中考数学(人教版)总复习课件:第六章1

合集下载

新课标九年级数学总复习精品[全套]第六章第二课时精选教学PPT课件

新课标九年级数学总复习精品[全套]第六章第二课时精选教学PPT课件
A.154 B.7 C.152 D.245
2.已知D、E两点分别在△ABC的边AB,AC上,DE∥BC,且 △ADE的周长与△ABC的周长之长为3∶7,则AD∶DB= 3∶4
3.(多项选择)如图6-2-9所示,在正方形ABCD中,E是BC 的中点,F是CD上一点,AE⊥EF,则
下列结论正确的是 B?D?
由AD2= 1 DE·BD 2
AD= 3 m AE 4m2 3m2 =m
EF= 1 m
AF= 3 m
2
2
S菱ABCD=AF·BC=32m·BC=63=32m·3m
m=2,m=-2<0(舍)
GE⊥AF GF∥BC GE BE CE 2 3
AD BD
3
【例3】(2003·山东省)如图6-2-6中的(1)是由五 个边长都是1的正方形纸片拼接而成的,过点A丹
图6-2-7
(1)设MN=y,用x的代数式表示y. (2)设梯形MNCD的面积为S,用x
的代数式表示S. (3)若梯形MNCD的面积S等于梯 形ABCD的面积的13,求DM.
【解析】(1)常用的辅助线是作梯形的高,过D作DE⊥AB于 E点交MN于F,MN=MF+FN=MF+3,在Rt△DAE中,AD=
1的直线分别与BC丹1,BE交于点M、N,且图(1)
被直线MN分成面积相等的上、下两部分.
(1)求
1 MB

1
NB 的值.(2)求MB、NB的长.
(3)将图6-2-6(1)沿虚线折成一个无盖的正方体
纸盒(如图6-2-6(2)所示)后,求点M、N间的距离.
图6-2-6(1)
图6-2-6(2)
【解析】(1)∵△A1B1M≌△NBN,且A1B1=BB1=1

人教版中考数学考点系统复习 第六章 圆 第一节 圆的基本性质

人教版中考数学考点系统复习 第六章 圆 第一节 圆的基本性质

论有
( C)
A. 1个
B. 2个
C. 3个
D. 4个
10.(2021·随州第12题3分)如图,⊙O是△ABC的外接圆,连接AO并延 长交⊙O于点D,若∠C=50°,则∠BAD的度数为440 0°°.
11.(2022·随州第12题3分)如图,点A,B,C在⊙O上,若∠ABC=60 °,则∠AOC的度数为121020°°.
另解:计算∠AEB=135°也可以得证.
(2)若AB=10,BE=2 10,求BC的长. 解:如图,连接 OC,CD,OD,OD 交 BC 于点 F. ∵∠DBC=∠CAD=∠BAD=∠BCD,∴BD=DC. ∵OB=OC,∴OD 垂直平分 BC. ∵△BDE 是等腰直角三角形,BE=2 10, ∴BD=2 5. ∵AB=10,∴OB=OD=5. 设 OF=t,则 DF=5-t. 在 Rt△BOF 和 Rt△BDF 中, 52-t2=(2 5)2-(5-t)2. 解得 t=3.∴BF=4.∴BC=8.
长是
( A)
A.10
B.8
C.6
D.4
7.★(2019·十堰第8题3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB 的延长线于点E,若BA平分∠DBE,AD=5,CE= 13,则AE的长为( D ) A.3 B.3 2 C.4 3 D.2 3
8.(2022·宜昌第7题3分)如图,四边形ABCD内接于⊙O,连接OB, OD,
(4)若∠CAB=30°,则∠CDB=3300°°,∠COB=6600°°,∠OCB=6600°°;若
B 为︵CD的中点,则∠BCD=3300°°; (5)当 CD⊥AB 时,若 AB=10,CD=8,则 BE=22,AE=88,BC=22 5 , AC=44 5 ;

2024年人教版九年级数学中考总复习《多边形与平行四边形》课件40张(共40张PPT)

2024年人教版九年级数学中考总复习《多边形与平行四边形》课件40张(共40张PPT)

___四_____.
考点演练
5. 一个多边形除一个内角外,其余内角的和为1 510°,则这
个多边形的边数是(C)Fra bibliotekA. 九
B. 十
C. 十一 D. 十二
6. 一个多边形的内角和是外角和的2倍,这个多边形的边数为
A. 五
B. 六
C. 七
(B) D. 八
7. 一个多边形的每个内角均为120°,则这个多边形是( C )
即可求得答案.
答案:C
考题再现
1. (2014广东)一个多边形的内角和是900°,则这个多边形
的边数是 A. 10
B. 9
(D)
C. 8
D. 7
2. (2015广东)正五边形的外角和等于___3_6_0_°__. 3. (2016桂林)正六边形的每个外角是___6_0____度.
4. (2014梅州)内角和与外角和相等的多边形的边数为
A. 150°
B. 130°
C. 120° D. 100°
3. (2016丹东)如图1-4-6-4,在□ABCD中,BF平分∠ABC,
交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长

(B )
A. 8
B. 10
C. 12
D. 14
4. (2015梅州)如图1-4-6-5,在□ABCD中,BE平分∠ABC, BC=6,DE=2,则□ABCD的周长等于___2_0____.
第一部分 教材梳理
第四章 图形的认识(一) 第6节 多边形与平行四边形
知识梳理
概念定理
1. 多边形的有关概念 (1)多边形:在平面内,由一些线段首尾顺次相接组成的图 形叫做多边形.

人教版中考数学考点系统复习 第六章 圆 第二节 与圆有关的位置关系

人教版中考数学考点系统复习 第六章 圆 第二节 与圆有关的位置关系

【分层分析】第一步,连接 OD,根据角平分线的定义得到∠BAD=∠∠CACD,
进而得到B︵D=BC︵DC;第二步:根据垂径定理得到
AD OD⊥BBCC;第三步:根据
平行线的性质得到 OD⊥DDFF,即可得到 DF 与⊙O 相切.
证明:连接 OD.∵∠BAC 的平分线交⊙O 于点 D,∴∠BAD=∠CAD,∴B︵D=
求线段长的问题时,因题图中多含直角三角形,因此可以考虑从以下方 面来找突破口:(1)勾股定理;(2)锐角三角函数;(3)相似三角形. 若题中含有 30°,45°,60°或者三角函数值时,常考虑用三角函数求 解,若不含,常考虑用相似三角形求解.
解:∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC, ∴AABE=BEDC,∴126 3=4BD7,∴BD=2 321.
55
1.如图,在△ABC 中,AB=AC,以 AB 为直径的⊙O 交 BC 于点 D,过点 D 作 DE⊥AC 于点 E,交 AB 的延长线于点 F. 求证:EF 是⊙O 的切线.
∵OA=OE,∴∠OAE=∠AED,∴∠ADE=∠PAE.
(2)若∠ADE=30°,求证:AE=PE;
证明:由(1)知∠ADE=∠PAE=30°, ∵∠DAE=90°,∴∠AED=90°-∠ADE=60°. ∵∠AED=∠PAE+∠APE, ∴∠APE=∠PAE=30°,∴AE=PE.
(3)若 PE=4,CD=6,求 CE 的长.
以点 B 为圆心,BA 长为半径作⊙B,交 BD 于点 E. (1)试判断 CD 与⊙B 的位置关系,并说明理由; 【分层分析】过点 B 作 BF⊥CD 于点 F,由 AD∥BC 可得∠ADB=∠∠CCBBDD, 由 CB=CD 可得∠CDB=∠∠CCBBDD,∴∠ADB=∠∠C CDDB,B 因而利用角平分线性 质可得证,也可证△BDA≌△BDF 得出结论.

2022年中考数学人教版一轮复习课件:第6课 一元二次方程的解法及应用

2022年中考数学人教版一轮复习课件:第6课 一元二次方程的解法及应用

26.(2020·广东)已知关于 x,y 的方程组ax+ x+y=2 43y=-10 3,与 xx- +yb=y=2, 15的解相同. (1)求 a,b 的值; (2)若一个三角形的一条边的长为 2 6,另外两条边的长是关 于 x 的方程 x2+ax+b=0 的解.试判断该三角形的形状,并 说明理由.
10.(2021·菏泽)列方程(组)解应用题. 端午节期间,某水果超市调查某种水果的销售情况,下面是 调查员的对话: 小王:该水果的进价是每千克 22 元; 小李:当销售价为每千克 38 元时,每天可售出 160 千克;若 每千克降低 3 元,每天的销售量将增加 120 千克. 根据他们的对话,解决下面所给问题:超市每天要获得销售 利润 3 640 元,又要尽可能让顾客得到实惠,则这种水果的销 售价为每千克多少元?
2.(2021·怀化)对于一元二次方程 2x2-3x+4=0,则它根的情况为
A.没有实数根
( A)
B.两根之和是 3
C.两根之积是-2
D.有两个不相等的实数根
3.一元二次方程根与系数的关系(韦达定理)
若 x1,x2 是关于 x 的一元二次方程 ax2+bx+c=0(a≠0)的根, 则 x1+x2=-ba,x1x2=ac.
4.(2021·大连)“杂交水稻之父”袁隆平和他的团队探索培育的“海
水稻”在某试验田的产量逐年增加,2018 年平均亩产量约 500
千克,2020 年平均亩产量约 800 千克.若设平均亩产量的年
平均增长率为 x,根据题意,可列方程为
(D)
A.500(1+x)=800
B.500(1+2x)=800
A.k>-14 C.k>-14且 k≠0
B.k<41 D.k<41且 k≠0

平方根 第1课时 课件 2022—2023学年人教版数学七年级下

平方根 第1课时 课件 2022—2023学年人教版数学七年级下

(3) 64 . 81
解:(1) 9 3 ;
(2) 0.49 0.7 ;
(3)因为
8 9
2
64 81
,所以
64 81
8 9
.
课堂小结
定义:如果一个数的平方等于a,即x2= a,那 么这个数叫做a 的平方根.
平方根
性质:(1)正数有两个平方根,两个平方根 互为相反数.(2)0的平方根还是0.(3)负数 没有平方根.
课程讲授
1 平方根
练一练:判断下列说法是否正确.
(1)49的平方根是7.( ×) (2)2是4的平方根;( √) (3)-5是25的平方根;( √) (4)64的平方根是±8;(√ ) (5)-16的平方根是-4.( ×个数a的平方根的运算,叫做开平方.
平方
+1 -1
(2)用计算器计算 3 (精确到0.001),并利用你在(1)中发现 的规律说出 0.03, 300, 30 000 的近似值,你能根据 3 的值
说出 30 是多少吗?
随堂练习
1.填一填 (1)9的算术平方根是____3____;
(2) 9 的算术平方根是____3____;
(3)0.01的算术平方根是 __0_.1_____; (4)10-6 的算术平方根是__1_0_-3____; (5)(-4)2的算术平方根是___4_____; (6)10的算术平方根是________.
D.x≠ 1 2
课程讲授
2 估算算术平方根
问题1: 2 有多大呢?
因为 12 = 1,22=4,所以1< 2 <2; 因为 1. 42 = 1. 96,1. 52=2. 25,所以 1.4< 2 <1.5; 因为 1.412 = 1.988 1,1.422 = 2.016 4, 所以 1.41< 2 <1.42; 因为 1. 4142 = 1. 999 396,1. 4152=2. 002 225, 所以 1.414< 2 <1.415; ……

九年级数学 人教版中考专题复习《一元一次方程》课件(共16张PPT)

九年级数学 人教版中考专题复习《一元一次方程》课件(共16张PPT)
2x a x a x 1 3 2
中,得
- 2 - a 1 a 1 1 3 2
解得a=-11
综合运用
自主探究
10 1.如果 2x2ab1 3 y3a2b16 是一个二元一次方 程,那么a=_____. 3 b=______ 4
2 x y 5 2.解方程组: 4 x 3 y 7
2 x y 5 2.解方程组: 4 x 3 y 7
(1) ( 2)
解:(2)-(1)x2得 y=-3 将y=-3代入(1)得 x=4 x4 所以原方程组的解是 y 3

组内交流
陈老师为学校购买运动会的奖品后,回学校向后勤处王 老师交账说:“我买了两种书,共105本,单价分别为8 元和12元,买书前我领了1500元,现在还余418元. ” 王 老师算了一下,说:“你肯定搞错了. ”王老师为什么说 他搞错了?试用方程的知识给予解释.
解:设原来的两位数个位数字是x,则十位数字 是9-x. 10x+(9-x)=10(9-x)+x+9 解得 x=5 9-x=4 所以原来的两位数是45.
1.如果2005-200.5=x-20.05,那么x等于(B) A.1814.55 B.1824.55 C.1 774.45 D.1 784.45 2.已知一个正方体的每一表面都填有唯一一个 数字,且各相对表面上所填的数互为倒数.若这 个正方体的表面展开图如图1所示,则A、B的 值分别是( A ) 1 2 A 1 3 B
2.若方程 3x 4 m7+5=0 是一元一次方程, 求 m的值,并求此一元一次方程的解.
根据题意,得 4m-7=1 解得 m=2 当m=2时,原方程变为 3x+5=0 3x=-5

九年级数学中考复习课件:第六章24讲

九年级数学中考复习课件:第六章24讲

两条辅助线 (1)有关弦的问题,常作其弦心距,构造直角三角形;
(2)有关直径的问题,常作直径所对的圆周角.
1.(2014·毕节)如图,已知⊙O的半径为13,弦AB
长为24,则点O到AB的距离是( B )
A.6
B.5
C.4
D.3
2.(2014·重庆)如图,△ABC的顶点A,B,C均在
⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大
D.2 3 cm 或 4 3 cm
圆周角与圆心角的关系 【例1】 (2014·山西)如图,⊙O是△ABC的外接 圆,连接OA,OB,∠OBA=50°,则∠C的度数 为( B ) A.30° B.40° C.50° D.80°
【点评】 当图中出现同弧或等弧时,常常考虑到 弧所对的圆周角或圆心角,一条弧所对的圆周角等 于该弧所对的圆心角的一半,通过相等的弧把角联 系起来.




第六章 图形的性质(二)
第24讲 圆的基本性质
要点梳理
1.主要概念 (1)圆:平面上到 定点 的距离等于 定长 的所有点
组成的图形叫做圆.定点 叫圆心,定长 叫半
径,以O为圆心的圆记作⊙O.
(2)弧和弦:圆上任意两点间的部分叫 弧 ,连
接圆上任意两点的线段叫 弦
,经过圆心的
弦叫直径,直径是最长的 弦
半径的圆,那么下列判断正确的是( C )
A.点 B,C 均在圆 P 外 B.点 B 在圆 P 外,点 C 在圆 P 内 C.点 B 在圆 P 内,点 C 在圆 P 外 D.点 B,C 均在圆 P 内
【点评】 本题考查了点与圆的位置关系的判定 ,根据点与圆心之间的距离和圆的半径的大小关 系作出判断即可.
部;直角三角形的外心在斜边中点处;钝角三角形

2014年中考数学总复习课件_第1部分教材知识梳理(第6单元圆)

2014年中考数学总复习课件_第1部分教材知识梳理(第6单元圆)

考点链接 返回目录
中考考点清单
(4)圆心角:顶点在圆心,并且两边都与圆相交 的角叫做圆心角. (5)圆周角:顶点在圆上,并且两边都与圆相交 的角叫做圆周角.
如图①,在圆 O 中,O A 为半径,A E 为 弦,E F 为直径,������������为劣弧, ������������������为优弧, ∠A O F 叫做������������所对的圆心角, ∠A E F 为圆周 角.
������ ������
考点链接 返回考点
������
������
第六单元

类型二
垂径定理的运用
例2 (’13梧州)如图,AB是⊙O的 直径,AB垂直于弦CD, ∠BOC=70° ,则∠ABD=( C )
A. B. C. D.
20° 46° 55° 70°
例2题图
考点链接 返回考点
第六单元

【解析】连接 BC,∵OC=OB,∴∠OBC= ∠OCB=
图①
考点链接 返回目录
第六单元

2.圆的性质 (1)圆是旋转对称图形,即圆绕圆心旋转任意 角度,都能与自身重合.特别地,圆是中心对称 图形,⑤ 圆心 是它的对称中心. (2)圆是⑥ 轴对称 图形,任意一条直径所在 的直线都是它的对称轴.
考点链接 返回目录
第六单元

考点2
垂径定理及其推论
1.垂径定理:垂直于弦的直径⑦ 平分 这条弦 . 温馨提示 ◆垂直于弦的直径⑧ 平分 弦所对的弧; ◆平分弦(不是直径)的直径垂直弦,并 且平分弦所对的弧;3.圆的两条平行弦所夹 的弧⑨相等 .
考点链接 返回目录
第六单元

2.垂径定理的应用类型 (1)如图②,基于圆的对称性,下列五 个结论: ①������������=������������; ②������������=������������; ③AE=BE; ④AB⊥CD;⑤CD 是直径,只要满足其中的 两个,另外三个结论一定成立.

2024年中考数学总复习考点梳理第六章第三节与圆有关的计算

2024年中考数学总复习考点梳理第六章第三节与圆有关的计算
3题(图形、
改变图形
设问)
第三节 与圆有关的计算
返回目录
考情分析
年份 题号 题型 分值 图形背景 计算公式 设问
结果 溯源教材 教材改编维度
网格,等腰
解答题( 2019 22(2)
4 直角三角形
nπr 2
求阴影面积 20-5π
/
/
二)
360
,扇形
nπr 2
2018 15 填空题 4 矩形,半圆 360 求阴影面积 π
第三节 与圆有关的计算
返回目录
2. (2022广东15题3分)扇形的半径为2,圆心角为90°,则该扇形 的面积(结果保留π)为_π_. 3. (2021广东13题4分)如图,等腰直角三角形ABC中,∠A= 90°,BC=4.分别以点B,点C为圆心,线段BC长的一半为半径 作圆弧,交AB,BC,AC于点D,E,F, 则图中阴影部分的面积为_4_-__π_.
返回目录
改编维度 第1次改编:改变半径,直径是1 m的铁皮→半径是1 m的铁皮; 第2次改编:改变度数,剪出一个圆心角为90°的扇形→剪出一个圆周 角为120°的扇形.
第三节 与圆有关的计算
返回目录
维度拓展 改变扇形顶点的位置,改变设问. 如图,从一块半径是 13 cm的圆形铁皮上剪出一个圆心角为60°的扇形, 将剪下的扇形围成一个圆锥,若OA=2 cm,则 BC 的长是___3_π__.
1 教材改编题课前测 2 教材知识逐点过 3 广东近6年真题
第三节 与圆有关的计算
返回目录
广东近6年考情及趋势分析
命题点1 圆锥的有关计算(2020.16) 考情及趋势分析
考情分析
年份 题号 题型 分值
已知
设问 计算公式溯源教材教材改编维度半径(母线长)

中考数学总复习第一轮第六单元圆第课圆的证明课件

中考数学总复习第一轮第六单元圆第课圆的证明课件

点 , 过 点 C 作 ⊙ O 的 切 线 交 AB 的 延 长 线 于 点 D. 若
∠A=32°,则∠D= 26
度.
4.(2020·益阳)如图,在圆O中,AB为直径,AD为弦,
过点B的切线与AD的延长线交于点C,AD=DC,则
∠C=
45
度.
5.(2020·巴中)如图,在矩形ABCD中,以AD为直径
∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC, ∴∠OAC=∠OCA=30°,又∵AP=AC, ∴∠P=∠ACP=30°,∴∠OAP=∠AOC-∠P=90°, ∴OA⊥PA,∴ PA是⊙O的切线.
(2)若PD= 5 ,求⊙O的直径.
解:在Rt△OAP中,∠P=30°, ∴ PO=2OA=OD+PD,又∵OA=OD,∴ OA=PD,
∠A=32°,则∠D= 26°

4.(2020·黄冈)如图,AD是⊙O的直径,AB为⊙O的弦, OP⊥AD,OP与AB的延长线交于点P,过B点的切线交 OP于点C.
(1)求证:∠CBP=∠ADB.
证明:如图,连接OB,
∵AD是⊙O的直径,∴∠ABD=90°, ∴∠A+∠ADB=90°,∵BC为切线, ∴OB⊥BC,∴∠OBC=90°, ∴∠OBA+∠CBP=90°, 而OA=OB,∴∠A=∠OBA, ∴∠CBP=∠ADB.
半径的直线是圆的切线.
切线的性质 切线垂直于经过切点的半径 .
切线长
过圆外一点作圆的切线,这点和切点之间 的线段长叫做这点到圆的切线长.
从圆外一点可以引圆的两条切线,它们的 切线长定理 切线长相等,这一点和圆心的连线平分两
条切线的夹角.
知识点4 三角形与圆
确定圆 不在同一直线的三个点确定一个圆. 的条件

6.2.1直线、射线、线段-(课件)人教版(2024)数学七年级上册

6.2.1直线、射线、线段-(课件)人教版(2024)数学七年级上册

(1)画射线CD;
(2)画直线AD;
(3)连接AB;
(4)画线段BD 与直线AC 相交于点O.
感悟新知
解题秘方:紧扣直线、射线、线段的概念画图. 解:(1)(2)(3)(4)如图6 .2-8 所示.
知3-练
感悟新知
5-1. 如图,在平面内有A,B,C 三点.
知3-练
(1)画直线AC、线段BC、射线AB;
综合应用创新
一条直线把平面分成2 部分, 两条直线把平面分成2 +2 =4 部分, 三条直线把平面分成2 +2 +3=7 部分, 四条直线把平面分成2 +2 +3+4 =11 部分, 五条直线把平面分成2 +2 +3+4 +5 =16 部分… 依此可得,n条直线把平面分成2+2+3+4+5+… +n=
解题秘方:紧扣直线的定义、 表示方法以及与点的位置关系 进行解答.
知1-练
感悟新知
知1-练
(1)点B 在直线AD___上____,点C 在直线AD ____外___ ; (2)点E 是直线_A__F_(_或__A_E__或__E_F__) __与直线_C_D_(_或__D__E_或__C_E__)
感悟新知
知1-练
例 2 平面内有三个点,过其中任意两点画直线,一共可 以画几条直线?画图加以说明. 解题秘方:紧扣“直线的基本事实”,根据三点的 位置情况,逐一画出图形.
感悟新知
解:当三点在同一直线上时,可以画一条直线,如 图6.2 -3 ①; 当三点不在同一直线上时,可以画三条直线,如图 6.2 -3 ② .
知2-讲
图示
感悟新知
特别提醒
知2-讲
1.不论用大写字母还是小写字母表示射线,都必须标明
“射线××”.
2.由于射线可以向一个方向无限延伸,因此射线没有延长

2020-2021学年人教版数学七年级下册 第六章 6.1.1 算术平方根 课件

2020-2021学年人教版数学七年级下册 第六章 6.1.1 算术平方根 课件

16.已知 a-2 的算术平方根是 0,3a+b-1 的算术平方根是 5, 求 b-a2 的算术平方根.
解:由题意得 a-2=0,3a+b-1=25,解得 a=2,b=20. 所以 b-a2= 16=4.
17.若|3x-3|和 2x+y-4互为相反数,求 x+4y 的算术平方根. 解:因为|3x-3|和 2x+y-4互为相反数, 所以|3x-3|+ 2x+y-4=0. 所以 3x-3=0,且 2x+y-4=0. 解得 x=1,y=2, 则 x+4y=9. 所以 x+4y 的算术平方根为 3.
18.已知 a,b 为有理数,且 a-5+2 5-a=b+4,求 a,b 的 值.
合作探究 知识点 3 算术平方根的非负性
问题1: (1)因为__8___2=64,所以64的算术平方根是 ___8___,即 64 =__8____.
(2)因为__0_.5__2=0.25,所以0.25的算术平方根是__0_.5___, 即 0.25 =__0_.5___.
(3)因为__0___2=0,所以0的算术平方根是__0____, 即 0 =___0___.
为非负数. 2.对于所有的算术平方根,被开方数越大,对
应的算术平方根也越大;反之亦然.
2 易错小结
求 18 的算术平方根. 解:因为 18 =9, 9 =3, 所以的算术平方根是3.
注意本题是求 18 的算术平方根,而不是求81 的算术平方根.
易错点:误将求 a 的算术平方根求成a的算术平方根造 成错误.
2.下列各数没.有.算术平方根的是( C )
A.0
B.(-2)2
C.-32
1 D. 6
3.下列说法: ①-1 的算术平方根是 1; ②-1 的平方是±1; ③ 1 的算术平方根是 1; ④ 0 的算术平方根是 0. 其中正确的有( B ) A.1 个 B.2 个 C.3 个

中考数学总复习课件(完整版)

中考数学总复习课件(完整版)

第2讲┃ 归类示例
请解答下列问题:
(1)按以上规律列出第5个等式:a5=__9×_1_1_1___=
___12_×__19_-_1_11_______;
(2)用含n的代数式表示第n个等式:an= (_2n_-__1_)_×_1_(__2_n+__1_)__=_12_×__2_n_1-_1_-__2_n_1+_1___(n为正整数);
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数
分数
正整数 零 负整数
正分数 有限小数或 负分数 无限循环小数
________2.
图1-2
第1讲┃ 回归教材
2.[2011·贵阳] 如图1-3,矩形OABC的边OA长为2,
边 AB 长为1,OA 在数轴上,以原点 O 为圆心,对角线 OB
的长为半径画弧,交正半轴于一点,则这个点表示的实数是
( D) A . 2.5
B . 2√2
C.√3
D.√5
图1-3 [解析] 由勾股定理得 OB= OA2+AB2= 22+12= 5.
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念

人教版2024新版七年级数学上册第六章《6.3.3 余角和补角》名师系列课件

人教版2024新版七年级数学上册第六章《6.3.3 余角和补角》名师系列课件

1
2
3
= ∠2=180°–∠1
∠3=180°–∠1
结论:同角 (等角) 的补角相等.
类似地,可以得到:同角 (等角) 的余角相等.
巩固练习
如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°. (1)∠AOD的余角是_∠__C_O__E_、__∠__B__O_E_,∠COD的余角是 _∠__C__O_E_、__∠__B__O_E___; (2)OE是∠BOC的平分线吗?请说明理由.
D
探究新知
素养考点 利用方位角解答实际问题
例 如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的
方 向 上 . 同 时 , 在 它 北 偏 东 40°, 南 偏 西 10°, 西 北 ( 即 北 偏 西
D

B

45°)方向上又分别发现了客轮B, ●
货轮C和海岛D.仿照表示灯塔方位 的方法画出表示客轮B,货轮C和 西
4 3
如果两个角的和等于180°(平角),就说这两个角 互为补角 ( 简称为两个角互补 ).
如图,可以说∠3 是∠4 的补角,或∠4是∠3 的补角, 或∠3 和∠4 互补.
探究新知 图中给出的各角,哪些互为补角?
10o
30o
60o
80o
100o
120o
150o
170o
探究新知
素养考点 1 利用余角、补角的概念求角的度数
例1 若一个角的补角等于它的余角的 4 倍,求这个角 的度数. 解:设这个角为 x°,则它的补角是 ( 180 –x )°,
余角是 ( 90 –x )° . 根据题意,得180 –x = 4 ( 90 –x ) . 解得 x = 60. 答:这个角的度数是 60 °.

中考数学总复习(人教版)一轮复习课件:第六章 第2节

中考数学总复习(人教版)一轮复习课件:第六章 第2节

◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
ห้องสมุดไป่ตู้
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )
◆教材回顾 ◆突破考点(考点一 考点二 )

数学中考一轮复习第1篇 第6章 6.3 PPT课件

数学中考一轮复习第1篇 第6章 6.3 PPT课件
(2)圆内接四边形的性质: 性质 1:圆内接四边形的对角⑤_互___补____.如图,∠B+∠D= ⑥__1_8__0_°___. 性质 2:圆内接四边形的任意一个角的外角⑦_等__于_____它的内 对角.如上图,∠DCE=⑧__∠___A___.
3.正多边形和圆
(1)正多边形的外接圆: 把圆分为n(n≥3)等份, 依次连接各分点所得的多边形就是这个圆的 内接正n边形, 这个圆也就是正n边形的外接 圆.
离①_相___等____
三角形 的内切圆
三条角平分线 圆心到三条边的距离
内心 的交点
②_相___等____
如图,当三角形为直角三角形时,三角形的外接圆半径为 a+b-c
R=2c,内切圆半径为
r=③______2______.
方法点拨: 已知三角形的内心, 作辅助线的常 用方法: (1)过三角形的内心作三边的垂线段;
+10b,则△ABC 的外接圆半径=___8___.
命题点二 圆内接四边形的性质
4.(2017·凉山中考)如图, 已知四边形ABCD 内接于半4径3 为4的⊙O中, 且∠C=2∠A, 则BD =_______.
命题点三 正多边形与圆
5.(2017·达州中考)以半径为 2 的圆的内接正三角形、正方形、正六边形的边心
=OC·sin∠OCM,∴OC=siOnM60°=433.∵△ACE 为⊙O 的内接正三角形,∴∠OCN
=30°,∴ON=12OC=233,CN=OC·cos 30°=2,∴CE=2CN=4,∴该圆的内接正
三角形 ACE 的面积=12×4×233×3=4 3.
解题技巧: 关于正多边形和圆主要掌握其中的 中心角、边心距、面积、周长的计算公式, 熟 练掌握正六边形的性质, 由三角函数求出OC 是解题的关键.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档