二阶微分方程解法知识讲解

合集下载

二阶阶微分方程的解法及应用课件

二阶阶微分方程的解法及应用课件
分方程转化为关于参数 的常微分方程,从而求解。
参数法是一种求解二阶微分方程的方法,通 过引入参数,将微分方程转化为关于参数的 常微分方程。这种方法适用于具有特定形式 的一阶和二阶微分方程,特别是当微分方程 的解与某个参数有关时。通过求解关于参数 的常微分方程,我们可以找到微分方程的解
二阶阶微分方程的解法及应用课件
目 录
• 二阶阶微分方程的基本概念 • 二阶阶微分方程的解法 • 二阶阶微分方程的应用 • 二阶阶微分方程的数值解法 • 二阶阶微分方程的边界值问题
01 二阶阶微分方程的基本概 念
二阶阶微分方程的定义
二阶阶微分方程是包含两个未知函数 和它们的二阶导数的方程。
二阶阶微分方程的一般形式为 F(x, y, y', y''...) = 0,其中 F 是一个给定的函 数,x 和 y 是未知函数及其导数。
供需模型
01
二阶微分方程可以用来描述商品价格随时间和供需关系的变化

投资回报
02
在金融领域,二阶微分方程可以用来预测股票价格的变化和投
资回报。
经济增长
03
在研究经济增长时,二阶微分方程可以用来描述人均收入随时
间的变化。
在工程中的应用
控制系统
在自动化和控制工程中,二阶微分方程被用来描述系 统的动态响应和稳定性。
一维边界值问题
一维边界值问题是指求解一个关于一个自变量的二阶微分方程,同时给出该自变 量在两个特定点的取值条件。
一维边界值问题通常用于描述一个物理系统在一维空间中的行为,例如弦的振动 、波的传播等。解决这类问题通常需要使用打靶法、有限差分法等数值方法。
多维边界值问题
多维边界值问题是指求解一个关于多个自变量的二阶微分方 程组,同时给出这些自变量在多维空间中的边界条件。

二阶微分方程解

二阶微分方程解

二阶微分方程解二阶微分方程分为齐次和非齐次两种类型。

在这里,我们主要讨论二阶常系数齐次线性微分方程的解法。

二阶常系数齐次线性微分方程的一般形式为:ayy'' + by' + cy = 0其中,a、b、c为常数。

求解过程如下:1. 特征方程:首先求出微分方程的特征方程。

特征方程为:r^2 - pr - q = 0其中,p、q为常数。

2. 求解特征方程:求出特征方程的两个根r1和r2。

可以使用公式:r1,2 = (-p ±√(p^2 - 4q)) / 23. 根据根与系数的关系,得出二阶微分方程的通解:通解= yC1* e^(r1x) + yC2 * e^(r2x)其中,yC1和yC2为待定系数,可通过初始条件求解。

4. 求解特解:若需要求解特解,可以先设特解的形式为y = yE(x),然后将其代入原方程,求解待定系数。

举例:求解二阶常系数齐次线性微分方程:yy'' - 2y' + 3y = 01. 特征方程:r^2 - 2r + 3 = 02. 求解特征方程:r1= 1,r2 = 33. 通解:通解= yC1* e^x + yC2* e^-x4. 求解特解:设特解为y = yE(x) = e^(x^2)将其代入原方程,求解得到yE(x)为原方程的特解。

需要注意的是,二阶微分方程的解法不仅限于齐次方程,还包括非齐次方程。

非齐次方程的解法通常需要先求解齐次方程的通解,然后通过待定系数法求解特解。

此外,还有其他类型的二阶微分方程,如艾里方程等,其解法更为复杂。

二阶微分方程的常见求解方法和应用

二阶微分方程的常见求解方法和应用

二阶微分方程的常见求解方法和应用二阶微分方程是一类重要的数学模型,在物理和工程学科中得到广泛应用。

本文将介绍几种常见的二阶微分方程求解方法,并探讨其在科学研究和工程实践中的应用。

一、常系数齐次二阶微分方程常系数齐次二阶微分方程形式为:$$ y''+ay'+by=0 $$其中,a和b是常数。

该方程的通解可以用特征方程求解。

特征方程为:$$ r^2+ar+b=0 $$如果特征方程有两个不同的实根$r_1$和$r_2$,通解为:$$ y=c_1e^{r_1x}+c_2e^{r_2x} $$如果特征方程有一个重根$r_1$,通解为:$$ y=(c_1+c_2x)e^{r_1x} $$如果特征方程有两个共轭复根$\alpha\pm\beta i$,通解为:$$ y=e^{\alpha x}(c_1\cos\beta x+c_2\sin\beta x) $$二、非齐次二阶线性微分方程非齐次二阶线性微分方程形式为:$$ y''+ay'+by=f(x) $$其中,f(x)是已知的函数。

我们可以通过猜测特解的形式,利用常数变易法求解。

通常,特解的形式取决于f(x)的形式。

常见的特解形式包括:1. f(x)是常数:特解形式为$y=k$,其中k是常数。

2. f(x)是mx+n型函数:特解形式为$y=mx+n$,其中m和n是常数。

3. f(x)是$e^{ax}$型函数:特解形式为$y=Ae^{ax}$,其中A是常数。

4. f(x)是三角函数型函数:特解形式为$y=A\cos bx+B\sin bx$,其中A和B是常数。

5. f(x)是多项式型函数:特解形式为$y=P_n(x)$,其中P_n(x)是n次多项式。

特解计算出来后,将通解与特解相加即可得到非齐次线性微分方程的通解。

三、应用二阶微分方程在科学研究和工程实践中有着广泛的应用。

以下是一些例子:1. 振动问题:二阶微分方程可以用来描述物体的振动状态。

二阶微分方程求解的技巧

二阶微分方程求解的技巧

二阶微分方程求解的技巧一阶微分方程只含有一阶导数,而二阶微分方程含有二阶导数。

求解二阶微分方程的技巧较为复杂,需要利用一些特定的方法和技巧。

下面我们将介绍几种常用的技巧,帮助你求解二阶微分方程。

1.齐次线性方程法:如果二阶微分方程可以写为形式:$ay''+by'+cy=0$,其中a、b、c是常数,则称之为齐次线性方程。

我们可以从中解得一个求解公式:$y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}$,其中$C_1$和$C_2$是任意常数,$\lambda_1$和$\lambda_2$是方程的特征根。

为了寻找特征根,我们需要解决特征方程:$a\lambda^2+b\lambda+c=0$。

如果特征方程有两个相异的实根$\lambda_1$和$\lambda_2$,则方程的解是通解。

如果它们是重根,则方程的解是通解的一部分。

如果特征方程有两个虚根,则方程的解由实部和虚部组成。

2.变量可分离法:如果方程可以写为形式:$y''=f(x)g(y')$,其中f和g是一元函数,我们可以利用变量可分离法进行求解。

首先,设$y'=p$,则$y''=p\frac{dp}{dx}$。

将这些代入原方程,我们得到:$p\frac{dp}{dx}=f(x)g(p)$。

将上式变换为分离变量:$\frac{dp}{g(p)}=f(x)dx$。

然后,我们对两边进行积分,并解出p关于x的函数,最后再通过积分得到y关于x的函数。

3.常数变易法:如果方程可以写为形式:$ay''+by'+cy=f(x)$,其中f(x)是已知的函数,我们可以使用常数变易法进行求解。

首先,我们猜测一个特解$y^*$,并将其带入方程中。

然后我们将$y^*$代入方程,并解出常数。

我们将这些解代入齐次线性方程的通解中,并得到方程的通解。

4.欧拉方程法:如果方程是二阶常系数线性方程,并可以写为形式:$ax^2y''+bxy'+cy=0$,我们可以使用欧拉方程法进行求解。

二阶微分方程解法总结

二阶微分方程解法总结

二阶微分方程解法总结二阶微分方程是数学中的重要内容,特别是在物理学、工程学等领域中经常涉及到,因此掌握其解法十分重要。

本文将围绕二阶微分方程解法进行总结,详细介绍其解法步骤和要点。

一、分类讨论首先,对于二阶微分方程,需要根据其系数是否恒为零来进行分类讨论。

具体而言,二阶微分方程可分为齐次方程和非齐次方程两类。

对于齐次方程,其系数为常数,且自由项恒为零,此时可通过代入试探解法或特征方程解法求解;对于非齐次方程,其系数同样为常数,但自由项非零,因此需要运用常数变易法求解。

二、代入试探解法代入试探解法是求解齐次方程的常用方法。

具体而言,我们先根据已知条件猜测一个特殊的解,然后再通过验证来确定是否正确。

以一般的齐次二阶微分方程y''+py'+qy=0为例,设其特殊解为y=ce^(λx),其中c和λ为待定系数。

将这个解代入方程中,得到λ^2+ pλ+ q=0,解出λ1和λ2,即可得到通解y=c1e^(λ1x)+c2e^(λ2x)。

三、特征方程解法特征方程解法也是求解齐次方程的一种方法。

对于一般的齐次二阶微分方程y''+py'+qy=0,可以通过设y=e^(mx)得到其特征方程m^2+pm+q=0。

解出m1和m2,则通解为y=c1e^(m1x)+c2e^(m2x)。

需要注意的是,在特征方程的求解过程中,方程的两个解m1和m2可能相等,此时通解应为y=(c1+c2x)e^(mx)。

因此,在解题时需要特别注意此类情况的处理。

四、常数变易法常数变易法是求解非齐次方程的基本方法。

具体而言,首先求出其对应的齐次方程的通解,然后特殊解通过试探法求得。

以一般的非齐次二阶微分方程y''+py'+qy=f(x)为例,首先求出其对应的齐次方程的通解y=c1e^(m1x)+c2e^(m2x)。

然后,我们猜测特殊解为y*=Ax+B,其中A和B为待定系数。

将y*代入方程中,可得到A=f'/m2,B=[f/(m2^2)]-[(p/m2)A],从而得到非齐次方程的通解为y=c1e^(m1x)+c2e^(m2x)+y*。

二阶微分方程

二阶微分方程

二阶微分方程二阶微分方程作为微积分中的一种常用形式,它的求解方法十分重要。

本文将围绕二阶微分方程的基本定义、求解方法及其应用展开讲述。

一、二阶微分方程的基本定义及形式二阶微分方程指的是形如 $y''+P(x)y'+Q(x)y=f(x)$ 的微分方程。

其中$y$ 表示一个未知函数,$P(x)$ 和$Q(x)$ 是已知函数,$f(x)$ 是已知的函数。

二阶微分方程中的 $y''$ 表示未知函数 $y$ 的二阶导数,$y'$ 表示 $y$ 的一阶导数。

$P(x)$ 和 $Q(x)$ 是已知函数,它们可能包含 $x$ 或 $y$,甚至二者的组合。

$f(x)$ 是已知的函数,它是一个关于 $x$ 的函数,通常是我们要寻求的解函数。

二阶微分方程是高阶微分方程的一个特例。

如果方程中只包含 $y''$ 与 $y$,则称为二阶常系数齐次微分方程。

二阶微分方程的一些常见形式:1. $y''+p(x)y'+q(x)y=g(x)$,这是二阶非齐次线性微分方程的一般形式。

2. $y''+w(x)y=0$,这是二阶齐次线性微分方程的一般形式。

3. $y''-c^2y=0$,这是二阶常系数齐次微分方程的一般形式,其中 $c$ 是常数。

二、二阶微分方程的求解方法1. 变量分离法当二阶微分方程形如 $y''=f(x)$ 时,我们可以用变量分离法求解。

首先将方程两边同时积分得到 $y'=F(x)+C_1$,再次积分得到$y=\\int[F(x)+C_1]dx+C_2$,其中 $C_1$ 和 $C_2$ 分别是积分常数。

2. 特征方程法对于形如 $y''+ay'+by=0$ 的二阶常系数齐次微分方程,我们可以采用特征方程法求解。

首先设 $y=e^{mx}$,代入方程得到 $m^2+am+b=0$,这就是所谓的特征方程。

二阶微分方程解法推导

二阶微分方程解法推导

二阶微分方程解法推导二阶微分方程是数学中的一个重要的分支,它在物理、工程学等领域中有着广泛的应用。

本文将介绍二阶微分方程的解法推导,从而让读者更深入地理解二阶微分方程的求解方法。

首先,我们需要了解什么是二阶微分方程。

二阶微分方程是一个关于未知函数 y(x) 及其导数 y'(x) 和 y''(x) 的方程。

一般形式如下:y''(x) + p(x)y'(x) + q(x)y(x) = f(x)其中 p(x)、q(x)、f(x) 都是已知函数。

对于这个方程,我们可以通过以下步骤来求解:第一步,找到其特征方程。

特征方程是 y''(x) + p(x)y'(x) + q(x)y(x) = 0 的解。

我们可以假设其解为 y(x) = e^(mx),将其代入特征方程中得到:m^2 + p(x)m + q(x) = 0解这个二次方程,可以得到两个根 m1、m2,它们可以是实数或复数。

第二步,根据根的情况分类讨论。

如果 m1 和 m2 都是实数且不相等,那么 y(x) 的通解为:y(x) = c1e^(m1x) + c2e^(m2x)其中 c1、c2 是任意常数。

如果 m1 和 m2 都是实数且相等,那么 y(x) 的通解为:y(x) = (c1 + c2x)e^(mx)其中 c1、c2 是任意常数。

如果 m1 和 m2 是复数共轭,即 m1 = a + bi,m2 = a - bi,那么 y(x) 的通解为:y(x) = e^(ax)[c1cos(bx) + c2sin(bx)]其中 c1、c2 是任意常数。

第三步,根据边界条件确定具体解。

通解中的常数需要根据边界条件来确定,从而得到具体的解。

通过以上三个步骤,我们可以求解二阶微分方程的解。

需要注意的是,当特征方程产生相同的根时,其求解方法会有所不同。

此外,对于特殊类型的二阶微分方程,也可以采用其他方法来求解。

二阶微分方程解法

二阶微分方程解法

二阶微分方程解法
1.二阶常系数齐次线性微分方程解法
一般形式:y”+py’+qy=0,特征方程r2+pr+q=0。

特征方程
r2+pr+q=0的两根为r1,r2微分方程y”+py’+qy=0的通解。

两个不相等的实根r1,r2,y=C1er1x+C2er2x。

两个相等的实根r1=r2,y=(C1+C2x)er1x。

一对共轭复根r1=α+iβ,r2=α-iβ,
y=eαx(C1cosβx+C2sinβx)。

2.二阶常系数非齐次线性微分方程解法
一般形式:y”+py’+qy=f(x)。

先求y”+py’+qy=0的通解
y0(x),再求y”+py’+qy=f(x)的一个特解y*(x)。


y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解。


y”+py’+qy=f(x)特解的方法:
①f(x)=Pm(x)eλx型。

令y*=xkQm(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Qm(x)的m+1个系数。

②f(x)=eλx[Pl(x)cosωx+Pn(x)sinωx]型。

令y*=xkeλx [Qm(x)cosωx+Rm(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Qm(x)和Rm(x)的m+1个系数。

二阶微分方程的解法

二阶微分方程的解法

二阶微分方程的解法概述二阶微分方程是微积分课程中的重要内容,它描述了一类与二阶导数有关的数学关系。

解决二阶微分方程是求解许多自然科学和工程学科中的问题的关键步骤。

本文将介绍二阶微分方程的基本概念,常见的解法以及解法的应用领域。

二阶微分方程的基本概念二阶微分方程是指含有二阶导数的微分方程,通常形式为:d2y dx2=F(x,y,dydx)其中,y是未知函数,x是自变量,F是给定函数。

二阶微分方程可以分为线性和非线性两类,线性二阶微分方程的一般形式为:d2y dx2+P(x)dydx+Q(x)y=R(x)其中,P(x)、Q(x)、R(x)是已知函数。

常见的解法解决二阶微分方程的方法有多种,下面介绍几种常见的解法。

1. 特解和通解对于非齐次二阶线性微分方程,我们可以通过特解和通解的组合求解。

首先求解相应齐次方程(将非齐次方程中的R(x)置为0)的通解,记为y c。

然后求解非齐次方程的一个特解,记为y p。

最后,原方程的通解可以表示为y= y c+y p。

2. 常数变易法常数变易法适用于形如y″+P(x)y′+Q(x)y=R(x)的方程。

我们首先假设通解为y=u(x)v(x),其中u(x)和v(x)都是未知函数。

然后将通解带入原方程得到一个关于u和v的方程。

通过选择合适的u和v,使得方程成立,即可求得原方程的通解。

3. 欧拉方程对于形如x2y″+P(x)xy′+Q(x)y=0的方程,我们可以通过欧拉方程进行求解。

将未知函数y表示为y=x r,其中r是常数。

然后将这个表达式代入原方程,并确定r的值,从而求得方程的通解。

4. 分离变量法对于一些特殊的二阶微分方程,我们可以使用分离变量法求解。

例如,对于形如y″=f(x)g(y)的方程,我们可以将方程两边同时乘以dy/dx,从而将方程分离为关于x和y的方程。

然后可以分别积分得到x和y的关系式,最终求得方程的解。

二阶微分方程的应用领域二阶微分方程在物理学、工程学和经济学等领域中有广泛的应用。

第三节_二阶常系数线性微分方程的解法

第三节_二阶常系数线性微分方程的解法
2
通解的表达式
y = C1e r1 x + C 2e r2 x
y = (C1 + C 2 x ) e
r1 x
y = eαx (C 1 cos β x + C 2 sin β x )
8
例1 解
的通解. 求微分方程 y′′ − 2 y′ − 3 y = 0 的通解.
特征方程为 λ 2 − 2λ − 3 = 0 特征根为 λ1 = −1, λ2 = 3 故所求通解为
y = C 1e − x + C 2 e 3 x
例2 解
求方程 y′′ + 2 y′ + 5 y = 0的通解 .
特征方程为 λ2 + 2λ + 5 = 0
解得
λ1, = −1± 2i , 2
y = e (C1 cos 2 x + C 2 sin 2 x )
9
故所求通解为
−x
ds ds 例3 求微分方程 2 + 2 + s = 0 满足初始条件 dt dt

′′ = Q′′( x )e r x + 2λ Q′( x )e r x + λ2Q( x )e r x (y )

代入方程 y′′ + ay′ + by = f ( x ) ,
整理并约去 e
rx
,得
Q′′ + (2r + a)Q′ + (r 2 + ar + b)Q = Pm ( x)
(*)
13
(1)
1、方程(1)的任意两个解的和仍是(1)的解; 方程(1)的任意两个解的和仍是(1)的解; (1)的任意两个解 (1)的解 2、方程(1)的任意一个解的常数倍仍是(1)的解; 方程(1)的任意一个解的常数倍仍是(1)的解; (1)的任意一个解的常数倍仍是(1)的解

二阶常系数微分方程总结

二阶常系数微分方程总结

二阶常系数微分方程总结二阶常系数微分方程的求解方法及应用引言:在数学中,微分方程是一个方程,该方程中包含了未知函数的导数,是研究自然界现象变化规律的重要工具。

其中,二阶常系数微分方程是一类常见的微分方程,它具有形如f''(x)+af'(x)+bf(x)=0的形式,其中a和b为常数。

本文将从求解方法和应用两个方面对二阶常系数微分方程进行总结。

一、求解方法:1. 特征方程法:特征方程法是求解二阶常系数微分方程的常用方法。

对于f''(x)+af'(x)+bf(x)=0,我们可以假设f(x)=e^(rx)为其解,代入方程后化简得到特征方程r^2+ar+b=0。

根据特征方程的解的不同情况,可以得到方程的通解。

2. 变量分离法:对于一些特殊的二阶常系数微分方程,可以通过变量分离法求解。

首先,我们将f(x)表示为f(x)=u(x)v(x),然后将f''(x)+af'(x)+bf(x)=0带入,得到一系列关于u(x)和v(x)的方程,通过求解这些方程可以得到方程的解。

3. 初值问题求解:对于二阶常系数微分方程的初值问题,可以通过给定初始条件来求解。

首先,将方程转化为标准形式,然后代入初始条件进行求解,得到满足初始条件的特解。

二、应用:1. 自由振动:二阶常系数微分方程广泛应用于描述自由振动现象。

例如,弹簧振子的运动可以用二阶常系数微分方程来描述,其中a和b分别代表弹簧的刚度和阻尼系数。

通过求解该微分方程,可以得到弹簧振子的运动规律。

2. 电路分析:在电路分析中,电感、电容和电阻的组合经常涉及到二阶常系数微分方程。

通过建立电路方程并转化为微分方程,可以求解电路中电流和电压随时间的变化规律,为电路设计和分析提供依据。

3. 指数增长和衰减:二阶常系数微分方程也可以应用于描述指数增长和衰减的过程。

在人口增长、物质衰变等领域中,经常需要通过求解二阶微分方程来预测趋势和变化。

二阶微分方程通解的求法

二阶微分方程通解的求法

二阶微分方程通解的求法一、一阶微分方程一阶微分方程也称为线性微分方程,它是与时间有关的一类微分方程,它的求解比较简单,常用的求解方法有积分法、特征值法等。

1、积分法积分法是最常用的求解一阶微分方程的方法,即:根据给定条件,利用积分,求出关于时间的函数的变化规律。

设y=f (t) 是特定条件下的一阶微分方程:dy/dt=f (t)若f (t)可以积分,则有:∫f(t)dt=∫dy=y+C即:y=∫f(t)dt+C其中C是积分常数,它的值取决于初始条件。

2、特征值法特征值法是将一阶微分方程变换成矩阵形式的求解方法,即:将一阶微分方程的解表示为一个特征值和一个特征向量的线性组合。

特征值是一个根,特征向量是相应的自由向量。

设y=f (t) 是特定条件下的一阶微分方程:dy/dt=f (t)变换成向量形式:dY/dt=A×Y其中Y是一个n维向量,A是一个n × n的矩阵,A的特征值特征向量分别为λj, xj,Y的原函数解为:Y=c1x1+c2x2+…+cnxn其中ci=Y(0)xij二、二阶微分方程二阶微分方程是一类非线性微分方程,它的求解比较复杂,常用的求解方法有解析方法、特征值法等。

1、解析方法解析方法是用简单的数学工具从方程本身求出其解的方法。

设y=f (t) 是特定条件下的二阶微分方程:d2y/dt2=f (t)化简得:y″=f (t)设其通解为:y=c1sinωt+c2 cosωt将它带入二阶微分方程,两边同时积分,设积分常数为c,有:ω^2y=f(t)+c令ω^2=α,则:αy=f(t)+c解出y:y=∫f(t)/αdt+c2、特征值法特征值法也可以用来求解二阶微分方程。

设y=f (t) 是特定条件下的二阶微分方程:d2y/dt2=f (t)变换成向量形式:d2Y/dt2=A×Y其中Y是一个n维向量,A是一个n×n的矩阵,A的特征值和特征向量分别为λj, xj,Y的原函数解为:Y=c1x1exp(λ1t)+c2x2exp(λ2t)+…。

二阶微分方程解法与应用

二阶微分方程解法与应用

二阶微分方程解法与应用对于二阶微分方程的解法与应用,我们需要先了解什么是二阶微分方程,以及其解法和应用的基本原理。

本文将介绍二阶微分方程的概念和常见类型,探讨其解法和实际应用。

一、二阶微分方程的概念二阶微分方程是指具有以下形式的方程:d²y/dx² + P(x)dy/dx + Q(x)y = R(x)其中,y 是自变量 x 的函数,P(x)、Q(x) 和 R(x) 是已知的函数。

二阶微分方程是微积分中常见的方程形式,它描述了函数 y 在自变量 x 上的变化规律。

二、二阶微分方程的解法1.特解与齐次方程解对于非齐次性二阶微分方程,我们首先需要找到其对应的齐次方程的通解,再寻找特解。

齐次方程的通解可以通过特征方程解法求得。

特征方程解法:假设齐次方程的解为 y = e^(rx) ,则将其带入齐次方程中得到特征方程:r² + P(x)r + Q(x) = 0解特征方程得到 r1 和 r2,根据特解形式 y = C₁e^(r₁x) +C₂e^(r₂x),其中 C₁和 C₂为常数,即可得到齐次方程的通解。

2.倍角公式与特解求解对于常见的二阶微分方程,可以利用倍角公式求得特解。

例如,当非齐次方程为:d²y/dx² + 4y = 2cos(2x)我们知道,cos(2x) = (e^(2ix) + e^(-2ix))/2,代入方程得:d²y/dx² + 4y = e^(2ix) + e^(-2ix)此时我们可以假设特解为 y = C₁e^(2ix) + C₂e^(-2ix),其中 C₁和C₂为常数。

通过求导后代入方程,可以求得特解的具体形式。

3.拉普拉斯变换与解的转化拉普拉斯变换是一种常用的求解二阶微分方程的工具。

通过将方程转化为代数方程,我们可以利用拉普拉斯变换进行求解。

例如,对于方程 d²y/dx² + 3dy/dx + 2y = x,我们可以进行拉普拉斯变换:s²Y - sy(0) - y'(0) + 3sY - y(0) + 2Y = 1/s²其中,Y 和 y 为拉普拉斯变换后的函数,y'(0) 和 y(0) 分别为函数 y 在初始点的导数和值。

二阶线性微分方程

二阶线性微分方程

二阶线性微分方程\[y''+p(x)y'+q(x)y=r(x)\]的微分方程,其中$p(x)$、$q(x)$、$r(x)$都是已知的函数,$y$是未知函数,$y''$表示关于自变量$x$的二阶导数。

在解二阶线性微分方程时,主要有三个步骤:寻找特解、寻找齐次方程的通解、将特解和齐次方程的通解相加得到二阶线性微分方程的通解。

首先,我们来看如何寻找特解。

对于非齐次方程$y''+p(x)y'+q(x)y=r(x)$,我们可以根据非齐次项$r(x)$的形式来选择合适的特解形式。

常见的特解形式包括:常数特解、多项式特解、指数函数特解、三角函数特解等。

如果非齐次项$r(x)$是一个常数,我们可以选择一个与$r(x)$无关的常数作为特解。

如果$r(x)$是一个多项式,我们可以选择与$r(x)$同次数的多项式作为特解。

如果$r(x)$是指数函数$e^{kx}$,我们可以选择同样的指数函数$Ae^{kx}$作为特解。

如果$r(x)$是三角函数$\sin(kx)$或$\cos(kx)$,我们可以选择相同的三角函数$A\sin(kx)$或$A\cos(kx)$作为特解。

特解确定之后,接下来需要寻找齐次方程$y''+p(x)y'+q(x)y=0$的通解。

齐次方程的特征方程是由方程的系数$p(x)$和$q(x)$决定的,它是一个二阶常系数线性齐次方程的特殊形式。

解特征方程可以得到齐次方程的通解形式。

特征方程的解决定了齐次方程的解的形状。

将特解和齐次方程的通解相加,即可得到二阶线性微分方程的通解。

特解与齐次方程的解相加得到的通解可以覆盖方程的所有解。

需要注意的是,特解和齐次方程的通解的系数可以通过给定的初始条件来确定。

初始条件可以是函数在其中一点$x_0$的值$y(x_0)$和导数$y'(x_0)$的值。

根据初始条件,可以求解出特解和齐次方程的通解中的任意常数。

二阶微分方程的解法

二阶微分方程的解法

二阶微分方程的解法引言:在微积分中,二阶微分方程是一种常见的数学工具,用于描述复杂的物理和工程问题。

解决二阶微分方程可以提供对系统的深入理解,并有助于预测和控制其行为。

本文将介绍几种常见的二阶微分方程的解法,包括常系数线性二阶微分方程、非齐次线性二阶微分方程以及常见特殊形式的二阶微分方程。

一、常系数线性二阶微分方程的解法:常系数线性二阶微分方程的一般形式可以表示为:\\[ay'' + by' + cy = 0\\]其中,a、b、c为常数,y是未知函数。

这个方程中的三个系数a、b、c决定了方程的性质和解的形式。

1.特征方程法:解决常系数线性二阶微分方程的一种常见方法是通过求解特征方程来获得解的形式。

通过设定y=e^(rx),将其代入原方程,可以得到特征方程:\\[ar^2 + br + c = 0\\]根据特征方程的解,可以将原方程的通解表示为:\\[y = C_1e^(r_1x) + C_2e^(r_2x)\\]其中,r1和r2是特征方程的解,C1和C2是待定常数。

这个方法适用于特征方程有两个不相等的实根的情况。

2.欧拉方程法:对于具有复数解的特征方程,可以使用欧拉方程法来解决。

通过设y=e^(rx),将其带入原方程,并使用欧拉公式进行变换,可以得到解的形式:\\[y = e^(ax) (C_1cos(bx) + C_2sin(bx))\\]其中,a和b是特征方程的实部和虚部,C1和C2是待定常数。

这个方法适用于特征方程有复数解的情况。

二、非齐次线性二阶微分方程的解法:非齐次线性二阶微分方程的一般形式可以表示为:\\[ay'' + by' + cy = f(x)\\]其中,f(x)是已知函数。

为了解决这个方程,首先需要求解对应的齐次方程\\(ay'' + by' + cy = 0\\)的通解。

然后,根据待定系数法或常数变易法,找到非齐次方程的一个特解。

二阶线性常微分方程的解法

二阶线性常微分方程的解法

二阶线性常微分方程的解法在数学中,二阶线性常微分方程是一个常见且重要的概念。

本文将介绍二阶线性常微分方程的解法,帮助读者更好地理解和应用这一知识点。

一、二阶线性常微分方程的定义二阶线性常微分方程是指形如下式的微分方程:y''(x) + p(x)y'(x) + q(x)y(x) = g(x)其中y(x)是未知函数,p(x),q(x)和g(x)是已知函数,一般假设其在所考虑的区间上连续。

二、齐次方程的解法首先,我们来研究二阶线性常微分方程的齐次形式,即g(x)为零的情况。

这类方程的解法非常有规律性。

假设y1(x)和y2(x)是二阶线性常微分方程的两个解,那么线性组合c1y1(x) + c2y2(x)也是该方程的解,其中c1和c2是任意常数。

因此,我们可以找到两个解y1(x)和y2(x),并通过线性组合的方式得到方程的通解。

具体的解法有三种情况。

1. 两个不同实数根当方程的特征方程有两个不同的实数根r1和r2时,对应的两个解分别为y1(x) = e^(r1x)和y2(x) = e^(r2x)。

2. 重根当方程的特征方程有一个重根r时,对应的两个解分别为y1(x) =e^(rx)和y2(x) = xe^(rx)。

3. 复数根当方程的特征方程有共轭复数根a±bi时,对应的两个解分别为y1(x) = e^(ax)cos(bx)和y2(x) = e^(ax)sin(bx)。

三、非齐次方程的解法对于非齐次方程,我们需要借助齐次方程的解,通过特解的方法来求解。

假设y1(x)和y2(x)是齐次方程的两个解,我们可以得到非齐次方程的特解为y(x) = u1(x)y1(x) + u2(x)y2(x),其中u1(x)和u2(x)是待定函数。

具体的求解步骤是:1. 将待求特解y(x)代入原方程,消去齐次方程的项,得到u1'(x)y1(x) + u2'(x)y2(x) = g(x)。

二阶微分方程通解公式

二阶微分方程通解公式

二阶微分方程通解公式【最新版】目录一、二阶微分方程的概念及通解公式二、二阶微分方程的求解方法1.常数变易法2.待定系数法三、二阶微分方程的应用实例正文一、二阶微分方程的概念及通解公式二阶微分方程是指形如 y""px""qyf(x) 的微分方程,其中 p、q 是实常数,自由项 f(x) 为定义在区间 I 上的连续函数。

二阶微分方程的通解公式为:1.两个不相等的实根:yC1e(r1x)C2e(r2x)2.两根相等的实根:y(C1C2x)e(r1x)3.一对共轭复根:r1i,r2-i:ye(x)(C1cosxC2sinx)二、二阶微分方程的求解方法1.常数变易法常数变易法是求解二阶微分方程的一种简单方法。

对于形如y""px""qyf(x) 的微分方程,先求出其齐次方程 y""px""qy0 的通解,然后将通解中的常数变为 x 的函数,再求导,即可得到原方程的通解。

2.待定系数法待定系数法是求解二阶微分方程的另一种常用方法。

对于形如y""px""qyf(x) 的微分方程,假设其通解为 y=C1e(r1x)+C2e(r2x),然后将通解代入原方程,根据等式两边系数相等的原则,列出关于 C1 和C2 的方程组,求解方程组即可得到通解。

三、二阶微分方程的应用实例二阶微分方程在实际问题中有广泛的应用,例如物理、化学、生物学等领域的问题。

这里以一个简单的物理问题为例,求解质量为 m 的弹簧振动的运动方程。

假设弹簧常数为 k,振动的位移为 x,速度为 v,加速度为 a,则根据牛顿第二定律和振动的物理规律,可以得到二阶微分方程:m * a = -k * x - k * v将该方程与质量为 m 的简谐振动方程进行比较,可得:x = A * cos(ω * t + φ)v = -ω * A * sin(ω * t + φ)a = -ω^2 * A * cos(ω * t + φ)其中,A 为振幅,ω为角频率,t 为时间,φ为初相位。

专题一(二阶常微分方程解法)

专题一(二阶常微分方程解法)

二阶微分方程:时为非齐次时为齐次,0)(0)()()()(22≠≡=++x f x f x f y x Q dx dy x P dx y d 二阶常系数齐次线性微分方程及其解法:2122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:为常数;,其中∆'''=++∆=+'+''式的通解:出的不同情况,按下表写、根据(*),321r r二阶常系数非齐次线性微分方程型为常数;型,为常数,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+''二阶常系数非齐次线性微分方程的一般形式是 ''+'+=y py qy f x () (1)其中p q ,是常数。

方程(1)的通解为对应的齐次方程0=+'+''qy y p y (2)的通解Y 和方程(1)的一个特解*y 之和。

即 *y Y y +=.我们已解决了求二阶常系数齐次线性方程通解的问题,所以,我们只需讨论求二阶常系数非齐次线性微分方程的特解*y 的方法。

下面我们只介绍当方程(1)中的)(x f 为如下两种常见形式时求其特解*y 的方法。

一、f x e P x x m ()()=⋅λ型 由于方程(1)右端函数f x ()是指数函数e x λ⋅与m 次多项式P x m ()的乘积,而指数函数与多项式的乘积的导数仍是这类函数,因此,我们推测:方程(1)的特解应为y e Q x x *⋅=λ()( Q x ()是某个次数待定的多项式 ) y e Q x e Q x x x *⋅⋅'=+'λλλ()() y e Q x Q x Q x x *⋅"=⋅+'+''λλλ[()()()]22 代入方程(1),得e Q x p Q x p q Q x e P x x x m λλλλλ⋅⋅⋅''++'+++≡⋅[()()()()()]()22 消去e x λ⋅,得''++'+++≡Q x p Q x p q Q x P x m ()()()()()()22λλλ (3) 讨论01、如果λ不是特征方程r pr q 20++=的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶微分方程解法第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2422,1q p p r -±+-= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数x r e y 11=、x r ey 22=是方程的解, 又x r r x r x r e e e y y )(212121-==不是常数. 因此方程的通解为 x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+''0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解.函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α-i β)x =e αx (cos βx -i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y ix e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y=eαx(C1cosβx+C2sinβx ).求二阶常系数齐次线性微分方程y''+py'+qy=0的通解的步骤为:第一步写出微分方程的特征方程r2+pr+q=0第二步求出特征方程的两个根r1、r2.第三步根据特征方程的两个根的不同情况,写出微分方程的通解.例1 求微分方程y''-2y'-3y=0的通解.解所给微分方程的特征方程为r2-2r-3=0,即(r+1)(r-3)=0.其根r1=-1,r2=3是两个不相等的实根,因此所求通解为y=C1e-x+C2e3x.例2 求方程y''+2y'+y=0满足初始条件y|x=0=4、y'|x=0=-2的特解.解所给方程的特征方程为r2+2r+1=0,即(r+1)2=0.其根r1=r2=-1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e-x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e-x.将上式对x求导,得y'=(C2-4-C2x)e-x.再把条件y'|x=0=-2代入上式,得C2=2.于是所求特解为x=(4+2x)e-x.例 3 求微分方程y''-2y'+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0.特征方程的根为r1=1+2i,r2=1-2i,是一对共轭复根,因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n-1)+p2 y(n-2) +⋅⋅⋅+p n-1y'+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n-1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D,及微分算子的n次多项式:L(D)=D n+p1D n-1+p2 D n-2 +⋅⋅⋅+p n-1D+p n,则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 +⋅⋅⋅+p n-1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y', D2y=y'', D3y=y''',⋅⋅⋅,D n y=y(n).分析:令y=e rx,则L(D)y=L(D)e rx=(r n+p1r n-1+p2 r n-2 +⋅⋅⋅+p n-1r+p n)e rx=L(r)e rx.因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.n阶常系数齐次线性微分方程的特征方程:L(r)=r n+p1r n-1+p2 r n-2 +⋅⋅⋅+p n-1r+p n=0称为微分方程L(D)y=0的特征方程.特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r1,2=α±iβ对应于两项:eαx(C1cosβx+C2sinβx);k重实根r对应于k项:e rx(C1+C2x+⋅⋅⋅+C k x k-1);一对k重复根r1,2=α±iβ对应于2k项:eαx[(C1+C2x+⋅⋅⋅+C k x k-1)cosβx+( D1+D2x+⋅⋅⋅+D k x k-1)sinβx].例4 求方程y (4)-2y '''+5y ''=0 的通解.解 这里的特征方程为r 4-2r 3+5r 2=0, 即r 2(r 2-2r +5)=0,它的根是r 1=r 2=0和r 3, 4=1±2i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+β 4y =0的通解, 其中β>0.解 这里的特征方程为r 4+β 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±-=β.因此所给微分方程的通解为 )2sin 2cos (212x C x C e y x βββ+=)2sin 2cos (432 x C x C e x βββ++-.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y ''+py '+qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法:一、 f (x )=P m (x )e λx 型当f (x )=P m (x )e λx 时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e λx , 将其代入方程, 得等式Q ''(x )+(2λ+p )Q '(x )+(λ2+p λ+q )Q (x )=P m (x ).(1)如果λ不是特征方程r2+pr+q=0 的根,则λ2+pλ+q≠0.要使上式成立,Q(x)应设为m 次多项式:Q m(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=Q m(x)eλx.(2)如果λ是特征方程r2+pr+q=0 的单根,则λ2+pλ+q=0,但2λ+p≠0,要使等式Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).成立,Q(x)应设为m+1 次多项式:Q(x)=xQ m(x),Q m(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=xQ m(x)eλx.(3)如果λ是特征方程r2+pr+q=0的二重根,则λ2+pλ+q=0, 2λ+p=0,要使等式Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).成立,Q(x)应设为m+2次多项式:Q(x)=x2Q m(x),Q m(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=x2Q m(x)eλx.综上所述,我们有如下结论:如果f(x)=P m(x)eλx,则二阶常系数非齐次线性微分方程y''+py'+qy=f(x)有形如y*=x k Q m(x)eλx的特解,其中Q m(x)是与P m(x)同次的多项式,而k按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y''-2y'-3y=3x+1的一个特解.解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0).与所给方程对应的齐次方程为y ''-2y '-3y =0,它的特征方程为r 2-2r -3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1.把它代入所给方程, 得-3b 0x -2b 0-3b 1=3x +1,比较两端x 同次幂的系数, 得⎩⎨⎧=--=-13233100b b b , -3b 0=3, -2b 0-3b 1=1. 由此求得b 0=-1, 311=b . 于是求得所给方程的一个特解为 31*+-=x y . 例2 求微分方程y ''-5y '+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2).与所给方程对应的齐次方程为y ''-5y '+6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得-2b 0x +2b 0-b 1=x .比较两端x 同次幂的系数, 得⎩⎨⎧=-=-0212100b b b , -2b 0=1, 2b 0-b 1=0. 由此求得210-=b , b 1=-1. 于是求得所给方程的一个特解为 x e x x y 2)121(*--=. 从而所给方程的通解为 x x x e x x e C e C y 223221)2(21+-+=. 提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]'=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x ,[(b 0x 2+b 1x )e 2x ]''=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *''-5y *'+6y *=[(b 0x 2+b 1x )e 2x ]''-5[(b 0x 2+b 1x )e 2x ]'+6[(b 0x 2+b 1x )e 2x ] =[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x -5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)-5(2b 0x +b 1)]e 2x =[-2b 0x +2b 0-b 1]e 2x .方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ] ]2)(2)([ ie e x P e ex P e x i x i n x i xi l x ωωωωλ---++= x i n l x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-= x i x i e x P e x P )()()()(ωλωλ-++=, 其中)(21)(i P P x P n l -=, )(21)(i P P x P nl +=. 而m =max{l , n }. 设方程y ''+py '+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解,其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++= )sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++==x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ].综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程 y ''+py '+qy =f (x )的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ-i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ''+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ''+y =0,它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x .比较两端同类项的系数, 得 31-=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+-=.精品资料仅供学习与交流,如有侵权请联系网站删除 谢谢11 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *'=a cos2x -2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,=(2cx +a +2d )cos2x +(-2ax -2b +c )sin2x ,y *''=2c cos2x -2(2cx +a +2d )sin2x -2a sin2x +2(-2ax -2b +c )cos2x =(-4ax -4b +4c )cos2x +(-4cx -4a -4d )sin2x .y *''+ y *=(-3ax -3b +4c )cos2x +(-3cx -4a -3d )sin2x .由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a , 得31-=a , b =0, c =0, 94=d .。

相关文档
最新文档