直线和圆复习学案

合集下载

优翼教育教学资源直线和圆的位置关系学案

优翼教育教学资源直线和圆的位置关系学案

优翼教育教学资源直线和圆的位置关系学案1、引言在数学学习中,直线和圆是非常基础的几何图形,它们在空间中的位置关系更是数学中的重要内容之一。

而优翼教育教学资源中的直线和圆的位置关系学案,正是帮助学生深入理解这一概念的重要工具。

2、直线和圆的定义在学习直线和圆的位置关系之前,首先需要了解直线和圆各自的定义。

直线是由无数个点连在一起延伸而成的;而圆则是平面上到圆心距离等于半径的点的集合。

这两个基本的几何图形,构成了我们需要探讨的位置关系的基础。

3、直线和圆的相对位置在三维空间中,直线和圆可以有多种不同的相对位置关系:相离、相切、相交等。

在学案中,可以通过具体的实例和图形,来展示不同相对位置的具体概念和特点,引导学生进行思考和探讨。

4、直线和圆的位置关系除了在平面上的位置关系,直线和圆在空间中还有很多有趣的位置关系。

当一个直线与一个圆相交时,我们可以讨论它们的交点个数,从而引导学生进一步理解直线和圆的位置关系。

5、优翼教育教学资源的特点优翼教育教学资源以其简洁清晰的讲解和丰富多样的题目,帮助学生更好地理解直线和圆的位置关系。

学案中的示例和案例可以帮助学生将抽象的概念具体化,从而更容易理解和掌握。

6、个人观点和理解在学习直线和圆的位置关系时,我认为通过优翼教育教学资源的学案可以帮助学生更深入地理解这一概念。

学案中的案例和题目设计很有针对性,能够引导学生从不同角度思考和分析直线和圆在空间中的位置关系,从而提升他们的数学思维能力。

7、总结通过本文的介绍,我们了解了优翼教育教学资源中的直线和圆的位置关系学案的重要性和特点。

这些学案不仅可以帮助学生更好地理解直线和圆的位置关系,还可以培养学生的逻辑思维和数学分析能力。

希望学生在学习数学的过程中,能够充分利用这些优质的教学资源,提升自己的数学能力。

8、拓展应用除了在数学学习中,直线和圆的位置关系还有许多实际的拓展应用。

比如在工程建设中,需要考虑直线和圆的相对位置关系,以确保设计的准确性和稳定性;在地图制作中,直线和圆的位置关系也是非常重要的,可以帮助确定地图的比例尺和方向;在日常生活中,直线和圆的位置关系也会影响到我们的出行和交通规划。

【最新】中考数学总复习学案:第37课时 直线与圆、圆与圆的位置关系

【最新】中考数学总复习学案:第37课时  直线与圆、圆与圆的位置关系

第37课时 直线与圆、圆与圆的位置关系一、选择题1. 正三角形的内切圆半径为1,那么三角形的边长为( ) A.2 B.32 C.3 D.32.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )ABC. D.3. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( ) A. 335 B. 635 C. 10D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于 ( )A.1 B.2 C. 23 D. 26 5.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题第3题图第6题图 第7题图 第8题图6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=图象上,则阴影部分面积等于 . 14. Rt△ABC 中,9068C AC BC ∠===°,,.则△ABC 的内切圆半径r =______. 15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.第11题图 第12题图 第13题图16.已知:⊙A、⊙B、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题 18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BECE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由.19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=.(1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。

高中数学(直线和圆的位置关系)导学案 北师大版必修2 学案

高中数学(直线和圆的位置关系)导学案 北师大版必修2 学案

第10课时直线和圆的位置关系1.理解直线与圆的位置关系的种类.2.利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离.3.会用方程思想(判别式法)或点到直线的距离来判断直线与圆的位置关系.一艘船在沿直线返回港口的途中,接到台风预报:台风中心位于船正西70千米处,受影响的X围是半径为30千米的圆形区域.已知港口位于台风中心正北40千米处,如果这艘船不改变航线,那么它是否会受到台风影响?这个问题可归结为直线和圆是否有公共点的问题,也是我们这节课研究的对象.问题1:直线与圆的位置关系有三种:、、.判断直线与圆的位置关系有两种方法:(1)代数法:联立直线方程与圆的方程消去x或y整理成一元二次方程后,计算判别式Δ,当判别式Δ<0时,直线和圆;当判别式Δ=0时,直线和圆 ;当判别式Δ>0时,直线和圆.(2)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇒,d=r⇒,d>r⇒.问题2:过一定点是否都存在圆的切线?如果存在,如何求圆的切线方程?(1)若点在圆内,此时直线和圆相交,不存在圆的切线.(2)若点在圆上,则过该点的切线只有,切线方程求法如下:①直接法,先求该点与圆心的连线的直线的斜率,再利用垂直关系求出切线斜率,最后用点斜式求出切线方程.②设元法,先设出切线方程(注意斜率不存在时的讨论),再利用圆心到切线的距离等于半径,求出所设参数.③公式法,设A(x0,y0)是圆(x-a)2+(y-b)2=r2上的一点,则过点A的切线方程为:(x-a)(x0-a)+(y-b)·(y0-b)=r2,特别地,当圆心在原点时,即:A(x0,y0)是圆x2+y2=r2上一点,则过点A的切线方程为:.(3)若点在圆外,则过该点的切线有,切线方程求法如下:首先分析斜率不存在是否满足条件,再分析斜率存在时:设斜率为k,写出切线方程,利用圆心到切线的距离等于半径求出斜率,从而求出切线方程.问题3:计算直线被圆截得的弦长的常用方法(1)几何法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数法:运用韦达定理及两点距离公式有|AB|= .问题4:用直线与圆的知识解决实际问题的步骤(1)仔细审题,理解题意;(2)引入,建立;(3)用直线与圆的知识解决已建立的数学模型;(4)用结果解释.1.直线3x+4y=5与圆x2+y2=16的位置关系是( ).2.自点A(-1,4)作圆(x-2)2+(y-3)2=1的切线,则切线长为().A. B.3 C.3.若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则k的取值X围是.4.过原点作圆x2+y2-2x-2y+1=0的切线,求切线方程.圆的切线方程已知圆的方程是x2+y2=r2,求经过圆上一点M(x0,y0)的切线方程.求圆的弦长求直线x-y+2=0被圆x2+y2=4截得的弦长.利用圆的方程求最值已知实数x,y满足(x-2)2+y2=4,求3x2+4y2的最值.求过点P(4,5)的圆(x-2)2+y2=4的切线方程.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.当直线l与圆C相交于A,B两点,且AB=2时,求直线l的方程.已知点P(x,y)在圆x2+(y-1)2=1上运动,则的最大值为;最小值为.1.直线y=x+1与圆x2+y2=1的位置关系是().2.圆C:x2+y2-4x=0在点P(1,)处的切线方程为().A.x+y-2=0B.x+y-4=0C.x-y+4=0D.x-y+2=03.直线x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于.4.已知圆x2+y2=8内一点P(-1,2),过点P的直线l的倾斜角为135°,直线l交圆于A、B两点,求AB的长.(2012年·卷) 直线y=x被圆x2+(y-2)2=4截得的弦长为.考题变式(我来改编):第10课时直线和圆的位置关系知识体系梳理问题1:相交相切相离(1)相离相切相交(2)相交相切相离问题2:(2)一条③x0x+y0y=r2(3)两条问题3:(2)·|x A-x B|=问题4:(2)数学符号数学模型(4)实际问题基础学习交流1.A∵d==1<4,∴直线与圆的位置关系是相交.2.B因为过圆外一点作圆的切线,两条切线长相等,故切线长为=3,或2-(-1)=3.3.(0,)依题意有<1,解得0<k<,∴k的取值X围是(0,).4.解:已知圆的标准方程为(x-1)2+(y-1)2=1,所以圆与坐标轴相切,所以切线方程为x=0或y=0.重点难点探究探究一: 【解析】(法一)当点M不在坐标轴上时,设切线的斜率为k,半径OM的斜率为k1,∵圆的切线垂直于过切点的半径,∴k=-.∵k1=,∴k=-.∴经过点M的切线方程是y-y0=-(x-x0),整理得x0x+y0y=+.又∵点M(x0,y0)在圆上,∴+=r2.∴所求的切线方程是x0x+y0y=r2.当点M在坐标轴上时,可以验证上面的方程同样适用.(法二)设P(x,y)为所求切线上的任意一点,当P与M不重合时,△OPM为直角三角形,OP为斜边,∴OP2=OM2+MP2,即x2+y2=++(x-x0)2+(y-y0)2,整理得x0x+y0y=r2.可以验证,当P与M重合时同样适合上式,故所求的切线方程是x0x+y0y=r2.(法三)设P(x,y)为所求切线上的任意一点(M与P不重合),当点M不在坐标轴上时,由OM⊥MP得k OM· k MP=-1,即·=-1,整理得x0x+y0y=r2.可以验证,当点M在坐标轴上时,同样适合上式;当P与M重合时亦适合上式.故所求的切线方程是x0x+y0y=r2.【小结】(1)求圆的切线方程一般有三种方法:①设切线斜率,利用判别式,但过程冗长,计算复杂,易出错,通常不采用此法,但该法却是判断直线和曲线相切的通法,以后会经常用到;②设切线斜率,利用圆心到直线的距离等于半径;③设切点,利用过圆心和切点的直线与切线垂直.前两种方法要验证斜率是否存在.(2)过圆外一点可作圆的两条切线.探究二:【解析】(法一)直线x-y+2=0和圆x2+y2=4的公共点坐标就是方程组的解.根据x-y+2=0得y=x+2,代入x2+y2=4得x2+x=0,解得或∴公共点坐标为(-,1)和(0,2),直线x-y+2=0被圆x2+y2=4截得的弦长为=2.(法二)如图,设直线x-y+2=0与圆x2+y2=4交于A,B两点,弦AB的中点为M,则OM⊥AB(O为坐标原点),所以OM==,所以AB=2AM=2=2=2.【小结】在本题的两种方法中,前一种方法是代数法,后一种方法是几何法.在处理与直线和圆相交形成的弦的有关问题时,我们经常用到如下解法:(1)设弦的两个端点坐标分别为(x1,y1)、(x2,y2),代入圆的方程后寻求坐标与弦的关系,然后加以求解;(2)涉及圆的弦长问题时,为了简化运算,常利用垂径定理或半弦长、弦心距及半径构成的直角三角形进行运算.探究三:【解析】由(x-2)2+y2=4得y2=4x-x2,所以3x2+4y2=3x2+4(4x-x2)=-x2+16x=-(x-8)2+64,故3x2+4y2在x=8时有最大值64,没有最小值.[问题]在圆的方程中变量x的取值X围是R吗?[结论]将x=8代入圆方程(x-2)2+y2=4,得y2=-32,矛盾,所以上述解法是错误的.因为y2=4-(x-2)2≥0,所以x的取值X围不是R.于是,正确解答如下:由(x-2)2+y2=4得y2=4x-x2≥0,得0≤x≤4,所以3x2+4y2=3x2+4(4x-x2)=-x2+16x=-(x-8)2+64(0≤x≤4),所以当x=y=0时,3x2+4y2取得最小值0;当x=4,y=0时,3x2+4y2取得最大值48.【小结】确定圆的一般方程x2+y2+Dx+Ey+F=0中的变量的取值X围的方法:先配方,再根据平方项非负来确定.圆的方程中变量的X围一般是以隐含条件的形式出现在试题中,因此在解题时注意挖掘出这个隐含条件.思维拓展应用应用一:把点P(4,5)代入(x-2)2+y2=4,得(4-2)2+52=29>4,即点P在圆(x-2)2+y2=4外.设切线斜率为k,则切线方程为y-5=k(x-4),即kx-y+5-4k=0,又圆心坐标为(2,0),r=2,由圆心到切线的距离等于半径,得=2,解得k=.将k代入所设方程得此时切线方程为21x-20y+16=0.当直线的斜率不存在时,还有一条切线是x=4.因此切线方程为x=4或21x-20y+16=0.应用二:将圆C的方程x2+y2-8y+12=0配方后得到标准方程x2+(y-4)2=4,则此圆的圆心为C(0,4),半径为2.(法一)过圆心C作CD⊥AB交AB于点D,则根据题意和圆的性质,得即:+2=4.解得a=-7或a=-1.即直线l的方程为7x-y+14=0或x-y+2=0.(法二)联立方程组消去y,得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.Δ=-16(4a+3)>0,即a<-,设此方程的两根分别为x1,x2,由韦达定理知x1+x2=-,x1x2=.由AB=2=,可求出a=-7或a=-1,所以直线l的方程是7x-y+14=0或x-y+2=0.应用三:-因为表示的几何意义是圆上的动点与(2,1)连线的斜率,所以设=k,即kx-y+1-2k=0,当直线与圆相切时,斜率k取最大值或最小值,此时=1,解得k=±.所以的最大值为 ,最小值为-.基础智能检测1.B因为圆心(0,0)到直线x-y+1=0的距离d=<1,故直线与圆相交,又(0,0)不在直线上,所以直线不过圆心.2.D因为点P在圆C上,k PC=-,所以切线的斜率为,所以切线方程为y-=(x-1),即x-y+2=0.3.-3或由题设知圆心坐标为(1,0),因为直线与圆相切,所以d==r=,解得m=或-3.4.解:k AB=-1,直线AB的方程为y-2=-(x+1),即x+y-1=0.故圆心(0,0)到AB的距离d==,从而弦长|AB|=2 =.全新视角拓展2本题考查直线和圆的位置关系以及简单的平面几何知识.(法一)几何法:圆心到直线的距离为d==,圆的半径r=2,所以弦长为l=2×=2=2;(法二)代数法:联立直线和圆的方程消去y可得x2-2x=0,所以直线和圆的两个交点坐标分别为(2,2),(0,0),弦长为=2.。

直线和圆的位置关系学案

直线和圆的位置关系学案


交点个数
d 与 r 关系
直线名称
交点名称
相切
相离 1、 直线和圆有哪几种位置关系? 总结:2、判定直线和圆的位置关系有两种: (1)是根据定义看直线和圆的 个数。 (2)根据圆心到直线的距离 d 与 r 的关系。 三、尝试应用(你肯定性) 1、圆的直径是 13cm,如果直线与圆心的距离分别是 (1) 4.5cm (2) 6.5cm (3) 8cm 那么直线和圆分别是什么位置关系?有几个公共点? 2、Rt ABC 中,∠C=90°,AC=3cm,BC=4cm,以 C 为圆心,下列 r 为半径 的圆与斜边 AB 有怎样的关系? (1) r=2cm (2) r=2.4cm (3) r=3cm 变式: 以上述 r 未半径的原与斜边 AB 有几个交点?若 r=5cm 呢?当 r=5cm 时, 与斜边 AB 所在的直线有几个交点? 小结: 。 3、在矩形 ABCD 中,AC=8cm,∠ACB=30°,以 B 为圆心,4cm 为半径作⊙B, 则⊙B 与直线 AD 和直线 CD 的位置关系一次是 、 4、生活中实例 四、谈谈收获(畅所欲言)
迁移并运动直线
公共点的个数
(1)直线和圆有 个(2)有 个公共点(3)有 个公共点 公共点,这条直线和 这条直线和圆 这条直线和圆 这条直线叫做 这条叫 。 圆的 做圆的 。 2、我们知道点到直线的是这点向直线作 ,这点到垂足的距离,按照 这个定义,作出圆心 O 到直线 L 的距离的三种情况?
1
设⊙O 的半径 r,圆心到直线 L 的距离为 d,请模仿点和圆的位置关系,总结出什么 结论? 结论:直线和圆相交 d r, 直线和圆相切 d r, 直线和圆相离 d r, 根据收获,你能快又准的完善此表吗? 直线和圆的 草 位置关系 相交

新教材高中数学第二章直线和圆的方程5-1直线与圆的位置关系学案新人教A版选择性必修第一册

新教材高中数学第二章直线和圆的方程5-1直线与圆的位置关系学案新人教A版选择性必修第一册

直线与圆的位置关系【学习目标】1.直线与圆的三种位置关系代数法:由⎩⎪⎨⎪⎧Ax +By +C =0,x -a2+y -b2=r2消元得到一元二次方程的判别式Δ【小试牛刀】1.若直线与圆有公共点,则直线与圆相交.( )2.如果直线与圆组成的方程组有解,则直线和圆相交或相切.( )3.若圆心到直线的距离大于半径,则直线与圆的方程联立消元后得到的一元二次方程无解.( )4.过半径外端的直线与圆相切.( )【经典例题】题型一直线与圆的位置关系 直线与圆位置关系判断的三种方法(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,但有一定的局限性,必须是过定点的直线系.例1 已知直线方程mx -y -m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线: (1)有两个公共点; (2)只有一个公共点; (3)没有公共点.[跟踪训练]1已知直线l :x -2y +5=0与圆C :(x -7)2+(y -1)2=36,判断直线l 与圆C 的位置关系.题型二圆的切线方程 (1)点在圆上时求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心连线的斜率k ,再由垂直关系得切线的斜率为-1k,由点斜式可得切线方程.如果斜率为零或不存在,则由图形可直接得切线方程y =y 0或x =x 0. (2)点在圆外时①几何法:设切线方程为y -y 0=k (x -x 0).由圆心到直线的距离等于半径,可求得k ,也就得切线方程. ②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程联立,消去y 后得到关于x 的一元二次方程,由Δ=0求出k ,可得切线方程.提醒:切线的斜率不存在的情况,不要漏解.例2 (1)求过圆x 2+y 2-2x -4y =0上一点P (3,3)的切线方程。

2.5.1 直线与圆的位置关系 学案(含解析)

2.5.1 直线与圆的位置关系 学案(含解析)

2.5.1 直线与圆的位置关系学案(含解析)第二章直线和圆的方程2.5.1 直线与圆的位置关系学案学习目标1.能根据给定直线、圆的方程,判断直线与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题和实际问题.3.逐步理解用代数方法处理几何问题的基本思想和方法.知识汇总1.直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2.在平面直角坐标系中,要判断直线与圆的位置关系,可以联立它们的方程,通过判定方程组的解的个数,得出直线与圆的公共点的个数,进而判断直线与圆的位置关系.若相交,可以由方程组解得两交点坐标,利用两点间的距离公式求得弦长.习题检测1.对任意的实数k,直线与圆的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心2.若直线l与圆相切于点,则直线l的方程为( )A. B.C. D.3.若直线与圆没有公共点,则实数m的取值范围是( )A. B.或C.或D.4.若直线被圆所截得的弦长为,则实数a的值为( )A.0或4B.0或3C.或6D.或5.一束光线从点射出,经x轴反射后与圆相切,则反射光线所在直线的斜率为( )A.或B.或C.或D.或6.(多选)已知圆,则( ).A.圆M可能过原点B.圆心M在直线上C.圆M与直线相切D.圆M被直线所戴得的弦长为7.过点且与圆相切的直线的方程为__________________.8.如图所示是一座圆拱桥,当水面在如图所示的位置时,拱桥顶部离水面2m,水面宽12m,若水面下降1m,则水面的宽为_______________m.9.已知圆,直线.(1)求证:不论m取什么实数,直线l与圆恒有两个不同的交点;(2)若直线l被圆C截得的弦长最小,求此时l的方程.10.已知点,直线及圆.(1)求过点M的圆的切线方程;(2)若直线与圆相切,求a的值;(3)若直线与圆相交于A,B两点,且弦AB的长为,求a的值.答案以及解析1.答案:C解析:直线恒过定点,由定点在圆内,知直线与圆一定相交.又直线不过圆心,所以位置关系是相交但直线不过圆心,故选C.2.答案:D解析:由题意,得点P在圆上,且点P与圆心的连线的斜率是,则切线l的斜率是,则切线方程为,即为.故选D.3.答案:B解析:圆的圆心为,半径为2,由题意得,圆心到直线的距离,或.故选B.4.答案:A解析:由圆的方程,可知圆心坐标为,半径.又直线被圆截得的弦长为,所以圆心到直线的距离.又,所以,解得或.故选A.5.答案:C解析:圆的方程可化为,易知关于x轴对称的点为,如图所示,易知反射光线所在直线的斜率存在,设为k,其方程为,即,依题意得,圆心到反射光线所在直线的距离,化简得,解得或.故选C.6.答案:ABD解析:圆,圆心为,半径为1,若圆M过原点,则,解得或,故A 正确;因为,所以圆心M在直线上,故B正确;圆心到直线的距离,故圆M与直线相离,故C错误;圆心到直线的距离,所以圆M被直线截得的弦长,故D正确.故选ABD.7.答案:或解析:易知点在圆外,当切线的斜率存在时,设国的切线方程为,由圆心到切线的距离等于半径,得,所以切线方程为.当切线的斜率不存在时,切线方程为.综上,所求直线的方程为或.8.答案:解析:如图,建立平面直角坐标系,设初始水面在AB处,则由已知得,设圆C的半径长为,则,故圆C 的方程为,将代入,得,所以圆C的方程为.① 当水面下降1m到时,设.将代入①式,得,所以水面下降1m后,水面宽为m.9.解析:(1)将直线l的方程改写成,因为,所以,解得,,可知直线l恒过定点,因为圆心,半径,易得,因此点A必在圆C内,故直线l与圆恒有两个不同的交点.(2)由图形位置关系可知,当弦长最小时,必有,因为,则,从而,得,故直线l的方程为.10.解析:(1)由题意得,圆心,半径.当直线的斜率不存在时,方程为.由圆心到直线的距离知,此时,直线与圆相切.当直线的斜率存在时,设方程为,即.由题意知圆心到直线的距离,解得,方程为.故过点M的圆的切线方程为或.(2)由题意得,圆心到直线的距离为,解得或.(3)圆心到直线的距离为,,解得.2。

新教材高中数学第二章直线和圆的方程4-2圆的一般方程学案新人教A版选择性必修第一册

新教材高中数学第二章直线和圆的方程4-2圆的一般方程学案新人教A版选择性必修第一册

圆的一般方程【学习目标】1.圆的一般方程的概念当时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程.其中圆心为,圆的半径为r =.2.对方程x 2+y 2+Dx +Ey +F =0的讨论①D 2+E 2-4F >0时表示圆.②D 2+E 2-4F =0时表示点.③D 2+E 2-4F <0时,不表示任何图形.思考:方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么?【小试牛刀】1.圆的一般方程可以化为圆的标准方程.( )2.二元二次方程x 2+y 2+Dx +Ey +F =0一定是某个圆的方程.( )3.若方程x 2+y 2-2x +Ey +1=0表示圆,则E ≠0.( )4.任何一个圆的方程都能写成一个二元二次方程.( )【经典例题】题型一圆的一般方程的认识 注意:判断方程x 2+y 2+Dx +Ey +F =0是否表示圆,关键是将其配方⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4,最后转化为判断D 2+E 2-4F 的正负问题.例1 若方程x 2+y 2+2ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是________.[跟踪训练]1下列方程各表示什么图形?若表示圆,求出其圆心坐标和半径长.①x 2+y 2-4x =0;②2x 2+2y 2-3x +4y +6=0;③x 2+y 2+2ax =0.题型二求圆的一般方程注意:确定圆的方程的主要方法是待定系数法,即列出关于a,b,r的方程组,求a、b、r或直接求出圆心(a,b)和半径r,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x―a)2+(y―b)2=r2(r>0);(2)根据已知条件,建立关于a,b,r的方程组;(3)解方程组,求出a,b,r的值,并把它们代入所设的方程中去,就得到所求圆的方程例2 已知△ABC的三个顶点为A(1,4),B(-2,3),C(4,-5),求△ABC的外接圆方程、外心坐标和外接圆半径.[跟踪训练]2 已知圆C:x2+y2+Dx+Ey+3=0,圆心在直线x+y-1=0上,且圆心在第二象限,半径长为2,求圆的一般方程.题型三与圆有关的轨迹问题注意:求涉及到曲线的轨迹问题时,一般有两种方法:一是直接法,即把动点满足的条件直接用坐标“翻译”过来的方法;二是代入法,代入法也叫相关点法,就是把动点(x,y)与相关点(x0,y0)建立等式,再把x0,y0用x,y 表示后代入到它所满足的曲线的方法.解题时要注意条件的限制.例3 点A(2,0)是圆x2+y2=4上的定点,点B(1,1)是圆内一点,P,Q为圆上的动点.(1)求线段AP的中点M的轨迹方程;[思路探究](1)设点P坐标→用P,A坐标表示点M坐标→求轨迹方程(2)求BP 的中点E 的轨迹方程.[跟踪训练]3 设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则PA 的中心M 的轨迹方程是________.【当堂达标】1.方程2x 2+2y 2-4x +8y +10=0表示的图形是( )A .一个点B .一个圆C .一条直线D .不存在 2.若方程x 2+y 2-x +y +m =0表示一个圆,则实数m 的取值范围是( )A .m <12B .m ≤12C .m <2D .m ≤23.圆x 2+y 2-2x +6y +8=0的面积为( )A.8πB.4πC.2πD.π 4.若方程x 2+y 2+2λx +2λy + 2λ2―λ+1=0表示圆,则λ的取值范围是( )A .(1,+∞)B .⎣⎢⎡⎦⎥⎤15,1C .(1,+∞)∪⎝⎛⎭⎪⎫-∞,15 D .R 5.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则PA 的中心M 的轨迹方程是________.6.若点M (3,0)是圆x 2+y 2-8x -4y +10=0内一点,则过点M (3,0)的最长的弦所在的直线方程是( )A.x +y -3=0B.x -y -3=0C.2x-y-6=0D.2x+y-6=07.如图,已知线段AB的中点C的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的端点B的轨迹方程.【参考答案】【自主学习】D 2+E 2-4F >0⎝ ⎛⎭⎪⎫-D2,-E212D 2+E 2-4F ⎝ ⎛⎭⎪⎫-D 2,-E2 A =C ≠0,B =0且D 2+E 2-4F >0.【小试牛刀】(1)√ (2)× (3)√ (4)√【经典例题】例1 (-∞,1) [把方程配方得(x +a )2+(y +a )2=1-a ,由条件可知1-a >0,即a <1.][跟踪训练]1[解] ①方程可变形为(x -2)2+y 2=4,故方程表示圆,圆心为C (2,0),半径r =2.②方程可变形为2⎝ ⎛⎭⎪⎫x -342+2(y +1)2=-238,此方程无实数解.故方程不表示任何图形.③原方程可化为(x +a )2+y 2=a 2.当a =0时,方程表示点(0,0),不表示圆;当a ≠0时,方程表示以(-a,0)为圆心,|a |为半径的圆.例2 [解] 法一:设△ABC 的外接圆方程为x 2+y 2+Dx +Ey +F =0,∵A ,B ,C 在圆上,∴⎩⎪⎨⎪⎧ 1+16+D +4E +F =0,4+9-2D +3E +F =0,16+25+4D -5E +F =0,∴⎩⎪⎨⎪⎧ D =-2,E =2,F =-23,∴△ABC 的外接圆方程为x 2+y 2-2x +2y -23=0,即(x -1)2+(y +1)2=25.∴外心坐标为(1,-1),外接圆半径为5.法二:∵k AB =4-31+2=13,k AC =4+51-4=-3,∴k AB ·k AC =-1,∴AB ⊥AC .∴△ABC 是以角A 为直角的直角三角形,∴外心是线段BC 的中点,坐标为(1,-1),r =12|BC |=5.∴外接圆方程为(x -1)2+(y +1)2=25.[跟踪训练]2 [解] 圆心C ⎝ ⎛⎭⎪⎫-D 2,-E 2,∵圆心在直线x +y -1=0上,∴-D 2-E2-1=0,即D +E =-2. ①又∵半径长r =D 2+E 2-122=2,∴D 2+E 2=20. ②由①②可得⎩⎪⎨⎪⎧ D =2,E =-4或⎩⎪⎨⎪⎧ D =-4,E =2.又∵圆心在第二象限,∴-D 2<0,即D >0.则⎩⎪⎨⎪⎧ D =2,E =-4.故圆的一般方程为x 2+y 2+2x -4y +3=0.例3 [解] (1)设线段AP 的中点为M (x ,y ),由中点公式得点P 坐标为(2x -2,2y ).∵点P 在圆x 2+y 2=4上,∴(2x -2)2+(2y )2=4,故线段AP 的中点M 的轨迹方程为(x -1)2+y 2=1.(2)设点E(x,y),P(x0,y0).∵B(1,1),∴⎩⎪⎨⎪⎧ x =x0+12,y =y0+12.整理得x0=2x -1,y0=2y -1,∵点P 在圆x2+y2=4上,∴(2x-1)2+(2y -1)2=4,整理得点E 的轨迹方程为x2+y2-x -y -12=0. [跟踪训练]3 x 2+y 2-4x +2y +1=0 [由条件知A (2,-1),设M (x ,y ),则P (2x -2,2y +1),由于P 在圆上, ∴(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,整理得x 2+y 2-4x +2y +1=0.]【当堂达标】1.A [方程2x 2+2y 2-4x +8y +10=0,可化为x 2+y 2-2x +4y +5=0,即(x -1)2+(y +2)2=0,∴方程2x 2+2y 2-4x +8y +10=0表示点(1,-2).]2. A [由D 2+E 2-4F >0得(-1)2+12-4m >0,解得m <12,故选A.] 3. C 解析 原方程可化为(x -1)2+(y +3)2=2,∴半径r =2,∴圆的面积为S =πr 2=2π.4. A [因为方程x 2+y 2+2λx +2λy +2λ2―λ+1=0表示圆,所以D 2+E 2―4F >0,即4λ2+4λ2―4(2λ2―λ+1)>0,解不等式得λ>1,即λ的取值范围是(1,+∞).故选A.] 5. x 2+y 2-4x +2y +1=0由条件知A (2,-1),设M (x ,y ),则P (2x -2,2y +1),由于P 在圆上,∴(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,整理得x 2+y 2-4x +2y +1=0.6. C 解析 圆x 2+y 2-8x -4y +10=0的圆心坐标为(4,2),则过点M (3,0)且过圆心(4,2)的弦最长.由k =2-04-3=2,可知C 正确. 7. 解 设B 点坐标是(x ,y ),点A 的坐标是(x 0,y 0),由于点C 的坐标是(4,3)且点C 是线段AB 的中点,所以4=x 0+x 2,3=y 0+y 2,于是有x 0=8-x ,y 0=6-y .①因为点A在圆(x+1)2+y2=4上运动,所以点A的坐标满足方程(x+1)2+y2=4,即(x0+1)2+y20=4,②把①代入②,得(8-x+1)2+(6-y)2=4,整理,得(x-9)2+(y-6)2=4. 所以点B的轨迹方程为(x-9)2+(y-6)2=4.。

学案 3.1直线与圆的位置关系(3)

学案 3.1直线与圆的位置关系(3)

学案----3.1直线与圆的位置关系(3)姓名:班级:【我们要掌握的】1、已知⊙A的直径为6,点A的坐标为(-3,-4),则⊙A与X轴的位置关系是_____,⊙A与Y轴的位置关系是______。

思考:圆心A到X轴、Y轴的距离各是多少?2、设⊙O的半径为r,点O到直线a的距离为d,若⊙O与直线a至多只有一个公共点,则d与r的关系是……………………()A、d≤rB、d<rC、d≥rD、d=r3、设⊙O的半径为r,直线a上一点到圆心的距离为d,若d=r,则直线a与⊙O的位置关系是…………………()A、相交B、相切C、相离D、相切或相交【我们要完成的】合作学习切线的性质:1、如图,直线AT与⊙O相切于点A,连结OA.∠OAT等于多少度?在⊙O上再任意取一些点,过这些点作⊙O的切线,连结圆心与切点,半径与切线所成的角为多少度?由此你发现了什么?几何语言:∵∴2、任意画一个圆,作这个圆的一条切线,过切点作切线的垂线,你发现了什么?你的发现与你同伴发现相同吗?几何语言:∵∴例1 木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C,记角尺的直角顶点为B,量得AB=8cm,BC=16cm.求⊙O的半径.TA O例2 如图,直线AB 与⊙O 相切于点C,AO 与⊙O 交于点D,连结CD.求证:COD ACD ∠=∠21弦切角:概念:性质:随堂自测练一练:1、如图,AB 切⊙O 于点B,割线ACD 经过圆心O,若∠BCD=700, 则∠A 的度数为( )A.20°B.50°C.40°D.80°2、如图, ⊙O 切PB 于点B,PB=4,PA=2,求⊙O 的半径。

3、如图:PA,PC 分别切圆O 于点A,C 两点,B 为圆O 上与A,C 不重合的点,若∠P=50°,求∠ABC 的度数。

4、如图,已知:AB 与⊙O 相切于点C ,OA=OB ,⊙O 的直径为6cm ,AB=8cm,则OA=_____cm. 若AB 等于6cm ,则∠AOB=_______.5、如图,∠APC=50°,PA、PC、DE都为⊙O的切线,则∠DOE为。

2019-2020学年高二数学直线和圆的方程复习学案-人教版

2019-2020学年高二数学直线和圆的方程复习学案-人教版

2019-2020学年高二数学直线和圆的方程复习学案 人教版【预习思考】1.若α∈[6π,2π],则直线2xcos α+3y +1=0的倾斜角的取值范围是( )A .[ 6π,2π] B .[ 65π,π] C .[ 0, 6π] D .[2π,65π]2.(2001年天津高考)设A 、B 是x 轴上的两点,点P 的横坐标为2,且|PA|=|PB|,若直线PA的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .2x +y -7=0 3.(2000年上海春季高考)若直线的倾斜角为π-arctan 21,且过点(1,0),则直线L 的方程 .4.m 为任意实数时,直线(m -1)x +(2m -1)y=m -5必过定点( ). 5.已知点A (2,3),B (-3,-2),若直线l 过点P (1,1),且与线段AB 相交,则直线l 的斜率k 的取值范围为. 【例题讲评】例1 设直线l 的方程为(a +1)x +y +2-a=0(a ∈R). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若L 不经过第二象限,求实数a 的取值范围. 例2 一条直线经过P (3,2),并且分别满足下列条件,求直线方程. (1)倾斜角是直线x -4y +3=0的倾斜角的2倍; (2)夹在两坐标轴间的线段被P 分成1:2.(3)与x 轴,y 轴正半轴交于A 、B 两点,且△AOB 的面积最小. 例3 ( 1992年全国高考)在△ABC 中,BC 边上的高所在的直线方程为x -2y +1=0,∠A 的平分线所在直线方程为y=0,若点B 的坐标为(1,2),求点A 和点C 的坐标. 【训练反馈】1.下列命题中正确的是( )A. 经过点P 0(x 0,y 0)的直线都可以用方程y -y 0=k(x -x 0)表示B. 经过定点A(0,b)的直线都可以用方程y=kx +b 表示.C. 经过任意两个不同点P 1(x 1,y 1), P 2(x 2,y 2)的直线都可用方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x-x 1)表示. D. 不经过原点的直线都可以用方程ax +by =1表示.2.设点P(a ,b),Q(c ,d)是直线y=mx +k 上两点,则︱PQ ︱等于 ( )A .︱a -c ︱21m +B .︱a +c ︱21m +C .︱b -d ︱21m +D .︱b +d ︱21m + 3.直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则 ( )A. ksin α>0B. kcos α>0C. ksin α<0D. kcos α≤045.一直线过点A (-3,4),且在两轴上的截距之和为12,则此直线方程为 . 6.直线l 1,l 2的方程分别为y=mx ,y=nx(m ,n ≠0),l 1的倾斜角是l 2倾斜角的2倍,l 1倾斜率是l 2的斜率的4倍,则mn= .7.已知直线l :y=ax +2和A(1,4),B(3,1)两点,当直线l 与线段AB 相交时,则实数a 的取值范围为 .8.平面上有相异两点A(cos θ,sin 2θ)和B(0,1),求经过A 、B 两点直线的斜率及倾斜角的范围.9.已知P (2,1),过P 作一直线,使它夹在已知直线x +2y -3=0,2x +5y -10=0间的线段被点P 平分,求直线方程.10.已知点P (6,4)和直线l 1:y=4x ,求过P 的直线l ,使它和L 1以及x 轴在第一象限内围成的三角形的面积最小.第2课 两直线的位置关系【预习思考】 1.(2005北京) “21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的 ( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 2.(1998上海高考)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sinA ·x+ay +c =0与bx -sinB ·y +sinC =0的位置关系是 ( ) A .平行 B .重合 C .垂直 D .相交但不垂直 3.(2000全国高考)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,π12)内变动时,a 的取值范围是( )A .(0,1)B .( 33 , 3 )C .( 33,1)∪(1, 3 ) D .(1, 3 )4.已知A (3,0),B (0,4),则过B 且与A 的距离为3的直线方程为 .5.已知直线l 和直线m 的方程分别为2x -y +1=0,3x -y =0,则直线m 关于直线l 的对称直线m ’的方程为 . 【例题讲评】例1 正方形中心在M (-1,0),一条边所在的直线方程为x +3y -5=0,求其他三边的所在直线的方程.例2 光线从点A (-3,5)射到直线l :3x -4y +4=0以后,再反射到一点B (2,15).(1)求入射线与反射线的方程; (2)求这条光线从A 到B 的长度.例3一直线过点P (2,3),且和两平行直线3x +4y +8=0及3x +4y -7=0都相交,两交点间线段长3 2 ,求这直线方程.例4在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合(如图5所示).将矩形折叠,使A 点落在线段DC 上.若折痕所在直线的斜率为k ,试写出折痕所在直线的方程;【训练反馈】1. 两直线ax +y -4=0与x -y -2=0相交于第一象限,则实数a 的取值范围是( )A .-1<a <2B .a >-1C .a <2D .a <-1或a >2 2. (2005全国)已知过点A (-2,m )和B (m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A.0B.-8C.2D.103. 设a ,b ,k ,p 分别表示同一直线的横截距,纵截距,斜率和原点到直线的距离,则有( )A .a 2k 2=p 2(1+k 2) B .k =b a C .1a +1b=p D .a =-kb4. 若点(1,1)到直线xcos α+ysin α=2的距离为d ,则d 的最大值是 .5. 一束光线经过点A (-2,1),由直线l :x -3y +2=0反射后,经过点B (3,5)射出,则反射光线所在直线的方程为 .6. 直线2x -y -4=0上有一点P ,它与两定点A (4,-1)、B (3,4)距离之差最大,则P点坐标是 .7.在△ABC 中,|AB|=|AC|,∠A =120°,A (0,2),BC 所在直线方程为 3 x -y -1=0,求边AB 、AC 所在直线方程.8.已知△ABC 中,点A (3,-1),AB 边上的中线所在直线的方程为6x +10y -59=0,∠B的平分线所在直线的方程为x -4y +10=0,求BC 边所在直线的方程.9.如图,足球比赛场地宽为a 米,球门宽b 米,在足球比赛中,甲方边锋从乙方球门附近带球过人沿直线l (贴近球场边线)向前推进,试问:该边锋在距乙方底线多远时起脚射门的可命中角最大? (注:图中AB 表示乙方所守球门;AB 所在直线为乙方底线;l 表示甲方边锋前进的直线)第3课 简单的线性规划【预习思考】1.在直角坐标系中,满足不等式x 2-y 2≥0的点(x ,y )的集合的阴影部分是( ) 2.若x ≥0,y ≥0,且x +y ≤1,则z=x -y 的最大值是 ( ) A .-1 B .1 C .2 D .-23.在如上图所示的坐标平面的可行域内(阴影部分且包括周界), 目标函数z=x +ay 取得最小值的最优解有无数个,则a 的一个可能值为( )A .-3B .3C .-1D .14.已知函数f(x)=ax 2- c 满足-4≤f(1)≤-1, -1≤f(2)≤5, 则f(3)的取值范围为 .5.已知x ∈R ,f(x)是4x , x +2, -2x +4三者中的最小值,则f(x)的最大值是 . 【例题讲评】例1 已知线性约束条件x -y +3≥0, x +y -5≤02x -y -4≤0, 求目标函数z=x +2y 的最大值. x ≥0, y ≥0.例2 点(x ,y )是区域|x|+|y|≤1内的动点,求ax -y(a>0)的最大值及最小值.例3 某厂有一批长为2.5m 的条形钢材,要截成60cm 和43cm 两种规格的零件毛坯,试找出最佳的下料方案,并计算材料的利用率.例4 某运输公司有7辆载重6t 的A 型卡车,4辆载重10t 的B 型卡车,有9名驾驶员,在建造某段高速公路中,公司承包了每天至少运输沥青360t 的任务.已知每辆卡车每天往返次数为A 型8次,B 型6次,每次运输成本为A 型160元,B 型252元.每天应派出A 型、B 型车各多少辆,能使公司总成本最低? 【训练反馈】1.(2005全国)在坐标平面上,不等式组13||1y x y x ≥-⎧⎨≤-+⎩所表示的平面区域的面积为( ) A.2 B.32C.322D.2 2.(2005江西)设实数x ,y 满足20240230x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则y x 的最大值是 。

高考数学一轮复习人教A必修2精品学案2直线与圆的位置关系

高考数学一轮复习人教A必修2精品学案2直线与圆的位置关系

.
(2)Δ=0
.
(3)Δ<0
.
返回
比较这两种方法,第一种方法从“形”的角度考虑, 比较简单;第二种方法从“数”的角度也就是用代 数的方法去考虑,这种方法在以后我们研究直线与 圆锥曲线的位置关系时会经常用到,但在解有关圆 的问题时,会比较麻烦,计算量较大,不宜采用. 因此,我们常用第一种方法,利用平面几何知识, 这样可以大大地简化思维过程和解题过程.
【评析】虽然有关求弦长的方法很多,但首先要考虑 半径、弦长、弦心距之间的关系以及采用数形结合的 思想方法,这样可以获得比较直观、简捷的解法.
返回
直线经过点P(5,5)且和圆C:x2+y2=25相交,截得弦长为
4 5,求l的方程.
当l的斜率不存在时,方程是x=5,与圆C相切,
∴l的斜率必存在,设为k,则l的方程是kx-y-5k+5=0,
,
E) 到直线x-y=0的距离为
2
|

D 2
2
E 2
|
,

|

D

E
|
2

由已知,得 2 2 ( 7 )2 =r2,

2


即(D-E)2+56=2(D2+E2-4F)

又圆心在直线3x-y=0上, ∴3D-E=0 ⑥
返回
联立④⑤⑥解得 D=-2,E=-6,F=1或D=2,E=6,F=1. 故所求圆的方程为 x2+y2-2x-6y+1=0或x2+y2+2x+6y+1=0.
3.过圆上一点,与圆相切的直线有 1 条;
过圆外一点,与圆相切的直线有 2 条.

2021届高考数学(文)考前复习学案-专题14-直线与圆、抛物线-含解析

2021届高考数学(文)考前复习学案-专题14-直线与圆、抛物线-含解析

专题14 直线与圆、抛物线1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d<r ⇔相交;d=r ⇔相切;d>r ⇔相离.(2)代数法:联立直线l 与圆C 的方程,消去y(或x),得一元二次方程,计算判别式Δ=b 2-4ac,Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.2.计算直线被圆截得弦长的常用考向一【典例】(2020·全国Ⅰ卷)已知圆x 2+y 2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A.1B.2C.3D.4考向二 【典例】(2020·全国Ⅲ卷)设O 为坐标原点,直线x=2与抛物线C:y 2=2px(p>0)交于D,E两点,若OD⊥OE,则C 的焦点坐标为A.B.C.(1,0)D.(2,0)1.若直线y=k(x-2)与圆x 2+y 2=1相切,则k=( ) A.1 B.±C.±D.±2.已知圆心在y 轴上的圆C 与直线x=3切于点M .若直线3x+4y+m=0与圆C 相切,则m 的值为A.9B.7C.-21或9D.-23或73.若过直线3x-4y+2=0上一点M向圆Γ:(x-2)2+(y+3)2=4作一条切线于切点T,则的最小值为A. B.4 C.2 D.24.过点P且和圆C:x2+y2-2x+4y+4=0相切的直线方程为A.y+1=0或x=0B.x+1=0或y=0C.y=1或x=0D.x-1=0或y=05.若直线ax-4by-4=0(a>0,b>0)被圆x2+y2-4x+2y-4=0截得的弦长为6,则的最小值为A.3+B.3+2C.5D.76.直线y=kx+3与圆+=4相交于M,N 两点,若≥2,则k的取值范围是( ) A. B.方法(1)几何法:运用弦心距(即圆心到直线的距离),弦长的一半及半径构成直角三角形计算.(2)代数法:弦长公式AB==3.抛物线的焦点弦通过抛物线y2=2px的焦点的直线与抛物线交于A,C. D.7.如图,过抛物线y2=4x的焦点F的直线交抛物线于点A,B,交其准线l于点C,设直线AB的倾斜角为θ,若θ∈,则的取值范围为( )A. B.C. D.8.已知矩形AFKN的四个顶点的坐标分别为A,F,K,N,抛物线C的焦点是F,准线是直线KN,过点N作抛物线的两条切线,切点为P,Q,则P,Q两点间的距离为A.4B.8C.16D.329.已知直线l与抛物线x2=4y交于A,B两点,·=0(其中O为坐标原点).若=+,则直线OP的斜率的取值范围是A.∪B.∪B,则: (1)y1y2=-p2,x1x2= ;(2)若直线AB的倾斜角为θ,则AB==x1+x2+p.1.对称问题一般是将线与线的对称转化为点与点的对称,点与线的对称.2.抛物线的定义中指明了抛物线上点到焦点的距离与到准线距离的等价性,故二者可相互转化.3.求抛物线标准方程要先确定形C.∪D.∪式,必要时要进行分类讨论,标准方程有时可设为y2=mx或x2=my.1.点到直线的距离应该将直线的方程化为一般式Ax+By+C=0.【案例】T1首先应该将直线y=k(x-2)化为kx-y-2k=0,然后用点到直线的距离求解.2.求过圆外一点的圆的切线时,容易忽略斜率不存在的情况.【案例】T4首先讨论斜率不存在的情况,若所求切线的斜率不存在,则切线方程为x=0,符合题意;当斜率存在的时候,设所求切线的方程为y=kx-1,用点到直线的距离公式求解.专题14 直线与圆、抛物线///真题再研析·提升审题力///考向一圆x2+y2-6x=0化为(x-3)2+y2=9,设圆心为C,所以圆心C的坐标为C(3,0),半径为3,设P(1,2),易知点P在圆内部,当过点P的直线和直线CP垂直时,圆心到过点P的直线的距离最大,所求的弦长最短,根据弦长公式最小值为2=2=2.考向二B 将x=2代入y2=2px(p>0)得y=±2,由OD⊥OE得k OD·k OE=-1,即·=-1,得p=1,所以抛物线C:y2=2x的焦点坐标为.///高考演兵场·检验考试力///1.D 直线y=k(x-2)即kx-y-2k=0,由题意可得,圆x2+y2=1的圆心O(0,0)到kx-y-2k=0的距离等于半径1,即=1,解得k=±.2.D 圆心在y轴上的圆C与直线x=3切于点M.可得圆C的半径为3,圆心为.因为直线3x+4y+m=0与圆C相切,所以由切线性质及点到直线距离公式可得=3,解得m=-23或7.3.D 圆Γ:(x-2)2+(y+3)2=4的圆心坐标为,半径为2,要求的最小值,则圆心到直线3x-4y+2=0的距离最小,为=4,所以的最小值为=2.4.A 圆C的标准方程为+=1,圆心为C,半径为r=1,因为+>1,则点P在圆C外.①若所求切线的斜率不存在,则切线方程为x=0,此时圆心到直线x=0的距离为1,合乎题意;②若所求切线的斜率存在,设所求切线的方程为y=kx-1,即kx-y-1=0,圆心C到该直线的距离为d==1,解得k=0,此时所求切线的方程为y+1=0.综上所述,所求切线的方程为y+1=0或x=0.5.B 由题得圆的方程可以化为(x-2)2+(y+1)2=9,所以圆心为(2,-1),半径为r=3,因为直线ax-4by-4=0(a>0,b>0)被圆x2+y2-4x+2y-4=0截得的弦长为6,所以直线经过圆心,所以2a+4b-4=0,即+b=1,所以==3++≥3+2=3+2,当且仅当a=4-2,b=-1时,取“=”,所以的最小值为3+2.6.B 因为≥2,设圆心到直线y=kx+3的距离为d, 则d=≤1,所以d==≤1,所以8k≤0,解得-≤k≤0.7.C 设直线AB的方程为y=k(x-1),则C(-1,-2k),当θ=时,k=1.直线AB的方程为y=x-1,联立所以x2-2x+1-4x=0,解得A(3+2,2+2),B(3-2,2-2),C(-1,-2), =====(-1)2=3-4.当θ=时,k=,直线AB的方程为y=(x-1),联立所以3(x-1)2=4x,所以3x2-10x+3=0,所以(x-3)(3x-1)=0,所以A(3,2),B,C(-1,-2),====.8.C 如图,因为焦点F,所以抛物线C的方程为x2=8y,即y=x2.设切线方程为y+2=k,与抛物线方程联立,消元得x2-kx+4k+2=0.因为相切,所以Δ=k2-4×=0,即k2-2k-1=0,设k1,k2为两个不同的根,所以k1+k2=2,k1k2=-1,所以两个切点的横坐标分别为4k1,4k2.设点P,Q,因为P,Q都在抛物线上,所以y1=,y2=,则=====4=16.9.D 如图,设A,B,因为=+,则P,又·=0,即x 1x2+y1y2=0,即x1x2+=0,即x1x2=-16(x1x2=0舍去),设直线OP的斜率为k, 则k====+,=+≥2=2,当且仅当=,即=4时等号成立,故k∈∪.关闭Word文档返回原板块。

直线与圆位置关系学案[1]

直线与圆位置关系学案[1]

4.4直线和圆的位置关系(一)【课前预案】【温故知新】1、问题:点与圆有哪几种位置关系?2、点到圆心的距离为d,圆的半径为r,则:点在圆外:;点在圆上:;点在圆内:。

数形结合:位置关系﹤=﹥数量关系3、作出点A到直线l的距离。

·A4、连结直线外一点与直线所有点的线段中,最短的是__ ____。

5、直线与圆会有哪些位置关系?【学习目标】1、经历探索直线和圆位置关系的过程,使学生理解直线与圆有相交、相切、相离三种位置关系,掌握其判定方法和性质;2、通过对直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析和概括的能力;3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系,培养学生的辩证唯物主义观点.【学习重点】直线和圆的位置关系的判定方法和性质.【学习难点】直线和圆的三种位置关系的研究及运用.【课中探究案】Al(2) 自主学习:直线和圆的位置关系.(1)直线和圆有 公共点,这时直线和圆 ,这条直线叫做圆的 ,这两个公共点叫做 .(2)直线和圆 公共点,这时直线和圆 ,这条直线叫做圆的 ,这个点叫做 .(3)直线和圆没有公共点,这时直线和圆 .合作探究:“直线和圆的位置关系”能否像“点和圆的位置关系”一样从数量关系上判断呢?归纳:直线和圆的位置关系(用圆心o 到直线l 的距离d 与圆的半径r 的关系来区分)①直线和圆相交: ②直线和圆相切: ③直线和圆相离:小试牛刀:1、已知圆的直径为13cm ,设直线和圆心的距离为d : 1)若d=6cm ,则直线与圆 , 直线与圆有____个公共点. 2)若d=6.5cm ,则直线与圆______, 直线与圆有____个公共点. 3)若d= 7 cm ,则直线与圆______, 直线与圆有____个公共点.2、直线L 和⊙O 有公共点,则直线L 与⊙O ( ). A 、相离;B 、相切;C 、相交;D 、相切或相交。

例1:在Rt △ABC 中,∠C=90°,AC=3cm ,BC=4cm ,以C 为圆心,O dlr lr dO ldrO (1)lO(3)r 为半径的圆与AB 有怎样的位置关系?为什么? (1)r=2cm ; (2)r=2.4cm (3)r=3cm .跟踪练习:已知等腰直角三角形的直角边长为2cm,以直角顶点为圆心,以r 为半径画圆。

高中数学直线和圆教案

高中数学直线和圆教案

高中数学直线和圆教案
课题:直线和圆
一、教学目标:
1. 知识与技能:掌握直线和圆的基本概念、性质和公式;能够运用直线和圆的知识解决相关问题。

2. 过程与方法:通过例题分析、思维导向和讨论等方式,培养学生的数学思维和解决问题的能力。

3. 情感态度与价值观:鼓励学生积极思考、勇于探索,培养他们对数学的兴趣和自信心。

二、教学内容:
1. 直线的概念及斜率、方向角的相关性质;
2. 圆的概念及圆心、半径、弦、弧、切线等基本概念;
3. 直线和圆的位置关系及相关公式。

三、教学过程:
1. 引入:通过给出一道直线和圆的问题,让学生思考直线和圆之间的关系,并引出本节课的主题。

2. 学习直线的知识点:讲解直线的概念、斜率、方向角等基本知识,并通过例题演示如何计算直线的斜率和方向角。

3. 学习圆的知识点:讲解圆的概念、圆心、半径、弦、弧、切线等基本知识,并通过例题演示如何计算圆的相关参数。

4. 直线和圆的位置关系:讲解直线和圆的位置关系及相关公式,并通过例题演示如何判断直线和圆的位置关系。

5. 练习与巩固:布置练习题,让学生独立解题,并对答案进行核对和讲解。

6. 总结与拓展:总结本节课的重点知识,拓展相关知识,激发学生兴趣和探索欲望。

四、课堂评价:
考核学生对直线和圆的基本概念、性质以及相关公式的掌握情况,包括思维能力、解题能力等方面的评价。

五、课后作业:
1. 完成课后练习题;
2. 总结笔记,复习本节课所学知识。

2015年中考复习资料《直线和圆的位置关系》复习学案

2015年中考复习资料《直线和圆的位置关系》复习学案

2015年中考复习资料之一 《直线和圆的位置关系》复习学案学习目标:探索并了解直线与圆以及圆与圆的位置关系;了解切线概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.进一步认识和理解研究图形性质的各种方法.知识要点:1.一个定义:与圆只有一个公共点的直线叫做圆的切线;这个公共点叫做切点;2.两种判定:⑴若圆心到直线的距离等于半径,则该直线是圆的切线;⑵经过直径的一端,并且垂直于这条直径的直线是圆的切线;3.三种关系:直线和圆的位置关系有三种:相交、相切、相高. 直线和圆的位置决定于圆心到直线的距离d 和圆的半径为r 之间的大小关系 ⑴直线与圆相交⇔d <r , ⑵直线与圆相切⇔d=r , ⑶直线与圆相离⇔d >r4.判定直线和圆的位置,一般考虑如下“三步曲”: 一“看”:看看题目中有没有告诉我们直线和圆有几个公共点;二“算”:算算圆心到直线的距离d 和圆的半径为r 之间的大小关系,然后根据上述关系作出判断; 三“证明”: 证明直线是否经过直径的一端,并且与该直径的位置关系是否垂直。

5.两条性质:切线有许多重要性质 ⑴圆心到切线的距离等于圆的半径; ⑵过切点的半径垂直于切线;例题精解:【例1】已知:如图,A 是圆O 上一点,半径OC 的延长线与过点A 的直线交于B 点,OC BC =,12AC OB =.(1)求证:AB 是圆O 的切线;(2)若45ACD ∠=°,2OC =,求弦CD 的长.【例2】如图,AB 是O 的直径,AE 平分BAF ∠,交O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .OABCD(1)求证:CD 是O 的切线;(2)若2CB =,4CE =,求AE 的长.【例3】如图,AB 是⊙O 的直径,AE 平分∠BAC 交⊙O 于点E ,过E 作⊙O 的切线ME 交AC 于点D .试判断△AED 的形状,并说明理由.课堂达标验收试题一、选择题(每小题5分35分)1.如图,已知PA 是⊙O 的切线,A 为切点,PC 与⊙O 相交于B .C 两点,PB =2㎝,BC =8㎝,则P A 的长等于A . 4㎝B . 16㎝C . 20㎝D . 25㎝(第2题) ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于( )A.40°B.55°C.65°D.70°3.如图,AB 、AC 是⊙O 的两条切线,B 、C 是切点,若∠A =70°,则∠BOC 的度数为( )。

最新高考数学二轮复习-专题六-第1讲-直线与圆-学案讲义

最新高考数学二轮复习-专题六-第1讲-直线与圆-学案讲义

第1讲直线与圆[考情分析] 1.求直线的方程,考查点到直线的距离公式,直线间的位置关系,多以选择题、填空题的形式出现,中低难度.2.和圆锥曲线相结合,求圆的方程或弦长、面积等,中高难度.考点一直线的方程核心提炼1.已知直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0,则l 1∥l 2⇔A 1B 2-A 2B 1=0,且A 1C 2-A 2C 1≠0(或B 1C 2-B 2C 1≠0),l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.点P (x 0,y 0)到直线l :Ax +By +C =0(A ,B 不同时为零)的距离d =|Ax 0+By 0+C |A 2+B 2.3.两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(A ,B 不同时为零)间的距离d =|C 1-C 2|A 2+B 2.例1(1)(多选)已知直线l 的倾斜角等于30°,且l 经过点(0,1),则下列结论中正确的是()A .直线l 的方程为y =33x +1B .l 的一个方向向量为n 33,1C .l 与直线3x -3y +2=0平行D .l 与直线3x +y +2=0垂直答案ACD解析由题意知直线l 的斜率为tan 30°=33,且过点(0,1),所以直线l 的方程为y =33x +1,方向向量为n =(1,k )1,33,A 正确,B 错误;直线3x -3y +2=0的斜率为33,且不过点(0,1),故两直线平行,C 正确;直线3x +y +2=0的斜率为-3,则两直线斜率之积为-1,故两直线垂直,D正确.(2)当点M(2,-3)到直线(4m-1)x-(m-1)y+2m+1=0的距离取得最大值时,m等于() A.2 B.47C.-2D.-4答案C解析将直线(4m-1)x-(m-1)y+2m+1=0转化为(4x-y+2)m-x+y+1=0,x-y+2=0,x+y+1=0,=-1,=-2,所以直线恒过定点N(-1,-2),当直线MN与该直线垂直时,点M到该直线的距离取得最大值,此时4m-1m-1×-3-(-2)2-(-1)=-1,解得m=-2.易错提醒解决直线方程问题的三个注意点(1)利用A1B2-A2B1=0后,要注意代入检验,排除两条直线重合的可能性.(2)要注意直线方程每种形式的局限性.(3)讨论两直线的位置关系时,要注意直线的斜率是否存在.跟踪演练1(1)(多选)下列说法错误的是()A.过点A(-2,-3)且在两坐标轴上的截距相等的直线l的方程为x+y=-5B.直线2(m+1)x+(m-3)y+7-5m=0必过定点(1,3)C.经过点P(1,1),倾斜角为θ的直线方程为y-1=tanθ(x-1)D.过(x1,y1),(x2,y2)两点的所有直线的方程为(x2-x1)(y-y1)=(y2-y1)(x-x1)答案AC解析对于A中,当在两坐标轴上的截距相等且等于0时,直线过原点,可设直线方程为y=kx,又直线过点A(-2,-3),则-3=-2k,即k=32,此时直线方程为y=32x,也满足题意,所以A错误;对于B中,直线2(m+1)x+(m-3)y+7-5m=0可化为(2x+y-5)m+2x-3y+7=0,由方程x+y-5=0,x-3y+7=0,解得x=1,y=3,即直线2(m+1)x+(m-3)y+7-5m=0必过定点(1,3),所以B正确;对于C中,当倾斜角θ=π2时,此时直线的斜率不存在,tanθ无意义,所以C错误;对于D中,由两点(x1,y1),(x2,y2),当x1≠x2时,此时过(x1,y1),(x2,y2)两点的所有直线的方程为y-y1=y2-y1x2-x1(x-x1),即(x2-x1)(y-y1)=(y2-y1)(x-x1),当x1=x2时,此时过(x1,y1),(x2,y2)两点的所有直线的方程为x=x1或x=x2,适合上式,所以过(x1,y1),(x2,y2)两点的所有直线的方程为(x2-x1)(y-y1)=(y2-y1)(x-x1),所以D正确.(2)若两条平行直线l1:x-2y+m=0(m>0)与l2:2x+ny-6=0之间的距离是25,则m+n =________.答案3解析因为直线l1:x-2y+m=0(m>0)与l2:2x+ny-6=0平行,所以21=n-2≠-6m,解得n=-4且m≠-3,所以直线l2为2x-4y-6=0,直线l1:x-2y+m=0(m>0)化为2x-4y+2m=0(m>0),因为两平行线间的距离为25,所以|2m-(-6)|22+(-4)2=25,得|2m+6|=20,因为m>0,所以2m+6=20,解得m=7,所以m+n=7-4=3.考点二圆的方程核心提炼1.圆的标准方程当圆心为(a,b),半径为r时,其标准方程为(x-a)2+(y-b)2=r2. 2.圆的一般方程x2+y2+Dx+Ey+F=0,其中D2+E2-4F>0-D2,-为圆心,D2+E2-4F2为半径的圆.例2(1)已知圆C1:x2+y2=4与圆C2关于直线2x+y+5=0对称,则圆C2的标准方程为()A.(x+4)2+(y+2)2=4B.(x-4)2+(y-2)2=4C.(x+2)2+(y+4)2=4D.(x-2)2+(y-4)2=4答案A解析由题意可得,圆C1的圆心坐标为(0,0),半径为2,设圆心C1(0,0)关于直线2x+y+5=0的对称点为C2(a,b),(-2)=-1,×a 2+b2+5=0,=-4,=-2,所以圆C2的标准方程为(x+4)2+(y+2)2=4.(2)(2023·泉州模拟)已知圆C:x2+y2+mx-2y=0关于直线l:(a+1)x-ay-1=0(a≠-1)对称,l与C交于A,B两点,设坐标原点为O,则|OA|+|OB|的最大值等于()A.2B.4C.8D.16答案B解析圆C:x2+y2+mx-2y=0,即+(y-1)2=1+m 24,圆心为-m2,直线l:(a+1)x-ay-1=0,因为a≠-1,所以直线l的斜率不为0,又a(x-y)+(x-1)=0,-y=0,-1=0,=1,=1,即直线l恒过定点D(1,1),又圆C关于直线l对称,所以圆心C在直线l上,所以-m2=1,解得m=-2,所以圆C:(x-1)2+(y-1)2=2,半径r=2,显然(0-1)2+(0-1)2=2,即圆C过坐标原点O(0,0),因为l与C交于A,B两点,即A,B为直径的两个端点,如图,所以∠AOB=90°,所以|OA |2+|OB |2=|AB |2=(22)2=8≥2|OA |·|OB |,即|OA |·|OB |≤4,当且仅当|OA |=|OB |=2时取等号,所以(|OA |+|OB |)2=|OA |2+|OB |2+2|OA |·|OB |=8+2|OA |·|OB |≤16,即|OA |+|OB |≤4,当且仅当|OA |=|OB |=2时取等号,即|OA |+|OB |的最大值等于4.规律方法解决圆的方程问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练2(1)(2023·龙岩质检)写出一个与圆x 2+y 2=1外切,并与直线y =33x 及y 轴都相切的圆的方程____________.答案(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1或(x -23-3)2+(y +2+3)2=21+123或(x +23+3)2+(y -2-3)2=21+123(写出其中一个即可)解析设所求圆的方程为(x -a )2+(y -b )2=r 2,因为与圆x 2+y 2=1外切,所以a 2+b 2=1+r ,又因为与直线y =33x 及y 轴都相切,所以r =|a |=|3a -3b |(3)2+(-3)2=|a -3b |2,所以2|a |=|a -3b |,即|2a |=|a -3b |,所以2a =3b -a 或2a =a -3b ,所以b =3a 或a =-3b ,当b =3a 时,因为r =|a |,a 2+b 2=1+r ,联立得3a 2=2|a |+1,=1,=3或=-1,=-3,r =1,所以求得圆的方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1,当a =-3b 时,因为r =|a |,a 2+b 2=1+r ,联立得13a 2=2|a |+1,=3+23,=-3-2=-3-23,=3+2,r =3+23,所以求得圆的方程为(x -23-3)2+(y +2+3)2=21+123或(x +23+3)2+(y -2-3)2=21+123.(写出其中一个即可)(2)(2023·福州模拟)已知⊙O 1:(x -2)2+(y -3)2=4,⊙O 1关于直线ax +2y +1=0对称的圆记为⊙O 2,点E ,F 分别为⊙O 1,⊙O 2上的动点,EF 长度的最小值为4,则a 等于()A .-32或56B .-56或32C .-32或-56 D.56或32答案D解析由题易知两圆不可能相交或相切,如图,当EF 所在直线过两圆圆心且与对称轴垂直,点E ,F 又接近于对称轴时,EF 长度最小,此时圆心O 1到对称轴的距离为4,所以|2a +6+1|a 2+4=4,即(2a +7)2=16(a 2+4),解得a =32或a =56.考点三直线、圆的位置关系核心提炼1.直线与圆的位置关系:相交、相切和相离.其判断方法为:(1)点线距离法.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),联立方程+By +C =0,-a )2+(y -b )2=r 2,消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.考向1直线与圆的位置关系例3(1)(多选)(2023·阳泉模拟)已知直线l :y =kx +2k +2(k ∈R )与圆C :x 2+y 2-2y -8=0.则下列说法正确的是()A .直线l 过定点(-2,2)B .直线l 与圆C 相离C .圆心C 到直线l 距离的最大值是22D .直线l 被圆C 截得的弦长的最小值为4答案AD解析对于A ,因为l :y =kx +2k +2(k ∈R ),即y =k (x +2)+2,令x +2=0,即x =-2,得y =2,所以直线l 过定点(-2,2),故A 正确;对于B ,因为(-2)2+22-2×2-8<0,所以定点(-2,2)在圆C :x 2+y 2-2y -8=0的内部,所以直线l 与圆C 相交,故B 错误;对于C ,如图,因为圆C :x 2+y 2-2y -8=0,可化为x 2+(y -1)2=9,圆心C (0,1),当圆心C 与定点(-2,2)的连线垂直于直线l 时,圆心C 到直线l 的距离取得最大值,此时其值为(-2)2+(2-1)2=5,故C 错误;对于D ,由弦长公式|AB |=2r 2-d 2可知,当圆心C 到直线l 的距离最大时,弦长取得最小值,所以直线l 被圆C 截得的弦长的最小值为2×9-5=4,故D 正确.(2)(2023·新高考全国Ⅱ)已知直线x -my +1=0与⊙C :(x -1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值为________.答案,-2,12,-12中任意一个皆可以解析设直线x -my +1=0为直线l ,点C 到直线l 的距离为d ,由弦长公式得|AB |=24-d 2,所以S △ABC =12×d ×24-d 2=85,解得d =455或d =255,又d =|1+1|1+m 2=21+m 2,所以21+m 2=455或21+m 2=255,解得m =±12或m =±2.考向2圆与圆的位置关系例4(1)(2023·淄博模拟)“a ≥22”是“圆C 1:x 2+y 2=4与圆C 2:(x -a )2+(y +a )2=1有公切线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析圆C1:x2+y2=4的圆心C1(0,0),半径r1=2,圆C2:(x-a)2+(y+a)2=1的圆心C2(a,-a),半径r2=1,若两圆有公切线,则|C1C2|≥|r1-r2|,即a2+(-a)2≥1,解得a≤-22或a≥22,所以“a≥22”是“圆C1:x2+y2=4与圆C2:(x-a)2+(y+a)2=1有公切线”的充分不必要条件.(2)(多选)(2023·福建统考)已知⊙O:x2+y2=1,⊙O1:(x-2)2+y2=r2(r>0),则下列说法正确的是()A.若r=2,两圆的公切线过点(-2,0)B.若r=2,两圆的相交弦长为3C.若两圆的一个交点为M,分别过点M的两圆的切线相互垂直,则r=3D.当r>3时,两圆的位置关系为内含答案AD解析当r=2时,如图,两圆的一条公切线分别与⊙O,⊙O1切于点A,B,交x轴于点Q,|OQ| |O1Q|=|OA||O1B|=12⇒|OQ|=2,故Q(-2,0),故A正确;当r=2时,两圆公共弦所在的直线方程可由两圆方程相减得到,公共弦所在的直线方程为x=14,相交弦长为=152,故B错误;若MO⊥MO1,则|MO|2+|MO1|2=|OO1|2,即12+r2=4,则r=3,故C错误;当r>3时,r-1>2=|OO1|,故两圆的位置关系是内含,D正确.规律方法直线与圆相切问题的解题策略当直线与圆相切时,利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外一点的距离,再结合半径利用勾股定理计算.跟踪演练3(1)(2023·邯郸模拟)已知直线l :x -y +5=0与圆C :x 2+y 2-2x -4y -4=0交于A ,B 两点,若M 是圆上的一动点,则△MAB 面积的最大值是____________.答案22+3解析圆C :(x -1)2+(y -2)2=9,则圆C 的圆心为C (1,2),半径r =3,圆心C 到直线l (弦AB )的距离d =|1-2+5|2=22,则|AB |=2r 2-d 2=29-8=2,则M 到弦AB 的距离的最大值为d +r =22+3,则△MAB 面积的最大值是12×|AB |×(22+3)=22+3.(2)(多选)(2023·辽阳模拟)已知⊙E :(x -2)2+(y -1)2=4,过点P (5,5)作圆E 的切线,切点分别为M ,N ,则下列命题中真命题是()A .|PM |=21B .直线MN 的方程为3x +4y -14=0C .圆x 2+y 2=1与⊙E 共有4条公切线D .若过点P 的直线与⊙E 交于G ,H 两点,则当△EHG 面积最大时,|GH |=22答案ABD解析因为圆E 的方程为(x -2)2+(y -1)2=4,所以圆心E 的坐标为(2,1),半径为2,如图,所以|EM |=|EN |=2,又P (5,5),所以|PE |=(5-2)2+(5-1)2=5,由已知得PM ⊥ME ,PN ⊥NE ,所以|PM |=|PE |2-|EM |2=21,A 正确;因为PM ⊥ME ,PN ⊥NE ,所以点P ,M ,E ,N 四点共圆,且圆心为PE 的中点,线段PE 的中点坐标为所以圆F 的方程为+(y -3)2=254,即x 2-7x +y 2-6y +15=0,因为52-2<|EF |=52<52+2,所以圆E 与圆F 相交,又圆E 的方程可化为x 2-4x +y 2-2y +1=0,所以圆E 与圆F 的公共弦方程为3x +4y -14=0,故直线MN 的方程为3x +4y -14=0,B 正确;圆x 2+y 2=1的圆心O 的坐标为(0,0),半径为1,因为|OE |=5,2-1<|OE |<1+2,所以圆x 2+y 2=1与圆E 相交,故两圆只有2条公切线,C 错误;如图,设∠HEG =θ,则θ∈(0,π),△EHG 的面积S △EHG =12|EH |·|EG |sin θ=2sin θ,所以当θ=π2时,△EHG 的面积取得最大值,最大值为2,此时|GH |=4+4=22,D 正确.专题强化练一、单项选择题1.(2023·丹东模拟)若直线l 1:x +ay -3=0与直线l 2:(a +1)x +2y -6=0平行,则a 等于()A .-2B .1C .-2或1D .-1或2答案A解析由题意知,直线l 1:x +ay -3=0与直线l 2:(a +1)x +2y -6=0平行,∴1×2=a (a +1),解得a =-2或a =1.当a =-2时,l 1:x -2y -3=0,l 2:-x +2y -6=0,l 1∥l 2.当a =1时,l 1:x +y -3=0,l 2:x +y -3=0,l 1与l 2重合.综上所述,a =-2.2.(2023·蚌埠质检)直线l :x +my +1-m =0与圆C :(x -1)2+(y -2)2=9的位置关系是()A .相交B .相切C .相离D .无法确定答案A解析已知直线l:x+my+1-m=0过定点(-1,1),将点(-1,1)代入圆的方程可得(-1-1)2+(1-2)2<9,可知点(-1,1)在圆内,所以直线l:x+my+1-m=0与圆C:(x-1)2+(y-2)2=9相交.3.(2023·湖北星云联盟模拟)过三点A(1,0),B(2,1),C(2,-3)的圆与直线x-2y-1=0交于M,N两点,则|MN|等于()A.455B.655C.855D.25答案B解析依题意,设过A,B,C三点的圆的方程为x2+y2+Dx+Ey+F=0,D2+E2-4F>0,+D+F=0,+2D+E+F=0,+2D-3E+F=0,=-6,=2,=5,则圆的方程为x2+y2-6x+2y+5=0,即(x-3)2+(y+1)2=5,其圆心为(3,-1),半径r=5,点(3,-1)到直线x-2y-1=0的距离d=|3-2×(-1)-1|12+(-2)2=45所以|MN|=2r2-d2==655.4.(2023·滨州模拟)已知直线l:mx+ny=1与圆O:x2+y2=1相切,则mn的最大值为()A.14B.12C.1D.2答案B解析由于直线l:mx+ny=1与圆O:x2+y2=1相切,故圆心到直线l的距离d=1m2+n2=1,即m2+n2=1,故mn≤m2+n22=12,当且仅当m=n=22时取等号.5.(2023·洛阳模拟)已知点P为直线y=x+1上的一点,M,N分别为圆C1:(x-4)2+(y-1)2=1与圆C 2:x 2+(y -4)2=1上的点,则|PM |+|PN |的最小值为()A .5B .3C .2D .1答案B 解析由圆C 1:(x -4)2+(y -1)2=1,可得圆心C 1(4,1),半径r 1=1,圆C 2:x 2+(y -4)2=1,可得圆心C 2(0,4),半径r 2=1,可得圆心距|C 1C 2|=(4-0)2+(1-4)2=5,如图,|PM |≥|PC 1|-r 1,|PN |≥|PC 2|-r 2,所以|PM |+|PN |≥|PC 1|+|PC 2|-r 1-r 2=|PC 1|+|PC 2|-2≥|C 1C 2|-2=3,当点M ,N ,C 1,C 2,P 共线时,|PM |+|PN |取得最小值,故|PM |+|PN |的最小值为3.6.(2023·信阳模拟)已知圆C :x 2+y 2+2x -3=0与过原点O 的直线l :y =kx (k ≠0)相交于A ,B 两点,点P (m ,0)为x 轴上一点,记直线PA ,PB 的斜率分别为k 1,k 2,若k 1+k 2=0,则实数m 的值为()A .-3B .-2C .2D .3答案D 解析设A (x 1,y 1),B (x 2,y 2),因为直线l 的方程为y =kx ,代入圆C 的方程,得(k 2+1)x 2+2x -3=0,所以x 1+x 2=-2k 2+1,x 1x 2=-3k 2+1.所以k 1+k 2=y 1x 1-m +y 2x 2-m=kx 1x 1-m +kx 2x 2-m =2kx 1x 2-km (x 1+x 2)(x 1-m )(x 2-m )=(2m -6)k (x 1-m )(x 2-m )(k 2+1)=0.因为k ≠0,所以2m -6=0,解得m =3.7.(2023·全国乙卷)已知实数x ,y 满足x 2+y 2-4x -2y -4=0,则x -y 的最大值是()A .1+322B .4C .1+32D .7答案C 解析方法一令x -y =k ,则x =k +y ,代入原式化简得2y 2+(2k -6)y +k 2-4k -4=0,因为存在实数y ,则Δ≥0,即(2k -6)2-4×2(k 2-4k -4)≥0,化简得k 2-2k -17≤0,解得1-32≤k ≤1+32,故x -y 的最大值是32+1.方法二由x 2+y 2-4x -2y -4=0可得(x -2)2+(y -1)2=9,设x -y =k ,则圆心到直线x -y =k 的距离d =|2-1-k |2≤3,解得1-32≤k ≤1+3 2.故x -y 的最大值为32+1.8.已知圆O :x 2+y 2=1,点P 在直线l :x -y -22=0上运动,过点P 作圆O 的两条切线,切点分别为A ,B ,当∠APB 最大时,记劣弧AB ︵及PA ,PB 所围成的平面图形的面积为S ,则()A .2<S <3B .1<S ≤2C .1<S ≤3D .0<S <1答案D 解析如图所示,圆O :x 2+y 2=1的圆心O 的坐标为(0,0),半径为1,因为在Rt △OBP 中,sin ∠OPB =r |OP |=1|OP |,且y =sin x 所以当|OP |最小时,∠OPB 最大,即∠APB 最大,此时OP 垂直于直线l ,且|OP |=2212+(-1)2=2,|PA |=|PB |=3,从而四边形OAPB 的面积为S 四边形OAPB =2×12×3×1=3,设∠AOP =θ,则∠AOB =2θ,S 扇形OAB =12×12×2θ=θ,从而劣弧AB ︵及PA ,PB 所围成的平面图形的面积为S =3-θ,又因为sin θ=32,θθ=π3,从而0<S =3-θ=3-π3<1.二、多项选择题9.下列说法正确的是()A .直线y =ax -2a +4(a ∈R )必过定点(2,4)B .直线y +1=3x 在y 轴上的截距为1C .直线3x +3y +5=0的倾斜角为120°D .过点(-2,3)且垂直于直线x -2y +3=0的直线方程为2x +y +1=0答案AD 解析对于A 选项,直线方程可化为y =a (x -2)+4,-2=0,=4,=2,=4,所以直线y =ax -2a +4(a ∈R )必过定点(2,4),A 正确;对于B 选项,直线方程可化为y =3x -1,故直线y +1=3x 在y 轴上的截距为-1,B 错误;对于C 选项,直线3x +3y +5=0的斜率为-33,该直线的倾斜角为150°,C 错误;对于D 选项,过点(-2,3)且垂直于直线x -2y +3=0的直线方程可设为2x +y +c =0,则2×(-2)+3+c =0,可得c =1,所以过点(-2,3)且垂直于直线x -2y +3=0的直线方程为2x +y +1=0,D 正确.10.(2023·湖南联考)已知直线l 1:y =kx +1,l 2:y =mx +2,圆C :(x -1)2+(y -2)2=6,下列说法正确的是()A .若l 1经过圆心C ,则k =1B .直线l 2与圆C 相离C .若l 1∥l 2,且它们之间的距离为55,则k =±2D .若k =-1,l 1与圆C 相交于M ,N ,则|MN |=2答案AC 解析对于A ,因为圆心C (1,2)在直线y =kx +1上,所以2=k +1,解得k =1,A 正确;对于B ,因为直线l 2:y =mx +2恒过定点(0,2),且(0-1)2+(2-2)2<6,即点(0,2)在圆C 内,所以l 2与圆C 相交,B 错误;对于C ,因为l 1∥l 2,则m =k ,故kx -y +1=0与kx -y +2=0之间的距离d =1k 2+1=55,所以k =±2,C 正确;对于D ,当k =-1时,直线l 1:y =-x +1,即x +y -1=0,因为圆心C (1,2)到直线x +y -1=0的距离d 2=21+1=2,所以|MN |=26-(2)2=4,D 错误.11.如图所示,该曲线W 是由4个圆:(x -1)2+y 2=1,(x +1)2+y 2=1,x 2+(y +1)2=1,x 2+(y -1)2=1的一部分所构成,则下列叙述正确的是()A .曲线W 围成的封闭图形的面积为4+2πB .若圆x 2+y 2=r 2(r >0)与曲线W 有8个交点,则2≤r ≤2C.BD ︵与DE ︵的公切线方程为x +y -1-2=0D .曲线W 上的点到直线x +y +52+1=0的距离的最小值为4答案ACD 解析曲线W 围成的封闭图形可分割为一个边长为2的正方形和四个半径为1的相同的半圆,所以其面积为2×2+2×π×12=4+2π,故A 正确;当r =2时,交点为B ,D ,F ,H ;当r =2时,交点为A ,C ,E ,G ;当0<r <2或r >2时,没有交点;当2<r <2时,交点个数为8,故B 错误;设BD ︵与DE ︵的公切线方程为y =kx +t (k <0,t >0),由直线和圆相切可得|t -1|1+k 2=1=|k +t |1+k 2,解得k =-1,t =1+2(t =1-2舍去),则其公切线方程为y =-x +1+2,即x +y -1-2=0,故C 正确;同理可得HB ︵,HG ︵的公切线方程为x +y +1+2=0,则两平行线间的距离d =|52+1-1-2|2=4,因为曲线W 上的点到直线x +y +52+1=0的距离最小值为HB ︵,HG ︵上的切点到直线的距离,即为两平行线间的距离,为4,故D 正确.12.已知圆O:x2+y2=4和圆C:(x-3)2+(y-3)2=4,P,Q分别是圆O,圆C上的动点,则下列说法正确的是()A.圆O与圆C有四条公切线B.|PQ|的取值范围是[32-4,32+4]C.x-y=2是圆O与圆C的一条公切线D.过点Q作圆O的两条切线,切点分别为M,N,则存在点Q,使得∠MQN=90°答案ABD解析对于选项A,由题意可得,圆O的圆心为O(0,0),半径r1=2,圆C的圆心C(3,3),半径r2=2,因为两圆圆心距|OC|=32>2+2=r1+r2,所以两圆外离,有四条公切线,A正确;对于B选项,|PQ|的最大值等于|OC|+r1+r2=32+4,最小值为|OC|-r1-r2=32-4,B 正确;对于C选项,显然直线x-y=2与直线OC平行,因为两圆的半径相等,则外公切线与圆心连线平行,由直线OC:y=x,设直线为y=x+t,则两平行线间的距离为2,即|t|2=2,则t=±22,故y=x±22,故C不正确;对于D选项,易知当∠MQN=90°时,四边形OMQN为正方形,故当|QO|=22时,∠MQN =90°,故D正确.三、填空题13.(2023·锦州模拟)写出过点P(2,4)且与圆C:(x-1)2+(y-2)2=1相切的一条直线的方程__________________.答案x=2或3x-4y+10=0(写出其中一个即可)解析圆C:(x-1)2+(y-2)2=1,圆心C(1,2),半径r=1,当直线斜率不存在时,验证知x=2满足条件;当直线斜率存在时,设直线方程为y=k(x-2)+4,即kx-y-2k+4=0,圆心到直线的距离为|2-k|1+k2=1,解得k=34,故直线方程为34x-y-32+4=0,即3x-4y+10=0.综上所述,直线方程为x=2或3x-4y+10=0.14.(2023·潍坊模拟)已知圆C:x2+y2-4x cosθ-4y sinθ=0,与圆C总相切的圆D的方程是________________.答案x2+y2=16解析圆C的标准方程为(x-2cosθ)2+(y-2sinθ)2=4,则圆C的圆心为(2cosθ,2sinθ),半径为2,由圆心坐标可知圆心轨迹是以原点为圆心,半径为2的圆,故圆C 上总有点与原点距离为4,由圆的标准方程可知圆D 的方程是x 2+y 2=16.15.(2023·烟台模拟)已知实数a ,b 满足a 2+b 2-4a +3=0,则a 2+(b +2)2的最大值为____________.答案9+42解析方程a 2+b 2-4a +3=0整理得(a -2)2+b 2=1,设点A (a ,b ),即点A 是圆C :(x -2)2+y 2=1上一点,又点B (0,-2)在圆C :(x -2)2+y 2=1外,所以|AB |=a 2+(b +2)2,则|AB |max =|BC |+r =(2-0)2+(0+2)2+1=22+1,所以a 2+(b +2)2的最大值为(22+1)2=9+4 2.16.(2023·葫芦岛模拟)自动驾驶汽车又称无人驾驶汽车,依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆.某自动驾驶讯车在车前O 点处安装了一个雷达,此雷达的探测范围是扇形区域OAB .如图所示,在平面直角坐标系中,O (0,0),直线OA ,OB 的方程分别是y =12x ,y =-12x ,现有一个圆形物体的圆心为C ,半径为1m ,圆C 与OA ,OB 分别相切于点M ,N ,则|MN |=________m.答案455解析如图,连接MC ,NC ,MN ,由题意可设C (a ,0)(a >0),又圆C 与OA 相切,则d =|12a |14+1=r =1,解得a =5,由题意可得MC ⊥OM ,NC ⊥ON ,在Rt △MOC 中,|OM |=|OC |2-|MC |2=2,所以S △MOC =12|OM |×|MC |=1,同理S △NOC =1,所以S 四边形MONC =2,又MN ⊥OC ,所以S 四边形MONC =12|MN |×|OC |=52|MN |=2,即|MN |=455.。

点(直线、圆)和圆的位置关系复习学案

点(直线、圆)和圆的位置关系复习学案

3.3点与圆、直线与圆、圆与圆位置关系-----复习课学案教学目标 1.了解点与圆,直线与圆以及圆与圆的位置关系.并能运用有关结论解决有关问题.2.了解切线概念,掌握切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.3.能够运用圆有关知识进行综合应用.一:【课前预习】(一):【知识梳理】1.点与圆的位置关系:有三种:点在圆外,点在圆上,点在圆内.设圆的半径为r,点到圆心的距离为d,则点在圆外⇔d>r.点在圆上⇔d=r.点在圆内⇔d<r.2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r,圆心到直线的距离为d,则直线与圆相交⇔d<r,直线与圆相切⇔d=r,直线与圆相离⇔d>r3.圆与圆的位置关系(1)同一平面内两圆的位置关系:①相离:如果两个圆没有公共点,那么就说这两个圆相离.②若两个圆心重合,半径不同观两圆是同心圆.③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.④相交:如果两个圆有两个公共点,那么就说这两个圆相交.(2)圆心距:两圆圆心的距离叫圆心距.(3)设两圆的圆心距为d,两圆的半径分别为R和r,则①两圆外离⇔d>R+r;有4条公切线;②两圆外切⇔d=R+r;有3条公切线;③两圆相交⇔R-r<d<R+r(R>r)有2条公切线;④两圆内切⇔d=R-r(R>r)有1条公切线;⑤两圆内含⇔d<R—r(R>r)有0条公切线.(注意:两圆内含时,如果d为0,则两圆为同心圆)4.切线的性质和判定(1)切线的定义:直线和圆有唯一公共点门直线和圆相切时,这条直线叫做圆的切线.(2)切线的性质:圆的切线垂直于过切点的直径.(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.(二):【课前练习】1.△ABC中,∠C=90°,AC=3,CB=6,若以C为圆心,以r为半径作圆,那么:⑴当直线AB与⊙C相离时,r的取值范围是____;⑵当直线AB与⊙C相切时,r的取值范围是____;⑶当直线AB与⊙C相交时,r的取值范围是____.2.两个同心圆的半径分别为1cm和2cm,大圆的弦AB与小圆相切,那么AB=()A..3 D.43.已知⊙O1和⊙O2相外切,且圆心距为10cm,若⊙O1的半径为3cm,则⊙O2的半径 cm.4.两圆既不相交又不相切,半径分别为3和5,则两圆的圆心距d的取值范围是()A.d>8 B.0<d≤2 C.2<d<8 D.0≤d<2或d>85.已知半径为3 cm,4cm的两圆外切,那么半径为6 cm且与这两圆都外切的圆共有_____个.二:【经典考题剖析】1.Rt△ABC中,∠C=90°,∠AC=3cm,BC=4cm,给出下列三个结论:①以点C为圆心1.3 cm长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB相切;③以点C为圆心,2.5cm长为半径的圆与AB相交.上述结论中正确的个数是()A.0个 B.l个 C.2个 D.3个2.已知半径为3cm,4cm的两圆外切,那么半径为6cm且与这两圆都外切的圆共有__ _个.3.已知⊙O1和⊙O2的半径分别为3crn和5 cm,两圆的圆心距是6 cm,则这两圆的位置关系是()A.内含 B.外离 C.内切 D.相交4.如图,PA 为⊙O 的切线,A 为切点,PO 交 ⊙O 于点B ,PA=4,OA=3,则cos ∠APO 的值为( ) 3344. . . .4553A B C D5.如图,已知PA ,PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P=40°,则∠BAC 度数是( ) A .70° B .40° C .50° D .20°三:【课后训练】填空、选择1.在△ABC 中,∠C=90°,AC=3cm ,BC=4cm ,CM 是中线,以C 为圆心,以3cm 长为半径画圆,则对A 、B 、C 、M 四点,在圆外的有_________,在圆上的有________,在圆内的有________.2.已知半径为3 cm ,4cm 的两圆外切,那么半径为6 cm 且与这两圆都外切的圆共有_________个.3.已知两圆的半径分别为3 cm 和4 cm ,圆心距为1cm ,那么两圆的位置关系是( )A .相离B .相交C .内切D .外切4.如图,A 、B 是⊙上的两点,AC 是⊙O 的切线,∠B =65○ ,则∠BAC 等于( ) A .35○ B .25○ C .50○ D .65○5.已知两圆的圆心距是3,两圆的半径分别是方程x 2-3x+2=0的两个根,那么这两个圆的位置关系是( )A .外离B .外切C .相交D .内切6.⊙O 1和⊙O 2的半径分别为3cm 和4cm .设① O 1O 2=8cm ⊙O 1和⊙O 2的位置关系是________。

高三数学二轮复习直线与圆学案

高三数学二轮复习直线与圆学案

高三数学二轮复习 ——直线、圆及其交汇问题一、高考定位:本问题是整个解析几何的基础,在解析几何的知识体系中占有重要位置,但解析几何的主要内容是圆锥曲线与方程,故在该部分高考考查的分值不多,在高考试卷中一般就是一个选择或填空题考查直线与方程、圆与方程的基本问题,偏向于考查直线与圆的综合,试题难度不大,对直线方程、圆的方程的深入考查则与圆锥曲线结合进行.二、必备知识1. 两直线平行、垂直的判定(1)①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.②若两直线的斜率都不存在,并且两直线不重合,则两直线平行;③若两直线中一条直线的斜率为0,另一条直线斜率不存在,则两直线垂直. (2)l 1:A 1x +B 1y +C 1=0, l 2:A 2x +B 2y +C 2=0, 则有l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0,通常写成111222A B C A B C =≠(分母不为0) 便于记忆。

l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.圆的方程:(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r . (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝⎛⎭⎫-D 2,-E2,半径为r =D 2+E 2-4F2;(3)直线被圆所截得的弦长等于三、必备方法1.由于直线方程有多种形式,各种形式适用的条件、范围不同,在具体求直线方程时,由所给的条件和采用的直线方程形式所限,可能会产生遗漏的情况,尤其在选择点斜式、斜截式时要注意斜率不存在的情况.2.处理有关圆的问题,要特别注意圆心、半径及平面几何知识的应用,如弦心距、半径、弦长的一半构成直角三角形经常用到,利用圆的一些特殊几何性质解题,往往使问题简化.3.直线与圆中常见的最值问题(1)圆外一点与圆上任一点的距离的最值.(2)直线与圆相离,圆上任一点到直线的距离的最值. (3)过圆内一定点的直线被圆截得弦长的最值.(4)直线与圆相离,过直线上一点作圆的切线,切线长的最小值问题. (5)两圆相离,两圆上点的距离的最值.4.两圆相交,将两圆方程联立消去二次项,得到一个二元一次方程即为两圆公共弦所在的直线方程.四、典型例题解析:【例1】►待定系数法求圆的方程已知圆C与圆x2+y2-2x=0外切,并与直线x+3y=0相切于点Q(3,-3),求圆C方程.[审题] 先确定采用标准方程还是一般方程,然后求出相应的参数,即采用待定系数法.解:设圆C的圆心为(a,b),半径为r,由题设得13rrba⎧==+⎪=-⎪⎪⎩解得:42abr=⎧⎪=⎨⎪=⎩或6abr=⎧⎪=-⎨⎪=⎩.所以圆C的方程为(x-4)2+y2=4或x2+(y+43)2=36.【考题演练】(2010山东文数)已知圆C过点(1,0)且圆心在x轴的正半轴上,直线l:x-yC的标准方程为_____________________.解析:【例题2】►如图所示,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.(1)求圆A的方程;(2)当|MN|=219时,求直线l的方程。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 直线和圆的方程知识点归纳一,直线的倾斜角和斜率1,直线的方程和方程的直线概念。

2,直线的倾斜角:倾斜角的取值范围是[)π,0 3,直线的斜率: (1)倾斜角为α,若2πα≠则斜率K=tan α,若2πα=直线的斜率不存在。

(2)直线上两点),(),,(222111y x P y x P ,若x 1≠x 2,则直线的斜率为 K 2121x x y y --=;若x 1=x 2 ,则直线的斜率不存在。

4,直线的方向向量(1,K )或为n (1,k );若斜率不存在,则方向向量为(0,1) 注:(直线Ax+By+C=0的方向向量为(B,-A)) 5,可利用斜率相等判定三点共线。

二,直线的方程1,直线方程的五种形式:点斜式, 斜截式, 两点式, 截距式,一般式,。

2,确定动直线过定点的方法:将直线化为点斜式)(00x x k y y -=-,若K 变化,则动直线过定点(x 1,y 1)。

三、两直线的位置关系1,两直线平行的判定方法:→用直线的斜截式来判定,设222111:,:b x k y l b x k y l +=+=l 1∥l 2 ⇔K 1=K 2且b 1≠b 2两直线斜率不存在,显然l 1∥l 2。

→用直线的一般式来判定:设0:,0:22221111=++=++C y B x A l C y B x A ll 1∥l 2⇔212121C C B B A A ≠=,或A 1=A 2=0且B 1C 2≠B 2C 1,或B 1=B 2=0且A 1C 2=A 2C 1 。

2,两条直线垂直的判定→用直线的斜截式来判定:设直线222111:,:b x k y l b x k y l +=+=l 1⊥l 2⇔K 1K 2=-1(斜率存在),一直线的斜率不存在,另一直线的斜率为零则两直线垂直。

→用直线的一般式来判定:设0:,0:22221111=++=++C y B x A l C y B x A ll 1⊥l 2⇔A 1A 2+B 1B 2=03,对称性问题求已知点关于点的对称点:利用中点坐标求解,求点关于直线的对称点:利用垂直与中点关系建立方程组,求直线关于点的对称直线:已知直线l : 0=++C By Ax ,点(x 0,y 0),可在直线l 上任取一点P 1(x 1,y 1),先求P 1关于点P 的对称点P /1 ,再利用所求直线经过P /1且与已知直线l 平行确定。

4,直线1l 到2l 的角,设1l :11b x k y +=,2l :22b x k y +=,1l 到2l 的角为θ,则有,当121-=k k 时θ=2π,当121-≠k k 时,21121tan k k k k +-=θ 角的范围(0,π) 直线1l 与2l 的夹角,夹角为θ,则有|1|tan 2112k k k k +-=θ(121-≠k k )5.两直线的交点共点直线系:R C y B x A C y B x A ∈=+++++λλ,0)(222111,但不含0222=++C y B x A 这条直线。

6,点到直线的距离公式点P (x 0,y 0)到直线l :0=++C By Ax 的距离2200||BA C By Ax d +++=0:,0:2211=++=++C By Ax l C By Ax l 之间的距离2221||BA C C d +-=。

求直线方程提倡“先判断,后计算”,“特殊提前,通法接连”。

四、线性规划1,二元一次不等式表示的平面区域;一次不等式组表示的平面区域(直线定界;特殊点定域法;斜截式判断法)2,目标函数、约束条件、可行解、可行域、最优解。

3,寻求整数最优解(1)网格法,(2)调整法。

4,练习(试卷) 五、曲线与方程1、曲线与方程的概念:(1)曲线上的点的坐标都是这个方程的解(纯粹性);(2)以这个方程的解为坐标都是曲线上的点(完备性),那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线。

2、求曲线方程的一般步骤建系——设点——列式——化简——验证,步骤(5)可以省略。

3、求曲线(动点的轨迹)方程的主要方法 (1)条件直译法:”(2)动点转移法(相关点法): (3)几何定义法:(4)参数法: 4,曲线的交点(1)两条曲线的交点,是这两条曲线的方程组成的方程组的实数解;交点的个数决定于方程组实数解的组数。

(2)直线与二次曲线的交点:把直线方程代入二次曲线方程,消去一个变量,得到另一个变量的二次方程,这个二次方程的判别式记作Δ, 当Δ>0时,直线与二次曲线有两个交点; 当Δ=0时,直线与二次曲线仅有一个交点; 当Δ<0时,直线与二次曲线无交点。

10、圆的方程:⑴圆的标准方程:()()222x a y b r -+-=。

⑵圆的一般方程:22220(D E 4F 0)+-x y Dx Ey F ++++=>, ⑶圆的参数方程:{cos sin x a r y b r θθ=+=+(θ为参数),其中圆心为(,)a b ,半径为r 。

圆的参数方程的主要应用是三角换元:222cos ,sin x y r x r y r θθ+=→==; 22x y t +≤cos ,sin (0x r y r r θθ→==≤≤。

⑷()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--=11、点与圆的位置关系: 已知点()00M ,x y 及圆()()()222C 0:x-a y b r r +-=>,(1)点M 在圆C 外()()22200CM r x a y b r ⇔>⇔-+->;(2)点M 在圆C 内⇔()()22200CM r x a y b r <⇔-+-<;(3)点M 在圆C 上()20CM r x a ⇔=⇔-()220y b r +-=。

12、直线与圆的位置关系:直线:0l Ax By C ++=和圆()()222C :x a y b r -+-=()0r >有相交、相离、相切。

可从代数和几何两个方面来判断: (1)代数方法(判断直线与圆方程联立所得方程组的解的情况):0∆>⇔相交;0∆<⇔相离;0∆=⇔相切;(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d r <⇔相交;d r >⇔相离;d r =⇔相切。

提醒:判断直线与圆的位置关系一般用几何方法较简捷。

13、圆与圆的位置关系(用两圆的圆心距与半径之间的关系判断):14、圆的切线与弦长:(1)切线:①过圆222x y R +=上一点00(,)P x y 圆的切线方程是:200xx yy R +=,过圆222()()x a y b R -+-=上一点00(,)P x y 圆的切线方程是:200()()()()x a x a y a y a R --+--=,②过两切点的直线(即“切点弦”)方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就是过两切点的直线方程; ③切线长:(2)弦长问题:①圆的弦长的计算:常用弦心距d ,弦长一半12a及圆的半径r 所构成的直角三角形来解:2221()2r d a =+;②过两圆1:(,)0C f x y =、2:(,)0C g x y =交点的圆(公共弦)系为(,)(,)0f x y g x y λ+=,当1λ=-时,方程(,)(,)0f x y g x y λ+=为两圆公共弦所在直线方程.。

15.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)! 注意:(1)直线和圆位置关系及圆和圆位置关系常借助于平面几何知识,而不采用方程组理论(△法)。

(2)对称是平面几何的基本变换。

在掌握点关于点及直线对称的基础上,理解曲线与曲线之间的中心对称及轴对称。

善于利用对称的知识解题。

(3)本章主要思想方法:数形结合,分类讨论,函数与方程,等价变换等。

§7.1 直线的方程学习目标:了解直线的方程和方程的直线概念;掌握直线的倾斜角;直线的斜率;直线的方向向量;斜率公式;直线方程的五种形式预习作业:1、直线l 的斜率)(12R m m k ∈-=,则直线l 的倾斜角的范围 。

2、已知直线1l 经过A (2,-1)和B (3,2),直线l 2的倾斜角是直线l 1的倾斜角的2倍,求直线l 2的斜率。

3下列四个命题中的真命题是 ( ) A 、经过定点P 0(x 0,y 0)的直线都可以用方程)(00x x k y y -=-表示; B 、经过任意两个不同的点P 1(x 1,y 1)和P 2(x 2,y 2)的直线都可以用方程0))(())((112112=-----x x y y y y x x 表示;C 、不经过原点的直线都可以用方程1=+bya x 表示; D 、经过定点A (0,b )的直线可以用方程b kx y +=表示。

例1 求适合下列条件的直线方程: (1)经过点P (3,2),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线x y 3 的倾斜角的2倍.例2 求过点P (2,1)的直线l 交x 轴、y 轴正半轴于A 、B 两点,求使: (1)△AOB 面积最小时l 的方程; (2)|PA|·|PB|最小时l 的方程.1(06年北京卷)若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b+的值等于2.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为3.)0,1(),0,1(-N M ,直线b y x =+2与线段MN 相交,求b 的取值范围。

§7.2 两线的位置关系学习目标:掌握两直线平行的判定方法;两条直线垂直的判定;直线1l 到2l 的角和它们夹角;两直线的交点;点到直线的距离公式预习作业:1.已知直线06:1=++my x l 和023)2(2=++-m y x m l 。

(1)若1l ∥2l ,求m 的值。

(2)若21l l ⊥,求m 的取值。

2. 在ΔABC 中,已知点A (1,3),B (-2,-3)∠BAC 的平分线方程为x y 3=,求AC 所在的直线方程。

3.求与直线012=++y x 的距离为55的直线方程。

例1:如图,正方形的中心点为)0,1(-C ,一条边所在的直线方程是053:=-+y x l ,求其他三边所在的直线方程。

05=-例2.等腰三角形两腰所在的直线方程为04702=--=-+y x y x 与,原点在等腰三角形的底边上,求底边所在的直线方程。

相关文档
最新文档