人教版数学九上《第二十二章 二次函数复习(第1课时)》同课异构教案

合集下载

人教版九年级数学上册第22章《二次函数》期末复习课教案

人教版九年级数学上册第22章《二次函数》期末复习课教案

第22章二次函数期末复习课
教学目标:
知识与技能:
理解二次函数的概念,掌握二次函数y=ax2+bx+c(a≠0)的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax2(a≠0)经过适当平移得到y=a(x-h)2+k(a≠0)的图象。

会结合二次函数的图象分析问题、解决问题,并在运用中体会二次函数的实际意义,会运用二次函数求实际问题中的最大值或是最小值。

过程与方法:
会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质。

情感态度价值观:
使学生体会数学建模思想,函数思想,数形结合思想等数学思想。

教学的重点:
1.用配方法求二次函数的顶点,对称轴,根据图象概括二次函数的性质。

2.二次函数三种解析式的求法。

3.利用二次函数的知识解决数学问题,并对解决问题的方法进行反思。

教学的难点:1.将实际问题转化为二次函数,并运用二次函数性质将以解决。

2.二次函数与一元二次方程、不等式的联系,数形结合思想的渗透于应用。

3. 运用二次函数知识解决综合性的问题。

教法方法:自主学习法合作学习法
教学手段:多媒体
教学课时:1课时
教学活动:学生活动及设计意图
;⑤若抛物线顶点坐
教学活动:学生活动及设计意图
=x+b的图象交
教学活动:学生活动及设计意图
7.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象
如图,其中正确的是()
专题三:二次函数解析式的确定
求下列二次函数解析式:(学生分组完成)
1.已知二次函数的图象的顶点坐标为(-2,-3),。

人教版九年级数学上册第二十二章《二次函数》教案

人教版九年级数学上册第二十二章《二次函数》教案

第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.3.通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.4.在探究二次函数的学习活动中,体会通过探究发现的乐趣.【教学重点】结合具体情境体会二次函数的意义,掌握二次函数的有关概念.【教学难点】1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.一、情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x 之间的关系式可表示为,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?二、思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=12n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t ,第三年产量为20(1+x)(1+x)t ,得到y=20(1+x)2.【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x 2,m=12n 2-12n,y=20x 2+40x+20有哪些共同点? 【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax 2+bx+c(a,b,c 为常数,a ≠0)的函数,叫做二次函数.其中x 是自变量,a 、b 、c 分别是二次项系数,一次项系数和常数项.【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x 的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a ≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax 2,二次项系数则仅是指a 的值;同样,一次项与一次项系数也不同.教师在学生理解的情况下,引导学生做课本P29练习.三、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2);(2)y=3x(2-x)+3x 2; (3)y=21x -2x+1;(4)y=1-3x 2.2.若y=(m+1)xm 2+1-2x+3是y 关于x 的二次函数,试确定m 的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x (元)满足一次函数关系m=162-2x ,试写出商场销售这种商品的日销售利润y (元)与每件商品的销售价x (元)之间的函数关系式,y 是x 的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围).【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.【答案】1.解:(1)y=(x+2)(x-2)=x 2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.(2)y=3x(2-x)+3x 2=6x,该函数不是二次函数.(3)该函数不是二次函数.(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.2.解:∵()21123m y m x x +=+-+是y 关于x 的二次函数.∴m+1≠0且m 2+1=2,∴m≠-1且m2=1,∴m=1.3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30)即y=-3x2+252x-4860由此可知y是x的二次函数.4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.四、师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件.【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.1.布置作业:教材习题22.1第1、2、7题;2.完成创优作业中本课时练习的“课时作业”部分.本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.22.1.2 二次函数y=ax2的图象和性质1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.3.通过画出简单的二次函数y=x2,y=-12x2等探索出二次函数y=ax2的性质及图象特征.4.使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.一、情境导入,初步认识问题1在八年级下册,我们学习的一次函数的图象是一条直线,二次函数的图象是什么形状呢?通常怎样画一个函数的图象?【教学说明】通过对问题1的思考,可激发学生的求知欲望,想尝试运用列表法画出一个二次函数的图象.问题2 你能画出二次函数y=x2的图象吗?【教学说明】学生分组画y=x2的图象,教师巡视,对于不正确的给予指导,尤其应关注学生的列表和连线,然后给予讲评,提醒注意的问题,并让学生发表不同的意见,达成共识.二、思考探究,获取新知问题1你能说说二次函数y=x2的图象有哪些特征吗?不妨试试看,并与同伴交流.【教学说明】教师应在学生的交流过程中,听取他们各自的看法,对于通过观察而归纳出的结论叙述较好的给予肯定,对不够完整的或叙述欠佳的学生给予鼓励,并予以诱导.在这一活动过程中,让学生们逐步积累对二次函数y=ax2的图象及其简单性质的感性认识.问题2请在同一坐标系中,画出下列函数的图象,并通过图象谈谈它们的特征及其差异.y=12x2与y=2x2.【教学说明】在这一活动过程中,教师可将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.教师巡视,适时点拨,最后在黑板上与全班同学一起进行归纳总结.问题3(1)在同一直面坐标系中,画出函数y=-x2,y=-12x2,y=-2x2的图象,并考虑这些抛物线有什么共同点和不同点?(2)当a<0时,二次函数y=ax2的图象有什么特点?【教学说明】教师在处理问题时可让学生画图后回答,可让学生从开口方向、最值、增减性三个方面作答,最后教师以课件方式展示结论.【归纳结论】1.二次函数y=ax2的图象是一条开口向上或向下的抛物线.一般地,二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.2.二次函数y=ax2的图象及其性质,如下表所示:3.二次函数y=ax2的开口大小与a的关系:|a|越大,开口越小;|a|越小,开口越大.|a|值相同,开口形状相同.【教学说明】针对师生共同完成的归纳总结,教师应着重强调两点:(1)a 的符号决定着抛物线的开口方向,|a|的大小,影响抛物线的开口大小;(2)对于函数的增减性及最大(小)值,教师应引导学生通过图象进行分析,利用图象的直观性获得结论,切忌死记硬背,让同学感受到数形结合思想方法是函数问题中最重要的思想方法之一,增强他们的学习兴趣.三、运用新知,深化理解1.若抛物线y=ax2与y=4x2的形状及开口方向均相同,则a= .2.下列关于二次函数y=ax2(a≠0)的说法中,错误的是()A.它的图象的顶点是原点B.当a<0,在x=0时,y取得最大值C.a 越大,图象开口越小;a 越小,图象开口越大D.当a>0,在x>0时,y 随x 的增大而增大3.请在同一坐标系中画出函数y 1=x 和y 2=-x 2的图象,结合图象,指出当x 取何值时,y 1>y 2;当x 取何值时,y 1<y 2.4.一个二次函数,它的图象的顶点是原点,对称轴是y 轴,且经过点(-1,14). (1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)根据图象指出,当x>0时,若x 增大,y 怎样变化?当x<0时,若x 增大,y 怎样变化?(4)当x 取何值时,y 有最大(或最小)值,其值为多少?【教学说明】本环节易采用先让学生独立思考,再以小组交流的方式展开.其中题2、3、4均是集图象与性质于一体,鼓励学生用自己的语言叙述,逐步渗透用数学语言进行说理的能力,同时进一步体现数形结合的思想.【答案】1.42.C 【解析】当a>0时,a 值越大,开口越小,a 值越小,开口越大;当a<0时,a 值越大,开口越大,a 值越小,开口越小.所以C 项说法不对.3.列表如下:如图所示:根据图象可知,当x>0或x<-1时,y1>y2,当-1<x<0时,y2>y1.4.解:(1)设这个二次函数解析式为y=ax2,将(-1,14)代入得a=14,所以y=14x2.(2)略(3)当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.(4)当x=0时,y有最小值,y最小值=0.四、师生互动,课堂小结1.画二次函数y=ax2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax2的性质的?3.本节课你还存在哪些疑问?【教学说明】问题1旨在提醒学生画图过程中列表时应以原点为中心,左右对称选取点,连线时应用光滑曲线连接;问题2是为了进一步突出数形结合思想在函数问题的解决过程中的重要性;而问题3是想了解学生哪部分没学好,难学,以便教师可以进行针对性辅导.1.布置作业:教材习题22.1第3、4、11题.2.完成创优作业中本课时练习的“课时作业”部分.本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.4.通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.5.在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.一、情境导入,初步认识问题1请同学们谈谈一次函数y=x与y=x+2的图象之间的关系;问题2同样地,你能猜想出二次函数y=x2与y=x2+1的图象之间有何关系吗?【教学说明】问题1既是复习旧知识,同时又为解决本节知识起到抛砖引玉的作用.学生的回答也许形式多样,教师适时诱导,并设疑,为后面的解惑作铺垫.二、思考探究,获取新知问题1在同一坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.请观察图象,谈谈它们有哪些相同点和不同点,并指明这两个图象的关系如何?【教学说明】在学生自主操作时,教师应指导它们在画平面直角坐标系时的单位长度要稍大一些,如选取0.8cm或1cm为一个单位长度为好,这样学生们所画出的图形才有可能清晰些.教师应巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.问题2(教材第33页练习)在同一直角坐标中,画出下列二次函数的图象y=12x2,y=12x2+2,y=12x2-2,观察三条抛物线的位置关系并分别指出它们的开口方向、对称轴和顶点.你能说出抛物线y=12x2+k的开口方向、对称轴和顶点吗?它与抛物线y=12x2有什么关系?【教学说明】设计问题2,一方面进一步增强学生的画图能力,另一方面加深学生的感性认识,从而形成对二次函数y=ax2+k的图象及其性质的初步认识.同伴间应相互交流,教师巡视指导,然后完成课本第33页练习.【归纳结论】1.二次函数y=ax2+k的图象可以由y=ax2的图象通过上、下平移得到.2.y=ax2与y=ax2+k的性质如下:三、运用新知,深化理解1.抛物线y=3x2可以看作是抛物线y=3x2-4向平移得到的.2.已知抛物线y=ax2+k与抛物线y=-2x2的形状相同,且图象到x轴的最近点的距离为3,求a、k的值,并指出抛物线y=ax2+k的开口方向,对称轴和顶点坐标.【教学说明】针对本节所学内容及学生掌握的情况,设计训练题1,2,目的是加深学生对新知识的理解,能灵活运用所学知识解决简单的问题.教师在这个过程中要予以诱导.【答案】略四、师生互动,课堂小结本环节师生共同回顾所学知识,如y=ax2+k的图象特征,函数的增减性等,并对可能出现的困难、疑问给予整理,进行辨析.完成创优作业中本课时练习的“课时作业”部分.本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.第2课时二次函数y=a(x-h)2的图象和性质1.能画出二次函数y=a(x-h)2的图象;2.了解抛物线y=ax2与抛物线y=a(x-h)2的联系;3.掌握二次函数y=a(x-h)2的图象特征及其简单性质.4.通过动手操作、观察比较、分析思考、规律总结等活动过程完成对二次函数y=a(x-h)2的图象及其性质的认知.5.在学生学习活动过程中,使他们进一步体会数形结合的思想方法,培养创造性思维能力和动手实践能力,增强学习兴趣、激发学习欲望.【教学重点】1.掌握二次函数y=a(x-h)2的图象及性质;2.二次函数y=ax2与y=a(x-h)2图象之间的联系.【教学难点】利用二次函数y=a(x-h)2的性质解决实际问题.一、情境导入,初步认识我们知道,二次函数y=ax2-2的图象可以由函数y=ax2的图象向下平移得到,那么函数y=12(x-2)2的图象是否可以由函数y=12x2的图象经过平移而得到呢?二、思考探究,获取新知问题在同一坐标系中画出二次函数y=-12(x+1)2,y=-12(x-1)2的图象,指出它们的开口方向、对称轴和顶点坐标;并结合图象,说说抛物线y=-12x2, y=-12(x+1)2,y=-12(x-1)2的关系.【教学说明】在教学过程中,学生独立思考后,合作完成.教师巡视指导,针对学生在画图、探究过程中可能出现的错误给予指正,对好的给予表扬,并展示其图象,在合作交流过程中探索出抛物线y=-12(x+1)2,y=-12(x-1)2与y=-12x2的联系.【归纳结论】函数y=ax2与y=a(x-h)2的图象及其性质如下表:三、运用新知,深化理解【设计说明】针对本节知识,设计了以下几道题,及时了解学生运用新知解决问题的能力,查漏补缺.1.抛物线y=3(x-3)2的开口方向是向,对称轴是,顶点是.2.若抛物线y=a(x-h)2的顶点是(-3,0),它是由抛物线y=-2x2通过平移而得到的,则a= ,h= .【教学说明】这两道题可采用抢答的形式来处理,可适当让学生说明其解题思路或依据.【答案】1.上x=3 (3,0)2.-2-3四、师生互动,课堂小结1.抛物线y=ax2与y=ax2+c和抛物线y=ax2与y=a(x-h)2有哪些共同点,又有哪些不同点?同伴间可相互交流.2.将抛物线y=ax2上下平移与左右平移所得到的表达式在形式上有何区别?3.课本第35页练习.【设计及教学说明】对所给两个问题的思考,让学生亲历知识的自主建构,不断完善自己的知识结构.完成创优作业中本课时练习的“课时作业”部分.本课时教学仍在于着重培养学生的比较和判断能力,通过比较找出异同点,从而进一步归纳性质,并通过练习使学生从“练”中“悟”,形成函数意识.第3课时二次函数y=a(x-h)2+k的图象和性质1.会用描点法画出二次函数y=a(x-h)2+k(a≠0)的图象;2.掌握抛物线y=ax2与y=a(x-h)2+k之间的平移规律;3.依据具体问题情境建立二次函数y=a(x-h)2+k模型来解决实际问题.4.通过“活动探究——观察思考——运用迁移”等三个环节来获取新知识,掌握新技能,解决新问题.5.进一步培养学生观察能力、抽象概括能力,渗透数形结合、从特殊到一般的思想方法,了解从特殊到一般的辩证关系.【教学重点】二次函数y=a(x-h)2+k(a≠0)的图象及其性质.【教学难点】1.二次函数y=a(x-h)+k与y=ax2(a≠0)的图象之间的平移关系;2.通过对图象的观察,分析规律,归纳性质.一、情境导入,初步认识问题将抛物线y=-12x2向下平移1个单位,所得到的抛物线表达式是什么?若再将它向左平移1个单位呢?【教学说明】学生通过对前两节课所学习的上、下平移和左、右平移规律的回顾与思考,在尝试解决问题的过程中,可增强他们的学习兴趣,激发求知欲望,也为新知识的学习做好铺垫.学生们可相互交流,教师对其结论可暂不作评价.二、思考探究,获取新知问题1 画出二次函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点坐标.问题2 请在问题1中所在的平面直角坐标系内,画出抛物线y=-12x2,及抛物线y=-12(x+1)2,y=-12x2-1,观察所得到的四个抛物线,你能发现什么?问题3请依据问题2中你的发现,说说抛物线y=a(x-h)2+k是由抛物线y=ax2(a ≠0)通过怎样的平移而得到的?并说说它的对称轴和顶点坐标.【教学说明】教师可给予15~20分钟的时间让学生自主探究,画出图象,并让学生们交流,获得感性认识.教师巡视,鼓励每个学生积极参与进来,针对个别同学,应适时予以点拨.如果条件允许,对学生的成果可通过多媒体展示.【归纳结论】1.一般地,抛物线y=a(x-h)2+k与抛物线y=ax2的形状相同(因为a值相同),而位置不同.将抛物线y=ax2上下平移,可得到抛物线y=ax2+k(k >0时,向上平移k个单位;k<0时,向下平移-k个单位),再将抛物线y=ax2+k 左右平移后,可得到抛物线y=a(x-h)2+k(h>0时,向右平移;h<0时,向左平移).2.抛物线y=a(x-h)2+k的性质:(1)a>0时,开口向上;a<0时,开口向下;(2)对称轴是直线x=h;(3)顶点坐标是(h,k).【教学说明】1.通过探究,师生共同交流,达成共识后,教师在黑板上与学生一道进行归纳,了解并掌握本课时知识.2.此时教师可对问题情境中的问题1作出评价,让学生体验成功的快乐.3.归纳结论完成后,教师引导学生做第37页练习,可让学生采取举手抢答的形式进行.三、典例精析,掌握新知例(教材第36页例4)要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数是y=a(x-1)2+3(0≤x≤3).由这段抛物线经过点(3,0)可得0=a(3-1)2+3,解得a=-34.因此y=-34(x-1)2+3(0≤x≤3).当x=0时,y=2.25,也就是说,水管应长2.25m.【教学说明】教师讲解此例时,可向学生提问:(1)坐标系的原点为什么建立在池中心点?(2)自变量的取值范围为什么是0≤x≤3?(3)设函数解析式有什么诀窍?四、运用新知,深化理解【设计说明】针对本节所学知识,通过几道小题进行演练,巩固所学新知识,并依据学生的完成情况,教师可适时予以查漏补缺.1.抛物线y=-3(x+2)2-4的顶点坐标是,当x 时,函数值y随x的增大而增大.2.若抛物线的对称轴为x=-1,与x轴的一个交点坐标为(1,0),则这条抛物线与x轴的另一个交点是.3.已知二次函数的图象顶点坐标为(-4,3),且经过坐标原点,则这个二次函数的表达式是.4.已知二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到抛物线y=-12(x+1)2+3.(1)试确定a,h,k的值;(2)指出二次函数y=a(x-h)2+k图象的开口方向,对称轴和顶点坐标.5.将抛物线y=2(x-1)2+3作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向.【教学说明】第1,2题较为简单,可采用抢答形式来处理,第3小题应引导学生设出所求的二次函数表达式为y=a(x-h)2+k的形式,第4、5题为选做题,教师可根据教学实际选择做或不做.五、师生互动,课堂小结1.抛物线y=a(x-h)2+k(a≠0)的特征有哪些?2.如果解抛物线的顶点坐标(或对称轴或最低点等),要想确定该抛物线表达式,如何设出这个表达式更有利于求解呢?【设计及教学说明】问题1侧重于所学知识回顾,而问题2侧重于应用,为后继学习做好铺垫.教学时,教师应予以评讲.1.布置作业:教材习题22.1第5题.2.完成创优作业中本课时练习的“课时作业”部分.前面的几个课时是从最基本的二次函数图象入手开始探索,已初步对二次函数的性质进行了归纳,因此本课时的内容算是对前面内容的小结.所以教学时教师应大胆放手让学生自主归纳与探究,教师给予引导和提示并让学生适时进行练习,以巩固所学,在这一过程中应注意渗透数形结合的思想方法.22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.4.通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.5.经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.一、情境导入,初步认识问题1请说出抛物线y=ax2+k,y=a(x-h)2,y=a(x-h)2+k的开口方向、对称轴和顶点坐标.问题2你知道二次函数y=12x2-6x+21的图象的开口方向,对称轴和顶点坐标吗?【教学说明】问题1设计的目的既是对前面所学知识进行简单的回顾,又为本节知识的学习展示着方法和思路,学生处理起来较为简单,可采用抢答形式来处理.问题2设计的目的在于制造认知冲突,激发学生的求知欲望,学生在处理问题2时可能有些困难,教师适时诱导,引入新课.。

最新人教版九年级数学上册教案:第二十二章二次函数

最新人教版九年级数学上册教案:第二十二章二次函数

最新人教版九年级数学上册教案:第二十二章二次函数第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数【知识与技能】1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.【过程与方法】通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.【情感态度】在探究二次函数的学习活动中,体会通过探究发现的乐趣.【教学重点】结合具体情境体会二次函数的意义,掌握二次函数的有关概念.【教学难点】1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.一、情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x 之间的关系式可表示为,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?二、思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=12n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t,第三年产量为20(1+x)(1+x)t,得到y=20(1+x)2.【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x2,m=12n2-12n,y=20x2+40x+20有哪些共同点?【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫做二次函数.其中x是自变量,a、b、c分别是二次项系数,一次项系数和常数项.【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax2,二次项系数则仅是指a的值;同样,一次项与一次项系数也不同.教师在学生理解的情况下,引导学生做课本P29练习.三、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2);(2)y=3x(2-x)+3x 2; (3)y=21x-2x+1; (4)y=1-3x 2.2.若y=(m+1)xm 2+1-2x+3是y 关于x 的二次函数,试确定m 的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x (元)满足一次函数关系m=162-2x ,试写出商场销售这种商品的日销售利润y (元)与每件商品的销售价x (元)之间的函数关系式,y 是x 的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,每一横行共有块瓷砖,每一竖列共有块瓷砖(均用含n 的代数式表示);(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围).【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.【答案】1.解:(1)y=(x+2)(x-2)=x 2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.(2)y=3x(2-x)+3x 2=6x,该函数不是二次函数.(3)该函数不是二次函数.(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.2.解:∵()21123m y m x x +=+-+是y 关于x 的二次函数.∴m+1≠0且m 2+1=2,∴m ≠-1且m 2=1,∴m=1.3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得: y=(162-3x)(x-30)即y=-3x 2+252x-4860由此可知y 是x 的二次函数.4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n 个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n 2+5n+6.四、师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax 2+bx+c 中a ≠0,a 、b 、c 为常数的条件.【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.1.布置作业:教材习题22.1第1、2、7题;2.完成创优作业中本课时练习的“课时作业”部分.本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.22.1.2 二次函数y=ax2的图象和性质【知识与技能】1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式. 【过程与方法】通过画出简单的二次函数y=x2,y=-12x2等探索出二次函数y=ax2的性质及图象特征.【情感态度】使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.一、情境导入,初步认识问题1在八年级下册,我们学习的一次函数的图象是一条直线,二次函数的图象是什么形状呢?通常怎样画一个函数的图象?【教学说明】通过对问题1的思考,可激发学生的求知欲望,想尝试运用列表法画出一个二次函数的图象.问题2 你能画出二次函数y=x2的图象吗?【教学说明】学生分组画y=x2的图象,教师巡视,对于不正确的给予指导,尤其应关注学生的列表和连线,然后给予讲评,提醒注意的问题,并让学生发表不同的意见,达成共识.二、思考探究,获取新知问题1你能说说二次函数y=x2的图象有哪些特征吗?不妨试试看,并与同伴交流.【教学说明】教师应在学生的交流过程中,听取他们各自的看法,对于通过观察而归纳出的结论叙述较好的给予肯定,对不够完整的或叙述欠佳的学生给予鼓励,并予以诱导.在这一活动过程中,让学生们逐步积累对二次函数y=ax2的图象及其简单性质的感性认识.问题2请在同一坐标系中,画出下列函数的图象,并通过图象谈谈它们的特征及其差异.y=12x2与y=2x2.【教学说明】在这一活动过程中,教师可将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.教师巡视,适时点拨,最后在黑板上与全班同学一起进行归纳总结.问题3(1)在同一直面坐标系中,画出函数y=-x2,y=-12x2,y=-2x2的图象,并考虑这些抛物线有什么共同点和不同点?(2)当a<0时,二次函数y=ax2的图象有什么特点?【教学说明】教师在处理问题时可让学生画图后回答,可让学生从开口方向、最值、增减性三个方面作答,最后教师以课件方式展示结论.【归纳结论】1.二次函数y=ax2的图象是一条开口向上或向下的抛物线.一般地,二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.2.二次函数y=ax2的图象及其性质,如下表所示:3.二次函数y=ax2的开口大小与a的关系:|a|越大,开口越小;|a|越小,开口越大.|a|值相同,开口形状相同.【教学说明】针对师生共同完成的归纳总结,教师应着重强调两点:(1)a 的符号决定着抛物线的开口方向,|a|的大小,影响抛物线的开口大小;(2)对于函数的增减性及最大(小)值,教师应引导学生通过图象进行分析,利用图象的直观性获得结论,切忌死记硬背,让同学感受到数形结合思想方法是函数问题中最重要的思想方法之一,增强他们的学习兴趣.三、运用新知,深化理解1.若抛物线y=ax2与y=4x2的形状及开口方向均相同,则a= .2.下列关于二次函数y=ax2(a≠0)的说法中,错误的是()A.它的图象的顶点是原点B.当a<0,在x=0时,y取得最大值C.a 越大,图象开口越小;a 越小,图象开口越大D.当a>0,在x>0时,y 随x 的增大而增大3.请在同一坐标系中画出函数y 1=x 和y 2=-x 2的图象,结合图象,指出当x 取何值时,y 1>y 2;当x 取何值时,y 1<="" bdsfid="233" p="">4.一个二次函数,它的图象的顶点是原点,对称轴是y 轴,且经过点(-1,14). (1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)根据图象指出,当x>0时,若x 增大,y 怎样变化?当x<0时,若x 增大,y 怎样变化?(4)当x 取何值时,y 有最大(或最小)值,其值为多少?【教学说明】本环节易采用先让学生独立思考,再以小组交流的方式展开.其中题2、3、4均是集图象与性质于一体,鼓励学生用自己的语言叙述,逐步渗透用数学语言进行说理的能力,同时进一步体现数形结合的思想.【答案】1.42.C 【解析】当a>0时,a 值越大,开口越小,a 值越小,开口越大;当a<0时,a 值越大,开口越大,a 值越小,开口越小.所以C 项说法不对.3.列表如下:如图所示:根据图象可知,当x>0或x<-1时,y1>y2,当-1<xy1.</x4.解:(1)设这个二次函数解析式为y=ax2,将(-1,14)代入得a=14,所以y=14x2.(2)略(3)当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.(4)当x=0时,y有最小值,y最小值=0.四、师生互动,课堂小结1.画二次函数y=ax2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax2的性质的?3.本节课你还存在哪些疑问?【教学说明】问题1旨在提醒学生画图过程中列表时应以原点为中心,左右对称选取点,连线时应用光滑曲线连接;问题2是为了进一步突出数形结合思想在函数问题的解决过程中的重要性;而问题3是想了解学生哪部分没学好,难学,以便教师可以进行针对性辅导.1.布置作业:教材习题22.1第3、4、11题.2.完成创优作业中本课时练习的“课时作业”部分.本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.一、情境导入,初步认识问题1请同学们谈谈一次函数y=x与y=x+2的图象之间的关系;问题2同样地,你能猜想出二次函数y=x2与y=x2+1的图象之间有何关系吗?【教学说明】问题1既是复习旧知识,同时又为解决本节知识起到抛砖引玉的作用.学生的回答也许形式多样,教师适时诱导,并设疑,为后面的解惑作铺垫.二、思考探究,获取新知问题1在同一坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.请观察图象,谈谈它们有哪些相同点和不同点,并指明这两个图象的关系如何?【教学说明】在学生自主操作时,教师应指导它们在画平面直角坐标系时的单位长度要稍大一些,如选取0.8cm或1cm为一个单位长度为好,这样学生们所画出的图形才有可能清晰些.教师应巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.问题2(教材第33页练习)在同一直角坐标中,画出下列二次函数的图象y=12x2,y=12x2+2,y=12x2-2,观察三条抛物线的位置关系并分别指出它们的开口方向、对称轴和顶点.你能说出抛物线y=12x2+k的开口方向、对称轴和顶点吗?它与抛物线y=12x2有什么关系?【教学说明】设计问题2,一方面进一步增强学生的画图能力,另一方面加深学生的感性认识,从而形成对二次函数y=ax2+k的图象及其性质的初步认识.同伴间应相互交流,教师巡视指导,然后完成课本第33页练习.【归纳结论】1.二次函数y=ax2+k的图象可以由y=ax2的图象通过上、下平移得到.2.y=ax2与y=ax2+k的性质如下:三、运用新知,深化理解1.抛物线y=3x2可以看作是抛物线y=3x2-4向平移得到的.2.已知抛物线y=ax2+k与抛物线y=-2x2的形状相同,且图象到x轴的最近点的距离为3,求a、k的值,并指出抛物线y=ax2+k的开口方向,对称轴和顶点坐标.【教学说明】针对本节所学内容及学生掌握的情况,设计训练题1,2,目的是加深学生对新知识的理解,能灵活运用所学知识解决简单的问题.教师在这个过程中要予以诱导.【答案】略四、师生互动,课堂小结本环节师生共同回顾所学知识,如y=ax2+k的图象特征,函数的增减性等,并对可能出现的困难、疑问给予整理,进行辨析.完成创优作业中本课时练习的“课时作业”部分.本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.第2课时二次函数y=a(x-h)2的图象和性质【知识与技能】1.能画出二次函数y=a(x-h)2的图象;2.了解抛物线y=ax2与抛物线y=a(x-h)2的联系;3.掌握二次函数y=a(x-h)2的图象特征及其简单性质.【过程与方法】通过动手操作、观察比较、分析思考、规律总结等活动过程完成对二次函数y=a(x-h)2的图象及其性质的认知.【情感态度】在学生学习活动过程中,使他们进一步体会数形结合的思想方法,培养创造性思维能力和动手实践能力,增强学习兴趣、激发学习欲望.【教学重点】1.掌握二次函数y=a(x-h)2的图象及性质;2.二次函数y=ax2与y=a(x-h)2图象之间的联系.【教学难点】利用二次函数y=a(x-h)2的性质解决实际问题.一、情境导入,初步认识我们知道,二次函数y=ax2-2的图象可以由函数y=ax2的图象向下平移得到,那么函数y=12(x-2)2的图象是否可以由函数y=12x2的图象经过平移而得到呢?二、思考探究,获取新知问题在同一坐标系中画出二次函数y=-12(x+1)2,y=-12(x-1)2的图象,指出它们的开口方向、对称轴和顶点坐标;并结合图象,说说抛物线y=-12x2, y=-12(x+1)2,y=-12(x-1)2的关系.【教学说明】在教学过程中,学生独立思考后,合作完成.教师巡视指导,针对学生在画图、探究过程中可能出现的错误给予指正,对好的给予表扬,并展示其图象,在合作交流过程中探索出抛物线y=-12(x+1)2,y=-12(x-1)2与y=-12x2的联系.【归纳结论】函数y=ax2与y=a(x-h)2的图象及其性质如下表:三、运用新知,深化理解【设计说明】针对本节知识,设计了以下几道题,及时了解学生运用新知解决问题的能力,查漏补缺.1.抛物线y=3(x-3)2的开口方向是向,对称轴是,顶点是.2.若抛物线y=a(x-h)2的顶点是(-3,0),它是由抛物线y=-2x2通过平移而得到的,则a= ,h= .【教学说明】这两道题可采用抢答的形式来处理,可适当让学生说明其解题思路或依据.【答案】1.上x=3 (3,0)2.-2-3四、师生互动,课堂小结1.抛物线y=ax2与y=ax2+c和抛物线y=ax2与y=a(x-h)2有哪些共同点,又有哪些不同点?同伴间可相互交流.2.将抛物线y=ax2上下平移与左右平移所得到的表达式在形式上有何区别?3.课本第35页练习.【设计及教学说明】对所给两个问题的思考,让学生亲历知识的自主建构,不断完善自己的知识结构.完成创优作业中本课时练习的“课时作业”部分.本课时教学仍在于着重培养学生的比较和判断能力,通过比较找出异同点,从而进一步归纳性质,并通过练习使学生从“练”中“悟”,形成函数意识.第3课时二次函数y=a(x-h)2+k的图象和性质【知识与技能】1.会用描点法画出二次函数y=a(x-h)2+k(a≠0)的图象;2.掌握抛物线y=ax2与y=a(x-h)2+k之间的平移规律;3.依据具体问题情境建立二次函数y=a(x-h)2+k模型来解决实际问题.【过程与方法】通过“活动探究——观察思考——运用迁移”等三个环节来获取新知识,掌握新技能,解决新问题.【情感态度】进一步培养学生观察能力、抽象概括能力,渗透数形结合、从特殊到一般的思想方法,了解从特殊到一般的辩证关系.【教学重点】二次函数y=a(x-h)2+k(a≠0)的图象及其性质.【教学难点】1.二次函数y=a(x-h)+k与y=ax2(a≠0)的图象之间的平移关系;2.通过对图象的观察,分析规律,归纳性质.一、情境导入,初步认识问题将抛物线y=-12x2向下平移1个单位,所得到的抛物线表达式是什么?若再将它向左平移1个单位呢?【教学说明】学生通过对前两节课所学习的上、下平移和左、右平移规律的回顾与思考,在尝试解决问题的过程中,可增强他们的学习兴趣,激发求知欲望,也为新知识的学习做好铺垫.学生们可相互交流,教师对其结论可暂不作评价.二、思考探究,获取新知问题1 画出二次函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点坐标.问题2 请在问题1中所在的平面直角坐标系内,画出抛物线y=-1 2x2,及抛物线y=-12(x+1)2,y=-12x2-1,观察所得到的四个抛物线,你能发现什么?问题3请依据问题2中你的发现,说说抛物线y=a(x-h)2+k是由抛物线y=ax2(a ≠0)通过怎样的平移而得到的?并说说它的对称轴和顶点坐标.【教学说明】教师可给予15~20分钟的时间让学生自主探究,画出图象,并让学生们交流,获得感性认识.教师巡视,鼓励每个学生积极参与进来,针对个别同学,应适时予以点拨.如果条件允许,对学生的成果可通过多媒体展示.【归纳结论】1.一般地,抛物线y=a(x-h)2+k与抛物线y=ax2的形状相同(因为a值相同),而位置不同.将抛物线y=ax2上下平移,可得到抛物线y=ax2+k(k >0时,向上平移k个单位;k<0时,向下平移-k个单位),再将抛物线y=ax2+k 左右平移后,可得到抛物线y=a(x-h)2+k(h>0时,向右平移;h<0时,向左平移).2.抛物线y=a(x-h)2+k的性质:(1)a>0时,开口向上;a<0时,开口向下;(2)对称轴是直线x=h;(3)顶点坐标是(h,k).【教学说明】1.通过探究,师生共同交流,达成共识后,教师在黑板上与学生一道进行归纳,了解并掌握本课时知识.2.此时教师可对问题情境中的问题1作出评价,让学生体验成功的快乐.3.归纳结论完成后,教师引导学生做第37页练习,可让学生采取举手抢答的形式进行.三、典例精析,掌握新知例(教材第36页例4)要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数是y=a(x-1)2+3(0≤x≤3).由这段抛物线经过点(3,0)可得0=a(3-1)2+3,解得a=-34.因此y=-34(x-1)2+3(0≤x≤3).当x=0时,y=2.25,也就是说,水管应长2.25m.【教学说明】教师讲解此例时,可向学生提问:(1)坐标系的原点为什么建立在池中心点?(2)自变量的取值范围为什么是0≤x≤3?(3)设函数解析式有什么诀窍?四、运用新知,深化理解【设计说明】针对本节所学知识,通过几道小题进行演练,巩固所学新知识,并依据学生的完成情况,教师可适时予以查漏补缺.1.抛物线y=-3(x+2)2-4的顶点坐标是,当x 时,函数值y随x的增大而增大.2.若抛物线的对称轴为x=-1,与x轴的一个交点坐标为(1,0),则这条抛物线与x轴的另一个交点是.3.已知二次函数的图象顶点坐标为(-4,3),且经过坐标原点,则这个二次函数的表达式是.4.已知二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到抛物线y=-12(x+1)2+3.(1)试确定a,h,k的值;(2)指出二次函数y=a(x-h)2+k图象的开口方向,对称轴和顶点坐标.5.将抛物线y=2(x-1)2+3作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向.【教学说明】第1,2题较为简单,可采用抢答形式来处理,第3小题应引导学生设出所求的二次函数表达式为y=a(x-h)2+k的形式,第4、5题为选做题,教师可根据教学实际选择做或不做.五、师生互动,课堂小结1.抛物线y=a(x-h)2+k(a≠0)的特征有哪些?。

数学人教版九年级上册第二十二章:二次函数复习教案

数学人教版九年级上册第二十二章:二次函数复习教案

单位:桦川县第三中学 教师:王敏 日期: 审阅签字:课题 二次函数复习教学目标 二次函数的三种解析式形式 二次函数的图像与性质的综合应用教学重点、难点1、二次函数与其他函数共存问题2、根据二次函数图像,确定解析式系数符号3、根据二次函数图像的对称性、增减性解决相应的综合问题 教学方法数形结合法、讲授法、练习法教学过程二次函数复习知识点1.二次函数的定义二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据. 例1、下列函数中,二次函数的是( )A .y=ax 2+bx+cB 、2)1()2)(2(---+=x x x yC 、xx y 12+= D 、y=x(x —1) 例2、如果函数1)3(232++-=+-mx x m y m m是二次函数,那么m 的值为知识点2.二次函数的图像及性质1、已知一个二次函数,确定它的图象名称、开口方向、对称轴、顶点坐标、增减范围、极值。

已知条件中含二次函数开口方向或对称轴、顶点坐标、增减范围、极值,求解析中待定系数的取值。

(1)、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. (2)、二次函数 c bx ax y ++=2,当0>a 时⇔抛物线开口向上⇔顶点为其最低点;当0<a 时⇔抛物线开口向下⇔顶点为其最高点(3)、对于y=ax 2+bx+c 而言,其顶点坐标为( ,).对于y=a (x -h )2+k 而言其顶点坐标为( , )。

二次函数c bx ax y ++=2用配方法或公式法(求h 时可用代入法)可化成:k h x a y +-=2)(的形式,其中h= ,k=例1、抛物线1822-+-=x x y 的图象的开口方向是_____, 顶点坐标是_ ___. 例2、若抛物线232)1(2-++-=m mx x m y 的最低点在x 轴上,则m 的值为 (4)、二次函数 c bx ax y ++=2的对称轴为直线x=-2ba运用抛物线的对称性求对称轴,由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线段的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.若抛物线上有两点A (m,n )、B(p,n)的纵坐标相等,则它的对称轴为直线x=2pm +例3、已知A 、B 是抛物线243y x x =-+上位置不同的两点,且关于抛物线的对称轴对称,则点A 、B 的坐标可能是_____________.(写出一对即可)(5)增减性:二次函数 c bx ax y ++=2的增减性分对称轴左右两侧描述(数形结合理解它的增减性)若0>a ,当x 时(在对称轴 侧),y 随x 的增大而增大,当x 时(在对称轴 侧),y 随x 的增大而减小,若0<a ,当x 时(在对称轴 侧),y 随x 的增大而增大,当x 时(在对称轴 侧),y 随x 的增大而减小,例4、已知抛物线2y ax bx c =++(a >0)的对称轴为直线1x =,且经过点()()212y y -1,,,,试比较1y 和2y 的大小:1y _2y (填“>”,“<”或“=”)例5、二次函数542+-=mx x y ,当2-<x 时,y 随x 的增大而减小;当2->x 时,y 随x 的增大而增大。

人教版-数学-九年级上册-22.1.1二次函数同步教案

人教版-数学-九年级上册-22.1.1二次函数同步教案

22.1.1二次函数教学目标1.经历二次函数的概念的概括过程,进一步培养学生观察、分析、概括和转化你的能力以及准确而迅速的运算能力。

2.理解二次函数的概念和解析式。

教学重点 二次函数的概念 教学难点建立二次函数的数学模型教学过程一、新课导入问题1:正方体的六个面都是什么图形?(全等的正方形)(1)设正方体的棱长确定之后,正方体的表面积是否也随之确定了?y 是x 的函数吗?(2)x 的值是否可以任意取?如果不能任意取,请求出它的范围。

x 的值不能任意取,其范围是x ≥0.(3)求y 与x 的函数关系式。

y=62x (x ≥0).问题2:n 个球队参加比赛,每两个对之间进行一场比赛,比赛的场次数m 与球队数n 有什么关系?师生合作:每个队要与其他(n-1)个球队各比赛一场,甲队对乙对的比赛与乙对对甲队的比赛是同一场比赛。

所以比赛的场次数m=)1(21-n n ,即n n m 21212-= 问题3:某种产品现在的年产量是20t,计划今后两年增加产量。

如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产;量y 将随计划所定的值而确定,y 与x 之间的关系应怎样表示?师生合作探究:这种产品的原产量是20t,一年后的产量是20(1+x)t,再经过一年后的产量是20(1+x )(1+x)t,即两年后的产量y=20(1+x)2,即y=2040202++x x 二、探究新知教师引导学生观察函数关系式,提出以下问题让学生思考回答:上述函数关系式的自变量各有几个?上述函数关系式有什么共同点?师生共同探究:都是用自变量的二次多项式来表示的。

教师总结二次函数的定义:一般地,形如y=c bx ax ++2(a,b,c 是常数,a ≠0)的函数,叫做x 的二次函数。

其中,x 是自变量,a,b,c 分别是函数解析式的二次项的系数、一次项的系数和常数项。

提出问题:概念中的二次项的系数a 为什么不能是0?b 和c 可以是0吗?如果b 和c 有一个0,上面的函数式可以改写成怎样?你认为他们还是二次函数吗?如果b 和c 全为0,上面的函数式可以改写成怎样?你认为他还是二次函数吗?你认为一个函数是二次函数,关键是看什么?三、课堂练习1.下列函数中,哪些是二次函数?(1)y=5x+1;(2)4x 12-;(3)y=2x 233x -;(4)y=5x 134+-x 2、当m 为何值时,函数y=(m-2)x 是二次函数。

人教版数学九上《第二十二章 二次函数》同课异构教案 (vip专享)

人教版数学九上《第二十二章 二次函数》同课异构教案  (vip专享)

本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。

内容由一线名师原创,立意新,图片精,是非常强的一手资料。

第二十二章 二次函数1.(安徽) 若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为………………( ) (A )0.5 (B )0.1 (C )—4.5 (D )—4.1 【答案】C2.(甘肃兰州) 二次函数2365y x x =--+的图象的顶点坐标是 ( ) A .(-1,8) B .(1,8)C .(-1,2)D .(1,-4)【答案】A3.(甘肃兰州) 抛物线c bx x y ++=2图象向右平移2个单位再向下平移3个单位,所得图象的解析式为322--=x x y ,则b 、c 的值为 ( )A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2【答案】B4.(甘肃兰州) 抛物线c bx ax y ++=2图象如图所示,则一次函数24b ac bx y +--=与反比例函数 a b c y x++=在同一坐标系内的图象大致为 ( )第15题图 【答案】D5.(江苏盐城)给出下列四个函数:①x y -=;②x y =;③xy 1=;④2x y =(0<x )时,y 随x 的增大而减小的函数有 ( ) A .1个 B .2个 C .3个 D .4个【答案】C6.(浙江金华) 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有 ( ) A. 最小值 -3 B. 最大值-3 C. 最小值2 D. 最大值2【答案】Bx x xxx7.(山东济南)在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A .3 B .2 C .1 D .0 【答案】B 8.( 浙江衢州)下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( )【答案】C9.(福建三明)抛物线772--=x kx y 的图象和x 轴有交点,则k 的取值范围是 ( )A .47-≥k B .47-≥k 且0≠k C .47->k D .47->k 且0≠k 【答案】B10.(河北)如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 ( )A .(2,3)B .(3,2)C .(3,3)D .(4,3) 【答案】D11.(山东莱芜)二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的 图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D12.(贵州)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )xyO OxyA图5x = 2BOy x11 Oyx11 C . O y x11 Oyx11【答案】C.13.(贵州)把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =21 【答案】A.14.(湖北荆州)若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位 【答案】D15.(北京) 将二次函数y =x 2-2x +3,化为y =(x -h )2+k 的形式,结果为( )A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D . y =(x -1)2+2 【答案】D16.(山东泰安)下列函数:①3y x =-;②21y x =-;③()10y x x=-<;④223y x x =-++,其中y 的值随x 值增大而增大的函数有( )A 、4个B 、3个C 、2个D 、1个 【答案】C 17.(江苏徐州)平面直角坐标系中,若平移二次函数y=(x -2009)(x -2010)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为A .向上平移4个单位B .向下平移4个单位C .向左平移4个单位D .向右平移4个单位 【答案】B18.(甘肃)向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax 2+bx+c (a ≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A .第8秒 B .第10秒 C .第12秒 D .第15秒 【答案】B 二、填空题1.(湖南株洲)已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y = .【答案】112x - 2.(浙江宁波) 如图,已知⊙P 的半径为2,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .【答案】)2,6(或)2,6(-(对一个得2分) 三、解答题1.(湖北省咸宁)已知二次函数2y x bx c =+-的图象与x 轴两交点的坐标分别为(m ,0),(3m -,0)(0m ≠). (1)证明243c b =;(2)若该函数图象的对称轴为直线1x =,试求二次函数的最小值.【答案】(1)证明:依题意,m ,3m -是一元二次方程20x bx c +-=的两根. 根据一元二次方程根与系数的关系,得(3)m m b +-=-,(3)m m c ⨯-=-. ∴2b m =,23c m =. ∴224312c b m ==.(2)解:依题意,12b-=,∴2b =-. 由(1)得2233(2)344c b ==⨯-=.∴2223(1)4y x x x =--=--. ∴二次函数的最小值为4-.2.(云南楚雄)已知:如图,抛物线2y ax bx c =++与x 轴相交于两点A (1,0),B (3,0).与y 轴相交于点C (0,3).(1)求抛物线的函数关系式;(2)若点D(7,2m)是抛物线2y ax bx c=++上一点,请求出m的值,并求出此时△ABD的面积.143abc=⎧⎪=-⎨⎪=⎩,所【答案】解:(1)由题意可知9303a b ca b cc++=⎧⎪++=⎨⎪=⎩解得以抛物线的函数关系式为243y x x=-+.(2)把D(7,2m)代人函数解析式243y x x=-+中,得2775()43224m=-⨯+=.所以155(31)244ABDS∆=⨯-⨯=.3.(黑龙江哈尔滨)体育课上,老师用绳子围成一个周长为30米的游戏场地,围成的场地是如图所示的矩形ABCD. 设边AB的长为x(单位:米),矩形ABCD的面积为S(单位:平方米)(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)若矩形ABCD的面积为50平方米,且AB<AD,请求出此时AB的长.【答案】解:(1)根据题意xxAD-=-=152230,xxxxS15)15(2+-=-=(2)当S=50时,50152=+-xx,整理得050152=+-xx解得10,521==xx当AB=5时,AD=10;当AB=10时,AD=5,ADAB<∴AB=5答:当矩形ABCD的面积为50平方米且ADAB<时,AB的长为5米31241234O1-2-1-2-xy4.(山东青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+. (1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【答案】 解:(1)由题意,得:w = (x -20)·y =(x -20)·(10500x -+)21070010000x x =-+-352b x a=-=.答:当销售单价定为35元时,每月可获得最大利润.3分(2)由题意,得:210700100002000x x -+-=解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. 6分(3)法一:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000.∵x ≤32,∴当30≤x ≤32时,w ≥2000. 设成本为P (元),由题意,得: 20(10500)P x =-+ 20010000x =-+ ∵200k =-<0, ∴P 随x 的增大而减小. ∴当x = 32时,P 最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元. 10分法二:∵10a =-<0, ∴抛物线开口向下. ∴当30≤x ≤40时,w ≥2000.∵x ≤32,∴30≤x ≤32时,w ≥2000.∵10500y x =-+,100k =-<, ∴y 随x 的增大而减小. ∴当x = 32时,y 最小=180.∵当进价一定时,销售量越小, 成本越小, ∴201803600⨯=(元).。

人教版数学九上《第二十二章 二次函数复习》同课异构教案 (vip专享)

人教版数学九上《第二十二章 二次函数复习》同课异构教案 (vip专享)

本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。

内容由一线名师原创,立意新,图片精,是非常强的一手资料。

二次函数复习课重点 对本章知识的梳理和总结,及对研究方法的归纳 难点 对本章知识的梳理和总结,及对研究方法的归纳 教法、学法 引导、启发 自主学习、合作交流 课型新授课教学准备 小黑板 教学流程教师活动学生活动 二次备课 一、自主学习 1、知识回顾本章我们都学习了哪些内容? 回忆2、出示学习目标对二次函数的定义、图像和性质、解析式、平移、与一元二次方程、实际问题的关系的总结和梳理. 明确目标出示自学提纲 ⑴二次函数的定义⑵二次函数的图像和性质 ⑶二次函数的解析式 ⑷抛物线的平移⑸二次函数与一元二次方程的关系 ⑹二次函数与实际问题阅读提纲, (1)~(6)4、组织学生自学指导学生阅读课本P28----57课文,并回答问题.学生自学得出结论组内交流,互助互教.二、自学反馈 汇报或检测一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数叫做x 的二次函数. 说明:(1)函数关系式必须是整式,任何一个二次函数都可以化成(0)2y =ax bx c a ++≠的形式,因此,把(0)2y =ax bx c a ++≠叫做二次函数的一般形式;(2)化简后二次函数中自变量的最高次数必须是2,因此二次项回答老师提出的问题的系数a (特别是用字母表示时)必须不为0.(3)一般情况下,二次函数中自变量的取值范围为全体实数,但在实际问题中,自变量x 有特殊的取值范围. (4)二次函数常见解析式:I 一般式:y=ax 2+bx +c(a≠0);(一般式通过配方可得顶点式a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=) II 顶点式:y=a(x -h)2+k(a≠0);III 交点式:y=a(x -x 1)(x -x 2) (a≠0),这里x 1,x 2是抛物线与x 轴两个交点的横坐标.(5)二次函数的图像是一条抛物线(6)几种特殊的二次函数的图像特征如下:函数解析式开口方向 对称轴2ax y =当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴)k ax y +=2 0=x (y 轴) k ()2h x a y -=h x = h ()k h x a y +-=2h x =h kc bx ax y ++=2ab x 2-= ab ac a b 4422--,三、质疑精讲 1、学生质疑,师生共同解疑提出质疑,师生共同解决2、教师横向拓展和纵向挖掘 1、系数a ,b ,c 及Δ的几何意义①a 的符号决定抛物线的开口方向、大小;形状;最大值或最小值.0a >⇔开口向上⇔有最小值(最低点的纵坐标). 0a <⇔开口向下⇔最大值(最高点的纵坐标).a 越大,开口越小;a 越小,开口越大. (描点法可以证明)②a b 、决定抛物线对称轴0b =⇔对称轴是y 轴. a b 、同号⇔对称轴在y 轴的左侧 a b 、异号⇔对称轴在y 轴的右侧③c 的符号决定抛物线与y 轴交点的位置.聆听、思考、回答0c =⇔抛物线过原点0c >⇔抛物线与y 轴交于正半轴 0c <⇔抛物线与轴y 交于负半轴④Δ的符号决定抛物线与x 轴的交点个数.240b ac ->⇔抛物线与x 轴有两个交点 240b ac -=⇔抛物线与x 轴只有一个交点 240b ac -<⇔抛物线与x 轴没有交点⑤抛物线的特殊位置与系数的关系. 顶点在x 轴上 ⇔△=0. 顶点在y 轴上 ⇔b =0. 顶点在原点 ⇔b =c =0. 抛物线经过原点 ⇔c =0.2、二次函数的对称轴与顶点坐标以及单调性(增减性)与最值 一般式:2y ax bx c =++(0)a b c a ≠、、是常数,且,其对称轴为直线2bx a=-,顶点坐标为24()24b ac b a a --, ⅰ.当0a >时,有最小值,且当2bx a=-时,244ac b y a-=最小值;当2b x a <-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大.ⅱ.当0a <时,有最大值,且当2bx a=-时,244ac b y a-=最大值;当2b x a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小顶点式:2()y a x h k =-+(0)a h k a ≠、、是常数,且,其对称轴为直线x h =,顶点坐标为()h k ,ⅰ.当0a >时,有最小值,且当x h =时,y k =最小值;当x h <时,y 随x 的增大而减小;当x h >时,y 随x 的增大而增大.ⅱ.当0a <时,有最大值,且当x h =时,y k =最大值; 当x h <时,y 随x 的增大而增大;当x h >时,y 随x 的增大而减小解析式的求法 I 待定系数法(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.II 数形结合 抛物线的平移基本口诀:上加下减,左加右减. 具体操作如下(其中0m >,0a ≠)二次函数与一元二次方程及一元二次不等式的关系.: (1)如图所示,当a >0时,抛物线y =ax 2+bx +c 开口向上,它与x 轴有两个交点(x 1,0),(x 2,0). x =x 1,x =x 2是方程ax 2+bx +c =0的解. x <x 1,或x >x 2是不等式ax 2+bx +c >0的解集. x 1<x <x 2,是不等式ax 2+bx +c <0的解集. (2)当a <0时,抛物线y =ax 2+bx +c 开口向下,它与x 轴有两个交点(x 1,0),(x 2,0). x =x 1,x =x 2是方程ax 2+bx +c =0的解. x 1<x <x 2是不等式ax 2+bx +c >0的解集. x <x 1,或x >x 2是不等式ax 2+bx +c <0的解集.四、总结提高 1、出示精选习题 另附 根据所学内容解答习题2、总结归纳谈谈本节课的收获?3、作业:课堂必做:教材第56页4题选做:教材第56页5题家庭书后复习题数学练习册起航卷子板书设计二次函数复习课知识点梳理习题教后记。

人教版九年级上册数学 第22章 二次函数 全章复习 教案

人教版九年级上册数学 第22章 二次函数 全章复习 教案

第22章二次函数全章复习教案【学习目标】 1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标(轴)(0,0)(轴)(0,)(,0)(,)当时开口向上当时开口向下()2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.)20()y ax bx c a =++≠,,a b c (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a≠0).(由此得根与系数的关系:).要点诠释:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题2yax bx c =++利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系; (2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式; (4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式例题1. 已知抛物线的顶点是(3,-2),且在x 轴上截得的线段长为6,求抛物线的解析式.【思路点拨】已知抛物线的顶点是(3,-2),可设抛物线解析式为顶点式,即,也就是,再由在x 轴上截得的线段长为6建立方程求出a .也可根据抛物线的对称轴是直线x =3,在x 轴上截得的线段长为6,则与x 轴的交点为(0,0)和(6,0),因此可设y =a(x-0)·(x-6).【答案与解析】解法一:∵ 抛物线的顶点是(3,-2),且与x 轴有交点,∴ 设解析式为y =a(x-3)2-2(a >0),即,设抛物线与x 轴两交点分别为(x 1,0),(x 2,0).则,解得.∴ 抛物线的解析式为,即. 解法二:∵ 抛物线的顶点为(3,-2), ∴ 设抛物线解析式为.∵ 对称轴为直线x =3,在x 轴上截得的线段长为6,∴ 抛物线与x 轴的交点为(0,0),(6,0). 把(0,0)代入关系式,得0=a(0-3)2-2,解得,∴ 抛物线的解析式为, 即.解法三:求出抛物线与x 轴的两个交点的坐标(0,0),(6,0)设抛物线解析式为y =a(x-0)(x-6),2(3)2y a x =--2692y ax ax a =-+-2692y ax ax a =-+-12||6x x -==29a =22(3)29y x =--22493y x x =-2(3)2y a x =--29a =22(3)29y x =--22493y x x =-把(3,-2)代入得,解得.∴ 抛物线的解析式为,即.举一反三【变式】已知抛物线(m 是常数). (1)求抛物线的顶点坐标; (2)若,且抛物线与轴交于整数点,求此抛物线的解析式.【答案】(1)依题意,得,∴,∴抛物线的顶点坐标为.(2)∵抛物线与轴交于整数点,∴的根是整数.∴.∵,∴是完全平方数.∵, ∴,∴取1,4,9,.当时,;当时,;当时,. ∴的值为2或或.∴抛物线的解析式为或或.类型二、根据二次函数图象及性质判断代数式的符号例题2. 如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣其中正确的结论个数有( )3(36)2a ⨯⨯-=-29a =2(6)9y x x =-22493y x x =-2442y mx mx m =-+-155m <<x 0≠m 2242=--=-=mm a b x m m m m a b ac y 442444422)()(---=-=241681622-=--=m m m m )2,2(-x 02442=-+-m mx mx 2x ==±0m >2x =2m155m <<22105m <<2m2x ==±21m =2=m 24m =21=m 29m =29m =m 21296822+-=x x y x x y 2212-=22810999y x x =--A .1个B .2个C .3个D .4个【思路点拨】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x=3时,y <0,可判断②;由OA=OC ,且OA <1,可判断③;把﹣代入方程整理可得ac 2﹣bc +c=0,结合③可判断④;从而可得出答案.【答案】C ;【解析】解:由图象开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x=2,所以﹣>0,所以b >0,∴abc >0,故①正确;由图象可知当x=3时,y >0,∴9a +3b +c >,故②错误;由图象可知OA <1,∵OA=OC ,∴OC <1,即﹣c <1,∴c >﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac ﹣b +1=0,两边同时乘c 可得ac 2﹣bc +c=0,即方程有一个根为x=﹣c ,由②可知﹣c=OA ,而当x=OA 是方程的根,∴x=﹣c 是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C .类型三、数形结合例题3. 已知平面直角坐标系xOy(如图所示),一次函数的图象与y 轴交于点A ,点M 在正比例函数的图象上,且MO =MA ,二次函数的图象经过点A 、M.334y x =+32y x =2y x bx c =++(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数的图象上,且四边形ABCD 是菱形,求点C 的坐标.【答案与解析】(1)一次函数,当x =0时,y =3,所以点A 的坐标为(0,3),又∵ MO =MA ,∴ M 在OA 的中垂线上,即M的纵坐标为,又M 在上,当时,x =1,∴ 点M 的坐标为.如图所示,.(2)将点A(0,3),代入中,得 ∴即这个二次函数的解析式为:.(3)如图所示,设B(0,m)(m <3),,.334y x =+334y x =+3232y x =32y =31,2⎛⎫⎪⎝⎭AM ==31,2M ⎛⎫ ⎪⎝⎭2y x bx c =++3,31.2c b c =⎧⎪⎨++=⎪⎩5,23.b c ⎧=-⎪⎨⎪=⎩2532y x x =-+25(,3)2C n n n -+3,34D n n ⎛⎫+ ⎪⎝⎭则|AB|=3-m ,,.因为四边形ABCD 是菱形,所以.所以 解得(舍去)将n =2代入,得,所以点C 的坐标为(2,2).类型四、函数与方程例题4.某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≧60)元,销售量为y 套.(1)求出y 与x 的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少? 【答案与解析】解:(1)销售单价为x 元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x ≥60);(2)根据题意可得,x (﹣4x+480)=14000,解得x 1=70,x 2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元; (3)设一个月内获得的利润为w 元,根据题意得:w=(x ﹣40)(﹣4x+480)=﹣4x2+640x ﹣19200 =﹣4(x ﹣80)2+6400.当x=80时,w 的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.213||4D C DC y y n n =-=-5||4AD n =||||||AB DC AD ==2133,453.4m n n m n ⎧-=-⎪⎪⎨⎪-=⎪⎩113,0;m n =⎧⎨=⎩221,22.m n ⎧=⎪⎨⎪=⎩2532y x x =-+2C y =【答案】由题意得 把②代入①得. ∵抛物线与直线只有一个公共点, ∴方程必有两个相等的实数根, ∴,∴.【变式2】二次函数的图象如图所示,根据图象解答下列问题: (1)写出方程的两个根; (2)写出不等式的解集; (3)写出y随x的增大而减小的自变量x的取值范围; (4)若方程有两个不相等的实数根,求k的取值范围.【答案】(1) (2). (3). (4)方法1:方程的解, 即为方程组中x的解也就是抛物线与直线的交点的横坐标,由图象可看出, 当时,直线与抛物线有两个交点,∴. 方法2:∵二次函数的图象过(1,0),(3,0),(2,2)三点, ∴ ∴ ∴ ,即, ∴. ∵ 方程有两个不相等的实数根,∴,∴.类型五、分类讨论例题5.若函数,则当函数值y =8时,自变量x 的值是( ).A .B .4C .或4D .4或【思路点拨】此题函数是以分段函数的形式给出的,当y =8时,求x 的值时,注意分类讨论.【答案】D ;【解析】由题意知,当时,,∴ .(舍去).当2x =8时,x =4.综合上知,选D .类型六、与二次函数有关的动点问题例题6.在平面直角坐标系xOy 中,二次函数y=mx 2-(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当-3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.22(2)2(2)x x y x x ⎧+≤=⎨>⎩228x +=x =2>x =x =【思路点拨】(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B,A点坐标,进而求出直线AB的解析式,再利用平移规律得出答案;(3)根据当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,即可得出m的取值范围.【答案与解析】(3)由(2)得二次函数的解析式为:y=mx2-(m+1)x+1∵M(p,q)为二次函数图象上的一个动点,∴q=mp2-(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,-q).∴M′点在二次函数y=-m2+(m+1)x-1上.∵当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,≤m<0.。

人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计

人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计

人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计一. 教材分析人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时,主要介绍了二次函数的图象和性质。

本节课的内容是学生对二次函数知识的深入理解,也是对之前学习的函数知识的巩固。

教材通过生动的实例和丰富的练习,帮助学生掌握二次函数的图象和性质,提高他们解决实际问题的能力。

二. 学情分析学生在之前的学习中,已经掌握了函数的基本概念和一次函数的知识,具备了一定的数学思维能力。

但是,对于二次函数的图象和性质,学生可能还存在一些困惑和误解。

因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。

三. 教学目标1.知识与技能:使学生了解二次函数的图象和性质,能够运用二次函数解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,培养学生研究函数问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:二次函数的图象和性质。

2.难点:二次函数的图象和性质的内在联系和运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高他们解决实际问题的能力。

六. 教学准备1.教师准备:熟读教材,了解学生的学习情况,准备相关教学资源和案例。

2.学生准备:预习教材,了解二次函数的基本概念,准备参与课堂讨论。

七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生对二次函数的图象和性质的思考。

例如:有一块长方形土地,欲将其分割成一个面积为100平方米的矩形和两个面积相等的圆形,如何设计分割方案?2.呈现(15分钟)呈现二次函数的图象和性质,引导学生观察、分析,发现其中的规律。

例如,通过展示二次函数y=x^2的图象,让学生观察其在不同象限的取值情况,总结其性质。

3.操练(15分钟)让学生通过实际操作,加深对二次函数图象和性质的理解。

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教学设计

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教学设计

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教学设计一. 教材分析人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时,主要讲述了二次函数在实际问题中的应用。

这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,旨在培养学生运用数学知识解决实际问题的能力。

本节课的内容与生活实际紧密相连,有利于激发学生的学习兴趣,提高学生学习数学的积极性。

二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念、图像和性质有了初步的了解。

但是,学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,运用二次函数进行解答。

因此,在教学过程中,教师需要引导学生将实际问题与二次函数知识相结合,提高学生解决实际问题的能力。

三. 教学目标1.理解二次函数在实际问题中的应用,提高学生解决实际问题的能力。

2.培养学生运用数学知识解决实际问题的意识,提高学生学习数学的兴趣。

3.引导学生运用数形结合的方法,直观地理解二次函数在实际问题中的作用。

四. 教学重难点1.重点:二次函数在实际问题中的应用。

2.难点:如何将实际问题转化为二次函数问题,并运用二次函数进行解答。

五. 教学方法1.情境教学法:通过生活实际问题,引导学生运用二次函数进行解答,提高学生解决实际问题的能力。

2.数形结合法:利用二次函数的图像,直观地展示二次函数在实际问题中的作用。

3.小组合作学习:鼓励学生分组讨论,共同探讨如何将实际问题转化为二次函数问题,培养学生的团队协作能力。

六. 教学准备1.教学课件:制作精美的课件,展示二次函数在实际问题中的应用。

2.练习题:准备一些与实际问题相关的练习题,供学生在课堂上练习。

3.板书设计:设计简洁明了的板书,突出本节课的重点内容。

七. 教学过程1.导入(5分钟)利用生活实际问题,如抛物线形跳板的高度与角度的关系,引导学生思考如何运用二次函数进行解答。

人教版九年级数学上册第22章《二次函数》教案

人教版九年级数学上册第22章《二次函数》教案

第二十二章二次函数1.通过对实际问题的分析,确定二次函数的解析式,并体会二次函数的意义.2.会用描点法画抛物线,通过图象理解二次函数的性质.3.会用配方法将二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出函数图象的对称轴,并能解决一些简单的实际问题.4.会用待定系数法求二次函数的解析式.5.会利用二次函数的图象求一元二次方程的近似解.6.掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题.1.从实际问题情境中经历探索两个变量之间的关系的过程,使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察、探究能力及归纳总结能力.2.通过二次函数的图象探究二次函数的性质,使学生进一步体会数形结合思想在数学中的应用,经历知识的形成过程,了解从特殊到一般的认识过程.3.运用二次函数的知识解决实际问题,体会数学知识的现实意义,提高学生分析问题、解决问题的能力,培养学生应用数学的意识.4.经历探索具体问题中的数量关系和变化规律的过程,体会建立函数模型的思想.1.通过探索具体问题中的数量关系和变化规律的过程,体会数学来源于生活又应用于生活,从而提高学生应用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等思想方法,养成既能自主探索又能合作探究的良好学习习惯.3.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,获得运用数学解决实际问题的经验,感受数学模型、数学思想在实际问题中的应用价值.二次函数是初中阶段所学的有关函数知识的重点内容之一,学生在学习了正比例函数、一次函数之后,又学习了二次函数,这是对函数及其应用知识学习的深化和提高,也是学习其他初等函数的基础.二次函数是描述现实世界变量之间的关系的重要数学模型,二次函数的图象也是人们最为熟悉的曲线之一,如喷泉水流、抛掷的铅球划过的轨迹等,同时,二次函数的相关性质也是解决有关问题的理论基础,它常与一元二次方程、三角形等知识综合在一起,它综合了初中所学的函数知识,它在中学数学中起着承上启下的作用.二次函数作为重要的数学模型,在解决有关实际问题中发挥着重要作用,通过学习可以培养和提高学生用函数模型解决实际问题的能力. 本章从实际问题情境入手引出基本概念,引导学生进一步体会函数的模型思想,重点内容是对二次函数的图象和性质的理解和掌握,二次函数的图象和性质是从函数y=ax 2出发逐步深入探究的,在探究过程中体现了从特殊到一般、类比、数形结合思想,其中类比思想多处体现,如类比一次函数研究二次函数,而数形结合思想贯穿探究二次函数的图象和性质的始终.对于某些实际问题,力图加强二次函数与实际问题的联系,让学生体会数学与生活息息相关,提高学生应用数学的意识.【重点】1.通过对实际问题情境的分析,确定二次函数的解析式.2.会用描点法画二次函数图象,并从图象中了解二次函数的性质.3.会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题.4.会利用二次函数的图象求一元二次方程的近似解.5.能运用二次函数知识解决实际问题.【难点】1.能够正确运用二次函数的图象及性质解决实际问题.2.理解二次函数与一元二次方程的关系.1.注意对实际问题情境的创设,帮助学生形成模型思想.在教学中要创设丰富的实际问题的情境,使学生理解二次函数的意义,并能够用二次函数的知识解决实际问题.2.鼓励学生采用多种方法了解二次函数的性质.二次函数图象的平移问题是二次函数的教学难点,所以可以让学生将自己的想法表达出来,互相学习和借鉴.3.注重知识之间的联系,帮助学生建立二次函数与其他学过的函数之间的联系.22.3实际问题与二次函数 2课时22.1 二次函数的图象和性质1.通过对实际问题的分析,确定二次函数的解析式,并体会二次函数的意义.2.会用描点法画抛物线,通过图象了解二次函数的性质.3.会用配方法将二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出函数图象的对称轴,并能解决一些简单的实际问题.4.会用待定系数法求二次函数的解析式.1.从实际问题情境中经历探索两个变量之间的关系的过程,使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察、探究能力及归纳总结能力.2.通过函数的图象探究二次函数的性质,使学生进一步体会数形结合思想在数学中的应用,经历知识的形成过程,了解从特殊到一般的认识过程.1.通过探索具体问题中的数量关系和变化规律的过程,体会数学来源于生活又应用于生活,从而提高学生应用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习方法,养成既能自主探索又能合作探究的良好学习习惯.【重点】1.二次函数图象及其性质.2.运用二次函数的知识解决实际问题.【难点】不同形式的二次函数图象之间的位置关系.22.1.1二次函数1.理解并掌握二次函数的定义.2.能判断一个给定的函数是否为二次函数.3.能根据实际问题中的条件确定二次函数的解析式及自变量的取值范围.1.让学生从实际问题情境中经历探索、分析和建立两个变量之间的二次函数关系的过程.2.使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察、探究能力及归纳总结能力.3.经历探索具体问题中的数量关系和变化规律的过程,体会建立函数模型的思想.1.通过对一些实际问题的探究,发展学生合理的猜想、推理能力,增强他们学习数学的兴趣.2.通过探索具体问题中的数量关系和变化规律的过程,体会数学来源于生活又应用于生活,提高学生应用数学的意识.【重点】1.理解并掌握二次函数的定义.2.能根据实际问题中的条件确定二次函数的解析式及自变量的取值范围.【难点】用二次函数表示变量之间的关系.【教师准备】多媒体课件(1~3)【学生准备】预习教材P28~29.导入一:出示喷泉图片:图片中喷头喷出的水珠在空中走过一条曲线,这些曲线是否能用函数关系式来表示?它们的形状是怎样画出来的?这些都将在新的一章中学习.导入二:请同学们阅读章前问题,并回答下列问题:如果改变正方体的棱长x,那么正方体的表面积y会随之改变,y与x之间有什么数量关系?学生思考回答:y=6x2.【问题】y是x的函数吗?这个函数是不是我们以前学过的函数?【师生活动】复习函数、正比例函数、一次函数的概念.导入三:当你走在大街上时,会发现有好多车在奔跑,但你是否想到小汽车的行驶是要限速的?假设小汽车刹车距离s(m)与速度v(km/h )之间的函数关系式为s=v2,一辆汽车的速度为100 km/h.在前方80 m处停放着一辆故障车,你能判断此时是否有危险吗?[设计意图]通过欣赏图片、感受生活中的数量关系式,让学生感受生活中处处有数学,激发学生学习本章的兴趣.同时让学生体会二次函数是刻画某些实际问题的模型,通过复习一次函数的知识,让学生用类比的方法从已有的知识体系中自然地构建出新知识.问题1【课件1】(教材问题1)n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?思路一教师引导学生思考并回答下列问题.n个球队中,每个队要与其他个球队各比赛一场,全部比赛共有场.分析题意,题目中的等量关系为,所列等式为.【师生活动】学生独立思考后回答问题,教师点评并分析如何建立函数的数学模型.解:n个球队中,每个队要与其他(n-1)个球队各比赛一场,所以比赛的场次数m=n(n-1) ,即m=n2-n.思路二小组活动,共同探究,思考下列问题.(1)明确题意,题中的已知条件是什么?(2)分析题意,题中的等量关系是什么?(3)如何根据题中的等量关系建立函数解析式?【师生活动】小组讨论,教师在巡视过程中及时解决疑难问题,学生小组讨论后发表讨论结果,教师及时补充.解:n个球队中,每个队要与其他(n-1)个球队各比赛一场,所以比赛的场次数m=n(n-1) ,即m=n2-n.问题2【课件2】(教材问题2)某种产品现在的年产量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x 的值而确定,y与x之间的关系应怎样表示?思路一教师引导学生思考并回答下列问题.这种产品现在的年产量是20 t,一年后的产量是t,再经过一年后的产量是t.分析题意,题目中的等量关系为,所列等式为.【师生活动】学生独立思考后回答问题,教师点评并分析如何建立函数的模型.解:这种产品现在的年产量是20 t,一年后的产量是20(1+x)t,再经过一年后的产量是20(1+x)·(1+x)t,即y=20(1+x)2.思路二小组活动,共同交流,思考下列问题.(1)明确题意,题中的已知条件是什么?(2)分析题意,题中的等量关系是什么?(3)根据等量关系你能写出函数解析式吗?【师生活动】学生通过交流讨论列出函数解析式,教师在巡视过程中及时解决疑难问题.解:这种产品现在的年产量是20 t,一年后的产量是20(1+x)t,再经过一年后的产量是20(1+x)·(1+x)t,即y=20(1+x)2.[设计意图]通过师生共同探讨,找到实际问题中的等量关系,列出函数关系式,为引出二次函数的概念做铺垫,同时可提高学生利用方程思想解决实际问题的能力.二、二次函数的概念观察教师板书上的三个函数关系式:(1)y=6x2; (2)m=n2-n; (3)y=20(1+x)2.【思考】(1)这三个函数是我们学过的函数吗?(2)这些函数的自变量x的最高次数是多少?(3)你能说出它们的共同特征吗?(4)通过观察,你能归纳出这种函数的一般形式吗?【师生活动】学生独立思考,小组交流,逐一回答所提问题,教师适时启发学生,共同归纳总结.【课件3】一般地,形如y=ax2+bx+c(a,b,c为常数,且a≠0)的函数,叫做二次函数.其中,x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.【思考】(1)你身边哪些量之间存在着二次函数关系?(2)二次项系数a能不能为0?b,c能不能为0?为什么?(3)如何判断一个函数是不是二次函数?(4)二次函数与一元二次方程的一般形式有什么关系?【师生活动】学生独立思考回答问题,教师和学生共同归纳二次函数的特征:①函数关系式必须是整式.②自变量的最高次数是2.③二次项系数不为0.④函数y=ax2+bx+c(a,b,c是常数)中,当a≠0时,y=ax2+bx+c是二次函数;当a=0时,y=bx+c,若b≠0,则它是一次函数,若b=0,则y=c是一个常数函数.[设计意图]学生观察讨论,通过老师设计的问题串类比已学函数,抽象出二次函数的特征,归纳总结出二次函数的一般形式,学生经历了探索二次函数概念的形成过程,[过渡语]我们通过实例归纳总结出了二次函数的概念,试试能不能解决下列问题.子:①y=6x2;②y=-3x2+5;③y=200x2+400x+200;④y=x3-2x;⑤y=x2-+3;⑥y=(x+1)2-x2.其中二次函数有.(只填序号)〔解析〕根据二次函数的概念可得①②③符合二次函数的概念;④中自变量的最高次数是3,⑤中函数右边不是整式形式,⑥中函数化简后不含二次项,均不符合二次函数的概念.故填①②③.若y=(m+1)--是二次函数,则m的值为.〔解析〕二次函数的自变量x的最高次数是 ,∴m2-6m-5=2,解得m=7或m=-1.由二次项系数不为0,得m+1≠ ,∴m=7.故填7.在如图所示的一张长、宽分别为 50 cm 和 30 cm的矩形铁皮的四个角上,各剪去一个大小相同的小正方形,用剩余的部分制作一个无盖的长方体箱子,小正方形的边长为x cm,长方体铁皮箱的底面积为y cm2.(1)求y与x之间的关系式;(2)写出自变量x的取值范围;(3)当x=5时,长方体铁皮箱的底面积是多少?解:(1)由题意得长方体的底面的长为(50-2x)cm,宽为(30-2x)cm,题目中的等量关系为长方体的底面积=长×宽,所以可得函数解析式为y=(50-2x)(30-2x)=4x2-160x+1500.(2)根据实际意义,小正方形的边长为正数,且两个小正方形的边长和不能大于矩形的宽,所以2x<30,即x<15,且x>0,所以自变量x的取值范围是0<x<15.(3)把x=5代入上述函数解析式,得y=800,所以长方体铁皮箱的底面积是800 cm2.[设计意图]通过例题加深对二次函数概念的理解和掌握,在探索中发现新知,在交流中巩固新知,同时体验在实际问题中建立函数模型,为后边的学习做铺垫,让学生体会数学来源于生活又应用于生活.[知识拓展]1.根据实际问题列二次函数关系式时应注意:(1)正确判别自变量与因变量;(2)确保找到正确的等量关系;(3)将列出的关系式整理成y=ax2+bx+c(a≠0)的形式;(4)确保自变量有意义.2.在二次函数y=ax2+bx+c中,必须注意限制条件a≠0.3.任何一个二次函数都可以化成y=ax2+bx+c(a,b,c为常数,且a≠0)的形式,因此把y=ax2+bx+c(a,b,c为常数,且a≠0)叫做二次函数的一般式.4.在二次函数y=ax2+bx+c(a≠0)中,x的取值范围是全体实数.5.二次函数y=ax2+bx+c(a≠0)与一元二次方程有着密切联系,如果将变量y换成一个常数,那么这个二次函数就是一元二次方程了.1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c为常数,且a≠0)的函数,叫做二次函数.2.二次函数满足的条件:①先化简再判断;②等式右边是整式形式;③自变量的最高次数是2;④二次项系数不为0.3.二次函数的自变量的取值范围:自变量的取值在实际问题中要有实际意义.4.根据实际问题写出函数解析式:认真分析题意,找到题目中的等量关系,根据等量关系列出函数解析式.1.下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-解析:A,B中自变量x的次数是1,是一次函数;D中,等式右边不是整式形式.故选C.2.二次函数y=2x2+2x-4的二次项系数与常数项的和为()A.1B.-2C.7D.-6解析:二次函数y=2x2+2x-4中,二次项系数为2,常数项为-4,2+(-4)=-2.故选B.3.y=(m+1)2--3x+1是二次函数,则m的值为.解析:根据二次函数的概念可得m2-m=2,且m+1≠0,解得m=2.故填2.4.若物体运动的路程s(m)与时间t(s)之间的关系为s=5t2+2t,则当t=4 s时,该物体所经过的路程为.解析:把t=4代入函数解析式,得s=5×16+2×4=88.故填88 m.5.一个矩形的长是4 cm,宽是3 cm,若将这个矩形的长增加x cm,宽增加2x cm,则它的面积增加到y cm2,试写出y与x的关系式,并求出自变量x的取值范围.解:根据矩形的面积公式得y=(4+x)(3+2x)=2x2+11x+12.自变量x的取值范围是x>0.22.1.1二次函数一、感知二次函数问题1问题2二、二次函数的概念一、教材作业【必做题】教材第29页练习的1,2题.【选做题】教材第41页习题22.1的1题.二、课后作业【基础巩固】1.下列不属于二次函数的是()A.y=(x-1)(x+2)B.y=(x+1)2C.y=1-x2D.y=2(x+3)2-2x22.若y=mx2+nx-p(m,n,p是常数)为二次函数,则()A.m,n,p均不为0B.m≠0,且n≠0C.m≠0D.m≠0,且p≠03.已知二次函数y=3(x-2)2+1,当x=3时,y的值是()A.4B.-4C.3D.-34.若二次函数y=4x2+1的函数值为5,则对应的自变量x的值为()A.1B.-1C.±1D.5.二次函数y=2x(x-1)的二次项系数是,一次项系数是,常数项是.6.如果函数y=(a-1)x2-ax+6是关于x的二次函数,那么a的取值范围是.7.菱形的两条对角线的和为26 cm,则菱形的面积S(cm2)与一条对角线长x(cm)之间的函数关系式为.8.若函数y=(m+1)-2x+3是关于x的二次函数,试确定m的值或其取值范围.9.写出下列各函数关系式,并判断它们是什么类型的函数.(1)正方体的表面积S与棱长a之间的函数关系;(2)圆的面积y与它的周长x之间的函数关系;(3)某产品年产量为30台,计划今后每年比上一年的产量增长x%,两年后该产品的产量y(台)与x之间的函数关系.【能力提升】10.下列函数关系中,可以看作是二次函数y=ax2+bx+c(a≠0)的模型的是 ()A.在一定距离内,汽车行驶的速度与行驶的时间之间的关系B.我国现年人口自然增长率为1%,我国总人口数随年份变化的关系C.一个矩形的周长一定时,矩形面积和矩形一边长之间的关系D.圆的周长与其对应的半径之间的关系11.某商场以每件30元的价格购进一种商品,试销中发现这种商品的日销售量m(件)与每件商品的销售价x(元)满足一次函数m=162-3x,试写出商场销售这种商品的日销售利润y(元)与每件商品的销售价x(元)之间的函数关系式,y是x的二次函数吗?【拓展探究】12.如图所示,用同样规格的正方形白色和黑色瓷砖铺设矩形地面,请观察下列图形并解答问题.(1)在第n个图形中,每一横行有块瓷砖,每一竖列有块瓷砖,黑色瓷砖共有块;(均用含n的代数式表示)(2)在(1)的条件下,设铺设地面所用瓷砖的总块数为y,请写出y与n之间的函数关系式;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求n的值.【答案与解析】1.D(解析:化简后D中不含有自变量x的二次项,所以D选项不属于二次函数.故选D.)2.C(解析:根据二次函数的概念,即形如y=ax2+bx+c(a,b,c为常数,且a≠0)的函数是二次函数,所以只要满足二次项系数不为0即可.故选C.)3.A(解析:把x=3代入函数解析式,可得y=4.故选A.)4.C(解析:把y=5代入函数解析式,得4x2+1=5,解得x=±1.故选C.)5.2-20(解析:将原式整理得y=2x2-2x,所以二次项系数为2,一次项系数为-2,常数项为0.)6.a≠1(解析:二次函数中二次项系数不为0,所以a-1≠0,即a≠1.故填a≠1.)7.S=-x2+13x(解析:根据题意可得菱形的另一条对角线长为(26-x)cm,由菱形的面积公式可得S=x(26-x)=-x2+13x.故填S=-x2+13x.)8.解:∵函数y=(m+1)-2x+3是关于x的二次函数,∴m2+1=2,且m+1≠0,解得m=1.9.解:(1)S=6a2,是二次函数. (2)y=ππ=π,是二次函数. (3)y=30(1+x%)2,是二次函数.10.C(解析:设一个矩形的周长为a,矩形的一边长为x,则另一边长为-x,则矩形的面积S=x-=-x2+x,是二次函数.故选C.)11.解:由题意可知该商品每件的利润为(x-30)元,则y=(162-3x)(x-30),即y=-3x2+252x-4860,所以y是x的二次函数.12.解:(1)由图形规律可以得出:每一横行有(n+3)块瓷砖,每一竖列有(n+2)块瓷砖,黑色瓷砖数=(n+3)(n+2)-n(n+1)=4n+6.故答案为:(n+3),(n+2),(4n+6).(2)y=(n+3)(n+2),即y=n2+5n+6. (3)由题意得(n+3)(n+2)=506,解得n1=-25(舍去),n2= ,∴n的值为20.本节课由实际问题导入新知识,呈现了“问题情境——建立数学模型——归纳总结——知识拓展”的过程,在探究过程中,给学生提供探索和交流的空间,在小组交流、合作中获取知识,把要探究的知识设计成问题形式,降低了难度,让学生体验成功的快乐,激发学习兴趣.学生在课堂上学会了与他人交流,学会了探索,提升了分析问题和解决问题的能力.此外,教学中实际问题的解决贯穿整节课,让学生体会建模思想是解决数学问题的重要途径,培养了学生应用数学的意识.由于这节课内容较少,在学习了一次函数和一元二次方程后,学习这节课应该是很简单的,所以误认为学生会通过自学掌握所有知识,教学时对于概念的形成过程有点过于急躁,造成学生对概念的细节问题掌握不牢固,在后边的练习中出错较多,缺乏学习数学知识的严谨性,所以在课堂上要重视探究知识的过程.二次函数是一种常见的函数,应用非常广泛,许多实际问题往往可以归结为二次函数问题加以研究.在教学中要重视二次函数概念的形成和构建,在对二次函数的概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体会用函数思想去描述、研究变量之间的变化规律的意义.练习(教材第29页)1.解:S= πr·r+ πr2= πr2.2.解:y=(30+x)(20+x)=x2+50x+600.1.本节课主要学习二次函数的概念,通过具体实例中变量之间关系的特征,感受二次函数的特征和意义,从而形成对二次函数的初步认识,本节课的重点是强调具体问题的分析、抽象,渗透数学建模思想.教师引导学生分析问题,并用关系式表示这一关系的过程,引出二次函数的概念,获得二次函数表示变量关系的体验,学生在教师的引导下,通过自主探索与合作交流,理解并掌握本节课的重点,学生通过主动探索,获取知识,丰富数学活动的经验,逐步达到学会学习的目的.2.对于九年级的学生来说,之前已经学过常量与变量、一次函数和正比例函数,对于函数是刻画变量之间关系的数学模型也有了一定的认识,所以在此基础上可以用类比的方法继续深入学习二次函数.而且学生的逻辑思维、概括归纳能力也有了一定的提高,本节课根据教材实例引导学生自主探究,分析题意,得到相应的函数关系式,分析所得到的三个关系式的共同特征,由学生概括归纳,得到二次函数的概念和一般式,这样很自然地就突破了本节课的难点.学生通过经历知识的形成过程培养了分析问题和解决问题的能力,提高了数学的应用意识.已知函数y=(a2-4)x2+(a+2)x+3.(1)当a为何值时,该函数是二次函数?(2)当a为何值时,该函数是一次函数?〔解析〕由二次函数的定义知a2-4≠0,据此可以求得a的值;由一次函数的定义知a2-4=0,且a+2≠0,据此可以求得a的值.解:( )∵该函数是二次函数,∴二次项系数不为0,即a2-4≠0,解得a≠±2,∴当a≠±2时,该函数是二次函数.( )∵该函数是一次函数,∴a2-4=0,且a+2≠0,解得a=±2,且a≠- ,∴a=2.22.1.2二次函数y=ax2的图象和性质1.能用描点法画出二次函数y=ax2的图象.2.能根据对二次函数y=ax2的图象的理解,掌握二次函数y=ax2的性质.3.初步建立二次函数表达式与其图象之间的关系.1.经历探索和发现二次函数的图象的特点和性质的过程,获得研究函数性质的经验.2.通过二次函数的图象探究其性质,进一步体会数形结合思想的应用.1.经历观察、推理、交流等过程,获得研究问题和合作交流的方法和经验,体验数学活动中的探索性和创造性.2.在数学学习活动中,体会数学和实际生活的联系,感受数学的实际意义,激发学生学习数学的乐趣.【重点】用描点法画出二次函数y=ax2的图象,掌握二次函数y=ax2的性质.【难点】探究二次函数y=ax2的图象特点和性质的过程.【教师准备】教材图22.1—3,图22.1—4,图22.1—5.【学生准备】复习二次函数的概念.导入一:图中的拱桥是什么曲线?这条曲线有什么特点?通过对本节课的学习,相信大家一定会回答这个问题.导入二:复习提问:1.正比例函数、一次函数的图象分别是什么?(一条直线.)2.画函数图象的基本步骤是什么?(列表、描点、连线.)3.一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质.)4.我们能否类比研究一次函数的性质的方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数的性质的方法来研究二次函数的性质,应先研究二次函数的图象.)导入三:如图所示,一名篮球运动员手中的球在离篮筐中心水平距离4 m处投篮,当球运行的水平距离为2.5 m时,球达到最大高度3.5 m,然后准确落入篮筐内,已知篮筐距离地面的高度为3.05 m.。

人教版初中数学课标版九年级上册第二十二章22.1二次函数的图象和性质(1)教案

人教版初中数学课标版九年级上册第二十二章22.1二次函数的图象和性质(1)教案

人教版初中数学课标版九年级上册第二十二章22.1二次函数的图象和性质(1)教案《22.1二次函数(1)》教学设计【教学目标】1.理解二次函数的概念,会用描点法画形如y=ax2的二次函数的图象,了解抛物线的有关概念.2.类比一次函数的研究方法,探究二次函数y=ax2的图象与性质,感知式、数、形之间内在联系,进一步体会研究函数图象和性质的基本方法以及数形结合的思想.【教学重点】二次函数y=ax2的图象和性质.【教学难点】二次函数y=ax2的图象和性质的发现过程.【教学过程】一、创设情境,生成概念1.用一根长为30cm的绳子围成一个矩形.如果改变矩形的一边AB的长x(cm),那么矩形的哪x些量随x的值的变化而变化?(1)把邻边的长记作y,表示出y与x的关系?y是x的函数吗?为什么?(当矩形的一边长x取定一个值时,它的邻边长y有唯一确定的值与其对应,因此我们说x是自变量,y是x的函数。

)这是什么函数?(一次函数)什么是一次函数?(定义,强调k≠0),指出一次项系数和常数项.利用一次函数的图象和性质求解,得实际问题的答案.2.一次函数的图象和性质又是如何研究的? 1)通过列表、描点、连线画函数图象,观察图象特征得倒一次函数的性质; 2)经历了从特殊到一般的探究过程,先研究了特殊的一次函数——正比例函数y =kx (k ≠0)的图象和性质,再研究了一般的一次函数y =kx +b (k ≠0)的图象和性质;(3)分k >0,k <0,两种情况讨论,由k 取具体的数值入手,最后归纳出一般的情况.三、绘制图象,探究性质1.类比一次函数的研究内容和方法,画最特殊的二次函数y =x ²的图象,并观察图象说出图象特征和性质.(1)“由数画图”:列表:从解析式分析自变量的取值范围,在此基础上合理的选取x 的值,计算y 的值.描点、连线:学生自己动手实践,对称描点,从左至右用平滑的曲线顺次连接,并用几何画板演示.(2)“由形得数”:实际二次定图性利用二实际问题 目观察图象,列表概括二次函数y =x ²的图象特征和性质.(板书)(3)“用数释形”:结合解析式的特点和表格中数据的特点,从数的角度解释为什么图象会具有这样的特点:过原点(0,0),其余各点均在x 轴的上方;无最高点,原点为最低点;图象关于y 轴对称等.(如:图象有最高点和最低点,因为函数有最大值或最小值等)2.在同一坐标系中画二次函数212y x =,22y x =的图象,与函数y =x ²的图象比,有什么共同点和不同点?归纳:当a >0时,抛物线y =ax ²的开口向上;对称轴是y 轴;顶点是原点,顶点是抛物线的最低点;当 x <0 时,y 随 x 的增大而减小;当 x >0 时, y 随 x 的增大而增大. a 越小,抛物线的开口越大.3.画出函数y =-x 2、y =-2x 2、y =-12x 2的图象.观察这些抛物线有何共同点和不同点.它们之间是否有着某些联系?在画图之前预测图象的特征,然后动手画图验证.归纳:当a<0时,抛物线y=ax²的开口向下;对称轴是y轴;顶点是原点,顶点是抛物线的最高点;当x<0 时,y随x的增大而增大;当x>0 时,y 随x 的增大而减小.|a|越小,抛物线开口越大.4.归纳梳理二次函数y=ax²的图象和性质.(1)二次函数y = ax2(a≠0)的图象特征与函数性质:(2)函数y=ax2(a≠0)中,|a|越大,抛物线开口越小;|a|越小,抛物线开口越大。

人教初中数学九年级上册 第二十二章 二次函数复习(第1课时)教案

人教初中数学九年级上册  第二十二章 二次函数复习(第1课时)教案
【例题1】对于函数 ,请回答下列问题:
⑴图象的对称轴,顶点坐标各是什么?当x取何值时,函数有最大(小)值,函数最大(小)值是多少?
⑵此图象是由什么抛物线经过怎样的平移得到的?
⑶求抛物线与x轴的交点,与y轴的交点坐标是什么?
【例题2】抛物线 与y轴交于点(0,3).
⑴求出m的值,并画出这条抛物线;⑵求它与x轴的交点和抛物线的顶点坐标;⑶x取什么值时,抛物线在x轴的上方;
2.抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值
3.抛物线 的对称轴为直线____,顶点坐标为___,与 轴的交点坐标为____;
4.如何平移
的图象可得到函数 .
5.已知二次函数 的图象如图26.A_1所示,则
a___0,b___0,
c___0, ____0;
2.本节课中你参与了哪些讨论,你题.学生自由发言,以完善本节的知识、方法、规律.
作业设计
必做题:课本P56 6、7
选做题:
必做题做到作业上.选做题进行选择性的做.
①对称轴是:__________;
②点A(x1,y1)、B(x2,y2)是图象上的两个点,且x1>x2>2,则y1y2.
3.当x=时,y=-x2+2x-2有最大值,最大值为.
教师利用学案出示题目.
学生独立完成,然后在小组里进行交流.
教师巡视指导,主要是基础较差的同学.
完善
整合
1.本节课你有哪些收获?哪些方面还有疑惑?
二次函数
【教学任务分析】




知识
技能
1.通过回顾教材,说出二次函数的定义;能画出二次函数的图象;能从图象上认识二次函数的性质;掌握各类函数之间的平移规律.

人教版九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时教案新版

人教版九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时教案新版

实责问题与二次函数第 1 课时实责问题与二次函数(1)※授课目标※【知识与技术】1. 可以剖析和表示实责问题中变量之间的二次函数关系.2.会运用二次函数的知识求出实责问题中的最大( 小 ) 值.【过程与方法】经过对“矩形面积”、“销售收益”等实责问题的研究,让学生经历数学建模的基本过程,领悟建立数学模型的思想 .【感神态度】领悟二次函数是一类最优化问题的模型,感觉数学的应用价值,增强数学的应企图识 .【授课重点】经过解决问题,掌握怎样应用二次函数来解决生活中的最值问题.【授课难点】剖析现实问题中数量关系,从中建立出二次函数模型,达到解决实责问题的目的.※授课过程※一、复习导入从地面竖直向上抛出一个小球,小球的上升高度h(单位:m)与小球的运动时间t (单位: s)之间的关系式是 h 30t 5t 2( 0≤t≤ 6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是少?提问( 1)图中抛物线的极点在哪里?(2)这条抛物线的极点是否是小球预定的最高点?(3)小球运动至最高点的时间是什么时间?(4)经过前面的学习,你认为小球运行轨迹的极点坐标是什么?二、研究新知研究 1用总长为60m的篱笆围成矩形场所,矩形面积S随矩形一边长l 的变化而变化 . 当l是多少米时,场所的面积S 最大?剖析:先写出 S 与 l 的函数关系式,再求出使S 最大的 l 值.矩形场所的周长是60m,一边长为l m,则另一边长为,场所的面积S=.化简得S=.当l=时, S有最大值.研究 2某商品现在的售价为每件60 元,每星期可卖出300 件. 市场检查反应:如调整价钱,每涨价 1 元,每星期要少卖出10 件;每降价 1 元,每星期可多卖出20 件 . 已知商品的进价为每件40 元,怎样订价才能使收益最大?( 1)设每件涨价x 元,则每星期售出商品的收益y 随之变化.我们先来确定y 随 x 变化的函数剖析式. 涨价x元时,每星期少卖10x件,本质卖出300 10x件,销售额为60 x·300 10x 元,买进商品需付40 300 10x 元 . 因此,所得收益y 60 x 300 10 x 40 30010 x ,即 y10 x 2 100 x 6000 ,其中, 0≤ x ≤ 30.依照上面的函数,填空: 当 x=时 , y 最大,也就是说,在涨价的情况下,涨价订价元时,收益最大,最大收益是.( 2)在降价的情况下,最大收益是多少?请你参照(1)的讨论,自己得出答案 .由( 1)( 2)的讨论及现在的销售情况,你知道怎样订价能使收益最大了吗?元,即ADB C三、坚固练习1. 如图,在一面靠墙的空地上用长为24 米的篱笆,围成中间隔有二道篱笆的长方形 花园,设花园的宽AB 为 x 米,面积为 S 平方米 .( 1)求 S 与 x 的函数关系式及自变量的取值范围;( 2)当 x 取何值时所围成的花园面积最大,最大值是多少?2.鄂州市化薪资料经销企业购进一种化工原料若干千克,价钱为每千克30 元.物价部门规定其销售单价不高于每千克60 元,不低于每千克30 元.经市场检查发现:日销售量 y (千克)是销售单价 x (元)的一次函数, 且当 x =60 时 ,y =80;当 x =50 时,y =100.在销售过程中,每天还要支付其他花销450 元.( 1)求出 y 与 x 的函数关系式,并写出自变量x 的取值范围.( 2)求该企业销售该原料日盈利W ( 元) 与销售单价 x ( 元) 之间的函数关系式.( 3)当销售单价为多少元时,该企业日盈利最大?最大盈利是多少元?答案: 1.(1)∵ AB 为 x 米,篱笆长为 24 米, ∴ 花园宽为24-4 x 米 .∴2b 4ac b 2 S x 24-4x=- 4 x. (2)当 x3 时,有最大值 y3624?x 0 x 6 ?2a4a(平方米) .= 60kb,ì80k = - 2,2. ( 1)设. 依照题意, 得∴(30 ≤y kx b解得?yí2x 200100 50k b.??b = 200.x ≤60) .( 2) W ( x- 30)( - 2 x 200 )- 450 - 2 x 2260x- 6450 .( 3)W -2 x -65 2? 2000 . ∵ 30 ≤ x ≤ 60,∴当 x =60 时, W 有最大值为 1950 元 . ∴当销售单价为 60 元时,该企业日盈利最大,为1950 元 .四、概括小结经过这节课的学习,你有哪些收获和领悟?有哪些地方需要特别注意?※部署作业※从教材习题22.3 中采纳.※授课反省※二次函数是描绘现实世界变量之间关系的重要模型,也是某些单变量最优化的数学模型,如最大收益、最大面积等实责问题,因此本课时主要结合这两类问题进行了一些探讨 . 生活中的最优化问题经过数学模型可抽象为二次函数的最值问题,由于学生关于这一转变过程较难理解,因此授课时教师可经过分步设问的方式让学生逐层深入、稳步推出,让学生自主建立数学模型,在这个过程中,教师可经过让学生绘图商议最值. 总之,在本课时的授课过程中,要让学生经历数学建模的基本过程,体验研究知识的乐趣.。

九年级数学上册22二次函数复习教案

九年级数学上册22二次函数复习教案

第22章二次函数一、复习目标1.理解二次函数的观点;2.会把二次函数的一般式化为极点式,确立图象的极点坐标、对称轴和张口方向,会用描点法画二次函数的图象;3.会平移二次函数y =ax 2(a ≠0)的图象获得二次函数y =a(ax +m)2+k 的图象,认识特别与一般互相联系和转变的思想;4.会用待定系数法求二次函数的分析式;5.利用二次函数的图象,认识二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,认识二次函数与一元二次方程和不等式之间的联系。

6.二次函数的综合应用 二、课时安排 2三、复习重难点掌握二次函数的性质,利用二次函数的图象,认识二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,认识二次函数与一元二次方程和不等式之间的联系,并能和其余知识点进行综合应用。

四、教课过程 (一)知识梳理 二次函数知识点:1. 二次函数的观点:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

2. 二次函数的基本形式(1)二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质:3. ()2y a x h =-的性质: 4. ()2y a x h k =-+的性质: 3.二次函数图象的平移 1. 平移步骤:(1) 将抛物线分析式转变成极点式()2y a x h k =-+,确立其极点坐标()h k ,;(2)保持抛物线2y ax =的形状不变,将其极点平移各处()h k ,,详细平移方法以下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位(3) 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.归纳成八个字“左加右减,上加下减”.4.二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为极点式2()y a x h k =-+,确立其张口方向、对称轴及极点坐标,而后在对称轴双侧,左右对称地描点绘图.一般我们选用的五点为:极点、与y 轴的交点()0c ,、以及()0c ,对于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组对于对称轴对称的点). 画草图时应抓住以下几点:张口方向,对称轴,极点,与x 轴的交点,与y 轴的交点. 5.二次函数2y ax bx c =++的性质(1) 当0a >时,抛物线张口向上,对称轴为2bx a =-,极点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.(2) 当0a <时,抛物线张口向下,对称轴为2bx a=-,极点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.6.二次函数分析式的表示方法(1) 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);(2) 极点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 7.二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点状况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特别状况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,此中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点. 7.二次函数的应用: (二)题型、方法归纳 种类一: 二次函数的平移【主题训练1】(枣庄中考)将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么获得的抛物线的分析式为( )A.y=3(x+2)2+3 B.y=3(x-2)2+3 C.y=3(x+2)2-3D.y=3(x-2)2-3【自主解答】选A.由“上加下减”的平移规律可知,将抛物线y=3x 2向上平移3个单位所得抛物线的分析式为:y=3x 2+3;由“左加右减”的平移规律可知,将抛物线y=3x 2+3向左平移2个单位所得抛物线的分析式为:y=3(x+2)2+3.归纳:二次函数平移的两种方法1.确立极点坐标平移:依据两抛物线前后极点坐标的地点确立平移的方向与距离.2.利用规律平移:y=a(x+h)2+k 是由y=ax 2经过适合的平移获得的,其平移规律是“h 左加右减,k 上加下减”.即自变量加减左右移,函数值加减上下移.种类二:二次函数的图象及性质【主题训练2】(十堰中考)如图,二次函数y=ax 2+bx+c (a≠0)的图象的极点在第一象限,且过点(0,1)和(-1,0),以下结论:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.此中正确结论的个数是( )A.5个B.4个C.3个D.2个【自主解答】选B.①∵对称轴在y轴右边,∴- >0,∴ <0,∴a,b异号,∴ab<0,①正确;②把x=0,y=1代入y=ax2+bx+c得c=1,因此二次函数为y=ax2+bx+1; 又∵图象与x轴有两个交点,∴b2-4ac>0,∴b2>4a,②正确;③∵当x=1时,图象在x轴上方,∴a+b+c>0;把x=-1,y=0代入y=ax2+bx+1,得b=a+1,∵图象的张口向下,∴a<0,∴a+b+c= a+a+1+1=2a+2<2,∴0<a+b+c<2,③正确;④∵b=a+1,∴a=b-1,∵0<a+b+c<2,c=1,∴0<b-1+b+1<2,即0<2b<2,∴0<b<1,④正确;⑤当x>-1时,函数图象有部分在x轴上方,与x轴有交点,有部分在x轴下方,因此y>0,y=0,y<0都有可能.因此正确的共有4个,选B.归纳:种类三:二次函数与方程、不等式【主题训练3】(贺州中考)已知二次函数y=ax2+bx+c(a≠0)的图象以下图,给出以下结论:①b2>4ac;②abc>0;③2a-b=0;④8a+c<0;⑤9a+3b+c<0,此中结论正确的选项是.(填入正确结论的序号)【自主解答】∵抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,∴一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,∴b2-4ac>0,即b2>4ac,①是正确的.∵抛物线的张b- =1>0,口方向向上,∴a>0;∵抛物线与y轴的交点在y轴的负半轴,∴c<0;∵对称轴x=2ab-=1,∴b=-2a,∴∴a与b异号,则b<0.∴abc>0,②是正确的.∵抛物线的对称轴x=2a2a+b=0,③是错误的.∵当x=-2时,y=4a-2b+c>0,又∵b=-2a,∴4a-2b+c=4a-2(-2a)+c=8a+c>0,④是错误的.∵抛物线的对称轴为直线x=1,∴在x=-1与x=3时函数值相等,由函数图象可知x=-1的函数值为负数,∴x=3时的函数值y=9a+3b+c<0,⑤是正确的.答案:①②⑤归纳:二次函数与方程、不等式的关系1.二次函数与方程:抛物线y=ax2+bx+c与x轴交点的横坐标知足ax2+bx+c=0.2.二次函数与不等式:抛物线y=ax2+bx+c在x轴上方部分的横坐标知足ax2+bx+c>0;抛物线y=ax2+bx+c在x轴下方部分的横坐标知足ax2+bx+c<0.种类四:二次函数的应用【主题训练4】(武汉中考)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍异的植物分别放在不一样温度的环境中,经过一天后,测试出这栽种物高度的增加状况(如表).由这些数据,科学家推断出植物每日高度增加量y 是温度x 的函数,且这类函数是一次函数和二次函数中的一种.(1)请你选择一种适合的函数,求出它的函数关系式,并简要说明不选择此外两种函数的原因.(2)温度为多少时,这栽种物每日高度增加量最大?(3)假如实验室温度保持不变,在10天内要使该植物高度增加量的总和超出250mm,那么实验室的温度x 应当在哪个范围内选择?直接写出结果.【自主解答】(1)选择二次函数.设抛物线的分析式为y=ax 2+bx+c, 依据题意,得4a 2b c 49,a 1,4a 2b c 41,b 2,c 49,c 49-+==-⎧⎧⎪⎪++==-⎨⎨⎪⎪==⎩⎩解得, ∴y 对于x 的函数分析式为y=-x 2-2x+49.不选此外两个函数的原因:点(0,49)不行能在任何反比率函数图象上,因此y 不是x 的反比率函数;点(-4,41),(-2,49),(2,41)不在同向来线上,因此y 不是x 的一次函数.(2)由(1)得y=-x 2-2x+49,∴y=-(x+1)2+50. ∵a=-1<0,∴当x=-1时y 的最大值为50.即当温度为-1℃时,这栽种物每日高度增加量最大. (3)-6<x<4.归纳:解决二次函数应用题的两步骤1.建模:依据数目关系列二次函数关系建模或许依据图象的形状建模.2.应用:利用二次函数的性质解决问题.(三)典例精讲例题1:(2016·浙江省绍兴市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,假如制作窗框的资料总长为6m,怎样设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们假如改变这个窗户的形状,上部改为由两个正方形构成的矩形,如图2,资料总长仍为6m,利用图3,解答以下问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请经过计算说明.【剖析】(1)依据矩形和正方形的周进步行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,此刻窗户透光面积的最大值变大.【评论】此题考察待定系数法确立二次函数分析式、二次函数性质等知识,解题的重点是求出对称轴与直线BC交点H坐标,学会利用鉴别式确立两个函数图象的交点问题,属于中考常考题型.(四)归纳小结1.指引学生整理掌握本章知识点并娴熟掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。

内容由一线名师原创,立意新,图片精,是非常强的一手资料。

二次函数
教学目标知识
技能
1.通过回顾教材,说出二次函数的定义;能画出二次函数的图象;能从图象上认识二
次函数的性质;掌握各类函数之间的平移规律.
2.通过练习,能够根据公式确定图象的顶点、开口方向和对称轴,并能解决简单的实
际问题.
过程
方法
通过让学生练习,进一步体会数学建模思想,进一步体验用配方法和数形结
合思想等解决问题的方法.
情感
态度
1.通过问题情境和探索活动的创设,激发学生的学习兴趣;
2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣.
重点有关二次函数的基础知识及二次函数的实际应用.
难点灵活运用二次函数的有关知识解决实际问题.
环节教学问题设计教学活动设计
知识回顾1.二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增
大而,在对称轴左侧,y随x的增大而;当a<0时,在对
称轴右侧,y随x的增大而 , 在对称轴左侧,y随x的增大而 .
2.抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最
值;当a<0时图象有最点,此时函数有最值
3.抛物线8
2
2-
-
=x
x
y的对称轴为直线____,顶点坐标为___,与
y轴的交点坐标为____;
4.如何平移3
)1
(
3
1
2-
+
-
=x
y
的图象可得到函数2
3
1
2+
-
=x
y.
5.已知二次函数c
bx
ax
y+
+
=2的
教师引入课题后利用
学案出示问题组.学生
自主完成填空,
教师巡视学生完成情
况,然后找学生说出答
案,同时要求学生总结
解决以上问题所运用的
知识点、方法及规律.
3、4两题要指导学生画
出草图,养成据图分析
问题的习惯,
教师指导学生利用数
图象如图26.A_1所示,则 a___0, b___0, c___0,ac b 42
-____0; 形结合的思想,画出二次函数的图象分析函数的性质
综 合 应 用
一、数学活动——独立练习
【例题1】对于函数221y x x =---,请回答下列问题:
⑴图象的对称轴,顶点坐标各是什么?当x 取何值时,函数有最大(小)值,函数最大(小)值是多少? ⑵此图象是由什么抛物线经过怎样的平移得到的? ⑶求抛物线与x 轴的交点,与y 轴的交点坐标是什么?
【例题2】抛物线2
(1)y x m x m =-+-+与y 轴交于点(0,3).
⑴求出m 的值,并画出这条抛物线;⑵求它与x 轴的交点和抛物线的顶点坐标;⑶x 取什么值时,抛物线在x 轴的上方; ⑷x 取什么值时,y 随x 的增大而减小. 二、小组活动——归纳完善
结合以上题,说出顶点坐标公式_____;说出平移规律_____. 说出函数最值与顶点坐标之间的关系_________;在小组内交流二次函数的性质_______. 三、数学活动——独立练习
【例题3】二次函数y=x 2
-4x-5的图象交x 轴与A 、B 两点,交y 轴与C 点,则△ABC 的面积是 . 四、小组活动——归纳完善
请大家理清解题思路:先求交点坐标;然后__;再__;最后求出面积.
教师利用学案出示例题.
选择3个小组到黑板上进行练习,其他小组在练习本上练习. 教师巡视指导,特别是基础较差的同学. 完成后,由板练的小
组进行讲解,其他小组若有意见,待其讲完后,进行补充.
对于例3要让学生理清解题思路,对于求出的坐标,要学会转化成距离,进而求出面积. 先独立思考,然后进行小组交流,最后教师选择几个小组进行展示,其他小组进行补充.
矫 正 补 偿
1.已知y=22
x 的图象是抛物线,若抛物线不动,把x 轴,y 轴分别向上,向右平移2个单位,那么在新的坐标系下抛物线的解析式是( )
A.y=22(2)x -+2;
B.y=22(2)x +-2;
C.y=22(2)x --2;
D.y=22
(2)x ++2. 2.已知二次函数y=ax 2
+bx+c 的图象如图:
①对称轴是:__________; ②点A(x 1,y 1)、B(x 2,y 2)是图象上的两个点,且x 1>x 2>2,则y 1 y 2.
3.当x= 时,y=-x 2+2x-2有最大值,最大值为 .
教师利用学案出示题目.
学生独立完成,然后在小组里进行交流.
教师巡视指导,主要是基础较差的同学.
完善整合1.本节课你有哪些收获?哪些方面还有疑惑?
2.本节课中你参与了哪些讨论,你对那位同学的观点比较赞同,
组内相互说一说.
教师出示问题.学生
自由发言,以完善本节
的知识、方法、规律.
作业设计必做题:课本P56 6、7
选做题:
必做题做到作业上.
选做题进行选择性的
做.
本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。

内容由一线名师原创,立意新,图片精,是非常强的一手资料。

相关文档
最新文档