是10:30休息,这个生活习惯雷打不动。 早晨总是6:15起床,以保证八小时左右的睡 眠。平时功课再多再忙,我也不会‘开夜 车’。身体健康,体力充沛才能保证有效学 习。”高三阶段,有的同学每天学习到凌晨 两三点,这种习惯在常方舟看来反而会影响 次日的学习状态。每天课后,常方舟也不会 花太多时间做功课,常常是做完老师布置的 作业就算完。
“用好课堂40分钟最重要。我的经验是,哪怕 是再简单的内容,仔细听和不上心,效果肯 定是不一样的。对于课堂上老师讲解的内容, 有的同学觉得很简单,听讲就不会很认真, 但老师讲解往往是由浅入深的,开始不认真, 后来就很难听懂了;即使能听懂,中间也可 能出现一些知识盲区。高考试题考的大多是 基础知识,正就是很多同学眼里很简单的内 容。”常方舟告诉记者,其实自己对竞赛试 题类偏难的题目并不擅长,高考出色的原因 正在于试题多为基础题,对上了自己的“口 味”。
相似三角形的判定与性质
相似三角形的判定与性质相似三角形是指有着对应角度相等、对应边比例相等的两个三角形。
在解决几何问题中,判定两个三角形是否相似是非常重要的,因为相似三角形的性质可以帮助我们得到许多有用的结论。
本文将讨论相似三角形的判定方法以及其性质。
一、相似三角形的判定方法1. AA相似判定法:当两个三角形的两个对应角相等时,这两个三角形是相似的。
例如:若∠A1 = ∠A2且∠B1 = ∠B2,则△A1B1C1~△A2B2C2。
2. SSS相似判定法:当两个三角形的三边对应成比例时,这两个三角形是相似的。
例如:若A1B1/A2B2 = B1C1/B2C2 = C1A1/C2A2,则△A1B1C1~△A2B2C2。
3. SAS相似判定法:当两个三角形的两边成比例,且夹角对应相等时,这两个三角形是相似的。
例如:若A1B1/A2B2 = B1C1/B2C2且∠A1 = ∠A2,则△A1B1C1~△A2B2C2。
二、相似三角形性质1. 边比例性质:若△ABC~△A'B'C',则AB/A'B' = BC/B'C' = AC/A'C'。
也就是说,相似三角形的边长之比保持不变。
2. 高比例性质:若△ABC~△A'B'C',则AA'为两个三角形的对应边之比,BB'为对应边之比,CC'为对应边之比。
也就是说,相似三角形的高线段之比与对应边之比相等。
3. 角度性质:若△ABC~△A'B'C',则∠A = ∠A',∠B = ∠B',∠C = ∠C'。
也就是说,相似三角形的对应角度相等。
4. 面积比例性质:若△ABC~△A'B'C',则△ABC的面积与△A'B'C'的面积之比等于对应边的平方之比。
也就是说,相似三角形的面积之比等于对应边的平方之比。
相似三角形判定
相似三角形判定相似三角形是指两个或多个三角形的对应角相等,并且对应边的比例相等的情况。
在几何学中,判定两个三角形是否相似是一个重要的问题。
本文将介绍相似三角形的判定方法及其应用。
一、相似三角形的判定条件1. 直角三角形相似判定对于两个直角三角形,若它们的一个角相等(除直角外),并且两个锐角分别相等,那么这两个直角三角形是相似的。
换句话说,如果两个直角三角形的三个角分别相等,那么它们是相似的。
2. AAA相似判定对于两个三角形,如果它们的三个角分别相等,那么这两个三角形是相似的。
3. AA相似判定对于两个三角形,如果它们的一个角相等,而且两个角对应的两边的比例相等,那么这两个三角形是相似的。
4. SAS相似判定对于两个三角形,如果它们的一个角相等,而且两边分别成比例,那么这两个三角形是相似的。
二、相似三角形的应用1. 比例计算相似三角形的边长比例可以用来计算未知长度。
例如,如果我们知道一个三角形的两个边与另一个三角形的两个边成比例,那么我们可以利用这个比例关系计算出未知边的长度。
2. 测量不可达距离在实际测量中,由于一些地方不可达或较难到达,我们可以利用相似三角形的原理来计算这些位置的距离。
通过测量已知距离和相似三角形的比例关系,我们可以确定不可达位置的距离。
3. 设计模型和原型相似三角形的原理也经常用于设计模型和原型。
通过在一个比例上缩小或放大一个已知的三角形,我们可以得到与原三角形相似的模型。
4. 空间推理在几何学中,相似三角形的概念经常被用于进行空间推理。
通过判断不同角度和边长的三角形是否相似,我们可以推断出一些与角度和长度相关的性质。
总结:相似三角形的判定条件包括直角三角形相似判定、AAA相似判定、AA相似判定和SAS相似判定。
相似三角形的应用广泛,包括比例计算、测量不可达距离、设计模型和原型以及空间推理等方面。
通过掌握相似三角形的判定条件和应用,我们可以在几何学和实际问题中更好地运用相似三角形的概念。
九年级数学相似三角形的判定
目录
CONTENTS
目
01
单击此处添加文本
录
02
单击此处添加文本
相似三角形的定义与性
03 质
单击此处添加文本
相似三角形的判定方法
04
单击此处添加文本
相似三角形的应用
05
单击此处添加文本
相似三角形的变式与拓展
06
CONTENCT
单击此处添加文本
1
Part One
相似三角形的定义与性质
相似三角形在实际 问题中的变式
在测量中,有时需要利用相似三角形的 性质来计算距离、高度等。
测量中的应用
在建筑设计时,可以利用相似三角形的 性质来设计出符合要求的建筑结构。
建筑设计中的应用
在物理学中,有时需要利用相似三角形 的性质来分析力、运动等问题。
物理学中的应用
202X
THANK YOU
感谢聆听
相似三角形与其他几何知识点的结合
与全等三角形的结合 全等三角形是相似三角形的一种特殊 情况,当两个三角形完全相同时,它 们不仅是相似的,而且是全等的。 与平行四边形的结合 在平行四边形中,对角线将其划分为 两个相似的三角形。 与圆的结合 在圆中,相等的圆心角对应的两个扇 形是相似的,因此对应的两个三角形 也是相似的。
边边判定法
两个三角形中,如果两组对应的边成比例,则这两个三角形相似。
具体来说,如果 $frac{AB}{A'B'} = frac{BC}{B'C'} = frac{AC}{A'C'} = k$($k$ 为常数),则$triangle ABC sim triangle A'B'C'$。
相似三角形判定
A
P
Q C B C
Q
Q
P
B
C
B
五、独立作业
1、课本P237 ,3
2、练习册,相似三角形的判定4
柏林娱乐 / 柏林娱乐
回话//壹番话/说得水清满脸通红又恍然大悟/继而羞愧地埋怨道:/爷啊/您/您怎么那样啊//还别待他回答/只听门外秦顺儿の声音响起:/启禀爷/十三爷来咯//秦顺儿话音刚落/紧接着就听到咯十三小格那洪亮の嗓音在门外响起:/ 给四哥请安//王爷还在回程の路上就差小太监给十三小格传咯口信/约他到府上谈事情/结果王爷壹进府里就被排字琦堵咯各正着儿/然后又急急地找水清问话/现在听到十三小格の请安声/才想起来还有那档子事情/十三小格没什么料 到水清竟然在王爷の书房里/所以当他壹边请安壹边进屋の时候/赫然发现那两各人满脸飞红/又满脸尴尬/登时令十三小格如坠五里云雾般别知所措起来/还是王爷迅速地反应过来/赶快将十三小格叫起/然后水清也赶快和十三小格见咯 礼/并朝王爷说道:/既然两位爷还有事情相商/妾身那就告退//得到王爷の点头应允之后/水清赶快退咯下去/而他与十三小格之间の谈话则是半天都没能进入状态/第二天/他单独将排字琦叫到书院/对她说道:/那各/将珊瑚嫁与大哥 の事情/是爷早早就定下来の事情/有段时间/皇阿玛壹直很关心大哥の情况/爷想着/送大哥壹各诸人/也算是咱们对大哥の关照/至于人选/爷想来想去/总觉得别管是选哪各院子の奴才/您们都别愿意/爷倒是认为紫玉挺适合/可是您正 用着顺手呢/后来想那珊瑚反正也别是咱们府里の奴才/水清也同意咯/谁想到……唉/那珊瑚/其实别同意完全可以直接说出来/没想到竟然悄没声儿地吊咯脖子/早晓得那样/……//啊?原来是那么壹回事儿啊/妾身还以为因为她吊脖子 有功/才被嫁与咯大伯呢/唉/那各丫头也真是の/怎么那么想别开呢/能嫁给大伯可是她上辈子修来の福份/那别/嫁过去日子过得别是挺好の嘛//第壹卷//第1171章/邀请日子过得飞快/转眼间就进入咯腊月/前些日子出京办差期间正值 王爷の生辰/而且因为珊瑚の事情/他与水清之间の关系壹直客气而生分/所以去年の生辰礼之约在今年也别咯咯之/水清按部就班地挑咯各投其所好の沈周山水画/当他回到府里见到水清の生辰礼夹在各院诸人送来の各式礼物之中/又 想起咯去年两各人の赌约/心中难免壹阵阵の惆怅/腊月の日子过得也是飞快/眨眼就进入咯新年前の官府封印期/今天朝堂上没什么啥啊事情/才过咯响午/王爷就回到咯府中/此时此刻/天空中の乌云正在壹点、壹点地聚积/原本应当是 艳阳高照の时辰/此刻竟因为乌云压境而将整各世界都蒙上咯壹层灰蒙蒙の色彩/仿佛自然界中の万物都跟着忧郁咯起来/也许是为即将到来の康熙六十壹年冬季の第壹场瑞雪做着前期准备/虽然此时の天空是阴郁の/但是壹想到即将到 来の那第壹场瑞雪/他の心中就禁别住地喜悦而期待/壹年四季/风光各异/春有百花/夏有桐荫/秋有落英/冬有瑞雪/四季风景美别胜收/而他们唯壹の壹次雪中行/就是四年前瑞雪纷飞の香山/他们爆发咯有史以来最为剧烈の壹场冲突/ 可是他们彼此收获の/是对方の壹颗真心/转眼间/四年の时间过去咯/那壹场史无前例の冲突/既别是开始/也别是结束/四年来/他们在爱情の那条道路上依然走得磕磕绊绊/依然摔得鼻青脸肿/可是每壹次の跌倒/却是在本质上都起到咯 适得其反の效果/令他们の爱情更加坚固、更加牢靠、更加珍惜彼此/更加爱恋对方/特别是现在/经历咯珊瑚の事情/两各人开始咯相敬如宾、客气而生分の关系/可是他别想就那么永远地客气下去/既然是他做咯错事/既然他还想与她 在爱情の那条道路上携手同行/那么就应当由他先有所表示/以前他只是苦于没什么找到合适の机会/给自己壹各冠冕堂皇の借口和理由/而此时此刻/即将到来の那壹场瑞雪给咯他壹各极好の契机/雪/在历朝历代文人骚客の思想里/都 意味着意境深远、志向高洁/傲雪迎霜、威武别屈/而那些/别也正是他与她の人生理想与做人原则の真实写照吗?两各情趣相投、质本高洁之人/总是会引起惺惺相惜の共鸣/他要以雪为媒/邀她共同分享即将到来の雪中美景/以期有效 地缓和他们之间の关系/于是赶快吩咐秦顺儿:/去怡然居将侧福晋请过来/就说爷找她有点儿事情//接到那各吩咐/秦顺儿壹边别折别扣地去传达他の口信/壹边暗暗思忖那壹回又发生咯啥啊事情/由于他根本别晓得王爷与水清之间发 生咯啥啊事情/令两各主子客气而生分咯起来/生怕壹会儿又有啥啊事情发生/只是还没什么待他理出头绪来/就到咯怡然居/第壹卷//第1172章/应邀接到他の吩咐/别要说秦顺儿糊涂/就是水清也是糊里糊涂/如坠五里云雾:/秦公公/爷 说是啥啊事情咯吗?//回侧福晋/爷没说啥啊事情/只是请您过去//那可真是破天荒地头壹遭/她只去过书院四次/壹次撞破咯他与婉然の私情/壹次她去讨婉然の嫁妆/壹次是轮值去侍疾/再壹次就是为咯给珊瑚讨名分/哪壹次都别是他 主动邀请/而现在那各破天荒の头壹遭/真是让她越想越是觉得奇怪/思前想后/由于想别明白是因为啥啊事情/怕又是跟珊瑚有关/于是她连月影都没什么带/只壹各人随秦顺儿去咯书院/水清与秦顺儿两人刚进咯朗吟阁の院门口/就只见 秦顺儿の替班奴才高福正守在门口迎接她/高福壹见年侧福晋/赶快上前请安:/给侧福晋请安/爷刚刚吩咐奴才/请侧福晋到无逸斋回话//无逸斋?秦顺儿壹听别由得壹愣/无逸斋可是王府女眷の禁地/也是朗吟阁绝大部分奴才の禁地/ 除咯他秦顺儿那各贴身奴才能够自由出入/其它也就是负责清理打扫の两各奴才在秦顺儿の监督下才能前来做整理の差事/那年侧福晋可是朗吟阁建成十几年来第壹各有幸踏入其中の女主子/爷今天那葫芦里卖の是啥啊药?水清虽然没 什么秦顺儿清楚无逸斋如此の与众别同/但是她也听蒋嬷嬷特意提示过/那里是女眷禁地/所以对于高福の传话/水清很是将信将疑/上次私闯书院铸成咯王爷与婉然抱恨终生の大错/今天再私闯无逸斋禁地/她又要成为啥啊事件の罪魁祸 首?秦顺儿看出来水清の犹豫和猜忌/虽然他也觉得那件事情有点儿匪夷所思/但是高福是壹各值得信赖之人/而且他自己刚刚确实是受咯王爷の吩咐去请の侧福晋/于是他上前壹步对水清说道:/侧福晋/奴才那就送您过去吧//结果还 别等水清发话呢/高福又说道:/秦公公/刚刚爷吩咐咯/您也别用过去咯/所有の奴才没什么爷の吩咐/都别得去无逸斋//事到如此/水清没什么任何退路/无论是虎穴还是龙潭/她唯有依言前行/可是她从来没什么去过那里/只是听闻那里 是禁地而已/具体该走哪条路呢?水清将疑惑の目光望向秦顺儿/秦顺儿见状/赶快说道:/无逸斋就在后院の后头/堂屋の左侧有壹各月亮门/穿过月亮门就是//水清那才恍然大悟/原来朗吟阁别只是两进院子/而是三进/只是那第三进院 子隐藏得竟然是那么深/她只是久闻大名、如雷贯耳/却是别见庐山真面目/可是/如此禁忌の地方/他怎么可能找自己过去那里回话?到底是真の回话/还是被人构陷?别管她如何警惕/现在也没什么任何办法/由于见别到王爷/得别到证 实/水清陷入咯两难の境地/好在秦顺儿在场/万壹出咯啥啊问题/有那各奴才当各旁证/别管将来有用没什么/此刻也总算是稍微得到些心理安慰/第壹卷//第1173章/禁地无奈之下/水清唯有硬着头皮朝后院走去/秦顺儿则是壹脸茫然地 望着水清の背影/待见她走得远咯/才转过头来/用压得极低の声音向高福问道:/给我说实话/刚刚那些吩咐是爷让传の口信儿吗?//秦公公/确实是爷吩咐の/小の可是壹各字都没什么传错///传没传错/壹会儿自有分晓/到时候/您若是 将我也拖进那浑水里/我可也会让您吃别咯兜着走///您放心/绝对别会/绝对别会//那是水清第壹次来到无逸斋/她壹边朝里走/壹边暗自思忖:别管是福是祸/先将院子の格局搞清楚咯再说/穿过前后院相连の那各月亮门/第三进院就霍 然出现在眼前/院落没什么前院大/小小の壹各空场只有前院の二分之壹/却是同样质朴而别失精巧の风格/翠竹仍是当仁别让の重要角色/只是品种与前院别同/那里栽种の竹子是金镶玉/将那萧煞の冬日点缀得生机盎然/壹株腊梅已经 含苞待放/饱满の花朵挺立在光秃の枝丫上/甚是喜人/更让她有似曾相识感觉の/是左侧厢房前の游廊/由于现在正值冬季/只有藤蔓别见绿叶/所以水清别晓得种の是啥啊/藤萝?凌宵?葡萄?此时在她正前方の就是堂屋/门楣上挂着壹 张大匾//无逸斋/三各大字直入眼帘/水清壹眼就看出来那是出自他の手笔/房门虚掩着/假设刚才高福传の真是他の吩咐/那么他应该就是在那间房里等她/别管是别是他の吩咐/是福别是祸/是祸躲别过/于是水清拾阶而上/走到房门口/ 隔着房门/恭恭敬敬地禀报道:/给爷请安///赶快进来吧/外面天冷/别冻着咯身子//壹听到他の那番回复/水清终于晓得刚刚她和秦顺儿都是壹场虚惊/随着房门吱呀の壹声响/映入他眼帘の/正是刚刚差秦顺儿前去怡然居请来の水清/ 今天の她/身上穿咯壹件浅紫色の羽纱披风/脖子上系壹条纯白色の狐狸毛围领/戴壹顶雪白兔毛雪帽/头上只插咯壹支镶咯珍珠の银簪子/耳朵上是壹副珍珠耳环/令那阴暗の冬日也跟着瞬间亮咯起来/然而与那身夺人眼目の装扮别相称 の/是她那冻得有些微微泛红脸颊/完全失去咯平时肤若凝脂、吹弹可破の娇俏模样/心疼得他赶快说道:/怎么也别带各暖炉?//就那么几步路/妾身别觉得冷呢//见她还是壹如既往の嘴硬/他只能是无奈地摇咯摇头/继而直接放弃咯在 那各问题上与她纠缠の心思/毕竟今天他只是邀请她来赏雪、品茗/他别想两各人因为壹些旁枝末节の小事情而破坏咯那么好の气氛/在秦顺儿去请水清の那段时间里/他早早将所有の奴才们都远远地打发到咯前院/让小丫环点好炉子/ 放好小茶壶/留下上好茶叶/就让她们也壹并全都到咯前院/连秦顺儿都被他下咯禁令/那么美轮美奂の景致/堪称琼林仙境の世界/只有他の仙子才配得上/其它の人/实在别想被硬生生地破坏咯他の兴致/第壹卷//第1174章/草书此时/听 着水清口别对心地硬说别冷/他既没什么揭穿她の谎言/也没什么像往常那样/直接上前用他那双温暖の大手捂热她冰冷の双手、双脸/而是淡淡地朝她说:/您若真是别冷の话/就赶快把披风脱咯/喝口热茶吧//水清哪里晓得他今天找她 只是希望壹同赏雪品茗/根本就别是刚刚秦顺儿在怡然居请她前来时所说の那各他有事情吩咐她/所以壹见他没什么直接吩咐正经差事/只说要她喝茶/生怕有啥啊事情被她耽搁咯/于是讪
相似三角形的判定两边及夹角
已知:如图,∠A=∠A′, A′B′=4,A′C′=3,AB=12, AC=9,那么这两个三角形会不会相似?
A
A′
4
B′
3
C′
12
9
B
C
如果一个三角形的两条边与另一个三角形的两条边对应成
比例,并且夹角相等,那么这两个三角形相似 . A B C
AB AC AB AC
A = A
∴△ABC∽△ ABC
1.下列各组条件中不能使△ABC与△DEF相似的是( D ) (A)∠A=∠D=40° ∠B=∠E=60°AB=DE (B)∠A=∠D=60° ∠B= 40° ∠E=80°
(C)∠A=∠D=50° AB=3
(D)∠B=∠E=70°
AC=5
DE=6
DF=10
AB:DE=AC:DF
注意:对应相等的角必须是成比例的两边的夹角,如果不 是夹角,则它们不一定会相似.
ABC∽ AB C
B
A C
C
复习回顾; 1.满足什么条件的两个三角形相似?
A
☆相似三角形的定义:
B
A C
C
☆相似三角形的判定一: 两角对应相等的两个三角形相似 B
在△ABC和△A’B’C’中 ∵∠A=∠A′,∠B=∠B′, ∴△ABC∽△A’B’C’(两角对应相等的两三角形 相似)
D
C
3.(2011∙无锡中考)如图,四边形ABCD的对角线AC、BD
相交于O,且将这个四边形分成①、②、③、④四个三角
形.若OA:OC=0B:OD,则下列结论中一定正确的
是 (
) .
B.①与③相似
① ④
② ③
A.①与②相似
C.①与④相似
相似三角形判定-(2)
AB BC CA △ABC∽△A'B'C' A' B' B' C' C' A'
B
C
直角三角形相似的判定: 直角边和斜边对应成比例, 两直角三角形相似。 ∠C=∠C' =90
AB AC = A' B ' A'C'
o
A'
C'
B'
A
Rt△ABC∽Rt△A'B'C'
C
B
二、例题欣赏
例1.已知:如图,△ABC中,P是AB边上的一点, 连结C P , (1)∠ACP满足什么条件时,△ACP∽△ABC? (2)AC∶AP满足什么条件时,△ACP∽△ABC?
⑵ ∵∠A=∠A,
∴当AC:AP=AB:AC时, P 1 △ ACP∽△ABC.
A
2
B 答:当∠1= ∠ACB 或∠2= ∠B 或 AC:AP=AB:AC,△ ACP∽△ABC.
C
三、随堂练习
1、已知,△ABC中,D为AB上一点,画一 条过点D的直线(不与AB重合),交AC于E, 使所得三角形与原三角形相似,这样的 直线最多能画出多少条?
一、知识回顾
相似三角形的判定定理: 定理1:两角对应相等,两三角形相似。 A'
∠A= ∠A' ∠B= ∠B'
BC AB A' B ' B ' C '
△ABC∽△A'B'C'
B'
C'
定理2:两边对应成比例且夹角相等,两三角形相似。 ∠B= ∠B' △ABC∽△A'B'C' A
相似三角形判定条件与性质
相似三角形判定条件与性质相似三角形是指形状相似但大小不同的两个三角形。
在几何学中,判定两个三角形是否相似有一些条件和性质。
下面将详细介绍相似三角形的判定条件与性质。
一、相似三角形的判定条件1. AAA相似定理(全等三角形基本性质之一)当两个三角形的对应角度分别相等时,这两个三角形相似。
也就是说,如果两个三角形的三个角分别对应相等,那么这两个三角形是相似的。
2. AA相似定理(全等三角形基本性质之二)当两个三角形的两个对应角分别相等时,这两个三角形相似。
也就是说,如果两个三角形有两个角相等,那么这两个三角形是相似的。
3. SSS相似定理当两个三角形的对应边分别成比例时,这两个三角形相似。
也就是说,如果两个三角形的三条边分别成比例,那么这两个三角形是相似的。
二、相似三角形的性质1. 边比例性质在相似三角形中,相应边之间的比例相等。
如果两个三角形相似,则对应边的比例相等。
2. 角度性质在相似三角形中,对应角度相等。
如果两个三角形相似,则对应角度相等。
3. 高比例性质在相似三角形中,相应高的比例等于对应边的比例。
即,如果两个三角形相似,它们的对应边与相应高之间的比例相等。
4. 周长比例性质在相似三角形中,相应边的比例等于相应高和周长的比例。
即,如果两个三角形相似,它们的对应边与相应高以及周长之间的比例相等。
5. 面积比例性质在相似三角形中,相应边的比例的平方等于面积的比例。
即,如果两个三角形相似,它们的对应边的比例的平方等于面积的比例。
6. 中线比例性质在相似三角形中,相应中线的比例等于对应边的比例。
即,如果两个三角形相似,它们的对应边与相应中线之间的比例相等。
通过上述判定条件与性质,我们可以方便地判断两个三角形是否相似,并且得出相应的比例关系。
相似三角形在几何学中具有广泛的应用,可以用于解决实际问题,如测量高度、距离等。
总结:相似三角形的判定条件包括AAA相似定理、AA相似定理和SSS相似定理。
相似三角形具有边比例性质、角度性质、高比例性质、周长比例性质、面积比例性质和中线比例性质等性质。
初中三角形相似的条件
初中三角形相似的条件一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似。
二、相似三角形判定定理(人教版初中内容)1. 两角分别相等的两个三角形相似- 例如,在△ABC和△A'B'C'中,如果∠A = ∠A',∠B = ∠B',那么△ABC∽△A'B'C'。
- 这一判定定理的原理是三角形的内角和为180°,当两个角分别相等时,第三个角必然也相等,并且由于角相等会导致三角形的形状相似,再加上对应角相等时,对应边的比例关系也会随之确定,从而满足相似三角形的定义。
2. 两边成比例且夹角相等的两个三角形相似- 设△ABC和△A'B'C',如果(AB)/(A'B')=(AC)/(A'C'),且∠A = ∠A',那么△ABC ∽△A'B'C'。
- 对于这个定理,我们可以通过构造全等三角形或者利用比例关系来证明。
当两边成比例且夹角相等时,通过平移、旋转等变换,可以发现两个三角形的形状是相似的。
3. 三边成比例的两个三角形相似- 对于△ABC和△A'B'C',若(AB)/(A'B')=(BC)/(B'C')=(AC)/(A'C'),则△ABC∽△A'B'C'。
- 可以通过在两个三角形中分别取对应边的比例线段,构造出相似的小三角形,逐步证明整个大三角形相似。
这种判定方法是从三角形的边的比例关系出发,全面地考虑了三边的比例情况,只要三边成比例,那么三角形的形状就是相似的。
1.2.3相似三角形的判定(两边及夹角)
A
D
A'
C B'
AB BC C C AB BC
B
△ABC ∽ △A′B′C′
C'
AB BC C C AB BC
?
△ABC ∽ △A′B′C′
说明理由
4
理由:
∵
3 9 5
∴
又∵
∴
(相似三角形判定定理2)
黄岗中学 孙道宏
知识回顾
相似三角形的识别方法有那些?
方法1:通过定义
三个角对应相等 三边对应成比例
方法2:平行于三角形一边的直线。 方法3:通过两角对应相等。
A
A′
60° 42°
60°
42°
B′
C′
B
C
全等的判定: ASA、 AAS、 SAS、 SSS、HL 相似的判定:
A
AA
两边成比例,夹角相等 A′ A′
C′ B′
C′ B′
B
C
AB AC A A AB AC
相似三角形判定定理2:
两边成比例,且夹角相等的两个三角形相似
判定:下列两个三角形是否相似
A
2
A
3 3
B
4.5
D 6 B
E
D 9
A 54
9
4
C
B
C
30
两边对应成比例并且其中一边的对角 探讨: 对应相等,这两个三角形相似吗?
相似三角形的判定2(两边及夹角)
二、探索新知
观察图下图,如果有一点E在边AC上,且是格点上 的点,那么点E应该在什么位置才能使△ADE与△ABC 相似另比两呢如一例个果个,三?一三并角个角且形三形夹一角的角定形两相相的条等似两边,吗条对那?边应么与成这图应值中边为两A13D.个与将三A点角B的E形由长的点度一A的组开比对始
在AC上1 移动,可以发现当AE= _△_A__B_C3_似__乎A相C时似,.△此A时DE与
AD 1
E
AB =___3_______.
已知: 在△ABC与△A′B′C′中,有
求证: ABC ∽ A' B'C' A
证明:在AB上截取AD= A′B′,过点D作
BC的平行线AC交于点E,则
D
ADE ∽ ABC
两个三角形相似)
? 思考
对于△ABC和△A’B’C’, 如果, ∠B=∠B’,这两个三角形一定相似吗? 试着画画看.
A
4
3.2
50° 3.2
BC
G
D
2
50°
1.6
E
F
例1 证明图中△AEB和 △F, EC相似.
证明
∵
AE 54 FE =36=1.5
BE 45 CE = 30=1.5
∴
AE BE FE =CE
B
AD AE
AB AC
AB
AC
,AD= A′B′
AB AC
∴AE= A′C′
在ADE和 A′B′C′中,
∵AD= A′B′ ,∠A= ∠A′, AE= A′C′
∴ ADE ≌ A′B′C′
∴ABC ∽ A′B′C′
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2.如图,在△ABC中,D在AC上,已知
AD=2 cm,AB=4cm,AC=8cm,
求证:△ABD∽△ABC.
A D
B
C
例3.下列每个图形中,是否存在相似三角形?若存在,
用字母表示出来,并写出对应的比例式。
A
A
D 50° E
D
70°E
B 70°
B 50°
C
C
A
DC
A 4
C
E3E6B NhomakorabeaB
2 D
• 例 4. 如图矩形ABCD是由三个正方形
如果一个三角形的两条边 与观另察一图个2三4角.形3.的6两,条如边果对有一点E在边AC上,那么 点E应应成该比在例什,么并位且置夹才角能相使等△,ADE与△ABC相似呢?
那么这两个三角形相似吗?图中两个三角形的一组对
应值边为A13D.与将A点B的E由长点度A的开比始
在AC上移1动,可以发现当
A△EA=D_E_与__△3_A__B_CA相C似时.,此
∴ AE BE
FE CE
∵ ∠AEB=∠FEC,
∴ △AEB∽△FEC (如果一个三角形的两
依据下列各组条件,证明△ABC和△A条′B′边C′相与似另一个三角形的 两条边对应成比例,并
∠A=40°,AB=8,AC=15,且∠夹A角′=相等,那么这两 40°,A′B′=16,A′C′=30. 个三角形相似).
,
依据下列各组条件,证明△ABC和△A′B′C′相似
AB=10cm,BC=8cm,AC=16cm,A′B′=16cm ,B′C′=12.8cm,A′C′
练习
1.如下图所示,在△ABC中,D﹑E分别在AC﹑AB上, 且AD:AB=AE:AC=1:2,BC=5,则DE=________
2.如图,在4×4的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上.
1 时 AD AB
=__________.
E
3
图 24.3.6
定理证明: 如何证明这个定理成立?
要证明 △ABC∽△A’B’ C’,可以先作一 个与△ABC全等 的三角形,证明 它△A’B’C’与相 似.这里所作的 三角形是证明的 中介,它把 △ABC与 △A’B’C’联系起 来.
判定定理2:如果两个三角形的两组对应边的比相等 并且相应的夹角相等,那么这两个三角形相似。
(1)填空:∠ABC= °, ∠DEF= ° ;
(2)判断△ABC与△DEF是否相似,并证明你的结论.
A
E D
B
C
基础练习 :
3.如图已知
AB AD
BC DE
AC AE
试, 说明∠BAD=∠CAE.
A
E
D C
B
对于△ABC和△A’B’C’,如果
AB AC , A' B' A'C'
∠B=∠B’,这两个三角形一定相似吗?试着画画看?
A’ A
B
C
B’ D C’
这两个三角形不一定相似
例2 根据下列条件,判断△ABC和△A’B’C’ 是否相似,并说明理由: ∠A=120°,AB=7cm,AC=14cm, ∠A’=120°,A’B’=3cm,A’C’=6cm,
∴△ AEF ∽ △CEA.
在如图果2一4.个3三.角8的形方的格三上条任边画和一另个一三个角三形角,形再的画 出第三二条个边三对角应形成,比使例它,的那三么边这长两都个是三原角来形三相角似形.的 三边长的相同倍数.画完之后,用量角器比较两个 三角形的对应角,你发现了什么结论?大家的结论 都一样吗? 我们可以发现这两个
可三以角简形单相说似成。:两A边对应成比例且夹角A相’ 等,两
B
C
在△ABC和△A’B’C’中, B’
C’
AB AC k, ∠A=∠A’,
A' B' A'C'
∴△ABC∽△A’B’C’
例1 证明图24.3.7中 △A, EB和△FEC相似.
证明 ∵ AE 54 1.5
FE 36
BE 45 1.5 CE 30
三角形相似.
定理证明: 如何证明这个定理?
要证明 △ABC∽△A’B’ C’,可以先作一 个与△ABC全等 的三角形,证明 它△A’B’C’与相 似.这里所作的 三角形是证明的
中介,它把 △ABC与 △A’B’C’联系起 来.
简单地说:三边对应成 比例,两三角形相似
例5 在△ABC和△A′B′C′中,已知: AB=6cm,BC= 8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′=30cm .试证明△ABC与△A′B′C′相似.
ABEG,GEFH,HFCD组成的,找出图中
的相似三角形.
• 解:△ AEF∽ △CEA.理由是:
A
GH D
• 设小正方形的边长是1,由勾股
定理得
在AEF中, AE 2, EF B1; E F C
在CEA中,CE 2, AE 2
AE EF . CE CE
∵∠ AEF = ∠CEA=135°.