【人教版】红对勾2020届高考一轮数学(理)复习:课时作业15
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业11
课时作业2命题及其关系、充分条件与必要条件1.命题“若a>b,则a+c>b+c”的否命题是(A)A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:将条件、结论都否定.命题的否命题是“若a≤b,则a+c≤b+c”.2.(2019·江西九江十校联考)已知函数f(x)=Error!则“x=0”是“f(x)=1”的(B)A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:若x=0,则f(0)=e0=1;若f(x)=1,则e x=1 或ln(-x)=1,解得x=0 或x=-e.故“x=0”是“f(x)=1”的充分不必要条件.3.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题中结论成立的是(D) A.都真B.都假C.否命题真D.逆否命题真解析:对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0 的解集非空时,可以有a>0,即抛物线的开口可以向上,因此否命题也是假命题,故选D.4.(2019·河南郑州一模)下列说法正确的是(D)A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.存在x0∈(0,+∞),使3x0>4x0 成立1 πD.“若sinα≠,则α≠”是真命题2 6解析:对于选项A,“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,故选项A 错误;对于选项B,“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”,因为当m=0 时,am2=bm2,所以逆命题为假命题,故选项B 错误;对于选项C,由指数函数的图象知,对任意的x∈(0,+∞),都有4x>3x,故选项C 错误;1 ππ对于选项D,“若sinα≠,则α≠”的逆否命题为“若α=,则sinα2 6 61=”,该逆否命题为真命题,所以原命题为真命题,故选D.25.(2019·江西鹰谭中学月考)设f(x)=x2-4x(x∈R),则f(x)>0 的一个必要不充分条件是(C)A.x<0 B.x<0 或x>4C.|x-1|>1 D.|x-2|>3解析:依题意,f(x)>0⇔x2-4x>0⇔x<0 或x>4.又|x-1|>1⇔x-1<-1 或x-1>1,即x<0 或x>2,而{x|x<0 或x>x|x<0 或x>2},因此选C.6.(2019·山东日照联考)“m<0”是“函数f(x)=m+log2x(x≥1)存在零点”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m<0 时,由图象的平移变换可知,函数f(x)必有零点;当函数f(x)有零点时,m≤0,所以“m<0”是“函数f(x)=m+log2x(x≥1)存在零点”的充分不必要条件,故选A.7.(2019·安徽两校阶段性测试)设a∈R,则“a=4”是“直线l1:ax+8y-8=0 与直线l2:2x+ay-a=0 平行”的(D)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件a8 -8解析:∵当a≠0 时,==⇒直线l1 与直线l2 重合,∴无论a2 a-a取何值,直线l1 与直线l2 均不可能平行,当a=4 时,l1 与l2 重合.故选D.8.(2019·山西太原模拟)已知a,b都是实数,那么“2a>2b”是“a2>b2”的(D)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:充分性:若2a>2b,则2a-b>1,∴a-b>0,∴a>b.当a=-1,b=-2 时,满足2a>2b,但a2<b2,故由2a>2b不能得出a2>b2,因此充分性不成立.必要性:若a2>b2,则|a|>|b|.当a=-2,b=1 时,满足a2>b2,但2-2<21,即2a<2b,故必要性不成立.综上,“2a>2b”是“a2>b2”的既不充分也不必要条件,故选D.ππ 19.(2017·天津卷)设θ∈R,则“|θ-12|<”是“sinθ<”的12 2(A)A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件ππππππ 1 解析:∵|θ-12|<⇔-<θ-<⇔0<θ<,sinθ<⇔θ∈12 12 12 12 6 27ππ(2kπ-6),k∈Z,,2kπ+6π7ππ(0,6)(2kπ-6),k∈Z,,2kπ+6ππ 1∴“|θ-12|<”是“sinθ<”的充分而不必要条件.12 2Earlybird10.(2019·江西红色七校模拟)在△ABC中,角A,B均为锐角,则“cos A>sin B”是“△ABC为钝角三角形”的(C)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件π解析:因为cos A>sin B,所以cos A>cos(-B),2π因为角A,B均为锐角,所以-B为锐角,2又因为余弦函数y=cos x在(0,π)上单调递减,ππ所以A<-B,所以A+B<,2 2π在△ABC中,A+B+C=π,所以C>,2所以△ABC为钝角三角形;若△ABC为钝角三角形,角A,B均为锐角,πππ则C>,所以A+B<,所以A<-B,2 2 2π所以cos A>cos(-B),即cos A>sin B.2故“cos A>sin B”是“△ABC为钝角三角形”的充要条件.11.设向量a=(sin2θ,cosθ),b=(cosθ,1),则“a∥b”是“tanθ1=成立”的必要不充分__条件.(选填“充分不必要”“必要不充2分”“充要”“既不充分也不必要”)解析:a∥b⇔sin2θ=cos2θ⇔cosθ=0 或2sinθ=cosθ⇔cosθ=0 或1 1tanθ=,所以“a∥b”是“tanθ=成立”的必要不充分条件.2 212.已知条件p:2x2-3x+1≤0,条件q:x2-(2a+1)x+a(a+1)≤0.若綈p是綈q的必要不充分条件,则实数a的取值范围是1 [02].解析:方法一命题p为Error!,命题q为{x|a≤x≤a+1}.綈p对应的集合A=Error!.綈q对应的集合B={x|x>a+1 或x<a}.∵綈p是綈q的必要不充分条件,1∴Error!或Error!∴0≤a≤.2方法二命题p:A=Error!,命题q:B={x|a≤x≤a+1}.∵綈p是綈q的必要不充分条件,∴p是q的充分不必要条件,即A B,1∴Error!或Error!∴0≤a≤.213.已知p:函数f(x)=|x+a|在(-∞,-1)上是单调函数,q:函数g(x)=log a(x+1)(a>0,且a≠1)在(-1,+∞)上是增函数,则綈p 是q的(C)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:易知p成立⇔a≤1,q成立⇔a>1,所以綈p成立⇔a>1,则綈p是q的充要条件,故选C.14.(2019·昆明诊断)下列选项中,说法正确的是(D)A.若a>b>0,则ln a<ln bB.向量a=(1,m),b=(m,2m-1)(m∈R)垂直的充要条件是m=1C.命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∀n∈N*,3n≥(n+2)·2n-1”D.已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)·f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题解析:∵函数y=ln x(x>0)是增函数,∴若a>b>0,则ln a>ln b,故A 错误;若a⊥b,则m+m(2m-1)=0,解得m=0,故B 错误;命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∃n∈N*,3n≤(n+2)·2n-1”,故C 错误;命题“若f(a)·f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题“若f(x)在区间(a,b)内至少有一个零点,则f(a)·f(b)<0”是假命题,如函数f(x)=x2-2x-3 在区间[-2,4]上的图象连续不断,且在区间(-2,4)内有两个零点,但f(-2)·f(4)>0,D 正确.15.已知集合A=Error!,B={x|-1<x<m+1,x∈R},若x∈B成立的一个充分不必要条件是x∈A,则实数m的取值范围是(2,+∞)__.解析:A=Error!={x|-1<x<3},∵x∈B成立的一个充分不必要条件是x∈A,∴A B,∴m+1>3,即m>2.x-116.(2019·石家庄模拟)已知p:|1- 3|≤2,q:x2-2x+1-m2≤0(m>0),且綈p是綈q的必要不充分条件,则实数m的取值范围是[9,+∞)__.x-1解析:法一:由|1- 3|≤2,得-2≤x≤10,∴綈p对应的集合为{x|x>10 或x<-2},设A={x|x>10 或x<-2}.由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m(m>0),∴綈q对应的集合为{x|x>1+m或x<1-m,m>0},设B={x|x>1+m或x<1-m,m>0}.∵綈p是綈q的必要不充分条件,∴B A,∴Error!或Error!解得m≥9,∴实数m的取值范围为[9,+∞).法二:∵綈p是綈q的必要不充分条件,∴q是p的必要不充分条件.即p是q的充分不必要条件,由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m(m>0).∴q对应的集合为{x|1-m≤x≤1+m,m>0},设M={x|1-m≤x≤1+m,m>0},x-1又由|1- 3 |≤2,得-2≤x≤10,∴p对应的集合为{x|-2≤x≤10},设N={x|-2≤x≤10}.由p是q的充分不必要条件知,N M,∴Error!或Error!解得m≥9.∴实数m的取值范围为[9,+∞).。
【人教版】2020届高考一轮数学(理)复习:课时作业 (55)
课时作业55 抛物线1.(2019·广东珠海模拟)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,P A ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于( B )A.7π12 B .2π3 C.3π4D .5π6解析:由抛物线y 2=4x 知焦点F 的坐标为(1,0),准线l 的方程为x =-1,由抛物线定义可知|P A |=|PF |=4,所以点P 的坐标为(3,23),因此点A 的坐标为(-1,23),所以k AF =23-0-1-1=-3,所以直线AF的倾斜角等于2π3,故选B.2.(2019·湖北四地七校联考)已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( D )A .y 2=4xB .y 2=-4xC .y 2=8xD .y 2=-8x解析:因为AB ⊥x 轴,且AB 过点F ,所以AB 是焦点弦,且|AB |=2p ,所以S △CAB =12×2p ×⎝⎛⎭⎪⎫p 2+4=24,解得p =4或-12(舍),所以抛物线方程为y 2=8x ,所以直线AB 的方程为x =2,所以以直线AB 为准线的抛物线的标准方程为y 2=-8x ,故选D.3.已知抛物线C :x 2=2py (p >0),若直线y =2x 被抛物线所截弦长为45,则抛物线C 的方程为( C )A .x 2=8yB .x 2=4yC .x 2=2yD .x 2=y解析:由⎩⎪⎨⎪⎧ x 2=2py ,y =2x ,得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =4p ,y =8p ,即两交点坐标为(0,0)和(4p,8p ),则(4p )2+(8p )2=45,得p =1(舍去负值), 故抛物线C 的方程为x 2=2y .4.(2019·河南百校联盟联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,且|MO |=|MF |=32(O 为坐标原点),则OM →·MF →=( A )A .-74 B .74 C.94D .-94解析:不妨设M (m ,2pm )(m >0),易知抛物线C 的焦点F 的坐标为⎝ ⎛⎭⎪⎫p 2,0,因为|MO |=|MF |=32, 所以⎩⎪⎨⎪⎧m 2+2pm =94,m +p 2=32,解得m =12,p =2,所以OM →=⎝⎛⎭⎪⎫12,2,MF →=⎝⎛⎭⎪⎫12,-2, 所以OM →·MF →=14-2=-74.故选A.5.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( A )A.|BF |-1|AF |-1 B .|BF |2-1|AF |2-1C.|BF |+1|AF |+1D .|BF |2+1|AF |2+1解析:过A ,B 点分别作y 轴的垂线,垂足分别为M ,N , 则|AM |=|AF |-1,|BN |=|BF |-1.可知S △BCF S △ACF =12·|CB |·|CF |·sin ∠BCF12·|CA |·|CF |·sin ∠BCF =|CB ||CA |=|BN ||AM |=|BF |-1|AF |-1,故选A.6.(2019·江西六校联考)已知抛物线C :y 2=23x ,过焦点F 且斜率为3的直线与C 交于P ,Q 两点,且P ,Q 两点在准线上的射影分别为M ,N 两点,则S △MFN =( B )A .8B .2 3C .4 3D .8 3解析:法一:不妨设点P 在x 轴上方,如图,由抛物线定义可知|PF |=|PM |,|QF |=|QN |,设直线PQ 的倾斜角为θ,则tan θ=3,所以θ=π3, 由抛物线焦点弦的性质可知, |PF |=p 1-cos θ=31-cos π3=23, |QF |=p1+cos θ=31+cos π3=233, 所以|MN |=|PQ |·sin θ=(|PF |+|QF |)·sin π3=833×32=4, 所以S △MFN =12×|MN |×p =12×4×3=23,故选B. 法二:由题意可得直线PQ :y =3⎝⎛⎭⎪⎫x -32=3x -32,与抛物线方程y 2=23x 联立,得⎝⎛⎭⎪⎫3x -322=23x ,即3x 2-53x +94=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=533, 所以|PQ |=x 1+x 2+p =533+3=833, 所以|MN |=|PQ |sin π3=4,所以S △MNF =12×4×3=23,故选B.7.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m .当水面宽为2 6 m 时,水位下降了 1 m.解析:以抛物线的顶点为坐标原点,水平方向为x 轴建立平面直角坐标系,设抛物线的标准方程为x 2=-2py (p >0),把(2,-2)代入方程得p =1,即抛物线的标准方程为x 2=-2y .将x =6代入x 2=-2y 得:y =-3,又-3-(-2)=-1,所以水面下降了1 m.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a= 1+2 .解析:|OD |=a2,|DE |=b ,|DC |=a ,|EF |=b ,故C ⎝ ⎛⎭⎪⎫a 2,-a ,F ⎝ ⎛⎭⎪⎫a 2+b ,b , 又抛物线y 2=2px (p >0)经过C 、F 两点,从而有⎩⎪⎨⎪⎧(-a )2=2p ×a 2,b 2=2p ⎝ ⎛⎭⎪⎫a 2+b ,即⎩⎪⎨⎪⎧a =p ,b 2=ap +2bp , ∴b 2=a 2+2ab ,∴⎝ ⎛⎭⎪⎫b a 2-2·ba -1=0,又b a >1,∴ba =1+ 2.9.已知抛物线C 1:y =ax 2(a >0)的焦点F 也是椭圆C 2:y 24+x 2b 2=1(b >0)的一个焦点,点M ,P ⎝ ⎛⎭⎪⎫32,1分别为曲线C 1,C 2上的点,则|MP |+|MF |的最小值为 2 .解析:将P ⎝ ⎛⎭⎪⎫32,1代入到y 24+x 2b 2=1中,可得14+94b 2=1,∴b =3,∴c =1,∴抛物线的焦点F 为(0,1),∴抛物线C 1的方程为x 2=4y ,准线为直线y =-1,设点M 在准线上的射影为D ,根据抛物线的定义可知|MF |=|MD |,∴要求|MP |+|MF |的最小值,即求|MP |+|MD |的最小值,易知当D ,M ,P 三点共线时,|MP |+|MD |最小,最小值为1-(-1)=2.10.在平面直角坐标系xOy 中,抛物线y 2=6x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.若直线AF 的斜率k =-3,则线段PF 的长为 6 . 解析:由抛物线方程为y 2=6x ,所以焦点坐标F ⎝ ⎛⎭⎪⎫32,0,准线方程为x =-32,因为直线AF 的斜率为-3,所以直线AF 的方程为y =-3⎝ ⎛⎭⎪⎫x -32,画图象如图.当x =-32时,y =33,所以A ⎝ ⎛⎭⎪⎫-32,33,因为P A ⊥l ,A 为垂足,所以点P 的纵坐标为33,可得点P 的坐标为⎝ ⎛⎭⎪⎫92,33, 根据抛物线的定义可知 |PF |=|P A |=92-⎝ ⎛⎭⎪⎫-32=6.11.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24;(2)1|AF |+1|BF |为定值;(3)以AB 为直径的圆与抛物线的准线相切.证明:(1)由已知得抛物线焦点坐标为⎝ ⎛⎭⎪⎫p 2,0.由题意可设直线方程为x =my +p2,代入y 2=2px , 得y 2=2p ⎝ ⎛⎭⎪⎫my +p 2,即y 2-2pmy -p 2=0.(*)因为⎝ ⎛⎭⎪⎫p 2,0在抛物线内部,所以直线与抛物线必有两交点. 则y 1,y 2是方程(*)的两个实数根, 所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2, 所以y 21y 22=4p 2x 1x 2, 所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24. 因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值).(3)设AB 的中点为M (x 0,y 0),如图所示,分别过A ,B 作准线l 的垂线,垂足为C ,D ,过M 作准线l 的垂线,垂足为N ,则|MN |=12(|AC |+|BD |) =12(|AF |+|BF |)=12|AB |.所以以AB 为直径的圆与抛物线的准线相切.12.(2019·武汉调研)已知直线y =k (x -2)与抛物线Γ:y 2=12x 相交于A ,B 两点,M 是线段AB 的中点,过M 作y 轴的垂线交Γ于点N .(1)证明:抛物线Γ在点N 处的切线与直线AB 平行;(2)是否存在实数k 使NA →·NB →=0?若存在,求k 的值;若不存在,请说明理由.解:(1)证明:由⎩⎨⎧y =k (x -2),y 2=12x消去y 并整理,得2k 2x 2-(8k 2+1)x +8k 2=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k 2+12k 2,x 1x 2=4, ∴x M =x 1+x 22=8k 2+14k 2,y M =k (x M -2)=k ⎝ ⎛⎭⎪⎫8k 2+14k 2-2=14k. 由题设条件可知,y N =y M =14k ,x N =2y 2N =18k 2, ∴N ⎝ ⎛⎭⎪⎫18k 2,14k . 设抛物线Γ在点N 处的切线l 的方程为 y -14k =m ⎝ ⎛⎭⎪⎫x -18k 2,将x =2y 2代入上式, 得2my 2-y +14k -m8k 2=0. ∵直线l 与抛物线Γ相切,∴Δ=1-4×2m ×⎝ ⎛⎭⎪⎫14k -m 8k 2=(m -k )2k 2=0,∴m =k ,即l ∥AB .(2)假设存在实数k ,使NA →·NB →=0, 则NA ⊥NB .∵M 是AB 的中点,∴|MN |=12|AB |. 由(1),得|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫8k 2+12k 22-4×4 =1+k 2·16k 2+12k 2. ∵MN ⊥y 轴,∴|MN |=|x M -x N |=8k 2+14k 2-18k 2=16k 2+18k 2.∴16k 2+18k 2=121+k 2·16k 2+12k 2,解得k =±12.故存在k =±12,使得NA →·NB →=0.13.(2019·福建六校联考)已知抛物线E :y 2=2px (p >0)的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段AB 的中点为M ,其垂直平分线交x 轴于点C ,MN ⊥y 轴于点N .若四边形CMNF 的面积等于7,则抛物线E 的方程为( C )A .y 2=xB .y 2=2xC .y 2=4xD .y 2=8x解析:由题意,得F ⎝ ⎛⎭⎪⎫p 2,0,直线AB 的方程为y =x -p2,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),联立y =x -p2和y 2=2px 得,y 2-2py -p 2=0,则y 1+y 2=2p ,所以y 0=y 1+y 22=p ,故N (0,p ),又因为点M 在直线AB 上,所以x 0=3p 2,即M ⎝ ⎛⎭⎪⎫3p 2,p ,因为MC ⊥AB ,所以k AB ·k MC =-1,故k MC =-1,从而直线MC 的方程为y =-x +52p ,令y =0,得x =52p ,故C ⎝ ⎛⎭⎪⎫5p 2,0,四边形CMNF 的面积可以看作直角梯形CMNO 与直角三角形NOF 的面积之差, 即S 四边形CMNF =S 梯形CMNO -S △NOF = 12⎝ ⎛⎭⎪⎫52p +32p ·p -12p ·p 2=74p 2=7,∴p 2=4,又p >0,∴p =2,故抛物线E 的方程为y 2=4x ,故选C. 14.抛物线y 2=2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120°,过AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|MN ||AB |的最大值为( A ) A.33 B .1 C.233 D .2 解析:过A ,B 分别作抛物线准线的垂线,垂足分别为A 1,B 1,如图,由题意知|MN |=12(|AA 1|+|BB 1|)=12(|AF |+|BF |), 在△AFB 中,|AB |2=|AF |2+|BF |2-2|AF ||BF |·cos120°=|AF |2+|BF |2+|AF ||BF |,∴⎝ ⎛⎭⎪⎫|MN ||AB |2=14·|AF |2+|BF |2+2|AF ||BF ||AF |2+|BF |2+|AF ||BF | =14⎝ ⎛⎭⎪⎫1+|AF ||BF ||AF |2+|BF |2+|AF ||BF | =14⎝ ⎛⎭⎪⎫1+1|AF ||BF |+|BF ||AF |+1 ≤14×⎝ ⎛⎭⎪⎫1+12+1=13, 当且仅当|AF |=|BF |时取等号, ∴|MN ||AB |的最大值为33. 15.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 (2,4) . 解析:如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧ y 21=4x 1,y 22=4x 2,两式相减得,(y 1+y 2)(y 1-y 2)=4(x 1-x 2). 当l 的斜率k 不存在时,符合条件的直线l 必有两条. 当k 存在时,x 1≠x 2, 则有y 1+y 22·y 1-y 2x 1-x 2=2, 又y 1+y 2=2y 0,所以y 0k =2.由CM ⊥AB ,得k ·y 0-0x 0-5=-1, 即y 0k =5-x 0,因此2=5-x 0,x 0=3, 即M 必在直线x =3上. 将x =3代入y 2=4x , 得y 2=12,则有-23<y 0<2 3. 因为点M 在圆上,所以(x 0-5)2+y 20=r 2, 故r 2=y 20+4<12+4=16. 又y 20+4>4(为保证有4条,在k 存在时,y 0≠0), 所以4<r 2<16,即2<r <4. 16.(2019·武汉调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线交点为N . (1)若N 在以AB 为直径的圆上,求p 的值; (2)若△ABN 面积的最小值为4,求抛物线C 的方程. 解:(1)可设AB :y =kx +1,A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入抛物线C ,得 x 2-2pkx -2p =0,显然方程有两个不等实根, 则x 1+x 2=2pk ,x 1x 2=-2p .① 又x 2=2py ,得y ′=x p , 则A ,B 处的切线斜率乘积为x 1x 2p 2=-2p =-1, 则有p =2. (2)设切线AN 为y =x 1p x +b , 又切点A 在抛物线y =x 22p 上, ∴y 1=x 212p ,∴b =x 212p -x 21p =-x 212p , ∴y AN =x 1p x -x 212p .同理y BN =x 2p x -x 222p .又∵N 在y AN 和y BN 上, ∴⎩⎪⎨⎪⎧ y =x 1p x -x 212p ,y =x 2p x -x 222p ,解得N ⎝ ⎛⎭⎪⎫x 1+x 22,x 1x 22p . ∴N (pk ,-1). |AB |=1+k 2|x 2-x 1|=1+k 2·4p 2k 2+8p , 点N 到直线AB 的距离d =|kx N +1-y N |1+k 2=|pk 2+2|1+k 2, S △ABN =12·|AB |·d =p (pk 2+2)3≥22p , ∴22p =4,∴p =2. 故抛物线C 的方程为x 2=4y .。
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业7
课时作业16 导数的综合应用1.(2019·天津调研)已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c 等于( A )A .-2或2B .-9或3C .-1或1D .-3或1解析:∵y ′=3x 2-3,∴当y ′=0时,x =±1. 则当x 变化时,y ′,y 的变化情况如下表:或c -2=0,∴c =-2或c =2.2.已知函数f (x )=m ⎝⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值范围是( B )A .⎝ ⎛⎦⎥⎤-∞,2e B .⎝ ⎛⎭⎪⎫-∞,2e C .(-∞,0]D .(-∞,0)解析:由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x 在[1,e]上有解,即m 2<ln x x 在[1,e]上有解,令h (x )=ln xx ,则h ′(x )=1-ln xx 2,当1≤x ≤e 时,h ′(x )≥0, ∴在[1,e]上,h (x )max =h (e)=1e , ∴m 2<1e ,∴m <2e ,∴m 的取值范围是⎝ ⎛⎭⎪⎫-∞,2e ,故选B .3.定义在R 上的函数f (x )满足:f (x )+f ′(x )>1,f (0)=4,则不等式e x f (x )>e x +3(其中e 为自然对数的底数)的解集为( A )A .(0,+∞)B .(-∞,0)∪(3,+∞)C .(-∞,0)∪(0,+∞)D .(3,+∞)解析:设g (x )=e x f (x )-e x (x ∈R ),则g ′(x )=e x f (x )+e x f ′(x )-e x =e x [f (x )+f ′(x )-1], 因为f (x )+f ′(x )>1,所以f (x )+f ′(x )-1>0,所以g ′(x )>0, 所以g (x )=e x f (x )-e x 在定义域上单调递增, 因为e x f (x )>e x +3,所以g (x )>3. 又因为g (0)=e 0f (0)-e 0=4-1=3, 所以g (x )>g (0),所以x >0.4.(2019·福建六校模拟)已知函数f (x )=(x -a )3-3x +a (a >0)在[-1,b ]上的值域为[-2-2a,0],则b 的取值范围是( A )A .[0,3]B .[0,2]C .[2,3]D .(-1,3]解析:由f (x )=(x -a )3-3x +a , 得f ′(x )=3(x -a )2-3,令f ′(x )=0,得x 1=a -1,x 2=a +1.当x ∈(-∞,a -1)∪(a +1,+∞)时,f ′(x )>0, 当x ∈(a -1,a +1)时,f ′(x )<0,则f (x )在(-∞,a -1),(a +1,+∞)上为增函数,在(a -1,a +1)上为减函数.又f (a +1)=-2-2a ,∴要使f (x )=(x -a )3-3x +a (a >0)在[-1,b ]上的值域为[-2-2a,0],则f (-1+a )=2-2a ≤0,若2-2a =0,即a =1,此时f (-1)=-4,f (0)=0,-2-2a =-4,f (3)=0,f (2)=-4.∴b ∈[0,3];若2-2a <0,即a >1,此时f (-1)=(-1-a )3+3+a =-a 3-3a 2-2a +2,而f (-1)-(-2a -2)=-a 3-3a 2-2a +2+2a +2=-a 3-3a 2+4=(1-a )·(a +2)2<0,∴不合题意,∴b 的取值范围是[0,3].故选A .5.(2019·广东韶关六校联考)对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g (x )=2x 3-3x 2+12,则g ⎝ ⎛⎭⎪⎫1100+g ⎝ ⎛⎭⎪⎫2100+…+g ⎝ ⎛⎭⎪⎫99100=( D )A .100B .50C .992D .0解析:∵g (x )=2x 3-3x 2+12,∴g ′(x )=6x 2-6x ,g ″(x )=12x -6, 由g ″(x )=0,得x =12,又g ⎝ ⎛⎭⎪⎫12=2×⎝ ⎛⎭⎪⎫123-3×⎝ ⎛⎭⎪⎫122+12=0,∴函数g (x )的图象关于点⎝ ⎛⎭⎪⎫12,0对称, ∴g (x )+g (1-x )=0,∴g ⎝ ⎛⎭⎪⎫1100+g ⎝ ⎛⎭⎪⎫2100+…+g ⎝ ⎛⎭⎪⎫99100=49×0+g ⎝ ⎛⎭⎪⎫50100=g ⎝ ⎛⎭⎪⎫12=0,故选D .6.从边长为10 cm ×16 cm 的矩形纸板的四角截去四个相同的小正方形,做成一个无盖的盒子,则盒子容积的最大值为144__cm 3.解析:设盒子容积为y cm 3,盒子的高为x cm ,x ∈(0,5). 则y =(10-2x )(16-2x )x =4x 3-52x 2+160x , ∴y ′=12x 2-104x +160.令y ′=0,得x =2或x =203(舍去), ∴y max =6×12×2=144(cm 3).7.直线x =t 分别与函数f (x )=e x +1的图象及g (x )=2x -1的图象相交于点A 和点B ,则|AB |的最小值为4-2ln2__.解析:由题意得,|AB |=|e t +1-(2t -1)|=|e t -2t +2|, 令h (t )=e t -2t +2,则h ′(t )=e t -2,所以h (t )在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增,所以h (t )min =h (ln2)=4-2ln2>0, 即|AB |的最小值是4-2ln2.8.(2019·佛山质检)定义在R 上的奇函数y =f (x )满足f (3)=0,且不等式f (x )>-xf ′(x )在(0,+∞)上恒成立,则函数g (x )=xf (x )+lg|x +1|的零点个数为3__.解析:定义在R 上的奇函数f (x )满足: f (0)=0=f (3)=f (-3),f (-x )=-f (x ), 当x >0时,f (x )>-xf ′(x ), 即f (x )+xf ′(x )>0, ∴[xf (x )]′>0,即h (x )=xf (x )在x >0时是增函数, 又h (-x )=-xf (-x )=xf (x ), ∴h (x )=xf (x )是偶函数,∴当x <0时,h (x )是减函数,结合函数的定义域为R , 且f (0)=f (3)=f (-3)=0,可得函数y 1=xf (x )与y 2=-lg|x +1|的大致图象如图.由图象可知,函数g(x)=xf(x)+lg|x+1|的零点的个数为3.9.(2019·惠州调研)已知函数f(x)=2e x-(x-a)2+3,a∈R.(1)若函数f(x)的图象在x=0处的切线与x轴平行,求a的值;(2)若x≥0,f(x)≥0恒成立,求a的取值范围.解:(1)f′(x)=2(e x-x+a),∵函数f(x)的图象在x=0处的切线与x轴平行,即在x=0处的切线的斜率为0,∴f′(0)=2(a+1)=0,∴a=-1.(2)由(1)知f′(x)=2(e x-x+a),令h(x)=2(e x-x+a)(x≥0),则h′(x)=2(e x-1)≥0,∴h(x)在[0,+∞)上单调递增,且h(0)=2(a+1).①当a≥-1时,f′(x)≥0在[0,+∞)上恒成立,即函数f(x)在[0,+∞)上单调递增,∴f(x)min=f(0)=5-a2≥0,解得-5≤a≤5,又a≥-1,∴-1≤a≤ 5.②当a<-1时,则存在x0>0,使h(x0)=0且当x∈[0,x0)时,h(x)<0,即f′(x)<0,则f(x)单调递减,当x∈(x0,+∞)时,h(x)>0,则f′(x)>0,即f(x)单调递增,∴f(x)min=f(x0)=2e x0-(x0-a)2+3≥0,又h(x0)=2(e x0-x0+a)=0,∴2e x0-(e x0)2+3≥0,解得0<x0≤ln3.由e x 0=x 0-a ⇒a =x 0-e x 0, 令M (x )=x -e x,0<x ≤ln3, 则M ′(x )=1-e x <0, ∴M (x )在(0,ln3]上单调递减,则M (x )≥M (ln3)=ln3-3,M (x )<M (0)=-1, ∴ln3-3≤a <-1. 综上,ln3-3≤a ≤ 5.故a 的取值范围是[ln3-3,5].10.(2019·山西康杰中学等四校联考)已知函数f (x )=x -ln x . (1)求f (x )的单调区间和极值;(2)证明:当x ≥1时,(x e x +1)f (x )e +1≥e x -1;(3)若f (x )≥(1-m )x +m 对任意x ∈(0,+∞)恒成立,求实数m 的值.解:(1)f (x )=x -ln x ,f ′(x )=1-1x ,x ∈(0,+∞),f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,有极小值f (1)=1,无极大值.(2)证明:原不等式可化为f (x )e +1≥e x -1x e x +1,记g (x )=e x -1x e x +1,则g ′(x )=e x -1(1-e x )(x e x +1)2,当x ≥1时,g ′(x )<0,所以g (x )在[1,+∞)上单调递减,有g (x )≤g (1)=1e +1,又由(1)知,f (x )e +1≥f (1)e +1=1e +1,得证.(3)f (x )≥(1-m )x +m , 即ln x -m (x -1)≤0, 记h (x )=ln x -m (x -1),则h (x )≤0对任意x ∈(0,+∞)恒成立, 求导得h ′(x )=1x -m (x >0), 若m ≤0,则h ′(x )>0, 得h (x )在(0,+∞)上单调递增, 又h (1)=0,故当x >1时,h (x )>0,不合题意;若m >0,则易得h (x )在⎝ ⎛⎭⎪⎫0,1m 上单调递增,在⎝ ⎛⎭⎪⎫1m ,+∞上单调递减,则h (x )max =h ⎝ ⎛⎭⎪⎫1m =-ln m -1+m .依题意有-ln m -1+m ≤0,故f (m )≤1, 由(1)知f (m )≥1,则m 只能等于1.11.(2019·厦门调研)已知f (x )=12x 2+b x +c (b ,c 是常数)和g (x )=14x +1x 是定义在M ={x |1≤x ≤4}上的函数,对于任意的x ∈M ,存在x 0∈M 使得f (x )≥f (x 0),g (x )≥g (x 0),且f (x 0)=g (x 0),则f (x )在M 上的最大值为( B )A .72B .5C .6D .8解析:因为当x ∈[1,4]时,g (x )=14x +1x ≥214=1(当且仅当x =2时等号成立),所以f (2)=2+b2+c =g (2)=1, 所以c =-1-b2, 所以f (x )=12x 2+b x -1-b2,所以f ′(x )=x -b x 2=x 3-bx 2.因为f (x )在x =2处有最小值,且x ∈[1,4], 所以f ′(2)=0,即b =8,所以c =-5, 经检验,b =8,c =-5符合题意. 所以f (x )=12x 2+8x -5,f ′(x )=x 3-8x 2,所以f (x )在[1,2)上单调递减,在(2,4]上单调递增,而f (1)=12+8-5=72,f (4)=8+2-5=5,所以函数f (x )在M 上的最大值为5,故选B .12.已知f (x )=|x |e x (x ∈R ),若关于x 的方程f 2(x )-mf (x )+m -1=0恰好有4个不相等的实数根,则实数m 的取值范围为( C )A .⎝ ⎛⎭⎪⎫1e ,2∪(2,e) B .⎝ ⎛⎭⎪⎫1e ,1 C .⎝ ⎛⎭⎪⎫1,1e +1D .⎝ ⎛⎭⎪⎫1e ,e解析:依题意,由f 2(x )-mf (x )+m -1=0, 得f (x )=1或f (x )=m -1.当x <0时,f (x )=-x e -x ,f ′(x )=(x -1)e -x <0, 此时f (x )是减函数.当x >0时,f (x )=x e -x ,f ′(x )=-(x -1)e -x , 若0<x <1,则f ′(x )>0,f (x )是增函数; 若x >1,则f ′(x )<0,f (x )是减函数.因此,要使关于x 的方程f 2(x )-mf (x )+m -1=0恰好有4个不相等的实数根,只要求直线y =1,直线y =m -1与函数y =f (x )的图象共有四个不同的交点.函数f (x )的图象如图.注意到直线y =1与函数y =f (x )的图象有唯一公共点,因此要求直线y =m -1与函数y =f (x )的图象共有三个不同的交点,结合图象可知,0<m -1<1e ,即1<m <1+1e ,则实数m 的取值范围为⎝ ⎛⎭⎪⎫1,1+1e . 13.(2019·武汉调研)已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求实数a 的取值范围;(2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.解:(1)由题意得g ′(x )=f ′(x )+a =ln x +a +1. ∵函数g (x )在区间[e 2,+∞)上为增函数, ∴当x ∈[e 2,+∞)时,g ′(x )≥0, 即ln x +a +1≥0在[e 2,+∞)上恒成立. ∴a ≥-1-ln x .令h (x )=-ln x -1,∴a ≥h (x )max , 当x ∈[e 2,+∞)时,ln x ∈[2,+∞), ∴h (x )∈(-∞,-3],∴a ≥-3, 即实数a 的取值范围是[-3,+∞). (2)∵2f (x )≥-x 2+mx -3, 即mx ≤2x ln x +x 2+3,又x >0,∴m ≤2x ln x +x 2+3x在x ∈(0,+∞)上恒成立.记t (x )=2x ln x +x 2+3x =2ln x +x +3x . ∴m ≤t (x )min .∵t ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2, 令t ′(x )=0,得x =1或x =-3(舍去).当x ∈(0,1)时,t ′(x )<0,函数t (x )在(0,1)上单调递减;当x ∈(1,+∞)时,t ′(x )>0,函数t (x )在(1,+∞)上单调递增. ∴t (x )min =t (1)=4.∴m ≤t (x )min =4,即m 的最大值为4.14.(2019·福建四地六校联考)已知函数f (x )=(x -1)e x -12ax 2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求实数a 的取值范围. 解:(1)f (x )的定义域为(-∞,+∞), f ′(x )=e x +(x -1)e x -ax =x (e x -a ). (ⅰ)若a ≤0,则当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (ⅱ)若a >0,由f ′(x )=0得x =0或x =ln A . ①若a =1,则f ′(x )=x (e x -1)≥0, 所以f (x )在(-∞,+∞)上单调递增. ②若0<a <1,则ln a <0,故当x ∈(-∞,ln a )∪(0,+∞)时,f ′(x )>0; 当x ∈(ln a,0)时,f ′(x )<0,所以f (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a,0)上单调递减.③若a >1,则ln a >0,故当x ∈(-∞,0)∪(ln a ,+∞)时,f ′(x )Earlybird>0;当x ∈(0,ln a )时,f ′(x )<0,所以f (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减.综上所述,当a ≤0时,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增;当0<a <1时,f (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a,0)上单调递减;当a =1时,f (x )在(-∞,+∞)上单调递增;当a >1时,f (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减.(2)(ⅰ)若a ≤0,则由(1)知,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又f (0)=-1,x 趋近负无穷时,f (x )值趋近正无穷.x 趋近正无穷时,f (x )值趋近正无穷.所以f (x )有两个零点.(ⅱ)若a =1,则由(1)知f (x )在(-∞,+∞)上单调递增,所以f (x )至多有一个零点.(ⅲ)若0<a <1,则由(1)知,f (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a,0)上单调递减,设b =ln a ,当x =b 时,f (x )有极大值f (b )=a (b -1)-12ab 2=-12a (b2-2b +2)<0,故f (x )不存在两个零点.(ⅳ)若a >1,则由(1)知,f (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减,当x =0时,f (x )有极大值f (0)=-1<0,故f (x )不存在两个零点.综上,a 的取值范围为a ≤0.。
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业3
课时作业12 函数模型及其应用1.已知正方形ABCD 的边长为4,动点P 从B 点开始沿折线BCDA 向A 点运动.设点P 运动的路程为x ,△ABP 的面积为S ,则函数S =f (x )的图象是( D )解析:依题意知当0≤x ≤4时,f (x )=2x ;当4<x ≤8时,f (x )=8;当8<x ≤12时,f (x )=24-2x ,观察四个选项知D 项符合要求.2.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( B )A.y =2x -2B .y =12(x 2-1)C .y =log 2xD .y =log 12x解析:由题中表可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大的越来越快,分析选项可知B 符合,故选B.3.我们定义函数y =[x ]([x ]表示不大于x 的最大整数)为“下整函数”;定义y ={x }({x }表示不小于x 的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x 小时,则李刚应付费为(单位:元)( C )A .2[x +1]B .2([x ]+1)C .2{x }D .{2x }解析:如x =1时,应付费2元,此时2[x +1]=4,2([x ]+1)=4,排除A 、B ;当x =0.5时,付费为2元,此时{2x }=1,排除D ,故选C.4.(2019·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( C )A .8B .9C .10D .11解析:设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n <11 000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.5.(2019·贵州遵义模拟)某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元.该设备每年生产的收入均为21万元.设该设备使用了n (n ∈N *)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n 等于( B )A .6B .7C .8D .7或8解析:盈利总额为21n -9-⎣⎢⎡⎦⎥⎤2n +12×n (n -1)×3=-32n 2+412n -9.因为其对应的函数的图象的对称轴方程为n =416.所以当n =7时取最大值,即盈利总额达到最大值,故选B.6.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,包装费用、销售价格如下表所示:①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.A.①③B.①④C.②③D.②④解析:买小包装时每克费用为3100元,买大包装时每克费用为8.4300=2.8100元,而3100>2.8100,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润是8.4-1.8×3-0.7=2.3(元),而2.3>2.1,所以卖1大包盈利多,故选D.7.如图,矩形ABCD的周长为8,设AB=x(1≤x≤3),线段MN 的两端点在矩形的边上滑动,且MN=1,当N沿A→D→C→B→A在矩形的边上滑动一周时,线段MN的中点P所形成的轨迹为G,记G 围成的区域的面积为y,则函数y=f(x)的图象大致为(D)解析:由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x ,则AD =8-2x 2=4-x ,所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3),显然该函数的图象是二次函数图象的一部分,且当x =2时,y =4-π4∈(3,4),故选D.8.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f (n )表示前n 年的纯利润(f (n )=前n 年的总收入-前n 年的总费用支出-投资额),则从第 5 年开始盈利.解析:由题知f (n )=26n -⎣⎢⎡⎦⎥⎤8n +n (n -1)2×2-60=-n 2+19n -60. 令f (n )>0,即-n 2+19n -60>0,解得4<n <15,所以从第5年开始盈利.9.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x万元之间的函数解析式为L =512-⎝ ⎛⎭⎪⎫x 2+8x (x >0).则当年广告费投入 4 万元时,该公司的年利润最大.解析:由题意得L =512-⎝ ⎛⎭⎪⎫x 2+8x ≤512-2x 2·8x =21.5, 当且仅当x 2=8x ,即x =4时等号成立.此时L 取得最大值21.5.故当年广告费投入4万元时,该公司的年利润最大.10.某商品在近30天内每件的销售价格P (元)与时间t (天)之间的函数关系式为P =⎩⎪⎨⎪⎧t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N ,且该商品的日销售量Q (件)与时间t (天)之间的函数关系式为Q =-t +40(0<t ≤30,t ∈N ),则这种商品日销售金额最大的一天是30天中的第 25 天.解析:设日销售金额为W (t )元,则W (t )=P ·Q =⎩⎪⎨⎪⎧(t +20)(-t +40),0<t <25,t ∈N ,(-t +100)(-t +40),25≤t ≤30,t ∈N . 令f (t )=(t +20)(-t +40)=-t 2+20t +800(0<t <25,t ∈N ),易知f (t )max =f (10)=900,令g (t )=(-t +100)(-t +40)=t 2-140t +4 000(25≤t ≤30,t ∈N ),易知g (t )max =g (25)=1 125.综上,当t =25,即第25天时,日销售金额W (t )最大.11.某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y =f (x )的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?解:(1)当x ≤6时,y =50x -115,令50x -115>0,解得x >2.3,∵x 为整数,∴3≤x ≤6,x ∈Z .当x >6时,y =[50-3(x -6)]x -115=-3x 2+68x -115.令-3x 2+68x -115>0,有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .∴y =⎩⎪⎨⎪⎧50x -115(3≤x ≤6,x ∈Z ),-3x 2+68x -115(6<x ≤20,x ∈Z ). (2)对于y =50x -115(3≤x ≤6,x ∈Z ),显然当x =6时,y max =185;对于y =-3x 2+68x -115=-3·⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多.12.(2019·山东德州模拟)某地自来水苯超标,当地自来水公司对水质检测后,决定在水中投放一种药剂来净化水质.已知每投放质量为m 的药剂后,经过x 天该药剂在水中释放的浓度y (毫克/升)满足y=mf (x ),其中f (x )=⎩⎨⎧x 225+2,0<x ≤5,x +192x -2,x >5.当药剂在水中的浓度不低于5(毫克/升)时称为有效净化;当药剂在水中的浓度不低于5(毫克/升)且不高于10(毫克/升)时称为最佳净化.(1)如果投放的药剂的质量为m =5,试问自来水达到有效净化总共可持续几天?(2)如果投放的药剂质量为m ,为了使在9天(从投放药剂算起包括9天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m 的最小值.解:(1)当m =5时,y =⎩⎨⎧x 25+10,0<x ≤5,5x +952x -2,x >5.当0<x ≤5时,x 25+10>10,显然符合题意;当x >5时,由5x +952x -2≥5,解得5<x ≤21. 综上,0<x ≤21,所以自来水达到有效净化总共可持续21天.(2)y =mf (x )=⎩⎨⎧mx 225+2m ,0<x ≤5,m (x +19)2x -2,x >5.当0<x ≤5时,y =mx 225+2m 在区间(0,5]上单调递增,所以2m <y ≤3m ; 当x >5时,y ′=-40m (2x -2)2<0, 所以函数y =m (x +19)2x -2在(5,9]上单调递减, 所以7m 4≤y <3m .综上可知7m 4≤y ≤3m .为使5≤y ≤10恒成立,只要⎩⎨⎧ 7m 4≥5,3m ≤10,解得207≤m ≤103, 所以应该投放的药剂质量m 的最小值为207.13.(2019·嘉定模拟)某市环保研究所对市中心每天环境中放射性污染情况进行调查研究后发现,一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=⎪⎪⎪⎪⎪⎪x x 2+1-a +2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈⎣⎢⎡⎦⎥⎤0,12.如果以每天f (x )的最大值为当天的环境综合放射性污染指数,并记为M (a ),若规定当M (a )≤2时为环境综合放射性污染指数不超标,则该市中心的环境综合放射性污染指数不超标时,a 的取值范围为( B )A.⎣⎢⎡⎦⎥⎤0,14 B.⎣⎢⎡⎦⎥⎤0,49 C.⎣⎢⎡⎦⎥⎤14,49 D.⎣⎢⎡⎦⎥⎤49,12 解析:设t =x x 2+1,当x ≠0时,可得t =1x +1x∈⎝ ⎛⎦⎥⎤0,12,当x =0时,t =0,因而f (x )=g (t )=|t -a |+2a +23=⎩⎪⎨⎪⎧-t +3a +23,0≤t ≤a ,t +a +23,a <t ≤12,从而有g (0)=3a +23,g ⎝ ⎛⎭⎪⎫12=a +76,g (0)-g ⎝ ⎛⎭⎪⎫12=2⎝ ⎛⎭⎪⎫a -14, 因而M (a )=⎩⎪⎨⎪⎧ g ⎝ ⎛⎭⎪⎫12,0≤a ≤14,g (0),14<a ≤12, 即M (a )=⎩⎪⎨⎪⎧ a +76,0≤a ≤14,3a +23,14<a ≤12,当0≤a ≤14时,M (a )<2,当14<a ≤49时,M (a )≤2,当49<a ≤12时,M (a )>2,所以该市中心的环境综合放射性污染指数不超标时,a 的取值范围为⎣⎢⎡⎦⎥⎤0,49. 14.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为 y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20 (x ∈N *) ,该工厂的年产量为 16 件时,所得年利润最大.(年利润=年销售总收入-年总投资)解析:当x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100; 当x >20时,y =260-100-x =160-x .故y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *). 当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,当x =16时,y max =156.当x >20时,160-x <140,故x =16时取得最大年利润.15.(2019·潍坊模拟)某地西红柿从2月1日开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是 120 ;(2)最低种植成本是 80 (元/100 kg).解析:根据表中数据可知函数不单调,所以Q =at 2+bt +c ,且开口向上,对称轴t =-b 2a =60+1802=120,代入数据⎩⎪⎨⎪⎧ 3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,解得⎩⎪⎨⎪⎧ b =-2.4,c =224,a =0.01.所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80(元/100 kg).16.(2019·西安质检)我国加入WTO 后,根据达成的协议,若干年内某产品的关税与市场供应量P 的关系近似满足:y =P (x )=2(1-kt )(x -b )2(其中t 为关税的税率,且t ∈⎣⎢⎡⎭⎪⎫0,12,x 为市场价格,b ,k 为正常数),当t =18时的市场供应量曲线如图:(1)根据图象求b ,k 的值;(2)若市场需求量为Q ,它近似满足Q (x )=.当P =Q 时的市场价格称为市场平衡价格.为使市场平衡价格控制在不低于9元的范围内,求税率t 的最小值.解:(1)由图象知函数图象过(5,1),(7,2).解得⎩⎪⎨⎪⎧ k =6,b =5.Earlybird(2)当P =Q 时,2(1-6t )(x -5)2=211-x 2,则(1-6t )(x -5)2=11-x 2,所以1-6t =11-x 2(x -5)2=12·22-x (x -5)2= 12·⎣⎢⎡⎦⎥⎤17(x -5)2-1x -5. 令m =1x -5(x ≥9),m ∈⎝ ⎛⎦⎥⎤0,14. 设f (m )=17m 2-m ,m ∈⎝ ⎛⎦⎥⎤0,14, 对称轴为m =134,所以f (m )max =f ⎝ ⎛⎭⎪⎫14=1316, 所以,当m =14,即x =9时,1-6t 取得最大值为12×1316, 则1-6t ≤12×1316,解得t ≥19192,所以税率的最小值为19192.。
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业1
课时作业10 函数的图象1.函数f (x )=x2ln|x |的图象大致是( D )解析:由f (-x )=-f (x )可得f (x )是奇函数,图象关于原点对称,排除A ,C ,而x ∈(0,1)时,ln|x |<0,f (x )<0,排除B ,故选D.2.现有四个函数:①y =x sin x ;②y =x cos x ;③y =x |cos x |;④y =x ·2x .它们的图象(部分)如下,但顺序已被打乱,则按照从左到右将图象对应的函数序号排列正确的一组是( D )A .④①②③B .①④③②C .③④②①D .①④②③解析:函数y =x sin x 是偶函数,由图象知,函数①对应第一个图象;函数y =x cos x 是奇函数,且当x =π时,y =-π<0,故函数②对应第三个图象;函数y =x |cos x |为奇函数,且当x >0时,y ≥0,故函数③与第四个图象对应;函数y =x ·2x 为非奇非偶函数,与第二个图象对应.综上可知,选D.3.(2019·河南信阳模拟)已知函数f (x )(x ∈R )满足f (-x )=8-f (4+x ),函数g (x )=4x +3x -2,若函数f (x )与g (x )的图象共有168个交点,记作P i (x i ,y i )(i =1,2,…,168),则(x 1+y 1)+(x 2+y 2)+…+(x 168+y 168)的值为( D )A .2 018B .2 017C .2 016D .1 008解析:函数f (x )(x ∈R )满足f (-x )=8-f (4+x ),可得f (-x )+f (4+x )=8,即函数f (x )的图象关于点(2,4)对称,由函数g (x )=4x +3x -2=4(x -2)+11x -2=4+11x -2,可知其图象关于点(2,4)对称,∵函数f (x )与g (x )的图象共有168个交点,∴两图象在点(2,4)两边各有84个交点,且两边的点分别关于点(2,4)对称,故得(x 1+y 1)+(x 2+y 2)+…+(x 168+y 168)=(4+8)×84=1 008.故选D.4.已知函数f (x )的图象如图所示,则f (x )的解析式可能是( A )A .f (x )=12x -1-x 3B .f (x )=12x -1+x 3C .f (x )=12x +1-x 3D .f (x )=12x +1+x 3解析:由图可知,函数图象的渐近线为x =12,排除C ,D ,又函数f (x )在⎝ ⎛⎭⎪⎫-∞,12,⎝ ⎛⎭⎪⎫12,+∞上单调递减.而函数y =12x -1在⎝ ⎛⎭⎪⎫-∞,12,⎝ ⎛⎭⎪⎫12,+∞上单调递减,y =-x 3在R 上单调递减,则f (x )=12x -1-x 3在⎝ ⎛⎭⎪⎫-∞,12,⎝ ⎛⎭⎪⎫12,+∞上单调递减,故选A. 5.如图所示,动点P 在正方体ABCD A 1B 1C 1D 1的体对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是( B )解析:设正方体的棱长为1,显然,当P 移动到体对角线BD 1的中点E 时,函数y =MN =AC =2取得唯一的最大值,所以排除A 、C ;当P 在BE 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,所以排除D ,故选B.6.(2019·泰安模拟)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则y =f ′(x )的图象大致是( A )解析:因为f (x )=14x 2+cos x ,所以f ′(x )=12x -sin x ,f ′(x )为奇函数,排除B ,D ;当x =π6时,f ′(x )=π12-12<0,排除C ,∴A 满足.7.(2019·昆明检测)已知定义在R 上的函数f (x )是奇函数,且f (x )在(-∞,0)上是减函数,f (2)=0,g (x )=f (x +2),则不等式xg (x )≤0的解集是( C )A .(-∞,-2]∪[2,+∞)B .[-4,-2]∪[0,+∞)C .(-∞,-4]∪[-2,+∞)D .(-∞,-4]∪[0,+∞)解析:依题意,画出函数的大致图象如图所示.实线部分为g (x )的草图,则xg (x )≤0⇔⎩⎪⎨⎪⎧ x ≥0,g (x )≤0或⎩⎪⎨⎪⎧x ≤0,g (x )≥0,由图可得xg (x )≤0的解集为(-∞,-4]∪[-2,+∞). 8.已知函数f (x )=2ln x ,g (x )=x 2-4x +5,则方程f (x )=g (x )的根的个数为( C )A .0B .1C .2D .3解析:在平面直角坐标系内作出f (x ),g (x )的图象如图所示,由已知g (x )=(x -2)2+1,得其顶点为(2,1),又f (2)=2ln2∈(1,2),可知点(2,1)位于函数f (x )=2ln x 图象的下方,故函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象有2个交点.9.(2019·江苏扬州模拟)不等式2-x ≤log 2(x +1)的解集是{x |x ≥1}__.解析:画出y =2-x ,y =log 2(x +1)的图象如图所示,由图可知,解集为{x |x ≥1}.10.给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x+4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为(4,5)__.解析:作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11.已知函数f (x )=2x ,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式[f (x )]2+f (x )-m >0在R 上恒成立,求m 的取值范围. 解:(1)令f (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出f (x )的图象如图所示.由图象看出,当m =0或m ≥2时,函数f (x )与G (x )的图象只有一个交点,即原方程有一个解;当0<m <2时,函数f (x )与G (x )的图象有两个交点,即原方程有两个解.(2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝ ⎛⎭⎪⎫t +122-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0, 即所求m 的取值范围为(-∞,0].12.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+ax ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.解:(1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上, ∴2-y =-x +1-x+2,∴y =x +1x ,即f (x )=x +1x . (2)由题意g (x )=x +a +1x , 且g (x )=x +a +1x ≥6,x ∈(0,2].∵x ∈(0,2],∴a +1≥x (6-x ),即a ≥-x 2+6x -1. 令q (x )=-x 2+6x -1,x ∈(0,2], q (x )=-x 2+6x -1=-(x -3)2+8,∴当x ∈(0,2]时,q (x )是增函数,q (x )max =q (2)=7. 故实数a 的取值范围是[7,+∞).13.(2019·安徽江南十校联考)若函数f (x )的图象如图所示,则f (x )的解析式可能是( B )A .f (x )=e x -1x 2-1B .f (x )=e xx 2-1C .f (x )=x 3+x +1x 2-1D .f (x )=x 4+x +1x 2-1解析:由题中图象可知,函数的定义域为{x |x ≠a 且x ≠b },f (x )在(-∞,a )上为增函数,在(a,0]上先增后减,在[0,b )上为减函数,在(b ,+∞)上先减后增.A 项中f (x )的定义域为{x |x ≠-1且x ≠1}, 此时a =-1,b =1.f ′(x )=e x (x 2-1)-2x (e x -1)(x 2-1)2,则f ′(-2)=79e 2-49<0,与f (x )在(-∞,-1)上递增不符. B 项中f (x )的定义域 为{x |x ≠±1},f ′(x )=e x (x 2-2x -1)(x 2-1)2=e x [(x -1)2-2](x 2-1)2,若f ′(x )>0,则x <-1或-1<x <1-2或x >1+2,此时f (x )在各对应区间上为增函数,符合题意.同理可检验C 、D 不符,故选B.14.(2019·福建厦门双十中学模拟)已知函数f (x )=x 2+e x-12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是( B )A.⎝⎛⎭⎪⎫-∞,1e B .(-∞,e) C.⎝ ⎛⎭⎪⎫1e ,+∞ D .(e ,+∞)解析:原命题等价于在x <0时,f (x )与g (-x )的图象有交点,即方程e x-12-ln(-x +a )=0在(-∞,0)上有解,令m (x )=e x-12-ln(-x +a ),显然m (x )在(-∞,0)上为增函数.当a >0时,只需m (0)=e 0-12-ln a >0,解得0<a <e ;当a ≤0时,x 趋于-∞,m (x )<0,x 趋于a ,m (x )>0,即m (x )=0在(-∞,a )上有解.综上,实数a 的取值范围是(-∞,e).15.已知函数f (x )=⎩⎪⎨⎪⎧sinπx ,0≤x ≤1,log 2 017x ,x >1,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是( D )A .(1,2 017)B .(1,2 018)C .[2,2 018]D .(2,2 018)解析:设f (a )=f (b )=f (c )=m ,作出函数f (x )的图象与直线y =m ,如图所示,不妨设a <b <c ,当0≤x ≤1时,函数f (x )的图象与直线y =m 的交点分别为A ,B ,由正弦曲线的对称性,可得A (a ,m )与B (b ,m )关于直线x =12对称,因此a +b =1,令log 2 017x =1,解得x =2 017,结合图象可得1<c <2 017, 因此可得2<a +b +c <2 018, 即a +b +c ∈(2,2 018).故选D.16.函数y =ln|x -1|的图象与函数y =-2cosπx (-2≤x ≤4)的图象所有交点的横坐标之和为6__.解析:作出函数y =ln|x -1|的图象,又y =-2cosπx 的最小正周期为T =2,如图所示,两图象都关于直线x =1对称,且共有6个交点,由中点坐标公式可得所有交点的横坐标之和为6.。
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业14
课时作业22 两角和、差及倍角公式1.(2019·新疆乌鲁木齐一诊)2cos10°-sin20°sin70°的值是( C ) A .12 B .32 C . 3D . 2解析:原式=2cos (30°-20°)-sin20°sin70° =2(cos30°·cos20°+sin30°·sin20°)-sin20°sin70° =3cos20°cos20°= 3.2.(2019·山西五校联考)若cos θ=23,θ为第四象限角,则cos ⎝⎛⎭⎪⎫θ+π4的值为( B )A .2+106B .22+106 C .2-106D .22-106解析:由cos θ=23,θ为第四象限角, 得sin θ=-53,故cos ⎝ ⎛⎭⎪⎫θ+π4=22(cos θ-sin θ)=22×⎝ ⎛⎭⎪⎫23+53=22+106.故选B . 3.若α∈⎝ ⎛⎭⎪⎫π2,π,且3cos2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin2α的值为( C ) A .-118 B .118 C .-1718D .1718解析:由3cos2α=sin ⎝ ⎛⎭⎪⎫π4-α可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝ ⎛⎭⎪⎫π2,π可知cos α-sin α≠0, 于是3(cos α+sin α)=22, 所以1+2sin α·cos α=118, 故sin2α=-1718.故选C .4.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3tan α·tan β=3,则α,β的大小关系是( B )A .α<π4<β B .β<π4<α C .π4<α<βD .π4<β<α解析:∵α为锐角,sin α-cos α=16>0, ∴π4<α<π2.又tan α+tan β+3tan αtan β=3, ∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α.5.在△ABC 中,sin A =513,cos B =35,则cos C =( A ) A .-1665 B .-5665 C .±1665D .±5665解析:∵B 为三角形的内角,cos B =35>0, ∴B 为锐角,∴sin B =1-cos 2B =45, 又sin A =513,∴sin B >sin A ,∴A 为锐角,∴cos A =1-sin 2A =1213,∴cos C =cos[π-(A +B )]=-cos(A +B )=-cos A cos B +sin A sin B =-1213×35+513×45=-1665.6.(2019·福州质检)已知m =tan (α+β+γ)tan (α-β+γ),若sin[2(α+γ)]=3sin2β,则m =( D )A .12B .34C .32D .2解析:设A =α+β+γ,B =α-β+γ,则2(α+γ)=A +B,2β=A -B , 因为sin[2(α+γ)]=3sin2β, 所以sin(A +B )=3sin(A -B ),即sin A cos B +cos A sin B =3(sin A cos B -cos A sin B ), 即2cos A sin B =sin A cos B , 所以tan A =2tan B , 所以m =tan Atan B =2,故选D .7.(1+tan20°)(1+tan21°)(1+tan24°)(1+tan25°)=4__.解析:(1+tan20°)(1+tan25°)=1+tan20°+tan25°+tan20°tan25°=1+tan(20°+25°)(1-tan20°tan25°)+tan20°·tan25°=2,同理可得(1+tan21°)(1+tan24°)=2,所以原式=4.8.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C =22 .解析:由tan A tan B =tan A +tan B +1, 可得tan A +tan B 1-tan A tan B=-1,即tan(A +B )=-1,又A +B ∈(0,π), 所以A +B =3π4,则C =π4,cos C =22.9.(2019·运城模拟)已知α为锐角,若sin ⎝ ⎛⎭⎪⎫α-π6=13,则cos ⎝ ⎛⎭⎪⎫α-π3=26+16 .解析:∵α为锐角,sin ⎝ ⎛⎭⎪⎫α-π6=13,∴0<α-π6<π3,∴cos ⎝⎛⎭⎪⎫α-π6= 1-sin 2⎝⎛⎭⎪⎫α-π6=223, 则cos ⎝ ⎛⎭⎪⎫α-π3=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6-π6=cos ⎝ ⎛⎭⎪⎫α-π6cos π6+sin ⎝ ⎛⎭⎪⎫α-π6sin π6=223×32+13×12=26+16.10.已知cos ⎝ ⎛⎭⎪⎫π4+θcos ⎝ ⎛⎭⎪⎫π4-θ=14,则sin 4θ+cos 4θ的值为58 . 解析:因为cos ⎝ ⎛⎭⎪⎫π4+θcos ⎝ ⎛⎭⎪⎫π4-θ=⎝ ⎛⎭⎪⎫22cos θ-22sin θ⎝ ⎛⎭⎪⎫22cos θ+22sin θ=12(cos 2θ-sin 2θ)=12cos2θ=14. 所以cos2θ=12.故sin 4θ+cos 4θ=⎝⎛⎭⎪⎫1-cos2θ22+⎝ ⎛⎭⎪⎫1+cos2θ22=116+916=58. 11.已知函数f (x )=(1+3tan x )cos 2x .(1)若α是第二象限角,且sin α=63,求f (α)的值; (2)求函数f (x )的定义域和值域.解:(1)因为α是第二象限角,且sin α=63, 所以cos α=-1-sin 2α=-33,所以tan α=sin αcos α=-2,所以f (α)=(1-3×2)×⎝⎛⎭⎪⎫-332=1-63.(2)函数f (x )的定义域为{x ⎪⎪⎪⎭⎬⎫x ∈R ,且x ≠k π+π2,k ∈Z . 易得f (x )=(1+3tan x )cos 2x =⎝ ⎛⎭⎪⎫1+3sin x cos x cos 2x =cos 2x +3sin x cos x =1+cos2x 2+32sin2x =sin ⎝ ⎛⎭⎪⎫2x +π6+12. 因为x ∈R ,且x ≠k π+π2,k ∈Z , 所以2x +π6≠2k π+7π6,k ∈Z , 所以sin ⎝⎛⎭⎪⎫2x +π6≠-12, 但当2x +π6=2k π-π6,k ∈Z 时, sin ⎝ ⎛⎭⎪⎫2x +π6=-12, 所以sin ⎝⎛⎭⎪⎫2x +π6∈[-1,1],f (x )∈⎣⎢⎡⎦⎥⎤-12,32,所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤-12,32.12.已知cos ⎝⎛⎭⎪⎫π6+αcos ⎝⎛⎭⎪⎫π3-α=-14,α∈⎝⎛⎭⎪⎫π3,π2.(1)求sin2α的值; (2)求tan α-1tan α的值.解:(1)cos ⎝⎛⎭⎪⎫π6+αcos ⎝⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+αsin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12.∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin2α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π3-π3=sin ⎝⎛⎭⎪⎫2α+π3cos π3-cos ⎝⎛⎭⎪⎫2α+π3sin π3=-12×12-⎝⎛⎭⎪⎫-32×32=12.(2)∵α∈⎝⎛⎭⎪⎫π3,π2,∴2α∈⎝⎛⎭⎪⎫2π3,π,又由(1)知sin2α=12, ∴cos2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos2αsin2α=-2×-3212=2 3.13.(2019·河南洛阳一模)设a =cos50°cos127°+cos40°·sin127°,b =22(sin56°-cos56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( D )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:a =sin40°cos127°+cos40°sin127°=sin(40°+127°)=sin167°=sin13°,b =22(sin56°-cos56°)=22sin56°-22cos56°=sin(56°-45°)=sin11°,c =cos 239°-sin 239°cos 239°sin 239°+cos 239°cos 239°=cos 239°-sin 239°=cos78°=sin12°, ∵sin13°>sin12°>sin11°, ∴a >c >B .14.(2019·江西南昌模拟)已知tan2α=-22,且满足π4<α<π2,则2cos 2α2-sin α-12sin ⎝⎛⎭⎪⎫π4+α的值是( C )A . 2B .- 2C .-3+2 2D .3-2 2解析:tan2α=2tan α1-tan 2α=-22, 整理可得2tan 2α-tan α-2=0, 解得tan α=-22或tan α= 2. 因为π4<α<π2,所以tan α= 2. 则2cos 2α2-sin α-12sin ⎝ ⎛⎭⎪⎫π4+α=cos α-sin α2⎝ ⎛⎭⎪⎫sin π4cos α+cos π4sin α =cos α-sin αcos α+sin α=cos α-sin αcos αcos α+sin αcos α=1-tan α1+tan α=1-21+2=22-3.故选C . 15.(2019·武汉调研)设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为[-1,1]__.解析:由sin αcos β-cos αsin β=1,得sin(α-β)=1, 又α,β∈[0,π],∴α-β=π2,∴⎩⎨⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π,∴sin(2α-β)+sin(α-2β) =sin ⎝ ⎛⎭⎪⎫2α-α+π2+sin(α-2α+π)=cos α+sin α=2sin ⎝ ⎛⎭⎪⎫α+π4. ∵π2≤α≤π,∴3π4≤α+π4≤5π4, ∴-1≤2sin ⎝ ⎛⎭⎪⎫α+π4≤1, 即取值范围为[-1,1].16.(2019·合肥模拟)已知函数f (x )=(2cos 2x -1)·sin2x +12cos4x .(1)求f (x )的最小正周期及单调递减区间;(2)若α∈(0,π),且f ⎝ ⎛⎭⎪⎫α4-π8=22,求tan ⎝ ⎛⎭⎪⎫α+π3的值. 解:(1)f (x )=(2cos 2x -1)sin2x +12cos4x =cos2x sin2x +12cos4x=12(sin4x +cos4x )=22sin ⎝ ⎛⎭⎪⎫4x +π4,∴f (x )的最小正周期T =π2.令2k π+π2≤4x +π4≤2k π+3π2,k ∈Z , 得k π2+π16≤x ≤k π2+5π16,k ∈Z .∴f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π2+π16,k π2+5π16,k ∈Z .(2)∵f ⎝ ⎛⎭⎪⎫α4-π8=22,∴sin ⎝ ⎛⎭⎪⎫α-π4=1. ∵α∈(0,π),-π4<α-π4<3π4, ∴α-π4=π2,故α=3π4.因此tan ⎝ ⎛⎭⎪⎫α+π3=tan 3π4+tan π31-tan 3π4tan π3=-1+31+3=2- 3.。
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业2
课时作业11 函数与方程1.(2019·烟台模拟)函数f (x )=ln(x +1)-1x 的一个零点所在的区间是( B )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:∵f (x )在(0,+∞)上为增函数,且f (1)=ln2-1<0,f (2)=ln3-12>0,∴f (x )的零点所在区间为(1,2),故选B.2.下列函数中,在(-1,1)内有零点且单调递增的是( B ) A .y =log 12x B .y =2x -1 C .y =x 2-12D .y =-x 3解析:函数y =log 12x 在定义域上单调递减,y =x 2-12在(-1,1)上不是单调函数,y =-x 3在定义域上单调递减,均不符合要求.对于y =2x -1,当x =0∈(-1,1)时,y =0且y =2x -1在R 上单调递增,故选B.3.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( C )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:因为f (x )在(0,+∞)上是增函数,则由题意得f (1)·f (2)=(0-a )(3-a )<0,解得0<a <3,故选C.4.(2019·安庆模拟)函数f (x )=x 2-ax +1在区间⎝ ⎛⎭⎪⎫12,3上有零点,则实数a 的取值范围是( D )A .(2,+∞)B .[2,+∞)C.⎣⎢⎡⎭⎪⎫2,52 D.⎣⎢⎡⎭⎪⎫2,103 解析:由题意知方程ax =x 2+1在⎝ ⎛⎭⎪⎫12,3上有解, 即a =x +1x 在⎝ ⎛⎭⎪⎫12,3上有解,设t =x +1x ,x ∈⎝ ⎛⎭⎪⎫12,3,则t 的取值范围是⎣⎢⎡⎭⎪⎫2,103. ∴实数a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.5.(2019·安徽安庆模拟)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +1)=f (x -1),若g (x )=3-log 2x ,则函数F (x )=f (x )-g (x )在(0,+∞)内的零点个数为( B )A .3B .2C .1D .0解析:由f (x +1)=f (x -1),知f (x )的周期是2,画出函数f (x )和g (x )的部分图象,如图所示,由图象可知f (x )与g (x )的图象有2个交点,故f (x )有2个零点,故选B.6.(2019·安徽马鞍山一模)已知函数f (x )=⎩⎪⎨⎪⎧3|x -1|,x >0,-x 2-2x +1,x ≤0,若关于x 的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,则实数a 的取值范围是( C )A .[1,2]B .(1,2)C .(-2,-1)D .[-2,-1]解析:函数f (x )=⎩⎪⎨⎪⎧3|x -1|,x >0,-x 2-2x +1,x ≤0的图象如图:关于x 的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,即[f (x )+a ][f (x )-1]=0有7个不等的实数根,易知f (x )=1有3个不等的实数根,∴f (x )=-a 必须有4个不相等的实数根,由函数f (x )的图象可知-a ∈(1,2),∴a ∈(-2,-1).故选C.7.已知函数f (x )=⎩⎪⎨⎪⎧2x -1(0≤x ≤1),f (x -1)+m (x >1)在定义域[0,+∞)上单调递增,且对于任意a ≥0,方程f (x )=a 有且只有一个实数解,则函数g (x )=f (x )-x 在区间[0,2n ](n ∈N *)上的所有零点的和为( B )A.n (n +1)2 B .22n -1+2n -1 C.(1+2n )22D .2n -1解析:函数f (x )=⎩⎪⎨⎪⎧2x -1(0≤x ≤1),f (x -1)+m (x >1)在定义域[0,+∞)上单调递增,且对于任意a ≥0,方程f (x )=a 有且只有一个实数解,则f (x )是连续函数,可得m =1.画出y =f (x )与y =x 的图象如图,图象交点的横坐标就是函数g (x )=f (x )-x 的零点.由图知,函数g (x )在区间[0,2n ](n ∈N *)上的所有零点的和为1+2+3+…+(2n-1)+2n=22n-1+2n-1,故选B.8.(2019·广东茂名一模)定义在R上的奇函数f(x)满足条件f(1+x)=f(1-x),当x∈[0,1]时,f(x)=x,若函数g(x)=|f(x)|-a e-|x|在区间[-2 018,2 018]上有4 032个零点,则实数a的取值范围是(B)A.(0,1) B.(e,e3)C.(e,e2) D.(1,e3)解析:f(x)满足条件f(1+x)=f(1-x)且为奇函数,则f(x)的图象关于x=1对称,且f(x)=f(2-x),f(x)=-f(-x),∴-f(-x)=f(2-x),即-f(x)=f(2+x),∴f(x+4)=f(x),∴f(x)的周期为4.令m(x)=|f(x)|,n(x)=a e-|x|,画出m(x)、n(x)的图象如图,可知m(x)与n(x)为偶函数,且要使m(x)与n(x)图象有交点,需a >0,由题意知要满足g(x)在区间[-2 018,2 018]上有4 032个零点,只需m (x )与n (x )的图象在[0,4]上有两个交点,则⎩⎪⎨⎪⎧m (1)<n (1),m (3)>n (3),可得e<a <e 3,故选B.9.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a .若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是 (-∞,0)∪(1,+∞) .解析:令φ(x )=x 3(x ≤a ),h (x )=x 2(x >a ),函数g (x )=f (x )-b 有两个零点,即函数y =f (x )的图象与直线y =b 有两个交点,结合图象(图略)可得a <0或φ(a )>h (a ),即a <0或a 3>a 2,解得a <0或a >1,故a ∈(-∞,0)∪(1,+∞).10.已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则f (a ),f (1),f (b )的大小关系为 f (a )<f (1)<f (b ) .解析:由题意,知f ′(x )=e x +1>0恒成立, 所以函数f (x )在R 上是单调递增的, 而f (0)=e 0+0-2=-1<0, f (1)=e 1+1-2=e -1>0, 所以函数f (x )的零点a ∈(0,1); 由题意,知g ′(x )=1x +1>0,所以函数g (x )在(0,+∞)上是单调递增的,又g (1)=ln1+1-2=-1<0,g (2)=ln2+2-2=ln2>0, 所以函数g (x )的零点b ∈(1,2). 综上,可得0<a <1<b <2. 因为f (x )在R 上是单调递增的, 所以f (a )<f (1)<f (b ).11.已知函数f (x )=-x 2-2x ,g (x )=⎩⎨⎧x +14x,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个不相等的实数根,求实数a 的取值范围.解:(1)利用解析式直接求解得 g (f (1))=g (-3)=-3+1=-2. (2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在(-∞,1)上有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象如图,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54.12.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x -4ln x 的零点个数.解:(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R },∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∵f (x )min =f (1)=-4a =-4,∴a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)∵g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2(x >0),∴g′(x)=1+3x2-4x=(x-1)(x-3)x2.令g′(x)=0,得x=1或x=3.当x变化时,g′(x),g(x)的取值变化情况如下:当0<x≤3时,g(x)≤g(1)=-4<0.又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点,故g(x)在(0,+∞)上仅有1个零点.13.(2019·河南安阳模拟)设函数f(x)=ln(x+1)+a·(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是(A) A.[0,1] B.[-1,0]C.[0,2] D.[-1,1]解析:令f(x)=0,可得ln(x+1)=-a(x2-x),令g(x)=ln(x+1),h(x)=-a(x2-x),∵f(x)在区间(0,+∞)上无零点,∴g(x)=ln(x+1)与h(x)=-a(x2-x)的图象在y轴右侧无交点.显然当a=0时符合题意;当a<0时,作出g(x)=ln(x+1)与h(x)=-a(x2-x)的函数图象如图1所示,显然两函数图象在y轴右侧必有一交点,不符合题意;当a>0时,作出g(x)=ln(x+1)与h(x)=-a(x2-x)的函数图象如图2所示,若两函数图象在y轴右侧无交点,则h′(0)≤g′(0),即a≤1.综上,0≤a ≤1,故选A.图1图214.(2019·福建宁德一模)已知函数f (x )=⎩⎨⎧kx +3,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0,若方程f (f (x ))-2=0恰有三个实数根,则实数k 的取值范围是( C )A .[0,+∞)B .[1,3] C.⎝ ⎛⎦⎥⎤-1,-13 D.⎣⎢⎡⎦⎥⎤-1,-13 解析:∵f (f (x ))-2=0,∴f (f (x ))=2,∴f (x )=-1或f (x )=-1k (k ≠0).(1)当k =0时,作出函数f (x )的图象如图①所示, 由图象可知f (x )=-1无解, ∴k =0不符合题意;(2)当k >0时,作出函数f (x )的图象如图②所示, 由图象可知f (x )=-1无解且f (x )=-1k 无解, 即f (f (x ))-2=0无解,不符合题意;(3)当k <0时,作出函数f (x )的图象如图③所示, 由图象可知f (x )=-1有1个实根, ∵f (f (x ))-2=0有3个实根, ∴f (x )=-1k 有2个实根, ∴1<-1k ≤3,解得-1<k ≤-13.综上,k 的取值范围是⎝ ⎛⎦⎥⎤-1,-13,故选C.15.对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数g (x )=f (x )+k 的图象与x 轴恰有三个不同的交点,则k 的取值范围是 [-2,1) .解析:解不等式x 2-1-(4+x )≥1,得x ≤-2或x ≥3,所以f (x )=⎩⎪⎨⎪⎧x +4,x ∈(-∞,-2]∪[3,+∞),x 2-1,x ∈(-2,3).函数g (x )=f (x )+k 的图象与x 轴恰有三个不同的交点转化为函数f (x )的图象和直线y =-k 恰有三个不同的交点.作出函数f (x )的图象如图所示,所以-1<-k ≤2,故-2≤k <1.16.(2019·郑州模拟)若a >1,设函数f (x )=a x +x -4的零点为m ,函数g (x )=log a x +x -4的零点为n ,则1m +1n 的最小值为 1 .解析:设F (x )=a x ,G (x )=log a x ,h (x )=4-x ,则h (x )与F (x ),G (x )的交点A ,B 横坐标分别为m ,n (m >0,n >0).因为F (x )与G (x )关于直线y =x 对称, 所以A ,B 两点关于直线y =x 对称.又因为y =x 和h (x )=4-x 交点的横坐标为2, 所以m +n =4.又m >0,n >0,所以1m +1n =⎝ ⎛⎭⎪⎫1m +1n ·m +n 4=14⎝ ⎛⎭⎪⎫2+n m +m n ≥14⎝⎛⎭⎪⎫2+2n m ×m n =1. 当且仅当n m =mn ,即m =n =2时等号成立. 所以1m +1n 的最小值为1.。
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业52
课时作业57 直线与圆锥曲线1.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的交点个数是( A )A .1B .2C .1或2D .0解析:由直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的渐近线y =ba x 平行,故直线与双曲线的交点个数是1.2.(2019·山东聊城一模)已知直线l 与抛物线C :y 2=4x 相交于A ,B 两点,若线段AB 的中点为(2,1),则直线l 的方程为( D )A .y =x -1B .y =-2x +5C .y =-x +3D .y =2x -3解析:设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧y 21=4x 1①,y 22=4x 2②,①-②得y 21-y 22=4(x 1-x 2),由题可知x 1≠x 2.∴y 1-y 2x 1-x 2=4y 1+y 2=42=2,即k AB =2,∴直线l 的方程为y -1=2(x -2),即2x -y -3=0.故选D.3.(2019·湖北武汉调研)已知直线y =kx -1与双曲线x 2-y 2=4的右支有两个交点,则k 的取值范围为( D )A.⎝ ⎛⎭⎪⎫0,52B .⎣⎢⎡⎦⎥⎤1,52C.⎝⎛⎭⎪⎫-52,52D .⎝⎛⎭⎪⎫1,52解析:由题意知k >0,联立⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=4,整理得(1-k 2)x 2+2kx-5=0,因为直线y =kx -1与双曲线x 2-y 2=4的右支有两个交点,则联立所得方程有两个不同的正实数根x 1,x 2,所以⎩⎪⎨⎪⎧Δ=4k 2+20(1-k 2)>0,x 1+x 2=-2k 1-k 2>0,x 1x 2=-51-k2>0,解得1<k <52,即k ∈⎝⎛⎭⎪⎫1,52,故选D.4.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( D )A.12 B .23 C.34D .43解析:易知p =4,直线AB 的斜率存在,抛物线方程为y 2=8x ,与直线AB 的方程y -3=k (x +2)联立,消去x 整理得ky 2-8y +16k +24=0,由题意知Δ=64-4k (16k +24)=0,解得k =-2或k =12.因为直线与抛物线相切于第一象限,故舍去k =-2,故k =12,可得B (8,8),又F (2,0),故k BF =8-08-2=43,故选D.5.(2019·湖北武汉调研)已知不过原点O 的直线交抛物线y 2=2px 于A ,B 两点,若OA ,AB 的斜率分别为k OA =2,k AB =6,则OB 的斜率为( D )A .3B .2C .-2D .-3解析:由题意可知,直线OA 的方程为y =2x ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =2x ,y 2=2px ,得⎩⎨⎧x =p2,y =p ,即A ⎝ ⎛⎭⎪⎫p 2,p ,则直线AB 的方程为y -p =6⎝ ⎛⎭⎪⎫x -p 2,即y =6x -2p ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =6x -2p ,y 2=2px ,得⎩⎪⎨⎪⎧x =2p 9,y =-2p 3或⎩⎨⎧x =p 2,y =p ,所以B ⎝⎛⎭⎪⎫2p9,-2p 3, 所以直线OB 的斜率为k OB =-2p32p 9=-3.故选D.6.已知双曲线x 23-y 2=1的右焦点是抛物线y 2=2px (p >0)的焦点,直线y =kx +m 与抛物线相交于A ,B 两个不同的点,点M (2,2)是线段AB 的中点,则△AOB (O 为坐标原点)的面积是( D )A .4 3B .313 C.14D .2 3解析:由已知可得双曲线的右焦点为(2,0),因为该点也为抛物线的焦点,所以p =4,所以抛物线方程为y 2=8x ,又因为直线y =kx +m 与抛物线相交于A ,B 两点,所以将直线方程代入抛物线方程可得(kx +m )2=8x ⇒k 2x 2+(2km -8)x +m 2=0,∴x 1+x 2=8-2km k 2,x 1x 2=m 2k 2. 又因为M (2,2)是线段AB 的中点, 所以x 1+x 2=8-2kmk 2=4,且2=2k +m , 联立解得k =2,m =-2.|AB |=k 2+1|x 1-x 2|=k 2+1·(x 1+x 2)2-4x 1x 2=215.O 到AB 的距离d =25.∴S △AOB =12×215×25=2 3.7.(2019·泉州质检)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),F 是双曲线C 的右焦点,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,若l 与双曲线C 的左、右两支分别交于点D ,E ,则双曲线C 的离心率e 的取值范围为( B )A .(2,3)B .(2,+∞)C .(2,2)D .(1,62)解析:法一:由题意知,直线l :y =-ab (x -c ),由⎩⎨⎧y =-a b (x -c ),b 2x 2-a 2y 2=a 2b 2,得⎝ ⎛⎭⎪⎫b 2-a 4b 2x 2+2a 4c b 2x -⎝ ⎛⎭⎪⎫a 4c 2b 2+a 2b 2=0,由x 1x 2=-⎝ ⎛⎭⎪⎫a 4c 2b 2+a 2b 2b 2-a 4b 2<0,得b 4>a 4,所以b 2=c 2-a 2>a 2,所以e 2>2,得e> 2.法二:由题意,知直线l 的斜率为-ab ,若l 与双曲线左、右两支分别交于D ,E 两点,则-a b >-ba ,即a 2<b 2,所以a 2<c 2-a 2,e 2>2,得e > 2.8.(2019·洛阳统考)已知双曲线E :x 24-y 22=1,直线l 交双曲线于A ,B 两点,若线段AB 的中点坐标为⎝ ⎛⎭⎪⎫12,-1,则直线l 的方程为( C ) A .4x +y -1=0 B .2x +y =0 C .2x +8y +7=0D .x +4y +3=0解析:依题意,设点A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214-y 212=1,x 224-y 222=1,两式相减得x 21-x 224=y 21-y 222,即y 1-y 2x 1-x 2=12×x 1+x 2y 1+y 2. 又线段AB 的中点坐标是⎝ ⎛⎭⎪⎫12,-1,因此x 1+x 2=2×12=1,y 1+y 2=(-1)×2=-2, x 1+x 2y 1+y 2=-12,y 1-y 2x 1-x 2=-14, 即直线AB 的斜率为-14, 直线l 的方程为y +1=-14⎝ ⎛⎭⎪⎫x -12,即2x +8y +7=0.9.(2019·河南洛阳一模)已知直线y =2x +2与抛物线y =ax 2(a >0)交于P ,Q 两点,过线段PQ 的中点作x 轴的垂线,交抛物线于点A ,若|A P →+A Q →|=|A P →-A Q →|,则a = 2 .解析:由⎩⎪⎨⎪⎧y =2x +2,y =ax 2得ax 2-2x -2=0, 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2a ,x 1x 2=-2a , 设PQ 的中点为M ,则x M =x A =1a ,y A =ax 2A =1a ,由|A P →+A Q →|=|A P →-A Q →|可得A P →·A Q →=0, 即AP ⊥AQ ,又M 是线段PQ 的中点,∴2|AM |=|PQ |,由于MA ⊥x 轴,∴|MA |=⎪⎪⎪⎪⎪⎪2a +2-1a =1a +2,又|PQ |=5|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2 =5·4a 2+8a ,∴4⎝⎛⎭⎪⎫1a +22=5⎝⎛⎭⎪⎫4a 2+8a ,解得a =2,此时满足Δ>0成立.故a =2.10.(2019·鹰潭模拟)设P 为双曲线x 236-y 225=1右支上的任意一点,O 为坐标原点,过点P 作双曲线两渐近线的平行线,分别与两渐近线交于A ,B 两点,则平行四边形P AOB 的面积为 15 .解析:设P (x 0,y 0)(不妨设P 在第一象限),A 在第一象限,直线P A 的方程为y -y 0=-56(x -x 0),直线OA 方程为y =56x ,联立解得x A =6y 0+5x 010,又P 到渐近线OA 的距离为d =|5x 0-6y 0|61,又tan ∠xOA =56,所以cos ∠xOA =661.所以平行四边形P AOB 的面积为S =2S △OP A =|OA |·d =|x A |·d cos ∠xOA =616×110|6y 0+5x 0|×|6y 0-5x 0|61=15.11.(2019·云南11校跨区联考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,点A ,B 分别为椭圆E 的左、右顶点,点C 在E 上,且△ABC 面积的最大值为2 3.(1)求椭圆E 的方程;(2)设F 为E 的左焦点,点D 在直线x =-4上,过F 作DF 的垂线交椭圆E 于M ,N 两点.证明:直线OD 平分线段MN .解:(1)由题意得⎩⎪⎨⎪⎧e =c a =12,ab =23,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =3,故椭圆E 的方程为x 24+y 23=1.(2)证明:设M (x 1,y 1),N (x 2,y 2),D (-4,n ), 线段MN 的中点P (x 0,y 0), 则2x 0=x 1+x 2,2y 0=y 1+y 2, 由(1)可得F (-1,0),则直线DF 的斜率为k DF =n -0-4-(-1)=-n3,当n =0时,直线MN 的斜率不存在, 根据椭圆的对称性可知OD 平分线段MN . 当n ≠0时,直线MN 的斜率k MN =3n =y 1-y 2x 1-x 2.∵点M ,N 在椭圆上,∴⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y 223=1,整理得:(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)3=0, 又2x 0=x 1+x 2,2y 0=y 1+y 2,∴y 0x 0=-n 4,直线OP 的斜率为k OP =-n 4, ∵直线OD 的斜率为k OD =-n4, ∴直线OD 平分线段MN .12.(2017·天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程.解:(1)设F 的坐标为(-c,0).依题意,c a =12,p 2=a ,a -c =12,解得a =1,c =12,p =2,于是b 2=a 2-c 2=34.所以,椭圆的方程为x 2+4y23=1,抛物线的方程为y 2=4x .(2)设直线AP 的方程为x =my +1(m ≠0),与直线l 的方程x =-1联立,可得点P ⎝⎛⎭⎪⎫-1,-2m ,故Q ⎝ ⎛⎭⎪⎫-1,2m . 将x =my +1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my=0,解得y =0或y =-6m 3m 2+4.由点B 异于点A ,可得点B ⎝ ⎛⎭⎪⎫-3m 2+43m 2+4,-6m 3m 2+4.由Q ⎝ ⎛⎭⎪⎫-1,2m ,可得直线BQ 的方程为⎝ ⎛⎭⎪⎫-6m 3m 2+4-2m (x +1)-⎝ ⎛⎭⎪⎫-3m 2+43m 2+4+1⎝ ⎛⎭⎪⎫y -2m =0,令y =0,解得x =2-3m 23m 2+2,故D ⎝ ⎛⎭⎪⎫2-3m 23m 2+2,0.所以|AD |=1-2-3m 23m 2+2=6m 23m 2+2.又因为△APD 的面积为62,故12×6m 23m 2+2×2|m |=62,整理得3m 2-26|m |+2=0,解得|m |=63,所以m =±63.所以,直线AP 的方程为3x +6y -3=0或3x -6y -3=0.13.(2019·河南郑州一模)设抛物线y 2=4x 的焦点为F ,过点M (5,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C 点,|BF |=3,则△BCF 与△ACF 的面积之比S △BCFS △ACF=( D )A.34 B .45 C.56D .67解析:不妨设点A 在第一象限,B 在第四象限,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my + 5.由y 2=4x 得p =2,因为|BF |=3=x 2+p2=x 2+1,所以x 2=2,则y 22=4x 2=4×2=8,所以y 2=-22,由⎩⎪⎨⎪⎧y 2=4x ,x =my +5,得y 2-4my -45=0,由根与系数的关系,得y 1y 2=-45,所以y 1=10,由y 21=4x 1,得x 1=52.过点A 作AA ′垂直于准线x =-1,垂足为A ′,过点B 作BB ′垂直于准线x =-1,垂足为B ′,易知△CBB ′∽△CAA ′,所以S △BCF S △ACF =|BC ||AC |=|BB ′||AA ′|.又|BB ′|=|BF |=3,|AA ′|=x 1+p 2=52+1=72,所以S △BCF S △ACF=372=67.故选D.14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m 的值为( A )A.32 B .52 C .2D .3解析:由双曲线的定义知2a =4,得a =2, 所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2), 不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称,所以y 1-y 2x 1-x 2=-1,故x 1+x 2=-12,而 x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0),则x 0=x 1+y 22=-14,y 0=y 1+y 22=2x 21+2x 222=54, 因为中点M 在直线y =x +m 上, 所以54=-14+m ,解得m =32.15.设抛物线C :y 2=2px (p >0),A 为抛物线上一点(A 不同于原点O ),过焦点F 作直线平行于OA ,交抛物线于P ,Q 两点.若过焦点F 且垂直于x 轴的直线交直线OA 于B ,则|FP |·|FQ |-|OA |·|OB |= 0 .解析:设OA 所在的直线的斜率为k ,则由⎩⎪⎨⎪⎧y =kx ,y 2=2px 得到A ⎝ ⎛⎭⎪⎫2p k 2,2p k ,易知B ⎝ ⎛⎭⎪⎫p 2,kp 2, P ,Q 的坐标由方程组⎩⎨⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px得到,消去x ,得ky 22p -y -kp 2=0,设P (x 1,y 1),Q (x 2,y 2),由根与系数的关系得,y 1y 2=-p 2,根据弦长公式,|FP |·|FQ |=1+1k 2·|y 1|·1+1k 2·|y 2|=⎝ ⎛⎭⎪⎫1+1k 2|y 1y 2|=⎝ ⎛⎭⎪⎫1+1k 2p 2,而|OA |·|OB |=⎝ ⎛⎭⎪⎫2p k 22+⎝ ⎛⎭⎪⎫2p k 2·⎝ ⎛⎭⎪⎫p 22+⎝ ⎛⎭⎪⎫kp 22=⎝⎛⎭⎪⎫1+1k 2p 2, 所以|FP |·|FQ |-|OA |·|OB |=0.16.(2019·湖北调研)已知椭圆Γ:x 24+y 22=1,过点P (1,1)作倾斜角互补的两条不同直线l 1,l 2,设l 1与椭圆Γ交于A 、B 两点,l 2与椭圆Γ交于C ,D 两点.(1)若P (1,1)为线段AB 的中点,求直线AB 的方程;(2)若直线l 1与l 2的斜率都存在,记λ=|AB ||CD |,求λ的取值范围.解:(1)解法一(点差法):由题意可知直线AB 的斜率存在.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 214+y 212=1,x 224+y 222=1,两式作差得y 1-y 2x 1-x 2=-24·x 1+x 2y 1+y 2=-24·2×12×1=-12, ∴直线AB 的方程为y -1=-12(x -1),即x +2y -3=0.解法二:由题意可知直线AB 的斜率存在.设直线AB 的斜率为k ,则其方程为y -1=k (x -1),代入x 2+2y 2=4中,得x 2+2[kx -(k -1)]2-4=0.∴(1+2k 2)x 2-4k (k -1)x +2(k -1)2-4=0.Δ=[-4(k -1)k ]2-4(2k 2+1)[2(k -1)2-4]=8(3k 2+2k +1)>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=4k (k -1)2k 2+1,x 1x 2=2(k -1)2-42k 2+1.∵AB 中点为(1,1),∴12(x 1+x 2)=2k (k -1)2k 2+1=1, 则k =-12.∴直线AB 的方程为y -1=-12(x -1),即x +2y -3=0.(2)由(1)可知|AB |=1+k 2 |x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·8(3k 2+2k +1)2k 2+1. 设直线CD 的方程为y -1=-k (x -1)(k ≠0).同理可得|CD |=1+k 2·8(3k 2-2k +1)2k 2+1. ∴λ=|AB ||CD |= 3k 2+2k +13k 2-2k +1(k ≠0),λ>0. ∴λ2=1+4k 3k 2+1-2k =1+43k +1k -2. 令t =3k +1k ,则t ∈(-∞,-2 3 ]∪[23,+∞),令g (t )=1+4t -2,t ∈(-∞,-2 3 ]∪[23,+∞), ∵g (t )在(-∞,-23],[23,+∞)上单调递减, ∴2-3≤g (t )<1或1<g (t )≤2+ 3.故2-3≤λ2<1或1<λ2≤2+ 3.∴λ∈⎣⎢⎡⎭⎪⎫6-22,1∪⎝ ⎛⎦⎥⎤1,6+22.。
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业5
Earlybird课时作业14利用导数研究函数的单调性11.函数y=x2-ln x的单调递减区间为(B)2A.(-1,1] B.(0,1]C.[1,+∞) D.(0,+∞)1 1 x2-1 x-1x+1解析:y=x2-ln x,y′=x-==(x>0).2 x x x令y′≤0,得0<x≤1,所以递减区间为(0,1].2.下列函数中,在(0,+∞)上为增函数的是(B)A.f(x)=sin2x B.f(x)=x e xC.f(x)=x3-x D.f(x)=-x+ln xππ解析:对于A,f(x)=sin2x的单调递增区间是[(k∈4]kπ-,kπ+4Z);对于B,f′(x)=e x(x+1),当x∈(0,+∞)时,f′(x)>0,∴函数f(x)=x e x在(0,+∞)上为增函数;对于C,f′(x)=3x2-1,令f′(x)>3 3 3 0 ,得x>或x<-,∴函数f(x) =x3 -x在和-∞,-33 ( 3 ) 3 1 x-1上单调递增;对于D,f′(x)=-1+=-,令f′(x)>,+∞)(3 x x0,得0<x<1,∴函数f(x)=-x+ln x在区间(0,1)上单调递增.综上所述,故选B.3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是(D)解析:利用导数与函数的单调性进行验证.f′(x)>0 的解集对应y=f(x)的增区间,f′(x)<0 的解集对应y=f(x)的减区间,验证只有D选项符合.4.(2019·豫南九校联考)已知f′(x)是定义在R上的连续函数f(x)的导函数,满足f′(x)-2f(x)<0,且f(-1)=0,则f(x)>0 的解集为(A)A.(-∞,-1) B.(-1,1)C.(-∞,0) D.(-1,+∞)f x f′x-2f x解析:设g(x)=,则g′(x)=<0 在R上恒成立,e2x e2x所以g(x)在R上递减,又因为g(-1)=0,f(x)>0⇔g(x)>0,所以x<-1.15.(2019·安徽江南十校联考)设函数f(x)=x2-9ln x在区间[a-1,2a+1]上单调递减,则实数a的取值范围是(A)A.(1,2] B.[4,+∞)C.(-∞,2] D.(0,3]9解析:∵f(x)的定义域是(0,+∞),f′(x)=x-,∴由f′(x)≤0x解得0<x≤3,由题意知Error!解得1<a≤2.ln x6.(2019·安徽模拟)已知f(x)=,则(D)xA.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2)解析:f(x)的定义域是(0,+∞),1-ln x∵f′(x)=,∴x∈(0,e),f′(x)>0,x∈(e,+∞),x2ln2 ln8 ln3 f′(x)<0,故x=e 时,f(x)max=f(e),而f(2)==,f(3)=2 63 ln9=,则f(e)>f(3)>f(2).67.(2019·张掖一诊)定义在R上的可导函数f(x)满足f(1)=1,且π3π 3 x2f′(x)>1,当x∈[时,不等式f(2cos x)>-2sin2 的解集为-,2 ]2 2 2(D)π4ππ4πA.(B.3 )( 3 ),-,3 3πππC.(D.3)(3)0,-,3x 1解析:令g(x)=f(x)--,2 21则g′(x)=f′(x)->0,2∴g(x)在R上单调递增,1 1且g(1)=f(1)--=0,2 23 x2cos x 1∵f(2cos x)-+2sin2 =f(2cos x)--=g(2cos x),2 2 2 23 x∴f(2cos x)>-2sin2 ,2 2即g(2cos x)>0,∴2cos x>1.π3πππ又x∈[,∴x∈.-,-,2 ](3)2 38.(2019·武汉模拟)已知定义域为R的奇函数y=f(x)的导函数为yf e f ln2=f′(x) ,当x>0 ,xf′(x) -f(x) <0 ,若a=,b=,c=e ln2f-3,则a,b,c的大小关系正确的是(D)-3A.a<b<c B.b<c<aC.a<c<b D.c<a<bf x解析:设g(x)=,xxf′x-f x则g′(x)=,x2∵当x>0 时,xf′(x)-f(x)<0,∴g′(x)<0.∴g(x)在(0,+∞)上是减函数.由f(x)为奇函数,知g(x)为偶函数,则g(-3)=g(3),又a=g(e),b=g(ln2),c=g(-3)=g(3),∴g(3)<g(e)<g(ln2),故c<a<b.9.(2019·银川诊断)若函数f(x)=ax3+3x2-x恰好有三个单调区间,则实数a的取值范围是(-3,0)∪(0,+∞).解析:由题意知f′(x)=3ax2+6x-1,由函数f(x)恰好有三个单调区间,得f′(x)有两个不相等的零点.需满足a≠0,且Δ=36+12a>0,解得a>-3,所以实数a的取值范围是(-3,0)∪(0,+∞).110.已知函数f(x)=-x2+4x-3ln x在区间[t,t+1]上不单调,2则t的取值范围是(0,1)∪(2,3).解析:由题意知3 x-1x-3f′(x)=-x+4-=-,x x由f′(x)=0,得函数f(x)的两个极值点为1 和3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,由t<1<t+1 或t<3<t+1,得0<t<1 或2<t<3.11.(2019·河北武邑中学调研)已知函数f(x)=e x-ax(a∈R,e 为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若a=1,函数g(x)=(x-m)f(x)-e x+x2+x在(2,+∞)上为增函数,求实数m的取值范围.解:(1)函数f(x)的定义域为R,f′(x)=e x-a.当a≤0 时,f′(x)>0,∴f(x)在R上为增函数;当a>0 时,由f′(x)=0 得x=ln a,则当x∈(-∞,ln a)时,f′(x)<0,∴函数f(x)在(-∞,ln a)上为减函数,当x∈(ln a,+∞)时,f′(x)>0,∴函数f(x)在(ln a,+∞)上为增函数.(2)当a=1 时,g(x)=(x-m)(e x-x)-e x+x2+x.∵g(x)在(2,+∞)上为增函数,∴g′(x)=x e x-m e x+m+1≥0 在(2,+∞)上恒成立,x e x+1即m≤在(2,+∞)上恒成立.e x-1x e x+1令h(x)=,x∈(2,+∞),e x-1e x2-x e x-2e x e x e x-x-2则h′(x)==.e x-1 2 e x-12令L(x)=e x-x-2,L′(x)=e x-1>0 在(2,+∞)上恒成立,即L(x)=e x-x-2 在(2,+∞)上为增函数,即L(x)>L(2)=e2-4>0,∴h′(x)>0 在(2,+∞)上成立,x e x+1即h(x)=在(2,+∞)上为增函数,e x-12e2+1 2e2+1∴h(x)>h(2)=,∴m≤.e2-1 e2-12e2+1∴实数m的取值范围是(.-∞,e2-1 ]12.已知函数f(x)=a ln x-ax-3(a∈R).(1)求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,m对于任意的t∈[1,2],函数g(x)=x3+x2·[在区间(t,3)上总不f′x+2]是单调函数,求m的取值范围.解:(1)函数f(x)的定义域为(0,+∞),a1-x且f′(x)=,x当a>0 时,f(x)的单调增区间为(0,1),单调减区间为(1,+∞);当a<0 时,f(x)的单调增区间为(1,+∞),单调减区间为(0,1);当a=0 时,f(x)为常函数.a(2)由(1)及题意得f′(2)=-=1,2即a=-2,2x-2∴f(x)=-2ln x+2x-3,f′(x)=.xm∴g(x)=x3+(x2-2x,+2)2∴g′(x)=3x2+(m+4)x-2.∵g(x)在区间(t,3)上总不是单调函数,即g′(x)在区间(t,3)上有变号零点.由于g′(0)=-2,∴Error!当g′(t)<0 时,即3t2+(m+4)t-2<0 对任意t∈[1,2]恒成立,Earlybird由于g′(0)<0,故只要g′(1)<0 且g′(2)<0,即m<-5 且m<-9,即m<-9;37由g′(3)>0,即m>-.337∴-<m<-9.337即实数m的取值范围是(.,-9)-313.(2017·山东卷)若函数e x f(x)(e=2.718 28…是自然对数的底数) 在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是(A)A.f(x)=2-x B.f(x)=x2C.f(x)=3-x D.f(x)=cos xe解析:设函数g(x)=e x·f(x),对于A,g(x)=e x·2-x=(x,在定2 )义域R上为增函数,A 正确.对于B,g(x)=e x·x2,则g′(x)=x(x+2)e x,由g′(x)>0 得x<-2 或x>0,∴g(x)在定义域R上不是增函e=(x在定义域R上是减函数,数,B 不正确.对于C,g(x)=e x·3-x3 )πC 不正确.对于D,g(x)=e x·cos x,则g′(x)=2e x cos(,g′(x)>x+4)0 在定义域R上不恒成立,D 不正确.14.定义在区间(0,+∞)上的函数y=f(x)使不等式2f(x)<xf′(x) <3f(x)恒成立,其中y=f′(x)为y=f(x)的导函数,则(B)f2f2A.8<<16 B.4<<8f1f1f2f2C.3<<4 D.2<<3f1f1解析:∵xf′(x)-2f(x)>0,x>0,Earlybirdf x f′x·x2-2xf x xf′x-2f x∴[′==>0,x2 ]x4 x3f x∴y=在(0,+∞)上单调递增,x2f2f1f2∴>,即>4.22 12 f1∵xf′(x)-3f(x)<0,x>0,f x f′x·x3-3x2f x xf′x-3f x∴[′==<0,x3 ]x6 x4f x∴y=在(0,+∞)上单调递减,x3f2f1f2∴<,即<8.23 13 f1f2综上,4<<8.f115.(2019·昆明调研)已知函数f(x)(x∈R)满足f(1)=1,f(x)的导数1 x2 1f′(x)<,则不等式f(x2)<+的解集为{x|x<-1 或x>1}.2 2 21解析:设F(x)=f(x)-x,21∴F′(x)=f′(x)-,21 1∵f′(x)<,∴F′(x)=f′(x)-<0,2 2即函数F(x)在R上单调递减.x2 1∵f(x2)<+,2 2x2 1∴f(x2)-<f(1)-,2 2∴F(x2)<F(1),而函数F(x)在R上单调递减,∴x2>1,即不等式的解集为{x|x<-1 或x>1}.16.(2019·岳阳质检)已知函数f(x)=(ax-1)e x,a∈R.(1)讨论f(x)的单调区间;Earlybird(2)当m>n>0 时,证明:m e n+n<n e m+m.解:(1)f(x)的定义域为R,且f′(x)=(ax+a-1)e x.①当a=0 时,f′(x)=-e x<0,此时f(x)的单调递减区间为(-∞,+∞).a-1②当a>0 时,由f′(x)>0,得x>-;aa-1由f′(x)<0,得x<-.aa-1此时f(x)的单调递减区间为(,单调递增区间为-∞,-a)a-1.-,+∞)(aa-1③当a<0 时,由f′(x)>0,得x<-;aa-1由f′(x)<0,得x>-.aa-1此时f(x)的单调递减区间为(,单调递增区间为-,+∞)aa-1.-∞,-(a)(2)证明:当m>n>0 时,要证m e n+n<n e m+m,只要证m(e n-1)<n(e m-1),e m-1 e n-1即证>.(*)m ne x-1设g(x)=,x>0,xx-1e x+1则g′(x)=,x>0.x2设h(x)=(x-1)e x+1,由(1)知h(x)在[0,+∞)上单调递增,所以当x>0 时,h(x)>h(0)=0,于是g′(x)>0,Earlybird所以g(x)在(0,+∞)上单调递增,所以当m>n>0 时,(*)式成立,故当m>n>0 时,m e n+n<n e m+m.。
(红对勾)2020届高考一轮数学(理数)课时作业本:23 含答案解析
课时作业23 简单的三角恒等变换1.已知270°<α<360°,则三角函数式 12+12 12+12cos2α的化简结果是( D )A .sin α2B .-sin α2 C .cos α2 D .-cos α2 解析:12+1212+12cos2α=12+12cos 2α= 12+12cos α=cos 2α2,由于135°<α2<180°,所以cos α2<0,所以化简结果为-cos α2. 2.cos85°+sin25°cos30°cos25°等于( C ) A .-32 B .22 C .12D .1解析:原式=sin5°+32sin25°cos25°=sin (30°-25°)+32sin25°cos25° =12cos25°cos25°=12.3.(2019·广州模拟)已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,若sin α=35⎝ ⎛⎭⎪⎫π2<α<π,则f ⎝ ⎛⎭⎪⎫α+π12=( B )A .-7210 B .-210 C .210D .7210解析:因为sin α=35⎝ ⎛⎭⎪⎫π2<α<π,所以cos α=-45,f ⎝ ⎛⎭⎪⎫α+π12=sin ⎝ ⎛⎭⎪⎫α+π12+π6=sin ⎝ ⎛⎭⎪⎫α+π4=22sin α+22cos α=-210. 4.(2019·合肥质检)已知函数f (x )=sin 4x +cos 4x ,x ∈⎣⎢⎡⎦⎥⎤-π4,π4,若f (x 1)<f (x 2),则一定有( D )A .x 1<x 2B .x 1>x 2C .x 21<x 22D .x 21>x 22 解析:f (x )=sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x cos 2x =14cos4x +34,4x ∈[-π,π],所以函数f (x )是偶函数,且在⎣⎢⎡⎦⎥⎤0,π4上单调递减,根据f (x 1)<f (x 2),可得f (|x 1|)<f (|x 2|),所以|x 1|>|x 2|,即x 21>x 22.5.已知α∈R ,sin α+2cos α=102,则tan2α=( C ) A .43 B .34 C .-34D .-43解析:因为sin α+2cos α=102,所以sin 2α+4cos 2α+4sin αcos α=104(sin 2α+cos 2α), 整理得3sin 2α-3cos 2α-8sin αcos α=0, 则-3cos2α=4sin2α,所以tan2α=-34.6.(2019·豫北名校联考)若函数f (x )=5cos x +12sin x 在x =θ时取得最小值,则cos θ等于( B )A .513B .-513C .1213D .-1213 解析:f (x )=5cos x +12sin x =13⎝ ⎛⎭⎪⎫513cos x +1213sin x = 13sin(x +α),其中sin α=513,cos α=1213, 由题意知θ+α=2k π-π2(k ∈Z ), 得θ=2k π-π2-α(k ∈Z ),所以cos θ=cos ⎝ ⎛⎭⎪⎫2k π-π2-α=cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=-513. 7.(2019·湖南湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则log5⎝ ⎛⎭⎪⎫tan αtan β2等于( C )A .2B .3C .4D .5解析:由sin(α+β)=12, 得sin αcos β+cos αsin β=12,① 由sin(α-β)=13,得sin αcos β-cos αsin β=13,②由①②可得sin αcos β=512,cos αsin β=112. ∴tan αtan β=sin αcos βcos αsin β=512112=5.∴log5⎝ ⎛⎭⎪⎫tan αtan β2=log 525=4,故选C .8.(2019·武汉模拟)在△ABC 中,A ,B ,C 是△ABC 的内角,设函数f (A )=2sin B +C 2sin ⎝⎛⎭⎪⎫π-A 2+sin 2⎝⎛⎭⎪⎫π+A 2-cos 2A2,则f (A )的最大值为 2.解析:f (A )=2cos A 2sin A 2+sin 2A 2-cos 2A 2=sin A -cos A =2sin ⎝ ⎛⎭⎪⎫A -π4, 因为0<A <π,所以-π4<A -π4<3π4.所以当A -π4=π2,即A =3π4时,f (A )有最大值 2.9.已知α,β∈⎝ ⎛⎭⎪⎫0,π2,tan(α+β)=9tan β,则tan α的最大值为43. 解析:∵α,β∈⎝⎛⎭⎪⎫0,π2,∴tan α>0,tan β>0,∴tan α=tan(α+β-β)=tan (α+β)-tan β1+tan (α+β)·tan β=8tan β1+9tan 2β=81tan β+9tan β≤82×3=43(当且仅当1tan β=9tan β时等号成立),∴tan α的最大值为43.10.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β=-3π4. 解析:依题意有⎩⎪⎨⎪⎧tan α+tan β=-3a ,tan α·tan β=3a +1,∴tan(α+β)=tan α+tan β1-tan α·tan β=-3a1-(3a +1)=1.又⎩⎪⎨⎪⎧tan α+tan β<0,tan α·tan β>0,∴tan α<0且tan β<0, ∴-π2<α<0且-π2<β<0,即-π<α+β<0,结合tan(α+β)=1, 得α+β=-3π4.11.(2019·泉州模拟)已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点P (-3,3).(1)求sin2α-tan α的值;(2)若函数f (x )=cos(x -α)cos α-sin(x -α)sin α,求函数g (x )=3f ⎝ ⎛⎭⎪⎫π2-2x -2f 2(x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的值域. 解:(1)∵角α的终边经过点P (-3,3), ∴sin α=12,cos α=-32,tan α=-33.∴sin2α-tan α=2sin αcos α-tan α=-32+33=-36. (2)∵f (x )=cos(x -α)cos α-sin(x -α)sin α=cos x ,x ∈R ,∴g (x )=3cos ⎝ ⎛⎭⎪⎫π2-2x -2cos 2x =3sin2x -1-cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π6-1, ∵0≤x ≤2π3,∴-π6≤2x -π6≤7π6. ∴-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1, ∴-2≤2sin ⎝⎛⎭⎪⎫2x -π6-1≤1,故函数g (x )=3f ⎝ ⎛⎭⎪⎫π2-2x -2f 2(x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的值域是[-2,1]. 12.(2019·湛江一模)已知函数f (x )=A cos ⎝⎛⎭⎪⎫ωx -π3(A >0,ω>0)图象相邻两条对称轴的距离为π2,且f (0)=1.(1)求函数f (x )的解析式;(2)设α,β∈⎝ ⎛⎭⎪⎫0,π4,f ⎝ ⎛⎭⎪⎫α-π3=-1013,f ⎝ ⎛⎭⎪⎫β+π6=65,求tan(2α-2β)的值.解:(1)∵函数f (x )=A cos ⎝ ⎛⎭⎪⎫ωx -π3(A >0,ω>0)图象相邻两条对称轴的距离为π2,∴T 2=πω=π2,∴ω=2, 又f (0)=1,∴12A =1,∴A =2, ∴f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π3.(2)∵α∈⎝⎛⎭⎪⎫0,π4,f ⎝ ⎛⎭⎪⎫α-π3=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α-π3-π3=2cos(2α-π)=-2cos2α=-1013, ∴cos2α=513,sin2α=1-cos 22α=1213, 则tan2α=sin2αcos2α=125. ∵β∈⎝ ⎛⎭⎪⎫0,π4, f ⎝ ⎛⎭⎪⎫β+π6=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫β+π6-π3=2cos2β=65,∴cos2β=35,sin2β=1-cos 22β=45, 则tan2β=sin2βcos2β=43.∴tan(2α-2β)=tan2α-tan2β1+tan2α·tan2β=125-431+125×43=1663.13.(2019·山西临汾模拟)已知函数f (x )=sin 2x +sin x cos x ,当x =θ时函数y =f (x )取得最小值,则sin2θ+2cos2θsin2θ-2cos2θ=( C )A .-3B .3C .-13D .13解析:f (x )=sin 2x +sin x cos x =12sin2x -12cos2x +12=22sin ⎝ ⎛⎭⎪⎫2x -π4+12,当x =θ时函数y =f (x )取得最小值,即2θ-π4=2k π-π2,k ∈Z , 那么2θ=2k π-π4,k ∈Z ,则sin2θ+2cos2θsin2θ-2cos2θ=sin ⎝ ⎛⎭⎪⎫-π4+2cos ⎝ ⎛⎭⎪⎫-π4sin ⎝ ⎛⎭⎪⎫-π4-2cos ⎝ ⎛⎭⎪⎫-π4=-22+2×22-22-2×22=-13.故选C . 14.(2019·江西赣中南五校模拟)已知f (x )=sin ⎝ ⎛⎭⎪⎫2 019x +π6+cos ⎝ ⎛⎭⎪⎫2 019x -π3的最大值为A ,若存在实数x 1,x 2使得对任意实数x 总有f (x 1)≤f (x )≤f (x 2)成立,则A |x 1-x 2|的最小值为( B )A .π2 019 B .2π2 019 C .4π2 019D .π4 038解析:∵f (x )=sin ⎝ ⎛⎭⎪⎫2 019x +π6+cos ⎝ ⎛⎭⎪⎫2 019x -π3=sin2 019x cos π6+cos2 019x sin π6+cos2 019x cos π3+sin2 019x sin π3=32sin2 019x +12cos2 019x +12cos2 019x +32sin2 019x =3sin2 019x +cos2 019x =2sin ⎝⎛⎭⎪⎫2 019x +π6,∴f (x )的最大值为A =2;由题意,得|x 1-x 2|的最小值为T 2=π2 019, ∴A |x 1-x 2|的最小值为2π2 019.故选B .15.定义运算⎪⎪⎪⎪⎪⎪a cb d =ad -bC .若cos α=17,⎪⎪⎪⎪⎪⎪sin αcos α sin βcos β=3314,0<β<α<π2,则β=π3 .解析:由题意有sin αcos β-cos αsin β=sin(α-β)=3314, 又0<β<α<π2,∴0<α-β<π2, 故cos(α-β)=1-sin 2(α-β)=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32. 又0<β<π2,故β=π3.16.已知函数f (x )=2cos 2ωx -1+23sin ωx cos ωx (0<ω<1),直线x =π3是函数f (x )的图象的一条对称轴.(1)求函数f (x )的单调递增区间;(2)已知函数y =g (x )的图象是由y =f (x )的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝ ⎛⎭⎪⎫2α+π3=65,α∈⎝ ⎛⎭⎪⎫0,π2,求sin α的值.解:(1)f (x )=cos2ωx +3sin2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π6,由于直线x =π3是函数f (x )=2sin ⎝ ⎛⎭⎪⎫2ωx +π6的图象的一条对称轴, 所以2π3ω+π6=k π+π2(k ∈Z ), 解得ω=32k +12(k ∈Z ),又0<ω<1,所以ω=12,所以f (x )=2sin ⎝⎛⎭⎪⎫x +π6.由2k π-π2≤x +π6≤2k π+π2(k ∈Z ), 得2k π-2π3≤x ≤2k π+π3(k ∈Z ),所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3(k ∈Z ).(2)由题意可得g (x )=2sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x +2π3+π6, 即g (x )=2cos x2,由g ⎝ ⎛⎭⎪⎫2α+π3=2cos ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫2α+π3=2cos ⎝ ⎛⎭⎪⎫α+π6=65,得cos ⎝ ⎛⎭⎪⎫α+π6=35,又α∈⎝ ⎛⎭⎪⎫0,π2,故π6<α+π6<2π3,所以sin ⎝ ⎛⎭⎪⎫α+π6=45, 所以sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6 =sin ⎝ ⎛⎭⎪⎫α+π6·cos π6-cos ⎝ ⎛⎭⎪⎫α+π6·sin π6=45×32-35×12=43-310.。
【人教版】2020届高考一轮数学(理)复习:课时作业 (6)
课时作业6 函数的奇偶性与周期性1.(2019·长春质检)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( D ) A .y =e x +e -x B .y =ln(|x |+1) C .y =sin x |x | D .y =x -1x 解析:选项A ,B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x 在(0,+∞)上均为增函数,故y =x -1x 在(0,+∞)上为增函数,所以选项D 正确. 2.(2019·商丘模拟)已知函数f (x )=ln(e +x )+ln(e -x ),则f (x )是( D ) A .奇函数,且在(0,e)上是增函数 B .奇函数,且在(0,e)上是减函数 C .偶函数,且在(0,e)上是增函数 D .偶函数,且在(0,e)上是减函数 解析:f (x )的定义域为(-e ,e),且f (x )=ln(e 2-x 2). 又t =e 2-x 2是偶函数,且在(0,e)上是减函数,∴f (x )是偶函数,且在(0,e)上是减函数. 3.(2019·南昌模拟)若定义域为R 的函数f (x )在(4,+∞)上为减函数,且函数y =f (x +4)为偶函数,则( D ) A .f (2)>f (3) B .f (2)>f (5) C .f (3)>f (5) D .f (3)>f (6) 解析:∵y =f (x +4)为偶函数, ∴f (-x +4)=f (x +4), 因此y =f (x )的图象关于直线x =4对称,∴f (2)=f (6),f (3)=f (5). 又y =f (x )在(4,+∞)上为减函数, ∴f (5)>f (6),所以f (3)>f (6). 4.(2019·安徽蚌埠模拟)已知单调函数f (x ),对任意的x ∈R 都有f [f (x )-2x ]=6,则f (2)=( C ) A .2 B .4 C .6 D .8 解析:设t =f (x )-2x , 则f (t )=6,且f (x )=2x +t , 令x =t ,则f (t )=2t +t =6, ∵f (x )是单调函数,f (2)=22+2=6, ∴t =2,即f (x )=2x +2, 则f (2)=4+2=6,故选C. 5.(2019·河北石家庄一模)已知奇函数f (x )在x >0时单调递增,且f (1)=0,若f (x -1)>0,则x 的取值范围为( A ) A .{x |0<x <1或x >2} B .{x |x <0或x >2} C .{x |x <0或x >3} D .{x |x <-1或x >1} 解析:∵奇函数f (x )在(0,+∞)上单调递增,且f (1)=0,∴函数f (x )在(-∞,0)上单调递增,且f (-1)=0,则-1<x <0或x >1时,f (x )>0;x <-1或0<x <1时,f (x )<0.∴不等式f (x -1)>0即-1<x -1<0或x -1>1,解得0<x <1或x >2,故选A. 6.(2019·惠州调研)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( B ) A .(2,+∞) B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) C.⎝ ⎛⎭⎪⎫0,22∪(2,+∞) D .(2,+∞) 解析:f (x )是R 上的偶函数,且在(-∞,0]上是减函数,所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.7.(2019·河南郑州一模)已知定义在R 上的奇函数f (x )满足f (x +2e)=-f (x )(其中e =2.718 2…),且在区间[e,2e]上是减函数,令a =ln22,b =ln33,c =ln55,则f (a ),f (b ),f (c )的大小关系(用不等号连接)为( A ) A .f (b )>f (a )>f (c ) B .f (b )>f (c )>f (a ) C .f (a )>f (b )>f (c ) D .f (a )>f (c )>f (b ) 解析:∵f (x )是R 上的奇函数, 满足f (x +2e)=-f (x ), ∴f (x +2e)=f (-x ), ∴函数f (x )的图象关于直线x =e 对称, ∵f (x )在区间[e,2e]上为减函数, ∴f (x )在区间[0,e]上为增函数, 又易知0<c <a <b <e , ∴f (c )<f (a )<f (b ),故选A. 8.(2019·四川师大附中模拟)设函数f (x )的定义域为D ,若f (x )满足条件:存在[a ,b ]⊆D (a <b ),使f (x )在[a ,b ]上的值域也是[a ,b ],则称为“优美函数”.若函数f (x )=log 2(4x +t )为“优美函数”,则t 的取值范围是( D ) A.⎝ ⎛⎭⎪⎫14,+∞ B .(0,1) C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫0,14 解析:∵函数f (x )=log 2(4x +t )是定义域上的增函数, ∴由题意得,若函数为“优美函数”, 则f (x )=x 有两个不相等的实根, 即log 2(4x +t )=x ,整理得4x +t =2x , ∴(2x )2-2x +t =0有两个不相等的实根. ∵2x >0,令λ=2x (λ>0), ∴λ2-λ+t =0有两个不相等的正实根,∴⎩⎪⎨⎪⎧ Δ=1-4t >0,t >0,解得0<t <14, 即t ∈⎝ ⎛⎭⎪⎫0,14,故选D. 9.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎨⎧ x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是-25 . 解析:因为f (x )的周期为2, 所以f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-12+a , f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=110,即-12+a =110,所以a =35, 故f (5a )=f (3)=f (-1)=-25. 10.(2019·泰安模拟)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列几个命题:①f (x )是周期函数;②f (x )的图象关于直线x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是①②③④__(请把正确命题的序号全部写出来). 解析:f (x +y )=f (x )+f (y )对任意x ,y ∈R 恒成立. 令x =y =0,所以f (0)=0. 令x +y =0,所以y =-x , 所以f (0)=f (x )+f (-x ). 所以f (-x )=-f (x ),所以f (x )为奇函数. 因为f (x )在x ∈[-1,0]上为增函数, 又f (x )为奇函数,所以f (x )在[0,1]上为增函数. 由f (x +2)=-f (x )⇒f (x +4)=-f (x +2)⇒f (x +4)=f (x ), 所以周期T =4,即f (x )为周期函数.f (x +2)=-f (x )⇒f (-x +2)=-f (-x ). 又因为f (x )为奇函数,所以f (2-x )=f (x ), 所以函数关于直线x =1对称. 由f (x )在[0,1]上为增函数,又关于直线x =1对称, 所以f (x )在[1,2]上为减函数. 由f (x +2)=-f (x ), 令x =0得f (2)=-f (0)=f (0). 11.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数. (1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0, 所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ). 于是x <0时,f (x )=x 2+2x =x 2+mx , 所以m =2. (2)要使f (x )在[-1,a -2]上单调递增, 结合f (x )的图象知⎩⎪⎨⎪⎧ a -2>-1,a -2≤1, 所以1<a ≤3, 故实数a 的取值范围是(1,3]. 12.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值; (2)判断f (x )的奇偶性并证明你的结论; (3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解:(1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2), ∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0. (2)f (x )为偶函数. 证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1), ∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数. (3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数, ∴f (x -1)<2等价于f (|x -1|)<f (16). 又f (x )在(0,+∞)上是增函数, ∴0<|x -1|<16,解之得-15<x <17且x ≠1,∴x 的取值范围是{x |-15<x <17且x ≠1}.13.(2019·太原模拟)已知函数f (x )是偶函数,f (x +1)是奇函数,且对于任意x 1,x 2∈[0,1],x 1≠x 2,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0,设a =f ⎝ ⎛⎭⎪⎫8211,b =-f ⎝ ⎛⎭⎪⎫509,c =f ⎝ ⎛⎭⎪⎫247,则下列结论正确的是( B ) A .a >b >c B .b >a >c C .b >c >a D .c >a >b 解析:由函数f (x )是偶函数,f (x +1)是奇函数,可知函数的周期为4,则a =f ⎝ ⎛⎭⎪⎫8211=f ⎝ ⎛⎭⎪⎫611,b =-f ⎝ ⎛⎭⎪⎫509=f ⎝ ⎛⎭⎪⎫49,c =f ⎝ ⎛⎭⎪⎫247=f ⎝ ⎛⎭⎪⎫47.由(x 1-x 2)[f (x 1)-f (x 2)]<0,可知函数是区间[0,1]上的减函数,据此可得b >a >c . 14.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( B ) A .6 B .7 C .8 D .9解析:因为f(x)是最小正周期为2的周期函数,且0≤x<2时,f(x)=x3-x=x(x-1)(x+1),所以当0≤x<2时,f(x)=0有两个根,即x1=0,x2=1.由周期函数的性质知,当2≤x<4时,f(x)=0有两个根,即x3=2,x4=3;当4≤x≤6时,f(x)=0有三个根,即x5=4,x6=5,x7=6.故函数f(x)的图象在区间[0,6]上与x轴交点的个数为7.15.(2019·河南林州一中调研)已知函数y=f(x)是R上的偶函数,满足f(x+2)=f(x-2)+f(2),且当x∈[0,2]时,f(x)=2x-4,令函数g(x)=f(x)-m,若g(x)在区间[-10,2]上有6个零点,分别记为x1,x2,x3,x4,x5,x6,则x1+x2+x3+x4+x5+x6=-24__.解析:∵函数y=f(x)是R上的偶函数,∴f(-2)=f(2),由f(x+2)=f(x-2)+f(2),令x=0,可得f(2)=0,∵f(x+2)=f(x-2),即f(x+4)=f(x),∴周期T=4.作出函数f(x)在[-10,2]上的图象及直线y=m如图所示.由图象可知f(x)的图象在[-10,2]上有3条对称轴,分别为x=-8,x=-4,x=0,∴6个零点之和为2×(-8)+2×(-4)+2×0=-24.16.已知函数y=f(x)在定义域[-1,1]上既是奇函数,又是减函数.(1)求证:对任意x1,x2∈[-1,1],有[f(x1)+f(x2)](x1+x2)≤0;(2)若f(1-a)+f(1-a2)<0,求实数a的取值范围.解:(1)证明:若x 1+x 2=0,显然原不等式成立. 若x 1+x 2<0,则-1≤x 1<-x 2≤1, 因为f (x )在[-1,1]上是减函数且为奇函数, 所以f (x 1)>f (-x 2)=-f (x 2), 所以f (x 1)+f (x 2)>0. 所以[f (x 1)+f (x 2)](x 1+x 2)<0成立. 若x 1+x 2>0,则-1≤-x 2<x 1≤1, 同理可证f (x 1)+f (x 2)<0. 所以[f (x 1)+f (x 2)](x 1+x 2)<0成立. 综上所述,对任意x 1,x 2∈[-1,1], 有[f (x 1)+f (x 2)](x 1+x 2)≤0恒成立. (2)因为f (1-a )+f (1-a 2)<0⇔f (1-a 2)<-f (1-a )=f (a -1),所以由f (x )在定义域[-1,1]上是减函数,得 ⎩⎪⎨⎪⎧ -1≤1-a 2≤1,-1≤a -1≤1,1-a 2>a -1,即⎩⎪⎨⎪⎧ 0≤a 2≤2,0≤a ≤2,a 2+a -2<0,解得0≤a <1. 故所求实数a 的取值范围是[0,1).。
《精品》人教版红对勾2020届高考一轮数学(理)复习课时作业4
课时作业4 函数及其表示1.下列各组函数中,表示同一函数的是( D ) A .f (x )=e ln x ,g (x )=x B .f (x )=x 2-4x +2,g (x )=x -2C .f (x )=sin2x2cos x ,g (x )=sin x D .f (x )=|x |,g (x )=x 2解析:A ,B ,C 的定义域不同,所以答案为D.2.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( D )A.⎝ ⎛⎦⎥⎤0,34 B.⎝ ⎛⎭⎪⎫0,34 C.⎣⎢⎡⎦⎥⎤0,34 D.⎣⎢⎡⎭⎪⎫0,34 解析:∵函数y =mx -1mx 2+4mx +3的定义域为R ,∴mx 2+4mx +3恒不为0.当m =0时,mx 2+4mx +3=3满足题意;当m ≠0时,Δ=16m 2-12m <0,解得0<m <34.综上,m 的取值范围为⎣⎢⎡⎭⎪⎫0,34.3.(2019·广东珠海模拟)已知f (x 5)=lg x ,则f (2)=( A ) A.15lg2 B.12lg5 C.13lg2D.12lg3解析:解法一:由题意知x >0,令t =x 5,则t >0,x =t 15,∴f (t )=lg t 15=15lg t ,即f (x )=15lg x (x >0),∴f (2)=15lg2,故选A. 解法二:令x 5=2,则x =215, ∴f (2)=lg215=15lg2,故选A.4.已知函数f (x )=1-log 2x 的定义域为[1,4],则函数y =f (x )·f (x 2)的值域是( C )A .[0,1]B .[0,3]C.⎣⎢⎡⎦⎥⎤-18,1 D.⎣⎢⎡⎦⎥⎤-18,3 解析:对于y =f (x )·f (x 2),由函数f (x )的定义域是[1,4],得1≤x ≤4,且1≤x 2≤4,解得1≤x ≤2,故函数y =f (x )·f (x 2)的定义域是[1,2],易得y =f (x )·f (x 2)=1-3log 2x +2log 22x ,令t =log 2x ,则t ∈[0,1],y =1-3t +2t 2=2⎝ ⎛⎭⎪⎫t -342-18,故t =34时,y 取最小值-18;t =0时,y 取最大值1,故所求函数的值域是⎣⎢⎡⎦⎥⎤-18,1,故选C. 5.(2019·河南濮阳模拟)若f (x )=⎩⎪⎨⎪⎧2x-3,x >0,g (x ),x <0是奇函数,则f (g (-2))的值为( C )A.52 B .-52 C .1 D .-1解析:∵f (x )=⎩⎪⎨⎪⎧2x -3,x >0,g (x ),x <0是奇函数,∴x <0时,g (x )=-12x +3, ∴g (-2)=-12-2+3=-1,f (g (-2))=f (-1)=g (-1)=-12-1+3=1,故选C.6.(2019·福建福州模拟)设函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,2x -2-x,x >0,则满足f (x 2-2)>f (x )的x 的取值范围是( C )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(2,+∞)解析:由题意,x >0时,f (x )递增,故f (x )>f (0)=0,又x ≤0时,x =0,故若f (x 2-2)>f (x ),则x 2-2>x ,且x 2-2>0,解得x >2或x <-2,故选C.7.(2019·河北成安模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( C )A .-1B .1C .6D .12解析:由题意知,当-2≤x ≤1时,f (x )=x -2;当1<x ≤2时,f (x )=x 3-2,又∵y =x -2,y =x 3-2在R 上都为增函数,且f (x )在x =1处连续,∴f (x )的最大值为f (2)=23-2=6.8.(2019·江西南昌一模)设函数f (x )=⎩⎪⎨⎪⎧2|x -a |,x ≤1,x +1,x >1,若f (1)是f (x )的最小值,则实数a 的取值范围为( C )A .[-1,2)B .[-1,0]C .[1,2]D .[1,+∞)解析:函数f (x )=⎩⎪⎨⎪⎧2|x -a |,x ≤1,x +1,x >1,若x >1,则f (x )=x +1>2,易知y =2|x -a |在(a ,+∞)上递增,在(-∞,a )上递减,若a <1,则f (x )在x =a 处取得最小值,不符合题意;若a ≥1,则要使f (x )在x =1处取得最小值, 只需2a -1≤2,解得a ≤2,∴1≤a ≤2. 综上可得a 的取值范围是[1,2],故选C.9.(2019·河南、河北两省重点高中联考)函数f (x )=4-4x +ln(x +4)的定义域为(-4,1]__.解析:要使函数f (x )有意义,需有⎩⎪⎨⎪⎧4-4x≥0,x +4>0,解得-4<x ≤1,即函数f (x )的定义域为(-4,1].10.设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为⎩⎨⎧⎭⎬⎫-1,2,22 .解析:由题意知,若x ≤0,则2x=12,解得x =-1;若x >0,则|log 2x |=12,解得x =212或x =2-12.故x 的集合为⎩⎨⎧⎭⎬⎫-1,2,22.11.记函数f (x )=2-x +3x +1的定义域为A ,g (x )=lg[(x -a -1)(2a -x )](a <1)的定义域为B .若B ⊆A ,则实数a 的取值范围为(-∞,-2]∪⎣⎢⎡⎭⎪⎫12,1 . 解析:由已知得A ={x |x <-1或x ≥1}, B ={x |(x -a -1)·(x -2a )<0},由a <1得a +1>2a ,∴B ={x |2a <x <a +1}. ∵B ⊆A ,∴a +1≤-1或2a ≥1, ∴a ≤-2或12≤a <1.∴a 的取值范围为a ≤-2或12≤a <1.12.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0, f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18. (2)当x ∈[0,1]时,f (x )=x 2; 当x ∈(1,2]时,x -1∈(0,1], f (x )=-12f (x -1)=-12(x -1)2; 当x ∈[-1,0)时,x +1∈[0,1), f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧4(x +2)2,x ∈[-2,-1),-2(x +1)2,x ∈[-1,0),x 2,x ∈[0,1],-12(x -1)2,x ∈(1,2].13.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( A)A .y =12x 3-12x 2-x B .y =12x 3+12x 2-3x C .y =14x 3-x D .y =14x 3+12x 2-2x解析:设所求函数解析式为f (x )=ax 3+bx 2+cx +d (a ≠0),则f ′(x )=3ax 2+2bx +c (a ≠0),由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .14.(2019·江西南昌一模)设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12|x -a |,x <a +1,-|x +1|-a ,x ≥a +1,若f (x )的最大值不超过1,则实数a 的取值范围为( A )A.⎣⎢⎡⎭⎪⎫-32,+∞B.⎝ ⎛⎭⎪⎫-32,+∞ C.⎣⎢⎡⎭⎪⎫-54,0 D.⎣⎢⎡⎦⎥⎤-32,-54 解析:当x <a +1时,f (x )=⎝ ⎛⎭⎪⎫12|x -a |在(-∞,a )上递增,在[a ,a+1)上递减,可得此时f (x )在x =a 处取得最大值,且为1;当x ≥a +1时,f (x )=-a -|x +1|,当a +1≥-1,即a ≥-2时,f (x )递减,由题意得-a -|a +2|≤1,解得a ≥-32;当a +1<-1,即a <-2时,f (x )在x =-1处取得最大值,且为-a ,由题意得-a ≤1,则a ∈∅.综上可得a 的取值范围是⎣⎢⎡⎭⎪⎫-32,+∞,故选A.。
【人教版】2020届高考一轮数学(理)复习:课时作业 (15)
课时作业15 利用导数研究函数的极值、最值1.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( D )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 解析:由题图可知,当x <-2时,f ′(x )>0; 当-2<x <1时,f ′(x )<0; 当1<x <2时,f ′(x )<0; 当x >2时,f ′(x )>0. 由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 2.(2019·山西太原模拟)设函数f (x )=13x 3-x +m 的极大值为1,则函数f (x )的极小值为( A ) A .-13 B .-1 C.13 D .1 解析:f ′(x )=x 2-1,由f ′(x )=0得x 1=-1,x 2=1.所以f (x )在区间(-∞,-1)上单调递增,在区间(-1,1)上单调递减,在区间(1,+∞)上单调递增,所以函数f (x )在x =-1处取得极大值,且f (-1)=1,即m =13,函数f (x )在x =1处取得极小值,且f (1)=13×13-1+13=-13.故选A. 3.(2019·河北三市联考)若函数f (x )=13x 3-⎝ ⎛⎭⎪⎫1+b 2x 2+2bx 在区间[-3,1]上不是单调函数,则函数f (x )在R 上的极小值为( A ) A .2b -43 B.32b -23 C .0 D .b 2-16b 3 解析:f ′(x )=x 2-(2+b )x +2b =(x -b )(x -2), ∵函数f (x )在区间[-3,1]上不是单调函数, ∴-3<b <1,则由f ′(x )>0, 得x <b 或x >2, 由f ′(x )<0,得b <x <2, ∴函数f (x )的极小值为f (2)=2b -43. 4.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( A ) A .20 B .18 C .3 D .0 解析:因为f ′(x )=3x 2-3=3(x -1)(x +1), 令f ′(x )=0,得x =±1,可知-1,1为函数的极值点. 又f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1, 所以在区间[-3,2]上,f (x )max =1,f (x )min =-19. 由题设知在区间[-3,2]上, f (x )max -f (x )min ≤t , 从而t ≥20,所以t 的最小值是20. 5.(2019·浙江瑞安中学月考)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( C )A.23B.43C.83D.163 解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83. 6.(2019·湖南湘潭一中、长沙一中等六校联考)若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间⎝ ⎛⎭⎪⎫12,1内有极大值,则a 的取值范围是( C ) A.⎝ ⎛⎭⎪⎫1e ,+∞ B .(1,+∞) C .(1,2) D .(2,+∞) 解析:f ′(x )=ax -(1+2a )+2x =ax 2-(2a +1)x +2x (a >0,x >0),若f (x )在区间⎝ ⎛⎭⎪⎫12,1内有极大值, 即f ′(x )=0在⎝ ⎛⎭⎪⎫12,1内有解. 则f ′(x )在区间⎝ ⎛⎭⎪⎫12,1内先大于0,再小于0,则⎩⎨⎧ f ′⎝ ⎛⎭⎪⎫12>0,f ′(1)<0,即⎩⎪⎨⎪⎧ 14a -12(2a +1)+212>0,a -(2a +1)+2<0, 解得1<a <2,故选C. 7.(2019·江西南昌调研)已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( D ) A .f (x 1)>0,f (x 2)>-12 B .f (x 1)<0,f (x 2)<-12 C .f (x 1)>0,f (x 2)<-12 D .f (x 1)<0,f (x 2)>-12 解析:f ′(x )=ln x -2ax +1,依题意知f ′(x )=0有两个不等实根x 1,x 2, 即曲线y =1+ln x 与直线y =2ax 有两个不同交点,如图. 由直线y =x 是曲线y =1+ln x 的切线, 可知:0<2a <1,0<x 1<1<x 2. ∴a ∈⎝ ⎛⎭⎪⎫0,12. 由0<x 1<1,得f (x 1)=x 1(ln x 1-ax 1)<0, ∵当x 1<x <x 2时,f ′(x )>0, ∴f (x 2)>f (1)=-a >-12,故选D. 8.(2019·武汉模拟)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是 ⎣⎢⎡⎭⎪⎫1,32.解析:因为f (x )的定义域为(0,+∞), 又因为f ′(x )=4x -1x , 所以由f ′(x )=0解得x =12, 由题意得⎩⎨⎧ k -1<12<k +1,k -1≥0, 解得1≤k <32. 9.(2019·长沙调研)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a = 1 . 解析:由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a , 当0<x <1a 时,f ′(x )>0; 当x >1a 时,f ′(x )<0. ∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =-ln a -1=-1,解得a =1. 10.设函数f (x )=x 3+ax 2+bx (x >0)的图象与直线y =4相切于点M (1,4),则y =f (x )在区间(0,4]上的最大值为 4 ;最小值为 0 . 解析:f ′(x )=3x 2+2ax +b (x >0). 依题意,有⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=4, 即⎩⎪⎨⎪⎧ 3+2a +b =0,1+a +b =4,解得⎩⎪⎨⎪⎧ a =-6,b =9. 所以f (x )=x 3-6x 2+9x . 令f ′(x )=3x 2-12x +9=0,解得x =1或x =3. 当x 变化时,f ′(x ),f (x )在区间(0,4]上的变化情况如下表:所以函数f (x )=x 3-6x 2+9x 在区间(0,4]上的最大值是4,最小值是0. 11.已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间; (2)当a >0时,求函数f (x )在[1,2]上的最小值. 解:(1)f ′(x )=1x -a (x >0), ①当a ≤0时,f ′(x )=1x -a >0, 即函数f (x )的单调递增区间为(0,+∞). ②当a >0时, 令f ′(x )=1x -a =0,可得x =1a , 当0<x <1a 时,f ′(x )=1-ax x >0; 当x >1a 时,f ′(x )=1-ax x <0, 故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞. 综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞); 当a >0时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞. (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln2-2a . ②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a . ③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数. 又f (2)-f (1)=ln2-a , 所以当12<a <ln2时,最小值是f (1)=-a ; 当ln2≤a <1时,最小值为f (2)=ln2-2a . 综上可知,当0<a <ln2时,函数f (x )的最小值是f (1)=-a ; 当a ≥ln2时,函数f (x )的最小值是f (2)=ln2-2a . 12.已知函数f (x )=a ln x +1x (a >0). (1)求函数f (x )的单调区间和极值; (2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由. 解:由题意,知函数f (x )的定义域为{x |x >0}, f ′(x )=a x -1x 2(a >0). (1)由f ′(x )>0解得x >1a , 所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1a ,+∞; 由f ′(x )<0解得x <1a , 所以函数f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a +a =a -a ln a . (2)由(1)可知,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,函数f (x )单调递增.①若0<1a ≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln1+1=1,显然1≠0,故不满足条件. ②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎢⎡⎭⎪⎫1,1a 上为减函数,在⎣⎢⎡⎦⎥⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a +a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,而1e ≤a <1,故不满足条件. ③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a lne +1e =a +1e =0,即a =-1e ,而0<a <1e ,故不满足条件. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0. 13.(2019·合肥模拟)已知函数f (x )=x ln x -a e x (e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( A ) A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(-∞,e) 解析:f (x )=x ln x -a e x (x >0), ∴f ′(x )=ln x +1-a e x (x >0), 由已知函数f (x )有两个极值点可得y =a 和g (x )=ln x +1e x 在(0,+∞)上有两个交点, g ′(x )=1x -ln x -1e x (x >0),令h (x )=1x -ln x -1, 则h ′(x )=-1x 2-1x <0, ∴h (x )在(0,+∞)上单调递减且h (1)=0, ∴当x ∈(0,1]时,h (x )≥0,即g ′(x )≥0,g (x )在(0,1]上单调递增,g (x )≤g (1)=1e , 当x ∈(1,+∞)时,h (x )<0, 即g ′(x )<0,g (x )在(1,+∞)上单调递减, 故g (x )max =g (1)=1e , 而x →0时,g (x )→-∞,x →+∞时,g (x )→0; 若y =a 和g (x )在(0,+∞)上有两个交点, 只需0<a <1e . 14.(2019·广东佛山一模)设函数f (x )=x 3-3x 2+2x ,若x 1,x 2(x 1<x 2)是函数g (x )=f (x )-λx 的两个极值点,现给出如下结论: ①若-1<λ<0,则f (x 1)<f (x 2); ②若0<λ<2,则f (x 1)<f (x 2); ③若λ>2,则f (x 1)<f (x 2). 其中正确结论的个数为( B ) A .0 B .1 C .2 D .3 解析:函数g (x )=f (x )-λx , ∴g ′(x )=f ′(x )-λ, 令g ′(x )=0,得f ′(x )-λ=0, ∴f ′(x )=λ有两解x 1,x 2(x 1<x 2). ∵f (x )=x 3-3x 2+2x , ∴f ′(x )=3x 2-6x +2, 画出y =f ′(x )的图象如图所示:①若-1<λ<0,则x 1、x 2在f (x )的递减区间上,故f (x 1)>f (x 2); ②若0<λ<2,则x 1>0,x 2<2,又x 1,0在f (x )的一个递增区间上,x 2,2在f (x )的另一个递增区间上, ∴f (x 1)>f (0)=0,f (x 2)<f (2)=0, 故f (x 1)>f (x 2); ③若λ>2,则x 1<0,x 2>2, 则f (x 1)<f (0)=0,f (x 2)>f (2)=0, 故f (x 1)<f (x 2).故选B. 15.若函数f (x )=m ln x +(m -1)x 存在最大值M ,且M >0,则实数m 的取值范围是 ⎝ ⎛⎭⎪⎫e 1+e ,1 . 解析:f ′(x )=m x +(m -1)=(m -1)x +m x (x >0), 当m ≤0或m ≥1时,f (x )在(0,+∞)上单调, 此时函数f (x )无最大值. 当0<m <1时,令f ′(x )=0,则x =m 1-m , ∴当0<m <1时,f (x )在⎝ ⎛⎭⎪⎫0,m 1-m 上单调递增,在⎝ ⎛⎭⎪⎫m 1-m ,+∞上单调递减,∴当0<m <1时,函数f (x )有最大值,最大值M =f ⎝ ⎛⎭⎪⎫m 1-m =m ln m1-m-m . ∵M >0,∴m ln m1-m -m >0,解得m >e1+e,∴m 的取值范围是⎝ ⎛⎭⎪⎫e 1+e ,1. 16.(2019·衡阳联考)已知函数f (x )=ln x +x 2-ax (a >0). (1)讨论f (x )在(0,1)上极值点的个数;(2)若x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,且f (x 1)-f (x 2)>m 恒成立,求实数m 的取值范围.解:(1)f ′(x )=1x +2x -a =2x 2-ax +1x , 令g (x )=2x 2-ax +1,解法一:令g (x )=2x 2-ax +1=0得Δ=a 2-8, ①当Δ≤0,即0<a ≤22时,g (x )>0恒成立, 此时f (x )在(0,1)上无极值点; ②当Δ>0,即a >22时, 由g (x )=2x 2-ax +1=0得, x 1=a -a 2-84,x 2=a +a 2-84. (ⅰ)若22<a <3,则0<x 1=a -a 2-84<a 4<1,0<x 2=a +a 2-84<3+14=1. 故此时f (x )在(0,1)上有两个极值点;(ⅱ)若a ≥3,则0<x 1=a -a 2-84=84(a +a 2-8)=2(a +a 2-8)≤23+1=12<1, 而x 2=a +a 2-84>3+14=1. 故此时f (x )在(0,1)上只有一个极值点;综上可知,当0<a ≤22时,f (x )在(0,1)上无极值点; 当22<a <3时,f (x )在(0,1)上有两个极值点; 当a ≥3时,f (x )在(0,1)上只有一个极值点. 解法二:由g (x )=2x 2-ax +1=0得Δ=a 2-8, ①当Δ≤0,即0<a ≤22,g (x )>0恒成立, 此时f (x )在(0,1)上单调递增,无极值点; ②当Δ>0,即a >22时,由g (0)=1,g (1)=3-a ,g ⎝ ⎛⎭⎪⎫a 4=1-a 28,则(ⅰ)当g (1)=3-a >0,即22<a <3时,g ⎝ ⎛⎭⎪⎫a 4=1-a 28<1-(22)28=0,此时f (x )在⎝ ⎛⎭⎪⎫0,a 4,⎝ ⎛⎭⎪⎫a 4,1上必有两个极值点;(ⅱ)当g (1)=3-a ≤0,即a ≥3时,g ⎝ ⎛⎭⎪⎫a 4=1-a 28≤1-98=-18<0,此时f (x )在⎝ ⎛⎭⎪⎫0,a 4上必有一个极值点;综上可知,当0<a ≤22时,f (x )在(0,1)上无极值点; 当22<a <3时,f (x )在(0,1)上有两个极值点; 当a ≥3时,f (x )在(0,1)上只有一个极值点. 解法三:∵f ′(x )=1x +2x -a , ∴f ″(x )=1x 2(2x 2-1),∴f ′(x )在⎝ ⎛⎭⎪⎫0,22上单调递减,在⎝ ⎛⎭⎪⎫22,1上单调递增,∴f ′(x )min =f ′⎝ ⎛⎭⎪⎫22=22-a .①当f ′⎝ ⎛⎭⎪⎫22=22-a ≥0,即0<a ≤22时,f (x )在(0,1)上单调递增,无极值点;②当⎩⎨⎧ f ′⎝ ⎛⎭⎪⎫22=22-a <0,f ′(1)>0,即22<a <3时,考虑到f ′⎝ ⎛⎭⎪⎫1a =2a >0,故此时f (x )在⎝ ⎛⎭⎪⎫1a ,22和⎝ ⎛⎭⎪⎫22,1上各有一个极值点; ③当⎩⎨⎧f ′⎝ ⎛⎭⎪⎫22=22-a <0,f ′(1)≤0,即a ≥3时,考虑到f ′⎝ ⎛⎭⎪⎫1a =2a >0,故此时f (x )在⎝ ⎛⎭⎪⎫1a,22上有唯一一个极值点;综上可知,当0<a ≤22时,f (x )在(0,1)上无极值点; 当22<a <3时,f (x )在(0,1)上有两个极值点; 当a ≥3时,f (x )在(0,1)上只有一个极点.(2)解法一:∵x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,∴x 1,x 2是f ′(x )=1x +2x -a =2x 2-ax +1x =0在区间(0,1)内的两个零点.令f ′(x )=0,得x 1,x 2是方程2x 2-ax +1=0的两根, ∴Δ=a 2-8>0,∴a >22,x 1+x 2=a 2>0,x 1·x 2=12.f (x 1)-f (x 2)=(ln x 1+x 21-ax 1)-(ln x 2+x 22-ax 2)=ln x 1x 2+(x 21-x 22)+a (x 2-x 1)=ln x 1x 2+(x 21-x 22)+2(x 1+x 2)(x 2-x 1)=ln x 1x 2+x 22-x 21=ln x 1x 2+12·x 22-x 21x 1x 2,令t =x 1x 2∈(0,1),则f (x 1)-f (x 2)=h (t )=ln t +12⎝ ⎛⎭⎪⎫1t -t ,t ∈(0,1),又h ′(t )=-(t -1)22t 2<0, ∴h (t )在区间(0,1)内单调递减, ∴h (t )>h (1)=0, 即f (x 1)-f (x 2)>0.∴m ≤0,即实数m 的取值范围是(-∞,0]. 解法二:∵x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,∴x 1,x 2是f ′(x )=1x +2x -a =2x 2-ax +1x =0在区间(0,1)内的两个零点,令f ′(x )=0,得x 1,x 2是方程2x 2-ax +1=0的两根, ∴Δ=a 2-8>0,∴a >22,x 1+x 2=a 2>0,x 1·x 2=12.f (x 1)-f (x 2)=ln x 1x 2+(x 21-x 22)-a (x 1-x 2)=ln x 1x2+(x 21-x 22)-2(x 1+x 2)(x 1-x 2)=ln x 1-ln x 2-(x 21-x 22)=ln x 1+ln2x 1-x 21+14x 21=ln2x 21-x 21+14x 21, ∵x 1<x 2,∴12=x 1·x 2>x 21,∴0<x 21<12, 令x =x 21∈⎝⎛⎭⎪⎫0,12,于是,f (x 1)-f (x 2)=H (x )=ln2x -x +14x ,x ∈⎝ ⎛⎭⎪⎫0,12,H ′(x )=-(2x -1)24x 2<0,∴H (x )在⎝ ⎛⎭⎪⎫0,12上单调递减,∴H (x )>H ⎝ ⎛⎭⎪⎫12=0,f (x 1)-f (x 2)>0,∴m ≤0.。
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业12
Earlybird课时作业20三角函数的图象与性质π1.在函数①y=cos|2x|,②y=|cos x|,③y=cos(,④y=tan2x+6)π中,最小正周期为π的所有函数为(A)2x-(4)A.①②③B.①③④C.②④D.①③解析:①y=cos|2x|=cos2x,最小正周期为π;②由图象知y=|cos x|的最小正周期为π;π2π③y=cos (的最小正周期T==π;2x+6)2ππ④y=tan (的最小正周期T=.2x-4)2π2.关于函数y=tan(,下列说法正确的是(C)2x-3)A.是奇函数πB.在区间(上单调递减3)0,πC.(为其图象的一个对称中心,0)6D.最小正周期为πππ解析:函数y=tan (是非奇非偶函数,A 错误;在区间2x-0,3)(3)π上单调递增,B 错误;最小正周期为,D 错误.2πππ∵当x=时,tan =0,2 ×-6 (3)6π∴(,0)为其图象的一个对称中心.6Earlybirdπ3.(2019·石家庄检测)若(是函数f(x)=sinωx+cosωx图象的,0)8一个对称中心,则ω的一个取值是(C)A.2 B.4C.6 D.8ππ解析:因为f(x)=sinωx+cosωx=2sin(,由题意,知fωx+4)(8 )ωππ=2sin(=0,4)+8ωππ所以+=kπ(k∈Z),8 4即ω=8k-2(k∈Z),当k=1 时,ω=6.π4.(2019·佛山模拟)已知x0=是函数f(x)=sin(2x+φ)的一个极大3值点,则f(x)的一个单调递减区间是(B)π2ππ5πA.(B.3 )( 6 ),,6 3π2πC.(D.,π)(,π)2 3π解析:因为x0=是函数f(x)=sin(2x+φ)的一个极大值点,所以sin3π=1,+φ)2 ×(3π解得φ=2kπ-,k∈Z.6ππ不妨取φ=-,此时f(x)=sin ,2x-6 (6)ππ3π令2kπ+<2x-<2kπ+(k∈Z),2 6 2π 5得kπ+<x<kπ+π(k∈Z).3 6π 5取k=0,得函数f(x)的一个单调递减区间为(.,π)3 6Earlybirdπ5.已知函数f(x)=2sin(2x+φ)(的图象过点(0,),则f(x)|φ|< 32)图象的一个对称中心是(B)ππA.(B.-,0)(,0)-3 6ππC.(D.,0)(,0)6 12π解析:函数f(x)=2sin(2x+φ)(的图象过点(0,),则f(0)=|φ|< 32)2sinφ=3,3 ππ∴sinφ=,又|φ|<,∴φ=,2 2 3π则f(x)=2sin(,3)2x+π令2x+=kπ(k∈Z),3kππ则x=-(k∈Z),2 6π当k=0 时,x=-,6π∴(是函数f(x)的图象的一个对称中心.-,0)66.(2019·湖南衡阳八中月考)定义运算:a*b=Error!例如1](D)2 2A.[B.[-1,1]2 ]-,22 2,1][-1,2 ]2解析:根据三角函数的周期性,我们只看两函数在一个最小正周期内的情况即可.π5π设x∈[0,2π],当≤x≤时,sin x≥cos x,f(x)=cos x,f(x)∈4 4Earlybird2 π5π,当0≤x<或<x≤2π时,cos x>sin x,f(x)=sin x,f(x)∈-1,[ 2 ]4 42∪[-1,0].0,[ 2 )2综上知f(x)的值域为[.2 ]-1,π7.已知函数f(x)=2cos(ωx+φ)+1(,其图象与直线ω>0,|φ|<2)2πππy=3相邻两个交点的距离为,若f(x)>1对任意x∈恒成立,-,3 (6)12则φ的取值范围是(B)πππA.[B.6][--,0],6 4πππC.(D.12][4]-,-0,3解析:由题意可得函数f(x)=2cos(ωx+φ)+1 的最大值为3.2π∵f(x)的图象与直线y=3 相邻两个交点的距离为,32π2π2π∴f(x)的周期T=,∴=,3 ω 3解得ω=3,∴f(x)=2cos(3x+φ)+1.ππ∵f(x)>1 对任意x∈(恒成立,-,6)12∴2cos(3x+φ)+1>1,即cos(3x+φ)>0,ππ对任意x∈(恒成立,-,6)12ππππ∴-+φ≥2kπ-且+φ≤2kπ+,k∈Z,4 2 2 2π解得φ≥2kπ-且φ≤2kπ,k∈Z,4Earlybirdπ即2kπ-≤φ≤2kπ,k∈Z.4ππ结合|φ|<可得当k=0 时,φ的取值范围为.-,0]2 [4π8.(2019·烟台检测)若函数f(x)=cos((0<φ<π)是奇函数,2x+φ-3)5π则φ=.6ππ5π解析:因为f(x)为奇函数,所以φ-=+kπ(k∈Z),φ=+kπ,3 2 65πk∈Z.又因为0<φ<π,故φ=.6π2π9.已知关于x的方程2sin(+1-a=0 在区间上存在x+0,6)[ 3 ]两个根,则实数a的取值范围是[2,3)__.πa-1 2π解析:sin(=在上存在两个根,x+0,6) 2 [ 3 ]ππ5π设x+=t,则t∈,,6 [ 6 ]6π5πa-1∴y=sin t,t∈[的图象与直线y=有两个交点,,6 ]6 21 a-1∴≤<1,∴2≤a<3.2 2ππ10.设函数f(x)=3sin(,若存在这样的实数x1,x2,对任意x+4)2的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为2__.ππ 2解析:f(x)=3sin (的周期T=2π×=4,x+4)2 πf(x1),f(x2)应分别为函数f(x)的最小值和最大值,T故|x1-x2|的最小值为=2.2ππ11.已知函数f(x)=3sin(ωx+φ)(的图象关于2)ω>0,-≤φ<2Earlybirdπ直线x=对称,且图象上相邻两个最高点的距离为π.3(1)求ω和φ的值;α 3 π2π3π(2)若f(=,求cos 的值.<α<α+2 ) 4 (3 )( 2 )6解:(1)f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小2π正周期T=π,从而ω==2.Tπ又因为f(x)的图象关于直线x=对称,3ππ所以2·+φ=kπ+,k=0,±1,±2,….3 2ππ由-≤φ<得k=0,2 2π2ππ所以φ=-=-.2 3 6ααπ 3(2)由(1)得f(=3sin(=,2 )6)2·-2 4π 1所以sin(=.6)α-4π2πππ由<α<得0<α-<,6 3 6 2ππ 1 15 所以cos(===.1-sin2(α-1-(6)6) 4 )α- 243πππ因此cos(=sinα=sinα+α-+2 )[(6)6]ππππ=sin(cos +cos sinα-α-6) 6 (6)1 3 15 1 3+15=×+×=.64 2 4 2 8π12.已知f(x)=2sin(.4)2x+(1)求函数f(x)图象的对称轴方程;Earlybird(2)求f(x)的单调递增区间;π3π(3)当x∈[时,求函数f(x)的最大值和最小值.,4 ]4π解:(1)f(x)=2sin(,4)2x+ππ令2x+=kπ+,k∈Z,4 2kππ得x=+,k∈Z.2 8kππ所以函数f(x)图象的对称轴方程是x=+,k∈Z.2 8πππ(2)令2kπ-≤2x+≤2kπ+,k∈Z,2 4 23ππ得kπ-≤x≤kπ+,k∈Z.8 83ππ故f(x)的单调递增区间为[,k∈Z.8]kπ-,kπ+8π3π3ππ7π(3)当x∈[时,≤2x+≤,,4 ]4 4 4 4π 2所以-1≤sin(≤,4)2x+2所以-2≤f(x)≤1,π3π所以当x∈[时,函数f(x)的最大值为1,最小值为-., 24 ]413.(2019·龙岩六校联考)已知函数f(x)=sin(2x+φ),其中φ为实ππ数,若f(x)≤|对任意x∈R恒成立,且f>0,则f(x)的单f(调递减区间是(C)πA.[(k∈Z)4]kπ,kπ+ππB.[(k∈Z)4]kπ-,kπ+4Earlybirdπ3πC.[(k∈Z)4 ]kπ+,kπ+4πD.[(k∈Z)kπ-,kπ]2π解析:由题意可得函数f(x)=sin(2x+φ)的图象关于直线x=对称,4 ππ故有2×+φ=kπ+,k∈Z,即φ=kπ,k∈Z.4 2ππ又f(=sin >0,6 )(+φ)3所以φ=2nπ,n∈Z,所以f(x)=sin(2x+2nπ)=sin2x.π3ππ3π令2kπ+≤2x≤2kπ+,k∈Z,求得kπ+≤x≤kπ+,k∈Z,2 2 4 4π3π故函数f(x)的单调递减区间为[,k∈Z,故选C.kπ+,kπ+4 ]4ππ14.设ω∈N*且ω≤15,则使函数y=sinωx在区间[上不单,3]4调的ω的个数是(C)A.6 B.7C.8 D.9π解析:由ωx=+kπ(k∈Z)得函数y=sinωx的图象的对称轴为x=2πkπ+(k∈Z).2ωωππ∵函数y=sinωx在区间[上不单调,3],4ππkππ∴<+<(k∈Z),4 2ωω 3解得1.5+3k<ω<2+4k(k∈Z).由题意ω∈N*且ω≤15,∴当k=0 时,1.5<ω<2,此时ω没有正整数可取;Earlybird当k=1 时,4.5<ω<6,此时ω可以取5;当k=2 时,7.5<ω<10,此时ω可以取8,9;当k=3 时,10.5<ω<14,此时ω可以取11,12,13;当k=4 时,13.5<ω<18,此时ω可以取14,15.故满足题意的ω有8 个,分别为5,8,9,11,12,13,14,15.故选C.π15.若函数f(x)=A cos2(ωx+φ)+1 (的最A>0,ω>0,0<φ<2)大值为3,f(x)的图象与y轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 018)=4_035__.解析:∵函数f(x)=A cos2(ωx+φ)+11+cos2ωx+2φ=A·+12A A=cos(2ωx+2φ)+1+的最大值为3,2 2A A∴+1+=3,∴A=2.2 2根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,2ππ即=4,∴ω=.2ω 4再根据f(x)的图象与y轴的交点坐标为(0,2),可得cos2φ+1+1=2,∴cos2φ=0,πππ又0<φ<,∴2φ=,φ=.2 2 4故函数f(x)的解析式为πππf(x)=cos(+2=-sin x+2,x+2)2 2∴f(1)+f(2)+…+f(2 017)+f(2 018)=π2π3π 2 017π 2 018π-(sin +sin +sin +…+sin +sin2 )2 2 2 2π+2×2 018=504×0-sin -sinπ+4 036=-1+4 036=4 035.2Earlybirdπ16.已知函数f(x)=2sin2(-cos2x-1,x∈R.+x) 34(1)求f(x)的最小正周期;π(2)若h(x)=f(x+t)的图象关于点(对称,且t∈(0,π),求t,0)-6的值;ππ(3)当x∈[时,不等式|f(x)-m|<3 恒成立,求实数m的取值,2]4范围.π解:(1)因为f(x)=-cos(-cos2x=sin2x-cos2x=2+2x) 3 321 3 π=2sin ,sin2x-cos2x)(2x-(3)2 2故f(x)的最小正周期为π.π(2)由(1)知h(x)=2sin(.3)2x+2t-ππ令2×(+2t-=kπ(k∈Z),-6 )3kππ得t=+(k∈Z),2 3π5π又t∈(0,π),故t=或.3 6ππππ2π(3)当x∈[时,2x-∈,,,2] 3 [ 3 ]4 6所以f(x)∈[1,2].又|f(x)-m|<3,即f(x)-3<m<f(x)+3,所以2-3<m<1+3,即-1<m<4.故实数m的取值范围是(-1,4).。
【人教版】2020届高考一轮数学(理)复习:课时作业 (71)
课时作业71 离散型随机变量的均值与方差1.(2019·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( B ) A .100 B .200 C .300 D .400 解析:设没有发芽的种子有ξ粒,则ξ~B (1 000,0.1),且X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=2×1 000×0.1=200. 2.(2019·太原模拟)随机变量X 的分布列如下:其中a ,b ,c 成等差数列.若E (X )=13,则D (X )的值是( B ) A.49 B.59 C.23 D.95 解析:a +b +c =1.又∵2b =a +c , 故b =13,a +c =23. 由E (X )=13,得13=-a +c , 故a =16,c =12. D (X )=⎝ ⎛⎭⎪⎫-1-132×16+⎝ ⎛⎭⎪⎫0-132×13+⎝ ⎛⎭⎪⎫1-132×12=59.故选B. 3.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( C )A.⎝ ⎛⎭⎪⎫0,712B.⎝ ⎛⎭⎪⎫712,1C.⎝ ⎛⎭⎪⎫0,12D.⎝ ⎛⎭⎪⎫12,1 解析:根据题意,学生发球次数为1即一次发球成功的概率为P (X =1)=p ,发球次数为2即两次发球成功的概率为P (X =2)=p (1-p ),发球次数为3的概率为P (X =3)=(1-p )2,则期望E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3.依题意有E (X )>1.75,即p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12. 4.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数X 的期望E (X )为( B ) A.24181 B.26681 C.27481 D.670243 解析:依题意,知X 的所有可能值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫132=59.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有P (X =2)=59,P (X =4)=49×59=2081,P (X =6)=⎝ ⎛⎭⎪⎫492=1681,故E (X )=2×59+4×2081+6×1681=26681. 5.(2018·浙江卷)设0<p <1,随机变量ξ的分布列是则当p A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大 D .D (ξ)先增大后减小 解析:由题意得E (ξ)=0×1-p 2+1×12+2×p 2=12+p , D (ξ)=⎣⎢⎡⎦⎥⎤0-⎝ ⎛⎭⎪⎫12+p 2·1-p 2+⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12+p 2·12+⎣⎢⎡⎦⎥⎤2-⎝ ⎛⎭⎪⎫12+p 2·p 2=18[(1+2p )2(1-p )+(1-2p )2+(3-2p )2·p ]=-p 2+p +14=-⎝ ⎛⎭⎪⎫p -122+12. 由⎩⎪⎨⎪⎧ 0<1-p 2<1,0<p 2<1,1-p 2+12+p 2=1,得0<p <1, ∴D (ξ)在⎝ ⎛⎭⎪⎫0,12上单调递增, 在⎝ ⎛⎭⎪⎫12,1上单调递减,故选D. 6.(2017·全国卷Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D (X )=1.96. 解析:本题主要考查二项分布.由题意可知X ~B (100,0.02),由二项分布可得DX =100×0.02×(1-0.02)=1.96. 7.现有甲、乙、丙三人参加某电视台的应聘节目《非你莫属》,若甲应聘成功的概率为12,乙、丙应聘成功的概率均为t 2(0<t <2),且三个人是否应聘成功是相互独立的.记应聘成功的人数为ξ,当且仅当ξ为2时概率最大,则E (ξ)的取值范围为⎝ ⎛⎭⎪⎫32,52. 解析:由题意知,ξ的所有可能取值为0,1,2,3.P (ξ=0)=⎝ ⎛⎭⎪⎫1-12⎝ ⎛⎭⎪⎫1-t 2⎝ ⎛⎭⎪⎫1-t 2=(2-t )28;P (ξ=1)=12×⎝ ⎛⎭⎪⎫1-t 2⎝ ⎛⎭⎪⎫1-t 2+2×⎝ ⎛⎭⎪⎫1-12×t 2×⎝ ⎛⎭⎪⎫1-t 2=4-t 28; P (ξ=2)=2×12×t 2×⎝ ⎛⎭⎪⎫1-t 2+⎝ ⎛⎭⎪⎫1-12×t 2×t 2=4t -t 28; P (ξ=3)=12×t 2×t 2=t 28. 故ξ的分布列为∴E (ξ)=0×8+1×8+2×8+3×t 8=t +12, 由题意知P (ξ=2)-P (ξ=1)=t -12>0, P (ξ=2)-P (ξ=0)=-t 2+4t -24>0, P (ξ=2)-P (ξ=3)=2t -t 24>0, 又0<t <2,∴1<t <2, ∴32<E (ξ)<52,即E (ξ)的取值范围为⎝ ⎛⎭⎪⎫32,52. 8.(2019·河南豫南九校联考)为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数; (2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X ,求X 的分布列及数学期望.解:(1)由统计图得200名司机中送考1次的有20人, 送考2次的有100人,送考3次的有80人, ∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3. (2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A ,“这两人中一人送考2次,另一人送考3次”为事件B , “这两人中一人送考1次,另一人送考3次”为事件C , “这两人送考次数相同”为事件D , 由题意知X 的所有可能取值为0,1,2, P (X =1)=P (A )+P (B )=C 120C 1100C 2200+C 1100C 180C 2200=100199, P (X =2)=P (C )=C 120C 180C 2200=16199, P (X =0)=P (D )=C 220+C 2100+C 280C 2200=83199, ∴X 的分布列为E (X )=0×83199+1×100199+2×16199=132199. 9.设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分. (1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列; (2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求a ∶b ∶c . 解:(1)由题意得ξ=2,3,4,5,6,故P (ξ=2)=3×36×6=14, P (ξ=3)=2×3×26×6=13, P (ξ=4)=2×3×1+2×26×6=518, P (ξ=5)=2×2×16×6=19, P (ξ=6)=1×16×6=136. 所以ξ的分布列为(2)由题意知η所以E (η)=a +b +c +a +b +c +a +b +c =3, D (η)=⎝ ⎛⎭⎪⎫1-532·a a +b +c +⎝ ⎛⎭⎪⎫2-532·b a +b +c +⎝ ⎛⎭⎪⎫3-532·c a +b +c =59, 化简得⎩⎪⎨⎪⎧ 2a -b -4c =0,a +4b -11c =0. 解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.10.(2019·河南洛阳模拟)某超市计划按月订购一种冰激凌,每天进货量相同,进货成本为每桶5元,售价为每桶7元,未售出的冰激凌以每桶3元的价格当天全部处理完毕,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关,如果最高气温不低于25℃,需求量为600桶,如果最高气温(单位:℃)位于区间[20,25),需求量为400桶,如果最高气温低于20℃,需求量为200桶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种冰激凌一天的需求量X (单位:桶)的分布列; (2)设六月份一天销售这种冰激凌的利润为Y (单位:元),当六月份这种冰激凌一天的进货量n (单位:桶)为多少时,Y 的数学期望取得最大值? 解:(1)由已知得,X 的所有可能取值为200,400,600,记六月份最高气温低于20℃为事件A 1,最高气温(单位:℃)位于区间[20,25)为事件A 2,最高气温不低于25℃为事件A 3,根据题意,结合频数分布表,用频率估计概率, 可知P (X =200)=P (A 1)=1890=15, P (X =400)=P (A 2)=3690=25, P (X =600)=P (A 3)=3690=25, 故六月份这种冰激凌一天的需求量X (单位:桶)的分布列为(2)当200<n ≤400时,E (Y )=15×[200×2+(n -200)×(-2)]+45×n ×2=65n +160∈(400,640]; 当400<n ≤600时,E (Y )=15×[200×2+(n -200)×(-2)]+25×[400×2+(n -400)×(-2)]+25×n ×2=-25n +800∈[560,640); 当n >600时, E (Y )=15×[200×2+(n -200)×(-2)]+25×[400×2+(n -400)×(-2)]+25×[600×2+(n -600)×(-2)]=1 760-2n <560, 所以当n =400时,Y 的数学期望E (Y )取得最大值640. 11.计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的入流量相互独立. (1)求未来4年中,至多有1年的年入流量超过120的概率; (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:发电机未运行,则该台发电机年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台? 解:(1)依题意,得 p 1=P (40<X <80)=1050=0.2, p 2=P (80≤X ≤120)=3550=0.7, p 3=P (X >120)=550=0.1.由二项分布可知,在未来4年中,至多有1年的年入流量超过120的概率为 p =C 04(1-p 3)4+C 14(1-p 3)3p 3 =⎝ ⎛⎭⎪⎫9104+4×⎝ ⎛⎭⎪⎫9103×110=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形. 由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5 000,E (Y )=5 000×1=5 000. ②安装2台发电机的情形. 依题意,当40<X <80时,一台发电机运行,此时Y =5 000-800=4 200,因此P (Y =4 200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5 000×2=10 000,因此P (Y =10 000)=P (X ≥80)=p 2+p 3=0.8.由此得Y 的分布列如下:所以,E ③安装3台发电机的情形. 依题意,当40<X <80时,一台发电机运行,此时Y =5 000-1 600=3 400,因此P (Y =3 400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5 000×2-800=9 200,因此P (Y =9 200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5 000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1,由此得Y 的分布列如下:综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.。
【人教版】2020届高考一轮数学(理)复习:课时作业 (34)
课时作业34 数列的综合应用1.已知数列{a n }为等差数列,且满足OA →=a 3OB →+a 2 015OC →,其中点A ,B ,C 在一条直线上,点O 为直线AB 外一点,记数列{a n }的前n 项和为S n ,则S 2 017的值为( A )A.2 0172 B .2 017 C .2 018 D .2 015解析:因为点A ,B ,C 在一条直线上,所以a 3+a 2 015=1,则S 2 017=2 017(a 1+a 2 017)2=2 017(a 3+a 2 015)2=2 0172,故选A. 2.某制药厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=13(n +1)(n +2)(2n +3)吨,但如果年产量超过130吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( C )A .5年B .6年C .7年D .8年解析:由题意知第一年产量为a 1=13×2×3×5=10; 以后各年产量分别为a n =f (n )-f (n -1)=13(n +1)(n +2)(2n +3)-13n ·(n +1)·(2n +1)=2(n +1)2(n ∈N *), 令2(n +1)2≤130,所以1≤n ≤65-1, 所以1≤n ≤7.故最长的生产期限为7年.3.定义:若数列{a n }对任意的正整数n ,都有|a n +1|+|a n |=d (d 为常数),则称{a n }为“绝对和数列”,d 叫作“绝对公和”.在“绝对和数列”{a n }中,a 1=2,绝对公和为3,则其前2 017项的和S 2 017的最小值为( C )A .-2 017B .-3 014C .-3 022D .3 032解析:依题意,要使其前2 017项的和S 2 017的值最小,只需每一项都取最小值即可.因为|a n +1|+|a n |=3,所以有-a 3-a 2=-a 5-a 4=…=-a 2 017-a 2 016=3,即a 3+a 2=a 5+a 4=…=a 2 017+a 2 016=-3,所以S 2 017的最小值为2+2 017-12×(-3)=-3 022,故选C. 4.设等比数列{a n }的公比为q ,其前n 项之积为T n ,并且满足条件:a 1>1,a 2 015a 2 016>1,a 2 015-1a 2 016-1<0.给出下列结论:(1)0<q <1;(2)a 2015a 2 017-1>0;(3)T 2 016的值是T n 中最大的;(4)使T n >1成立的最大自然数等于4 030.其中正确的结论为( C )A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)解析:由a 2 015-1a 2 016-1<0可知a 2 015<1或a 2 016<1.如果a 2 015<1,那么a 2 016>1, 若a 2 015<0,则q <0;又∵a 2 016=a 1q 2 015,∴a 2 016应与a 1异号, 即a 2 016<0,这与假设矛盾,故q >0.若q ≥1,则a 2 015>1且a 2 016>1,与推出的结论矛盾,故0<q <1,故(1)正确.又a 2 015a 2 017=a 22 016<1,故(2)错误.由结论(1)可知a 2 015>1,a 2 016<1,故数列从第 2 016项开始小于1,则T 2 015最大,故(3)错误.由结论(1)可知数列从第2 016项开始小于1,而T n =a 1a 2a 3…a n ,故当T n =(a 2 015)n 时,求得T n >1对应的自然数为4 030,故(4)正确.5.(2019·太原模拟)已知数列{a n }中,a 1=0,a n -a n -1-1=2(n -1)(n ∈N *,n ≥2),若数列{b n }满足b n =n ·a n +1+1·⎝ ⎛⎭⎪⎫811n -1,则数列{b n }的最大项为第 6 项.解析:由a 1=0,且a n -a n -1-1=2(n -1)(n ∈N *,n ≥2),得a n-a n -1=2n -1(n ≥2),则a 2-a 1=2×2-1,a 3-a 2=2×3-1,a 4-a 3=2×4-1,…,a n -a n -1=2n -1(n ≥2),以上各式累加得a n =2(2+3+…+n )-(n -1)=2×(n +2)(n -1)2-n +1=n 2-1(n ≥2),当n =1时,上式仍成立,所以b n =n ·a n +1+1·⎝ ⎛⎭⎪⎫811n -1=n ·(n +1)2·⎝ ⎛⎭⎪⎫811n -1=(n 2+n )·⎝ ⎛⎭⎪⎫811n -1(n ∈N *). 由⎩⎪⎨⎪⎧b n ≥b n -1,b n ≥b n +1,得 ⎩⎪⎨⎪⎧(n 2+n )·⎝ ⎛⎭⎪⎫811n -1≥(n 2-n )·⎝⎛⎭⎪⎫811n -2,(n 2+n )·⎝ ⎛⎭⎪⎫811n-1≥(n 2+3n +2)·⎝ ⎛⎭⎪⎫811n ,解得163≤n ≤193.因为n ∈N *,所以n =6, 所以数列{b n }的最大项为第6项.6.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们定义函数f (n )=q -p ,例如f (12)=4-3=1,数列{f (3n )}的前100项和为 350-1 .解析:当n 为偶数时,f (3n )=0;当n 为奇数时,f (3n )=3n +12-3n -12,因此数列{f (3n )}的前100项和为31-30+32-31+…+350-349=350-1.7.(2019·长沙、南昌联考)已知数列{a n }的前n 项和为S n ,且满足:a 1=1,a n >0,a 2n +1=4S n +4n +1(n ∈N *),若不等式4n 2-8n +3<(5-m )2n ·a n 对任意的n ∈N *恒成立,则整数m 的最大值为( B )A .3B .4C .5D .6解析:当n ≥2时,⎩⎪⎨⎪⎧a 2n +1=4S n +4n +1,a 2n =4S n -1+4(n -1)+1,两式相减得a 2n +1-a 2n =4a n +4, 即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,所以a n +1=a n +2(n ≥2). 对a 2n +1=4S n +4n +1,令n =1,可得a 22=4a 1+4+1=9,所以a 2=3,则a 2-a 1=2,所以数列{a n }是以1为首项,2为公差的等差数列, 故a n =2n -1.因为4n 2-8n +3=(2n -1)(2n -3),n ∈N *,2n -1>0,所以不等式4n 2-8n +3<(5-m )·2n·a n 等价于5-m >2n -32n .记b n =2n -32n ,则b n +1b n=2n -12n +12n -32n =2n -14n -6,当n ≥3时,b n +1b n <1,又b 1=-12,b 2=14,b 3=38, 所以(b n )max =b 3=38. 故5-m >38,得m <378,所以整数m 的最大值为4.8.(2019·南昌调研)已知正项数列{a n }的前n 项和为S n ,∀n ∈N*,2S n =a 2n +a n .令b n =1a na n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为 9 .解析:∵2S n =a 2n +a n ,① ∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0,(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0, 即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列. ∴a n =n ,∴b n =1n n +1+(n +1)n=(n +1) n -n n +1[n n +1+(n +1) n ][(n +1) n -n n +1 ] =(n +1) n -n n +1n (n +1)=1n -1n +1,∴T n =1-12+12-13+…+1n -1-1n +1n -1n +1=1-1n +1, 要使T n 为有理数,只需1n +1为有理数,令n +1=t 2,∵1≤n ≤100,∴n =3,8,15,24,35,48,63,80,99,共9个数. ∴T 1,T 2,T 3,…,T 100中有理数的个数为9.9.(2019·福建漳州模拟)已知数列{a n }满足na n -(n +1)·a n -1=2n 2+2n (n =2,3,4,…),a 1=6.(1)求证:⎩⎨⎧⎭⎬⎫a n n +1为等差数列,并求出{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,求证:S n <512.解:(1)证明:由na n -(n +1)a n -1=2n 2+2n (n =2,3,4,…),a 1=6,可得a n n +1-a n -1n =2,a 11+1=3,则⎩⎨⎧⎭⎬⎫a n n +1是首项为3,公差为2的等差数列,可得a nn +1=3+2(n -1)=2n +1,则a n =(n +1)(2n +1)(n ∈N *).(2)证明:由1(n +1)(2n +1)<12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,可得数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n =1a 1+1a 2+…+1a n ≤16+12×⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1=16+12⎝ ⎛⎭⎪⎫12-1n +1<16+14=512, 即S n <512.10.已知函数f (x )=⎝ ⎛⎭⎪⎫sin x2+cos x 22-1cos 2x 2-sin 2x2,函数y =f (x )-3在(0,+∞)上的零点按从小到大的顺序构成数列{a n }(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =3πa n(4n 2-1)(3n -2),求数列{b n }的前n 项和S n .解:(1)f (x )=⎝ ⎛⎭⎪⎫sin x2+cos x 22-1cos 2x 2-sin 2x 2=sin xcos x=tan x ,由tan x =3及x >0得x =k π+π3(k ∈N ),数列{a n }是首项a 1=π3,公差d =π的等差数列,所以a n =π3+(n -1)π=n π-2π3.(2)b n =3πa n(4n 2-1)(3n -2)=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1. S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.11.已知{a n }是公差不为0的等差数列,{b n }是等比数列,且a 1=b 1=1,a 2=b 2,a 5=b 3.(1)求数列{a n },{b n }的通项公式;(2)记S n =a 1b 1+a 2b 2+…+a nb n,是否存在m ∈N *,使得S m ≥3成立,若存在,求出m ,若不存在,请说明理由.解:(1)设数列{a n }的公差为d (d ≠0),数列{b n }的公比为q ,则由题意知⎩⎪⎨⎪⎧1+d =1·q ,1·q 2=1+4d ,∴d =0或d =2,∵d ≠0,∴d =2,q =3,∴a n =2n -1,b n =3n -1. (2)由(1)可知,S n =a 1b 1+a 2b 2+…+a n b n =11+331+532+…+2n -33n -2+2n -13n -1,13S n =131+332+533+…+2n -33n -1+2n -13n ,两式相减得,23S n =1+231+232+…+23n -1-2n -13n =1+23×1-⎝ ⎛⎭⎪⎫13n -11-13-2n -13n =2-2n +23n <2,∴S n <3.故不存在m ∈N *,使得S m ≥3成立.12.(2019·河南洛阳模拟)已知等差数列{a n }的公差d ≠0,且a 3=5,a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a 2n +4n -2,S n是数列{b n }的前n 项和.若对任意正整数n ,不等式2S n +(-1)n +1·a >0恒成立,求实数a 的取值范围.解:(1)因为a 3=5,a 1,a 2,a 5成等比数列,所以⎩⎪⎨⎪⎧a 1+2d =5,(a 1+d )2=a 1(a 1+4d ),解得a 1=1,d =2, 所以数列{a n }的通项公式为a n =2n -1. (2)因为b n =1a 2n +4n -2=1(2n -1)2+4n -2 =14n 2-1=1(2n -1)(2n +1) =12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1, 依题意,对任意正整数n ,不等式1-12n +1+(-1)n +1a >0,当n 为奇数时,1-12n +1+(-1)n +1a >0即a >-1+12n +1,所以a >-23;当n 为偶数时,1-12n +1+(-1)n +1a >0即a <1-12n +1,所以a<45.所以实数a 的取值范围是⎝ ⎛⎭⎪⎫-23,45.。
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业8
课时作业17 定积分与微积分基本定理1.定积分⎠⎛01(3x +e x )d x 的值为( D )A .e +1B .eC .e -12D .e +12解析:⎠⎛01(3x +e x )d x =⎝⎛⎭⎪⎫32x 2+e x |10=32+e -1=e +12.2.(2019·河南郑州一模)汽车以v =(3t +2)m/s 做变速运动时,在第1 s 至第2 s 之间的1 s 内经过的路程是( D )A .5 mB .112 m C .6 mD .132 m解析:根据题意,汽车以v =(3t +2)m/s 做变速运动时,汽车在第1 s 至第2 s 之间的1 s 内经过的路程s =⎠⎛12(3t +2)d t =⎝ ⎛⎭⎪⎫3t 22+2t |21=132m ,故选D .3.若f (x )=⎩⎨⎧lgx ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( A ) A .1 B .2 C .-1D .-2解析:因为f (1)=lg 1=0,f (0)=⎠⎛0a 3t 2d t =t 3|a 0=a 3,所以由f (f (1))=1得a 3=1,所以a =1.4.(2019·孝义质检)定义⎪⎪⎪⎪⎪⎪a c b d =ad -bc ,如⎪⎪⎪⎪⎪⎪13 24=1×4-2×3=-2,那么⎪⎪⎪⎪⎪⎪⎠⎛12x d x 132)=(D )A .6B .3C .32D .5.(2019·福建省师大附中等校联考)已知函数f (x )=-x 3+ax 2+b x (a ,b ∈R )的图象如图所示,它与x 轴相切于原点,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为( C)A .0B .1C .-1D .-2解析:f ′(x )=-3x 2+2ax +b . 由题意得f ′(0)=0,得b =0, ∴f (x )=-x 2(x -a ).由⎠⎛a0(x 3-ax 2)d x =⎝ ⎛⎭⎪⎫14x 4-13ax 3|0a =0-a 44+a 43=a 412=112,得a =±1.函数f (x )与x 轴的交点的横坐标一个为0,另一个为A .,根据图形可知a <0,即a =-1.6.已知函数y =f (x )的图象为如图所示的折线ABC ,则, ⎠⎛-11 [(x +1)f (x )]d x 等于( D)A .2B .-2,C .1D .-1解析:由题图易知,f (x )=⎩⎪⎨⎪⎧-x -1,-1≤x ≤0,x -1,0<x ≤1,所以⎠⎛-11 [(x +1)f (x )]d x=⎠⎛-10 (x +1)(-x -1)d x +⎠⎛01(x +1)(x -1)d x=⎠⎛-10(-x 2-2x -1)d x +⎠⎛01(x 2-1)d x =⎝ ⎛⎭⎪⎫-13x 3-x 2-x |0-1+⎝ ⎛⎭⎪⎫13x 3-x |10=-13-23=-1,故选D .7.(2019·新疆第一次适应性检测)由曲线y =x 2+1,直线y =-x +3,x 轴正半轴与y 轴正半轴所围成图形的面积为( B )A .3B .103C .73D .83解析:由题可知题中所围成的图形如图中阴影部分所示,由⎩⎪⎨⎪⎧ y =x 2+1,y =-x +3,解得⎩⎪⎨⎪⎧ x =-2,y =5(舍去)或⎩⎪⎨⎪⎧x =1,y =2,即A(1,2), 结合图形可知,所求的面积为⎠⎛01(x 2+1)d x +12×22=⎝ ⎛⎭⎪⎫13x 3+x |10+2=103.8.(2019·呼和浩特质检)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( B )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析:方法一 S 1=13x 3|21=83-13=73,,S 2=ln x |21=ln2<lne =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x ,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3.9.若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则⎠⎛02f (x )d x =-4__.解析:因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).,所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.,故⎠⎛02f (x )d x =⎠⎛02(x 3-3x 2)d x =⎝ ⎛⎭⎪⎫x 44-x 3|20=-4.10.一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12 s ~6 s 间的运动路程为494m .解析:由题图可知,v (t )=⎩⎨⎧2t ,0≤t <1,2,1≤t ≤3,13t +1,3<t ≤6.由变速直线运动的路程公式,可得s =⎠⎜⎜⎛126v (t )d t =⎠⎜⎜⎛1212t d t +⎠⎛132d t +⎠⎛36⎝ ⎛⎭⎪⎫13t +1d t=t 2⎪⎪⎪112+2t |31+⎝⎛⎭⎪⎫16t 2+t |63=494(m). 所以物体在12 s ~6 s 间的运动路程是494 m .11.设M ,m 分别是f (x )在区间[a ,b]上的最大值和最小值,则m (b -a )≤⎠⎛a b f (x )d x ≤M (b -a ).根据上述估值定理可知定积分⎠⎛-122-x 2d x 的取值范围是⎣⎢⎡⎦⎥⎤316,3. 解析:因为当-1≤x ≤2时,0≤x 2≤4, 所以116≤2-x 2≤1.根据估值定理得116×[2-(-1)]≤⎠⎛-122-x 2d x ≤1×[2-(-1)],即316≤⎠⎛-122-x 2d x ≤3.12.如图,由曲线y =x 2和直线y =t 2(0<t <1),x =1,x =0所围成的图形(阴影部分)的面积的最小值是14.解析:设图中阴影部分的面积为S (t ), 则S (t )=⎠⎛0t (t 2-x 2)d x +⎠⎛t1(x 2-t 2)d x =43t 3-t 2+13.由S ′(t )=2t (2t -1)=0,得t =12为S (t )在区间(0,1)上的最小值点,此时S (t )m in =S ⎝ ⎛⎭⎪⎫12=14.13.(2019·青岛模拟)已知函数f(x)在R 上满足f (π-x )=f (x ),若当0≤x ≤π2时,f (x )=cos x -1,则当0≤x ≤π时,f (x )的图象与x 轴所围成图形的面积为( A )A .π-2B .2π-4C .3π-6D .4π-8解析:∵当0≤x ≤π2时, f (x )=cos x -1,∴当π2<x ≤π时,0≤π-x <π2,f (x )=f (π-x )=cos(π-x )-1=-cos x -1,∴f (x )=⎩⎪⎨⎪⎧cos x -1,0≤x ≤π2,-cos x -1,π2<x ≤π.所以当0≤x ≤π时,f (x )的图象与x 轴所围成图形的面14.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为1.2__.解析:建立如图所示的平面直角坐标系,由抛物线过点(0,-2),(-5,0),(5,0)得抛物线的函数表达式为y =225x 2-2,抛物线与x 轴围成的面积S 1=15.(2019·郑州调研) ⎠⎛-11 (1-x 2+e x -1)d x =π2+e -1e -2.16.(2019·安徽六安第一中学模拟)已知a >0,⎝ ⎛⎭⎪⎫a x -x 6展开式的常数项为240,则⎠⎛-aa (x 2+x cos x +4-x 2)d x =163+2π.。
【人教版】2020届高考一轮数学(理)复习:课时作业 (62)
课时作业62 变量间的相关关系与统计案例1.(2019·辽宁丹东教学质量监测)某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K 2=6.705,则所得到的统计学结论是:有 的把握认为“学生性别与支持该活动没有关系”.( C ) 附:C .1%D .0.1% 解析:因为6.635<6.705<10.828,因此有1%的把握认为“学生性别与支持该活动没有关系”,故选C. 2.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( C ) A .x 与y 正相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关 解析:由y =-0.1x +1,知x 与y 负相关,即y 随x 的增大而减小,又y 与z 正相关,所以z 随y 的增大而增大,减小而减小,所以z 随x 的增大而减小,x 与z 负相关,故选C. 3.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其线性回归方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( B ) A.116 B .18C.14 D .12 解析:依题意可知样本点的中心为⎝ ⎛⎭⎪⎫34,38,则38=13×34+a ^,解得a ^=18. 4.为考察A 、B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法正确的是( C ) A .药物A 、B 对该疾病均没有预防效果 B .药物A 、B 对该疾病均有显著的预防效果 C .药物A 的预防效果优于药物B 的预防效果 D .药物B 的预防效果优于药物A 的预防效果 解析:根据两个等高条形图知,药物A 实验显示不服药与服药时患病的差异较药物B 实验显示明显大, ∴药物A 的预防效果优于药物B 的预防效果.故选C. 5.(2019·河南焦作一模)已知变量x 和y 的统计数据如下表:根据上表可得回归直线方程为y =b x -0.25,据此可以预测当x =8时,y ^=( C ) A .6.4 B .6.25C .6.55D .6.45 解析:由题意知x =3+4+5+6+75=5, y =2.5+3+4+4.5+65=4, 将点(5,4)代入y ^=b ^x -0.25,解得b ^=0.85,则y ^=0.85x -0.25, 所以当x =8时,y ^=0.85×8-0.25=6.55,故选C. 6.(2019·南昌模拟)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.由K 2=(a +b )(c +d )(a +c )(b +d )算得,K 2=100×(45×22-20×13)258×42×35×65≈9.616,参照附表,得到的正确结论是( C ) A .在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别有关” B .在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别无关” C .在犯错误的概率不超过0.01的前提下,认为“生育意愿与城市级别有关” D .在犯错误的概率不超过0.01的前提下,认为“生育意愿与城市级别无关”解析:由题意K 2的观测值≈9.616>6.635,所以在犯错误的概率不超过0.01的前提下认为“生育意愿与城市级别有关”.7.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.77x +52.9.73 .解析:由已知可计算求出x =30,而线性回归方程必过点(x ,y ),则y =0.77×30+52.9=76,设模糊数字为a ,则a +62+75+80+905=76,计算得a =73.8.(2019·赣中南五校联考)心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)推断犯错误的概率不超过 0.025 .附表:解析:由列联表计算K 2的观测值k =50(22×12-8×8)230×20×20×30≈5.556>5.024,∴推断犯错误的概率不超过0.025. 9.(2019·安徽蚌埠段考)为了研究工人的日平均工作量是否与年龄有关,从某工厂抽取了100名工人,且规定日平均生产件数不少于80件者为“生产能手”,列出的2×2列联表如下:年龄有关”. 解析:由2×2列联表可知,K 2=100×(25×30-10×35)240×60×35×65≈2.93,因为2.93>2.706,所以有90%以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”. 10.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:其线性回归方程是y ^=-3.2x +40,且m +n =20,则其中的n = 10 . 解析:x =9+9.5+m +10.5+115=8+m 5,y =11+n +8+6+55=6+n 5,回归直线一定经过样本点中心(x ,y ),即6+n 5=-3.2⎝ ⎛⎭⎪⎫8+m 5+40,即3.2m +n =42.又因为m +n =20,即⎩⎪⎨⎪⎧ 3.2m +n =42,m +n =20,解得⎩⎪⎨⎪⎧ m =10,n =10,故n =10. 11.(2019·重庆调研)某厂商为了解用户对其产品是否满意,在使用该产品的用户中随机调查了80人,结果如下表:(1)5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率; (2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.注:K 2=(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d . 解:(1)用分层抽样的方法在满意产品的用户中抽取5人,则抽取比例为550=110. 所以在满意产品的用户中应抽取女用户20×110=2(人),男用户30×110=3(人). 抽取的5人中,三名男用户记为a ,b ,c ,两名女用户记为r ,s ,则从这5人中任选2人,共有10种情况:ab ,ac ,ar ,as ,bc ,br ,bs ,cr ,cs ,rs . 其中恰好是男、女用户各1人的有6种情况:ar ,as ,br ,bs ,cr ,cs . 故所求的概率为P =610=0.6. (2)由题意,得K 2的观测值为k =80(30×20-20×10)2(30+20)(10+20)(30+10)(20+20)=163≈5.333>5.024. 又P (K 2≥5.024)=0.025. 故有97.5%的把握认为“产品用户是否满意与性别有关”. 12.(2016·全国卷Ⅲ)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1~7分别对应年份2008~2014. (1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17, ∑i =17 (y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n (t i -t )(y i -y )∑i =1n (t i -t )2∑i =1n (y i -y )2, 回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i =1n (t i -t )(y i -y )∑i =1n (t i -t )2,a ^=y -b ^t -. 解:(1)由折线图中数据和附注中参考数据得 t =4,∑i =17 (t i -t )2=28,∑i =17 (y i -y )2=0.55, ∑i =17 (t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89, r ≈ 2.890.55×2×2.646≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系. (2)由y =9.327≈1.331及(1)得b ^=∑i =17 (t i -t )(y i -y )∑i =17 (t i -t )2=2.8928≈0.10, a ^=y -b ^ t -=1.331-0.10×4≈0.93. 所以y 关于t 的回归方程为 y ^=0.93+0.10t .将2016年对应的t =9代入回归方程得:y ^=0.93+0.10×9=1.83. 所以预测2016年我国生活垃圾无害化处理量将约为1.83亿吨.13.(2019·湖南张家界一模)已知变量x ,y 之间的线性回归方程为y ^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误的是( C )A.变量B .可以预测,当x =20时,y ^=-3.7 C .m =4 D .该回归直线必过点(9,4) 解析:由-0.7<0,得变量x ,y 之间呈负相关关系,故A 正确;当x =20时,y ^=-0.7×20+10.3=-3.7,故B 正确;由表格数据可知x =14×(6+8+10+12)=9,y =14(6+m +3+2)=11+m 4,则11+m 4=-0.7×9+10.3,解得m =5,故C 错;由m =5,得y =6+5+3+24=4,所以该回归直线必过点(9,4),故D 正确.故选C. 14.(2019·湖南永州模拟)已知x 与y 之间的几组数据如下表:假设根据上表数据所得的线性回归方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( C )A.b ^>b ′,a ^>a ′ B .b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′ D .b ^<b ′,a ^<a ′ 解析:由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑i =16x i y i -6 x ·y ∑i =16x 2i -6 x 2= 58-6×72×13691-6×⎝ ⎛⎭⎪⎫722=57,a ^=y -b ^x =136-57×72=-13, 所以b ^<b ′,a ^>a ′. 15.(2019·青岛模拟)针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的12,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧的人数占女生人数23.若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有 12 人.则k >3.841,即k =3x 2⎝ ⎛⎭⎪⎫x 6·x 6-5x 6·x 32x ·x 2·x2·x =3x 8>3.841, 解得x >10.243.因为x 6,x2为整数,所以若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有12人.16.(2019·包头一模)如图是某企业2010年至2016年的污水净化量(单位:吨)的折线图.注:年份代码1~7分别对应年份2010~2016.(1)由折线图看出,可用线性回归模型拟合y 和t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程,预测2017年该企业的污水净化量; (3)请用数据说明回归方程预报的效果.参考数据:y -=54,∑i =17(t i -t -)(y i -y -)=21,14≈3.74,∑i =17(y i -y ^i )2=94.参考公式:相关系数r =∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y )2,线性回归方程y ^=a ^+b ^t ,b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t -.反映回归效果的公式为:R 2=1-∑i =1n (y i -y ^i )2∑i =1n (y i -y )2,其中R 2越接近于1,表示回归的效果越好.解:(1)由折线图中的数据得,t =4,∑i =17 (t i -t -)2=28,∑i =17(y i -y -)2=18,所以r =2128×18≈0.935.因为y 与t 的相关系数近似为0.935,说明y 与t 的线性相关程度相当大,所以可以用线性回归模型拟合y 与t 的关系.(2)因为y -=54,b ^=∑i =17(t i -t )(y i -y )∑i =17(t i -t )2=2128=34,所以a ^=y -b ^ t =54-34×4=51,所以y 关于t 的线性回归方程为y ^=b ^t +a ^=34t +51. 将2017年对应的t =8代入得y ^=34×8+51=57, 所以预测2017年该企业污水净化量约为57吨.(3)因为R 2=1-∑i =17 (y i -y ^i )2∑i =17(y i -y )2=1-94×118=1-18=78=0.875,所以“污水净化量的差异”有87.5%是由年份引起的,这说明回归方程预报的效果是良好的.。
【人教版】2020届高考一轮数学(理)复习:课时作业 (46)
课时作业46 空间向量的运算及应用1.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( D )A .-2B .-143 C.145 D .2解析:由题意知a ·(a -λb )=0,即a 2-λa ·b =0,所以14-7λ=0,解得λ=2.2.若A ,B ,C 不共线,对于空间任意一点O 都有OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点( B )A .不共面B .共面C .共线D .不共线解析:由已知可得OP →-OA →=-14OA →+18OB →+18OC →, 即OP →-OA →=-18OA →+18OB →+18OC →-18OA →,可得AP →=-18(OA →-OB →)+18(OC →-OA →)=-18BA →+18AC →=18(AC →+AB →),所以AP →,AC →,AB →共面但不共线,故P ,A ,B ,C 四点共面. 3.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD→=0,AB →·AD →=0,M 为BC 的中点,则△AMD 是( C )A .钝角三角形B .锐角三角形C .直角三角形D .不确定解析:∵M 为BC 的中点,∴AM →=12(AB →+AC →). ∴AM →·AD →=12(AB →+AC →)·AD → =12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,即△AMD 为直角三角形.4.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且分MN 所成的比为2,现用基向量OA →,OB →,OC →表示向量OG →,设OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别是( D )A .x =13,y =13,z =13 B .x =13,y =13,z =16 C .x =13,y =16,z =13D .x =16,y =13,z =13解析:设OA →=a ,OB →=b ,OC →=c , ∵G 分MN 的所成比为2,∴MG →=23MN →,∴OG →=OM →+MG →=OM →+23(ON →-OM →)=12a +23⎝⎛⎭⎪⎫12b +12c -12a =12a+13b +13c -13a =16a +13b +13c ,即x =16,y =13,z =13.5.已知空间向量a ,b 满足|a |=|b |=1,且a ,b 的夹角为π3,O 为空间直角坐标系的原点,点A ,B 满足OA →=2a +b ,OB →=3a -b ,则△OAB 的面积为( B )A.52 3 B.54 3 C.74 3D.114解析:|OA →|=(2a +b )2=4|a |2+|b |2+4a ·b =7,同理|OB →|=7,则cos ∠AOB =OA →·OB →|OA →||OB →|=6|a |2-|b |2+a ·b 7=1114,从而有sin ∠AOB =5314,∴△OAB 的面积S =12×7×7×5314=534,故选B.6.如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( A )A.3-225 B.2-26 C.12D.32解析:因为BC →=AC →-AB →, 所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos135°-8×6×cos120°=-162+24.所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.7.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为 60° .解析:由题意,得(2a +b )·c =0+10-20=-10, 即2a ·c +b ·c =-10. 又∵a ·c =4,∴b ·c =-18,∴cos 〈b ,c 〉=b ·c |b ||c |=-1812×1+4+4=-12,又∵〈b ,c 〉∈[0°,180°],∴〈b ,c 〉=120°,∴两直线的夹角为60°.8.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是 ⎝ ⎛⎭⎪⎫43,43,83 .解析:∵点Q 在直线OP 上,∴设点Q (λ,λ,2λ), 则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ), QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10=6⎝ ⎛⎭⎪⎫λ-432-23.即当λ=43时,QA →·QB →取得最小值-23. 此时OQ →=⎝⎛⎭⎪⎫43,43,83.9.已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13VC →,VM →=23VB →,VN →=23VD →.则VA 与平面PMN 的位置关系是 VA ∥平面PMN .解析:如图,设VA →=a ,VB →=b ,VC →=c ,则VD →=a +c -b , 由题意知PM →=23b -13c , PN →=23VD →-13VC →=23a -23b +13c . 因此VA →=32PM →+32PN →, ∴VA →,PM →,PN →共面.又∵VA ⊄平面PMN ,∴VA ∥平面PMN .10.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,D 1D ,D 1C 1的中点.(1)试用向量AB →,AD →,AA 1→表示AG →; (2)用向量方法证明平面EFG ∥平面AB 1C . 解:(1)设AB →=a ,AD →=b , AA 1→=c .由图得AG →=AA 1→+A 1D 1→+D 1G →=c +b +12DC →=12a +b +c =12AB →+AD →+AA 1→.(2)证明:由题图,得AC →=AB →+BC →=a +b , EG →=ED 1→+D 1G →=12b +12a =12AC →, ∵EG 与AC 无公共点,∴EG ∥AC , ∵EG ⊄平面AB 1C ,AC ⊂平面AB 1C , ∴EG ∥平面AB 1C .又∵AB 1→=AB →+BB 1→=a +c ,FG →=FD 1→+D 1G →=12c +12a =12AB 1→, ∵FG 与AB 1无公共点,∴FG ∥AB 1, ∵FG ⊄平面AB 1C ,AB 1⊂平面AB 1C , ∴FG ∥平面AB 1C ,又∵FG ∩EG =G ,FG ,EG ⊂平面EFG , ∴平面EFG ∥平面AB 1C .11.已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上,且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( A )A.216aB.66aC.156aD.153a解析:以D 为原点建立如图所示的空间直角坐标系D -xyz ,则A (a,0,0),C 1(0,a ,a ), N ⎝⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ),因为点M 在AC 1上,且AM →=12MC 1→, 则(x -a ,y ,z )=12(-x ,a -y ,a -z ),得x =23a ,y =a 3,z =a3,即M ⎝ ⎛⎭⎪⎫2a 3,a 3,a3,所以|MN →|=⎝⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a . 12.如图,已知直三棱柱ABC -A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .解:(1)如图,以点C 作为坐标原点O ,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.由题意得B (0,1,0),N (1,0,1),所以|BN →|=(1-0)2+(0-1)2+(1-0)2= 3.(2)由题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2),所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=3010.(3)证明:由题意得C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2,A 1B →=(-1,1,-2),C 1M →=⎝⎛⎭⎪⎫12,12,0,所以A 1B →·C 1M →=-12+12+0=0, 所以A 1B →⊥C 1M →, 即A 1B ⊥C 1M .。
【人教版】红对勾2020届高考一轮数学(理)复习:课时作业49
课时作业54 双曲线1.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( A )A. 3 B .3 C.3mD .3m解析:由题意知,双曲线的标准方程为x 23m -y 23=1, 其中a 2=3m ,b 2=3, 故c =a 2+b 2=3m +3,不妨取F (3m +3,0),一条渐近线为y =1m x ,化成一般式即为x -my =0,由点到直线的距离公式可得d =|3·m +1|1+(-m )2=3,故选A.2.(2019·河南洛阳尖子生联考)设F 1、F 2分别为双曲线x 29-y 216=1的左、右焦点,过F 1引圆x 2+y 2=9的切线F 1P 交双曲线的右支于点P ,T 为切点,M 为线段F 1P 的中点,O 为坐标原点,则|MO |-|MT |等于( D )A .4B .3C .2D .1解析:连接PF 2,OT ,则有|MO |=12|PF 2|=12(|PF 1|-2a )=12(|PF 1|-6)=12|PF 1|-3,|MT |=12·|PF 1|-|F 1T |=12|PF 1|-c 2-32=12|PF 1|-4,于是有|MO |-|MT |=⎝ ⎛⎭⎪⎫12|PF 1|-3-⎝ ⎛⎭⎪⎫12|PF 1|-4=1,故选D. 3.(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( B )A.x 28-y 210=1 B .x 24-y 25=1 C.x 25-y 24=1D .x 24-y 23=1解析:方法一:由双曲线的渐近线方程可设双曲线方程为x 24-y 25=k (k >0),即x 24k -y 25k =1,∵双曲线与椭圆x 212+y 23=1有公共焦点, ∴4k +5k =12-3,解得k =1, 故双曲线C 的方程为x 24-y 25=1,故选B.方法二:∵椭圆x 212+y 23=1的焦点为(±3,0),双曲线与椭圆x 212+y 23=1有公共焦点,∴a 2+b 2=(±3)2=9①,∵双曲线的一条渐近线为y =52x , ∴b a =52②.联立①②可解得a 2=4,b 2=5. ∴双曲线C 的方程为x 24-y 25=1.4.已知离心率为52的双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,则双曲线的实轴长是( B )A .32B .16C .84D .4解析:由题意知F 2(c,0), 不妨令点M 在渐近线y =ba x 上, 由题意可知|F 2M |=bca 2+b 2=b ,所以|OM |=c 2-b 2=a .由S △OMF 2=16,可得12ab =16, 即ab =32,又a 2+b 2=c 2,c a =52,所以a =8,b =4,c =45, 所以双曲线C 的实轴长为16.故选B.5.已知双曲线x 2-y23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( B )A .3B .2C .-3D .-2解析:由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2, ∴|PF 1|=4,|PF 2|=2. 又|F 1F 2|=4,由余弦定理可知 cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|cos ∠PF 2F 1=2×4×14=2.故选B. 6.(2019·山东泰安联考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的范围是( A )A.⎝⎛⎭⎪⎫1,233 B .⎝ ⎛⎭⎪⎫233,+∞C .(1,2)D .(2,+∞)解析:由双曲线方程可得其渐近线方程为y =±ba x ,即bx ±ay =0,圆C 2:x 2+y 2-2ax +34a 2=0可化为(x -a )2+y 2=14a 2, 圆心C 2的坐标为(a,0),半径r =12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点, 得|ab |a 2+b 2<12a ,即c >2b ,即c 2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2), 即c 2<43a 2,所以e =c a <233,又知e >1,所以双曲线C 1的离心率的取值范围为⎝ ⎛⎭⎪⎫1,233,故选A.7.(2019·河南安阳一模)已知焦点在x 轴上的双曲线x 28-m +y 24-m =1,它的焦点到渐近线的距离的取值范围是 (0,2) .解析:对于焦点在x 轴上的双曲线x 2a 2-y 2b 2=1(a >0,b >0),它的焦点(c,0)到渐近线bx -ay =0的距离为|bc |b 2+a2=b .本题中,双曲线x 28-m +y 24-m =1即x 28-m -y 2m -4=1,其焦点在x轴上,则⎩⎪⎨⎪⎧8-m >0,m -4>0,解得4<m <8, 则焦点到渐近线的距离d =m -4∈(0,2).8.(2017·山东卷)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 y =±22x .解析:设A (x 1,y 1),B (x 2,y 2). 因为4|OF |=|AF |+|BF |, 所以4×p 2=y 1+p 2+y 2+p2, 即y 1+y 2=p .① 由⎩⎨⎧x 2=2py ,x 2a 2-y 2b 2=1消去x ,得a 2y 2-2pb 2y +a 2b 2=0, 所以y 1+y 2=2pb 2a 2.② 由①②可得b a =22,故双曲线的渐近线方程为y =±22x .9.(2019·河北名校名师俱乐部模拟)已知F 1、F 2分别是双曲线x 2-y 2b 2=1(b >0)的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线的右支于点B ,则△F 1AB 的面积等于 4 .解析:由题意知a =1,如图,由双曲线定义知|AF 1|-|AF 2|=2a =2, |BF 1|-|BF 2|=2a =2, ∴|AF 1|=2+|AF 2|=4, |BF 1|=2+|BF 2|.由题意知|AB |=|AF 2|+|BF 2|=2+|BF 2|, ∴|BA |=|BF 1|,∴△BAF 1为等腰三角形, ∵∠F 1AF 2=45°,∴∠ABF 1=90°, ∴△BAF 1为等腰直角三角形. ∴|BA |=|BF 1|=22|AF 1|=22×4=2 2. ∴S △F 1AB =12|BA |·|BF 1|=12×22×22=4.10.(2019·河南天一大联考)已知F 1(-c,0)、F 2(c,0)为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过双曲线C 的左焦点的直线与双曲线C 的左支交于Q ,R 两点(Q 在第二象限内),连接RO (O 为坐标原点)并延长交C 的右支于点P ,若|F 1P |=|F 1Q |,∠F 1PF 2=23π,则双曲线C 的离心率为576 .解析:设|PF 1|=x ,则|PF 2|=x -2a , 作Q 关于原点对称的点S ,如图, 连接PS ,RS ,SF 1.因为双曲线关于原点中心对称,所以|PO |=|OR |,S 在双曲线上, 所以四边形PSRQ 是平行四边形,根据对称性知,F 2在线段PS 上,|F 2S |=|QF 1|=x , 则∠F 1PS =2π3,根据双曲线的定义, 有|F 1S |=x +2a ,所以在△PF 1S 中,由余弦定理得(x +2a )2=x 2+(2x -2a )2-2·x (2x -2a )·⎝ ⎛⎭⎪⎫-12, 解得x =73a ,所以|PF 2|=13a , 所以在△PF 1F 2中,由余弦定理得4c 2=⎝ ⎛⎭⎪⎫73a 2+⎝ ⎛⎭⎪⎫13a 2-2×⎝ ⎛⎭⎪⎫-12×73a ×13a ,整理可得e =c a =576.11.已知双曲线C :x 2-y 2=1及直线l :y =kx -1. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.解:(1)若双曲线C 与直线l 有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,所以⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+8(1-k 2)>0,解得-2<k <2且k ≠±1.即双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2).(2)设交点A (x 1,y 1),B (x 2,y 2),直线l 与y 轴交于点D (0,-1),由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0,所以⎩⎪⎨⎪⎧x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线的一支上且|x 1|>|x 2|时, S △OAB =S △OAD -S △OBD =12(|x 1|-|x 2|)=12|x 1-x 2|; 当A ,B 在双曲线的两支上且x 1>x 2时, S △OAB =S △ODA +S △OBD =12(|x 1|+|x 2|)=12|x 1-x 2|. 所以S △OAB =12|x 1-x 2|=2,所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2,即⎝ ⎛⎭⎪⎫-2k 1-k 22+81-k 2=8, 解得k =0或k =±62.又因为-2<k <2,且k ≠±1,所以当k =0或k =±62时,△AOB 的面积为 2.12.(2019·湛江模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程; (2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.解:(1)∵双曲线的渐近线方程为 y =±b a x ,∴a =b ,∴c 2=a 2+b 2=2a 2=4,∴a 2=b 2=2, ∴双曲线方程为x 22-y 22=1. (2)设点A 的坐标为(x 0,y 0),∴直线AO 的斜率满足y 0x 0·(-3)=-1,∴x 0=3y 0,①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程得3y 20+y 20=c 2, 即y 0=12c ,∴x 0=32c ,∴点A 的坐标为⎝ ⎛⎭⎪⎫32c ,12c , 代入双曲线方程得34c 2a 2-14c2b 2=1, 即34b 2c 2-14a 2c 2=a 2b 2,② 又∵a 2+b 2=c 2,∴将b 2=c 2-a 2代入②式,整理得 34c 4-2a 2c 2+a 4=0, ∴3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a 2+4=0, ∴(3e 2-2)(e 2-2)=0,∵e >1,∴e =2,∴双曲线的离心率为 2.13.焦点在x 轴上的双曲线C 1的离心率为e 1,焦点在y 轴上的双曲线C 2的离心率为e 2,已知C 1与C 2具有相同的渐近线,当e 21+4e 22取最小值时,e 1的值为( C )A .1B .62 C. 3D .2解析:设双曲线的方程分别为C 1:x 2a 21-y 2b 21=1,C 2:y 2a 22-x 2b 22=1,由题设b 1a 1=a 2b 2,则e 1=1+b 21a 21,e 2=1+b 22a 22,由此可得(e 21-1)(e 22-1)=1,即e 21e 22=e 21+e 22,故e 22=e 21e 21-1,所以e 21+4e 22=e 21+4e 21e 21-1=5+e 21-1+4e 21-1≥9(当且仅当e 21-1=4e 21-1时取等号),e 21-1=2⇒e 1=3时取等号.14.(2019·山西太原五中月考)已知F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左支交于点A ,与右支交于点B ,若|AF 1|=2a ,∠F 1AF 2=2π3,则S △AF 1F 2S △ABF 2=( B )A .1B .12 C.13D .23解析:如图所示,由双曲线定义可知|AF 2|-|AF 1|=2a .又|AF 1|=2a ,所以|AF 2|=4a ,因为∠F 1AF 2=23π,所以S △AF 1F 2=12|AF 1|·|AF 2|·sin ∠F 1AF 2=12×2a ×4a ×32=23a 2.设|BF 2|=m ,由双曲线定义可知|BF 1|-|BF 2|=2a ,所以|BF 1|=2a +|BF 2|,又知|BF 1|=2a +|BA |,所以|BA |=|BF 2|.又知∠BAF 2=π3,所以△BAF 2为等边三角形,边长为4a ,所以S △ABF 2=34|AB |2=34×(4a )2=43a 2,所以S △AF 1F 2S △ABF 2=23a 243a 2=12,故选B.15.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e的最大值为 53 .解析:由定义,知|PF 1|-|PF 2|=2a .又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a .当P ,F 1,F 2三点不共线时,在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1|·|PF 2| =649a 2+49a 2-4c 22·83a ·23a=178-98e 2, 即e 2=179-89cos ∠F 1PF 2.∵cos ∠F 1PF 2∈(-1,1),∴e ∈⎝ ⎛⎭⎪⎫1,53. 当P ,F 1,F 2三点共线时,∵|PF 1|=4|PF 2|,∴e =c a =53,综上,e 的最大值为53.16.已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3.(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,m ),求m 的取值范围.解:(1)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0).由已知得a =3,c =2,再由a 2+b 2=c 2,得b 2=1,所以双曲线C 的方程为x 23-y 2=1.(2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意知⎩⎪⎨⎪⎧ 1-3k 2≠0,Δ=36(1-k 2)>0,x A +x B =62k 1-3k 2<0,x A x B =-91-3k 2>0,解得33<k <1.所以当l 与双曲线左支有两个交点时,k 的取值范围为⎝ ⎛⎭⎪⎫33,1. (3)由(2)得x A +x B =62k 1-3k 2,所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2. 所以AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫32k 1-3k2,21-3k 2. 设直线l 0的方程为y =-1k x +m ,将P 点坐标代入直线l 0的方程,得m =421-3k 2. 因为33<k <1,所以-2<1-3k 2<0. 所以m <-2 2.所以m 的取值范围为(-∞,-22).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业23 简单的三角恒等变换1.已知270°<α<360°,则三角函数式 12+1212+12cos2α的化简结果是( D )A .sin α2B .-sin α2 C .cos α2 D .-cos α2 解析:12+1212+12cos2α=12+12cos 2α= 12+12cos α=cos 2α2,由于135°<α2<180°,所以cos α2<0,所以化简结果为-cos α2. 2.cos85°+sin25°cos30°cos25°等于( C ) A .-32 B .22 C .12D .1解析:原式=sin5°+32sin25°cos25°=sin (30°-25°)+32sin25°cos25° =12cos25°cos25°=12.3.(2019·广州模拟)已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,若sin α=35⎝ ⎛⎭⎪⎫π2<α<π,则f ⎝⎛⎭⎪⎫α+π12=( B ) A .-7210B .-2101010解析:因为sin α=35⎝ ⎛⎭⎪⎫π2<α<π,所以cos α=-45,f ⎝ ⎛⎭⎪⎫α+π12=sin ⎝ ⎛⎭⎪⎫α+π12+π6=sin ⎝ ⎛⎭⎪⎫α+π4=22sin α+22cos α=-210. 4.(2019·合肥质检)已知函数f (x )=sin 4x +cos 4x ,x ∈⎣⎢⎡⎦⎥⎤-π4,π4,若f (x 1)<f (x 2),则一定有( D )A .x 1<x 2B .x 1>x 2C .x 21<x 22D .x 21>x 22解析:f (x )=sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x cos 2x =14cos4x +34,4x ∈[-π,π],所以函数f (x )是偶函数,且在⎣⎢⎡⎦⎥⎤0,π4上单调递减,根据f (x 1)<f (x 2),可得f (|x 1|)<f (|x 2|),所以|x 1|>|x 2|,即x 21>x 22.5.已知α∈R ,sin α+2cos α=102,则tan2α=( C ) A .43 B .34 C .-34D .-43解析:因为sin α+2cos α=102,所以sin 2α+4cos 2α+4sin αcos α=104(sin 2α+cos 2α), 整理得3sin 2α-3cos 2α-8sin αcos α=0, 则-3cos2α=4sin2α,所以tan2α=-34.6.(2019·豫北名校联考)若函数f (x )=5cos x +12sin x 在x =θ时取得最小值,则cos θ等于( B )A .513B .-5131313解析:f (x )=5cos x +12sin x =13⎝⎛⎭⎪⎫513cos x +1213sin x = 13sin(x +α),其中sin α=513,cos α=1213, 由题意知θ+α=2k π-π2(k ∈Z ), 得θ=2k π-π2-α(k ∈Z ),所以cos θ=cos ⎝⎛⎭⎪⎫2k π-π2-α=cos ⎝⎛⎭⎪⎫π2+α=-sin α=-513.7.(2019·湖南湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则log5⎝ ⎛⎭⎪⎫tan αtan β2等于( C ) A .2 B .3 C .4D .5解析:由sin(α+β)=12, 得sin αcos β+cos αsin β=12,① 由sin(α-β)=13,得sin αcos β-cos αsin β=13,②由①②可得sin αcos β=512,cos αsin β=112. ∴tan αtan β=sin αcos βcos αsin β=512112=5.∴log5⎝ ⎛⎭⎪⎫tan αtan β2=log 525=4,故选C .8.(2019·武汉模拟)在△ABC 中,A ,B ,C 是△ABC 的内角,设函数f (A )=2sin B +C 2sin ⎝ ⎛⎭⎪⎫π-A 2+sin 2⎝ ⎛⎭⎪⎫π+A 2-cos 2A2,则f (A )的最大值为2.解析:f (A )=2cos A 2sin A 2+sin 2A 2-cos 2A2=sin A -cos A =2sin ⎝ ⎛⎭⎪⎫A -π4, 因为0<A <π,所以-π4<A -π4<3π4.所以当A -π4=π2,即A =3π4时,f (A )有最大值 2.9.已知α,β∈⎝ ⎛⎭⎪⎫0,π2,tan(α+β)=9tan β,则tan α的最大值为43. 解析:∵α,β∈⎝ ⎛⎭⎪⎫0,π2,∴tan α>0,tan β>0,∴tan α=tan(α+β-β)=tan (α+β)-tan β1+tan (α+β)·tan β=8tan β1+9tan 2β=81tan β+9tan β≤82×3=43(当且仅当1tan β=9tan β时等号成立),∴tan α的最大值为43.10.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β=-3π4.解析:依题意有⎩⎪⎨⎪⎧tan α+tan β=-3a ,tan α·tan β=3a +1,∴tan(α+β)=tan α+tan β1-tan α·tan β=-3a1-(3a +1)=1.又⎩⎪⎨⎪⎧tan α+tan β<0,tan α·tan β>0,∴tan α<0且tan β<0, ∴-π2<α<0且-π2<β<0,即-π<α+β<0,结合tan(α+β)=1, 得α+β=-3π4.11.(2019·泉州模拟)已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点P (-3,3).(1)求sin2α-tan α的值;(2)若函数f (x )=cos(x -α)cos α-sin(x -α)sin α,求函数g (x )=3f ⎝⎛⎭⎪⎫π2-2x -2f 2(x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的值域.解:(1)∵角α的终边经过点P (-3,3), ∴sin α=12,cos α=-32,tan α=-33.∴sin2α-tan α=2sin αcos α-tan α=-32+33=-36. (2)∵f (x )=cos(x -α)cos α-sin(x -α)sin α=cos x ,x ∈R ,∴g (x )=3cos ⎝ ⎛⎭⎪⎫π2-2x -2cos 2x =3sin2x -1-cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π6-1, ∵0≤x ≤2π3,∴-π6≤2x -π6≤7π6. ∴-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1, ∴-2≤2sin ⎝⎛⎭⎪⎫2x -π6-1≤1,故函数g (x )=3f ⎝ ⎛⎭⎪⎫π2-2x -2f 2(x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的值域是[-2,1].12.(2019·湛江一模)已知函数f (x )=A cos ⎝⎛⎭⎪⎫ωx -π3(A >0,ω>0)图象相邻两条对称轴的距离为π2,且f (0)=1.(1)求函数f (x )的解析式;(2)设α,β∈⎝ ⎛⎭⎪⎫0,π4,f ⎝ ⎛⎭⎪⎫α-π3=-1013,f ⎝ ⎛⎭⎪⎫β+π6=65,求tan(2α-2β)的值.解:(1)∵函数f (x )=A cos ⎝ ⎛⎭⎪⎫ωx -π3(A >0,ω>0)图象相邻两条对称轴的距离为π2,∴T 2=πω=π2,∴ω=2, 又f (0)=1,∴12A =1,∴A =2, ∴f (x )=2cos ⎝⎛⎭⎪⎫2x -π3.(2)∵α∈⎝ ⎛⎭⎪⎫0,π4,f ⎝⎛⎭⎪⎫α-π3=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α-π3-π3 =2cos(2α-π)=-2cos2α=-1013, ∴cos2α=513,sin2α=1-cos 22α=1213, 则tan2α=sin2αcos2α=125. ∵β∈⎝⎛⎭⎪⎫0,π4, f ⎝ ⎛⎭⎪⎫β+π6=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫β+π6-π3=2cos2β=65,∴cos2β=35,sin2β=1-cos 22β=45, 则tan2β=sin2βcos2β=43.∴tan(2α-2β)=tan2α-tan2β1+tan2α·tan2β=125-431+125×43=1663.13.(2019·山西临汾模拟)已知函数f (x )=sin 2x +sin x cos x ,当x =θ时函数y =f (x )取得最小值,则sin2θ+2cos2θsin2θ-2cos2θ=( C )A .-3B .3C .-13D .13解析:f (x )=sin 2x +sin x cos x =12sin2x -12cos2x +12=22sin ⎝ ⎛⎭⎪⎫2x -π4+12,当x =θ时函数y =f (x )取得最小值,即2θ-π4=2k π-π2,k ∈Z , 那么2θ=2k π-π4,k ∈Z ,则sin2θ+2cos2θsin2θ-2cos2θ=sin ⎝ ⎛⎭⎪⎫-π4+2cos ⎝ ⎛⎭⎪⎫-π4sin ⎝⎛⎭⎪⎫-π4-2cos ⎝⎛⎭⎪⎫-π4=-22+2×22-22-2×22=-13.故选C . 14.(2019·江西赣中南五校模拟)已知f (x )=sin ⎝ ⎛⎭⎪⎫2 019x +π6+cos ⎝ ⎛⎭⎪⎫2 019x -π3的最大值为A ,若存在实数x 1,x 2使得对任意实数x 总有f (x 1)≤f (x )≤f (x 2)成立,则A |x 1-x 2|的最小值为( B )A .π2 019 B .2π2 019 C .4π2 019D .π4 038解析:∵f (x )=sin ⎝⎛⎭⎪⎫2 019x +π6+cos ⎝⎛⎭⎪⎫2 019x -π3=sin2 019x cos π6+cos2 019x sin π6+cos2 019x cos π3+sin2 019x sin π3=32sin2 019x +12cos2 019x +12cos2 019x +32sin2 019x =3sin2 019x +cos2 019x =2sin ⎝ ⎛⎭⎪⎫2 019x +π6, ∴f (x )的最大值为A =2;由题意,得|x 1-x 2|的最小值为T 2=π2 019, ∴A |x 1-x 2|的最小值为2π2 019.故选B .15.定义运算⎪⎪⎪⎪⎪⎪a cb d =ad -bC .若cos α=17,⎪⎪⎪⎪⎪⎪sin αcos α sin βcos β=3314,0<β<α<π2,则β=π3 .解析:由题意有sin αcos β-cos αsin β=sin(α-β)=3314, 又0<β<α<π2,∴0<α-β<π2, 故cos(α-β)=1-sin 2(α-β)=1314, 而cos α=17,∴sin α=437, 于是sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32. 又0<β<π2,故β=π3.16.已知函数f (x )=2cos 2ωx -1+23sin ωx cos ωx (0<ω<1),直线x =π3是函数f (x )的图象的一条对称轴.(1)求函数f (x )的单调递增区间;(2)已知函数y =g (x )的图象是由y =f (x )的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝ ⎛⎭⎪⎫2α+π3=65,α∈⎝⎛⎭⎪⎫0,π2,求sin α的值. 解:(1)f (x )=cos2ωx +3sin2ωx =2sin ⎝⎛⎭⎪⎫2ωx +π6,由于直线x =π3是函数f (x )=2sin ⎝ ⎛⎭⎪⎫2ωx +π6的图象的一条对称轴, 所以2π3ω+π6=k π+π2(k ∈Z ), 解得ω=32k +12(k ∈Z ),又0<ω<1,所以ω=12,所以f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6. 由2k π-π2≤x +π6≤2k π+π2(k ∈Z ), 得2k π-2π3≤x ≤2k π+π3(k ∈Z ),所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3(k ∈Z ).(2)由题意可得g (x )=2sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x +2π3+π6, 即g (x )=2cos x2,由g ⎝ ⎛⎭⎪⎫2α+π3=2cos ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫2α+π3=2cos ⎝ ⎛⎭⎪⎫α+π6=65,得cos ⎝ ⎛⎭⎪⎫α+π6=35,又α∈⎝ ⎛⎭⎪⎫0,π2,故π6<α+π6<2π3, 所以sin ⎝⎛⎭⎪⎫α+π6=45,所以sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6·cos π6-cos ⎝⎛⎭⎪⎫α+π6·sin π6=45×32-35×12=43-310.。