第7章一次方程组测试题
2021-2022学年沪科版七年级数学下册第7章一元一次不等式与不等式组必考点解析试题(含详解)
七年级数学下册第7章一元一次不等式与不等式组必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是()A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<02、不等式3+2x≥1的解在数轴上表示正确的是()A.B.C.D.3、如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组31252130ya y+⎧≤⎪⎨⎪+-≤⎩有解,那么符合条件的所有整数a的个数为()A.3 B.4 C.5 D.6 4、下列不等式组,无解的是()A .1030x x ->⎧⎨->⎩B .1030x x -<⎧⎨-<⎩C .1030x x ->⎧⎨-<⎩D .1030x x -<⎧⎨->⎩ 5、若不等式﹣3x <1,两边同时除以﹣3,得( )A .x >﹣13 B .x <﹣13 C .x >13 D .x <136、不等式组1030x x ->⎧⎨-<⎩的解集是( ) A .1x > B .3x > C .13x << D .无解7、已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是( ) A .21a -≤<- B .21a -<≤ C .21a -<<- D .21a -≤≤8、下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x ≤5D .2x +y >79、如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g )的取值范围,在数轴上可表示为( )A .B .C .D .10、设m 为整数,若方程组3131x y m x y m+=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是( )A .4B .5C .6D .7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若不等式组240x x m->⎧⎨<⎩无解,则m 的取值范围是______. 2、若关于x 的不等式122334455a x x x x x ≥+++++++++有解,则a 的取值范围是__________.3、若方程组31323x y k x y k-=+⎧⎨+=-⎩的解满足2x ﹣3y >1,则k 的的取值范围为 ___. 4、不等式组62021x x x -≥⎧⎨<+⎩的解集为______. 5、不等式353x x -<+的非负整数解有______.三、解答题(5小题,每小题10分,共计50分)1、解方程组或不等式组:(1)2435x y x y +=⎧⎨-=⎩; (2)2(2)3134x x x x +≤+⎧⎪+⎨⎪⎩<. 2、解不等式组231125123x x x x +<+⎧⎪+⎨->-⎪⎩,并把解集表示在数轴上. 3、解下列不等式组(1)313112123x x x x +<-⎧⎪++⎨≤+⎪⎩(2)213(1)4x x x +>-≥-.4、2020年春节前夕,突如其来的新型冠状病毒肺炎疫情造成口罩紧缺,为满足社会需求,某工厂现需购买一批材料,用于生产甲、乙两种型号的口罩,已知生产乙型口罩所需的材料费比生产甲型口罩所需的材料费每件多100元,且生产甲型口罩40件和生产乙型口罩30件需购买材料的费用相同.(1)求生产甲、乙两种型号口罩所需的材料费每件各多少元?(2)若工厂购买这批材料的资金不超过135000元,且需生产两种口罩共400件,求至少能生产甲种口罩多少件?5、解不等式(组):(1)5231x x ->+ ;(2)()253213212x x x x ⎧+≤+⎪⎨+-<⎪⎩-参考答案-一、单选题1、B【分析】化简﹣(﹣a )=a ,根据数轴得到a <﹣1<﹣b <0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a )=a ,由数轴可得a <﹣1<﹣b <0,∵a <﹣1,∴﹣a >1,故A 选项判断错误,不合题意;∵﹣b <0,∴b >0,b ﹣a >0,故B 正确,符合题意;∵a <﹣1,∴a +1<0,故C 判断错误,不合题意;∵a <﹣b ,∴a +b <0,∴﹣a ﹣b >0,故D 判断错误,不合题意.故选:B .【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.2、B【分析】不等式移项,合并同类项,把x 系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x ≥1,移项得:2x ≥1﹣3,合并同类项得:2x ≥﹣2,解得:x ≥﹣1,数轴表示如下:.故选:B .【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.3、C【分析】先解关于y 的不等式组可得解集为2133a y +≤≤,根据关于y 的不等式组有解可得2133a +≤,由此可得4a ≤,再解关于x 的方程可得解为42x a =-,根据关于x 的方程ax ﹣3(x +1)=1﹣x 有整数解可得42a-的值为整数,由此可求得整数a的值,由此即可求得答案.【详解】解:31252130ya y+⎧≤⎪⎨⎪+-≤⎩①②,解不等式①,得:3y≤,解不等式②,得:213ay+≥,∴不等式组的解集为2133ay+≤≤,∵关于y的不等式组有解,∴2133a+≤,解得:4a≤,∵ax﹣3(x+1)=1﹣x,∴ax﹣3x﹣3=1﹣x,∴ax﹣3x+x=1+3,∴(a﹣2)x=4,∵关于x的方程ax﹣3(x+1)=1﹣x有整数解,a为整数,∴a﹣2=4,2,1,﹣1,﹣2,﹣4,解得:a=6,4,3,1,0,﹣2,又∵4a≤,∴a=4,3,1,0,﹣2,∴符合条件的所有整数a的个数为5个,故选:C此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键.4、D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、1030xx->⎧⎨->⎩,解得13xx>⎧⎨>⎩,解集为:3x>,故不符合题意;B、1030xx-<⎧⎨-<⎩,解得13xx<⎧⎨<⎩,解集为:1x<,故不符合题意;C、1030xx->⎧⎨-<⎩,解得13xx>⎧⎨<⎩,解集为:13x<<,故不符合题意;D、1030xx-<⎧⎨->⎩,解得13xx<⎧⎨>⎩,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.5、A【分析】根据题意直接利用不等式的性质进行计算即可得出答案.【详解】解:不等式﹣3x<1,两边同时除以﹣3,得x>﹣13.【点睛】本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.6、C【分析】分别解出两个不等式,即可求出不等式组的解集.【详解】解:1030 xx->⎧⎨-<⎩①②解不等式①得 x>1,解不等式②得x<3,∴不等式组的解集为1<x<3.故选:C【点睛】本题考查了解一元一次不等式组,正确解出两个不等式,并正确确定两个不等式的公共解是解题关键,求不等式组的解集可以借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”确定,也可以根据数轴确定.7、A【分析】先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定a的范围.【详解】解:0 320 x ax->⎧⎨->⎩①②解不等式①得:x>a,解不等式②得:x<32,∴不等式组的解集是a<x<32,∵原不等式组的整数解有3个为1,0,-1,∴-2≤a<-1.故选择:A.【点睛】本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.8、C【分析】从是否含有不等号,是否含有未知数,未知数的个数是否一个,这个未知数的指数是否为1,四个方面判断即可.【详解】∵5+4>8中,没有未知数,∴不是一元一次不等式,A不符合题意;∵2x-1,没有不等号,∴不是一元一次不等式,B不符合题意;∵2x≤5是一元一次不等式,∴C符合题意;∵2x+y>7中,有两个未知数,∴不是一元一次不等式,D不符合题意;故选C.【点睛】本题考查了一元一次不等式的定义即含有一个未知数且未知数的次数是1的不等式,正确理解定义是解题的关键.9、A【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.【详解】解:由图可知,12mm⎧⎨⎩><,∴m的取值范围在数轴上表示如图:.故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.10、B【分析】先把m当做常数,解一元二次方程,然后根据175x y+>-得到关于m的不等式,由此求解即可【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①②把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B .【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.二、填空题1、2m ≤【分析】求得第一个不等式的解集,借助数轴即可求得m 的取值范围.【详解】解不等式240x ,得x >2因不等式组无解,把两个不等式的解集在数轴上表示出来如下:观察图象知,当m ≤2时,满足不等式组无解故答案为:2m ≤【点睛】本题考查了根据不等式组解的情况确定参数的取值范围,借助数轴数形结合是关键.2、15a ≥【分析】 根据绝对值的几何意义,可把122334455x x x x x +++++++++视为数轴上表示数x 的点到表示数-1(1个),-2(2个),-3(3个),-4(4个),-5(5个)的点的距离之和,得到当x 位于第8个点时,122334455x x x x x +++++++++取得最小值15,即可求出a 的取值范围.【详解】解:由绝对值的几何意义可得, 把122334455x x x x x +++++++++视为数轴上表示数x 的点到表示数-1(1个),-2(2个),-3(3个),-4(4个),-5(5个)的点的距离之和,∴当x 位于第8个点时,即当x =-4时,122334455x x x x x +++++++++的最小值为15, ∵122334455a x x x x x ≥+++++++++,∴当关于x 的不等式122334455a x x x x x ≥+++++++++有解时,a 的取值范围是15a ≥.故答案为:15a ≥.【点睛】 此题考查了绝对值的几何意义和不等式性质,解题的关键是根据题意求得122334455x x x x x +++++++++的最小值.3、34k >## 【分析】将①-②即可得2342x y k -=-,结合题意即可求得k 的范围.【详解】31323x y k x y k -=+⎧⎨+=-⎩①②①-②得,2342x y k -=-2x ﹣3y >1421k ∴-> 解得34k > 故答案为:34k >【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键. 4、1x <【分析】根据解一元一次不等式组的方法求解即可.【详解】解:620 21xx x-≥⎧⎨<+⎩①②由不等式①得:3x≤由不等式②得:1x<不等式组62021xx x-≥⎧⎨<+⎩的解集为1x<故答案为1x<【点睛】本题考查了求解一元一次不等式组,掌握一元一次不等式组的解法是解题的关键.5、0,1,2,3【分析】先求出不等式的解集,再根据非负整数的定义得到答案.【详解】解:353x x-<+,2x<8,x<4,∴不等式353x x-<+的非负整数解有0,1,2,3,故答案为:0,1,2,3.【点睛】此题考查了解不等式,求不等式的非负整数解,正确解不等式是解题的关键.三、解答题1、(1)21xy=⎧⎨=⎩;(2)1x≤-.【分析】(1)利用代入消元法求解即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1)2435x y x y +=⎧⎨-=⎩①② 由②得:35y x =-③,将③代入①得2(35)4x x +-=,解得2x =将2x =代入③得:1y =∴方程组的解为:21x y =⎧⎨=⎩; (2)解不等式组2(2)3134x x x x +≤+⎧⎪⎨+⎪⎩①<② 由①得:243x x ++≤,解得1x ≤-,由②得:433x x +<,解得3x <,∴不等式组的解集为:1x ≤-.【点睛】本题主要考查了解一元一次不等式和解二元一次方程组,解题的关键在于能够熟练掌握相关计算方法.2、45<x <8.【分析】先分别解出两个不等式,再求出公共解即可.【详解】解:2311 25123x xxx+<+⎧⎪⎨+->-⎪⎩①②解不等式①,得x<8.解不等式②,得x>45.∴等式组的解集是45<x<8,不等式的解集在数轴上表示如图:.【点睛】本题考查一元一次不等式组的解法,求两个不等式的公共解可以借助数轴求公共部分,也可借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”求公共部分.3、(1)-5≤x<-2;(2)14 2x-≤<【分析】(1)按不等式的解法求出两个不等式的解集,在求其公共解,即可解答(2)将原不等式变形得:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩,求出两个不等式的解集,在求其公共解,即可解答【详解】(1)解不等式313x x+<-,得2x<-解不等式112123x x++≤+,得5x≥-故不等式组的解集为52x -≤<-.(2)原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x < 解②得:21x ≥- 故原不等式组的解集为142x -≤<. 【点睛】本题考查了一元一次不等式组解集的求法,熟记不等式组的解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)是解题关键.4、(1)甲为300元,乙为400元.(2)250件【分析】(1)设生产每件甲型口罩所需的材料费为x 元,则生产每件乙型口罩所需的材料费为(x +100)元,然后根据生产甲型口罩40件和生产乙型口罩30件需购买材料的费用相同,列出方程求解即可;(2)设生产甲型口罩m 件,则生产乙型口罩(400﹣m )件,然后根据工厂购买这批材料的资金不超过135000元,列出不等式求解即可.(1)解:设生产每件甲型口罩所需的材料费为x 元,则生产每件乙型口罩所需的材料费为(x +100)元, 依题意得:40x =30(x +100),解得:x =300,∴x +100=300+100=400.答:生产每件甲型口罩所需的材料费为300元,生产每件乙型口罩所需的材料费为400元.(2)解:设生产甲型口罩m件,则生产乙型口罩(400﹣m)件,依题意得:300m+400(400﹣m)≤135000,解得:m≥250.答:至少能生产甲型口罩250件.【点睛】本题主要考查了一元一次方程和一元一次不等式的应用,解题的关键在于能够准确理解题意列出式子求解.5、(1)x>1.5;(2)-1≤x<3【分析】(1)根据移项、合并同类项、系数化为1的步骤可得x的范围;(2)首先求出两个不等式的解集,然后取其公共部分即为不等式组的解集.【详解】(1)解:5x-2>3x+1,移项得:5x-3x>1+2,合并同类项得:2x>3,系数化为1得:x>1.5;(2)解:解不等式2x+5≤3(x+2),得x≥-1,解不等式2x-132x<1,得x<3,∴不等式组的解集为-1≤x<3.【点睛】此题考查了解一元一次不等式,解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式,解一元一次不等式组的方法.。
华东师大版七年级数学下册-第7章《一次方程组》培优习题4:三元一次方程组-(无答案)
第7章《一次方程组》培优习题4:三元一次方程组考点1:解三元一次方程组 例1、解下列方程组:(1)⎪⎩⎪⎨⎧=++=+=+302342z y x z x y x (2)⎪⎩⎪⎨⎧=-+-=-+-=-+1313y z x z y x x z y (3)⎪⎩⎪⎨⎧=+=+=+402010x z z y y x【同步练习】1、已知16=+b a ,12=+c b ,10=+a c ,则c b a ++等于( )—A 、19B 、38C 、14D 、222、三元一次方程组⎪⎩⎪⎨⎧=+=+=+453z x z y y x 的解为( )A 、⎪⎩⎪⎨⎧===231z y xB 、⎪⎩⎪⎨⎧===312z y xC 、⎪⎩⎪⎨⎧===123z y xD 、⎪⎩⎪⎨⎧===321z y x3、解下列三元一次方程组:(1)⎪⎩⎪⎨⎧=-+=-=++182126y z x y x z y x (2)⎪⎩⎪⎨⎧=+-=++=+8795932743z y x z y x z x (3)⎪⎩⎪⎨⎧=-+=++=++1232721323z y x z y x z y x 4、解下列三元一次方程组:(1)⎪⎩⎪⎨⎧=++==564:5:2:3:z y x z y y x (2)⎪⎩⎪⎨⎧=--==3423:7:3:5:z y x z x y x例2、关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ky x 95的解也是二元一次方程632=+y x 的解,则k的值是( )(A 、43-B 、43 C 、34 D 、34-【同步练习】1、已知方程组⎩⎨⎧=+-=+0345k y x y x 的解也是方程023=-y x 的解,则k 的值是( )A 、5-=kB 、5=kC 、10-=kD 、10=k考点汇编2、方程组⎩⎨⎧=++=+k y x k y x 32253的解x 、y 的值互为相反数,则k 的值为( )A 、0B 、2C 、4D 、6例3、已知方程组⎩⎨⎧=++=-+05430432z y x z y x ,求z y x zy x +--+2的值。
华师大版七年级数学下册第7章一次方程组质量评估试卷(包含答案)
第7章质量评估试卷[时间:90分钟 分值:120分]一、选择题(每题3分,共30分)1.下列方程中,是二元一次方程的是( ) A .8x 2+1=y B .y =8x +1 C .y =8x D .xy =12.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax -y =4,3x +by =4的解是⎩⎪⎨⎪⎧x =2,y =-2,则a +b 的值是( )A .1B .2C .-1D .03.二元一次方程组⎩⎪⎨⎪⎧x +y =2,2x -y =4的解是( )A .⎩⎪⎨⎪⎧x =0,y =2B .⎩⎪⎨⎪⎧x =2,y =0C .⎩⎪⎨⎪⎧x =3,y =-1D .⎩⎪⎨⎪⎧x =1,y =14.若方程组⎩⎨⎧3x -y =4k -5,2x +6y =k的解中x +y =2 019,则k 等于()A .2 018B .2 019C .2 020D .2 0215.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A .4种B .3种C .2种D .1种6.设y =kx +b ,且当x =1时,y =1;当x =2时,y =-4,则k ,b 的值依次为( )A . 3,-2B . -3,4C . 6,-5D . -5,67.如果单项式2x m +2n y 与-3x 4y 4m -2n 是同类项,则m ,n 的值为( )A .m =-1,n =2.5B .m =1,n =1.5C .m =2,n =1D .m =-2,n =-18.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值是( )A .-34B .34 C .43 D .-439.某出租车起步价所包含的路程为0~2 km ,超过2 km 的部分按每千米另收费.津津乘坐这种出租车走了7 km ,付了16元;盼盼乘坐这种出租车走了13 km ,付了28元.设这种出租车的起步价为x 元,超过2 km 后每千米收费y 元,则下列方程正确的是( )A .⎩⎪⎨⎪⎧x +7y =16,x +13y =28B .⎩⎪⎨⎪⎧x +(7-2)y =16,x +13y =28C .⎩⎪⎨⎪⎧x +7y =16,x ×(13-2)y =28D .⎩⎪⎨⎪⎧x +(7-2)y =16,x +(13-2)y =2810.[2019·台州]一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程x 3+y 4=5460,则另一个方程正确的是( )A .x 4+y 3=4260B .x 5+y 4=4260C .x 4+y 5=4260D .x 3+y 4=4260 二、填空题(每题4分,共24分)11.若x ,y 满足方程组⎩⎪⎨⎪⎧3x +y =17,x -y =3,则x +y =____.12.若a -3b =2,3a -b =6,则b -a 的值为________. 13.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛_______斛米.(注:斛是古代一种容量单位)14.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为____、____个.15.若|x +y +1|+(2x +y +1)2=0,则x =________,y =________.16.对于实数a ,b ,定义运算“◆”:a ◆b =⎩⎪⎨⎪⎧a 2+b 2,a ≥b ,ab ,a <b .例如:4◆3,因为4>3,所以4◆3=42+32=5.若x ,y 满足方程组⎩⎪⎨⎪⎧4x -y =8,x +2y =29,则x ◆y =________. 三、解答题(共66分) 17.(12分)解下列方程组:(1)⎩⎪⎨⎪⎧y =4-x ,①7x +6y =3;② (2)⎩⎪⎨⎪⎧3x +2y =8,①7x -4y =10;② (3)⎩⎨⎧x 2+y 3=2,①0.2x -0.3y =0.8.②18.(8分)已知⎩⎪⎨⎪⎧x =4,y =2与⎩⎪⎨⎪⎧x =-1,y =-3都满足等式y =kx +b .(1)求k 与b 的值; (2)求当x =5时,y 的值.19.(8分)[2019·淮安]某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?20.(8分)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五·四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1 800元,该店的商品按原价的几折销售?21.(10分)小明在解方程组⎩⎪⎨⎪⎧mx +5y =-17,4x -ny =1时,由于粗心看错了方程组中的n 而得到的解为⎩⎪⎨⎪⎧x =4,y =3.小红同样粗心,看错了方程组中的m ,她得到的解为⎩⎪⎨⎪⎧x =-3,y =-1.求原方程组的解.22.(10分)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?23.(10分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x,y的值;(2)若营业员小丽某月的总收入不低于1 800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.某顾客想购买甲、乙、丙各一件共需____元.参考答案一、选择题(每题3分,共30分) 1.B 2.B 3.B【解析】 ⎩⎨⎧x +y =2,①2x -y =4.②①+②,得3x =6,解得x =2.把x =2代入①,得y =0,所以方程组的解为⎩⎨⎧x =2,y =0.4.C【解析】 ⎩⎨⎧3x -y =4k -5,①2x +6y =k .②①+②,得5x +5y =5k -5,即x+y =k -1.∵x +y =2 019,∴k -1=2 019,∴k =2 020.故选C .5.B【解析】 设一等奖个数x 个,二等奖个数y 个,根据题意,得6x +4y =34,使方程成立的解有⎩⎨⎧x =1,y =7或⎩⎨⎧x =3,y =4或⎩⎨⎧x =5,y =1,∴方案一共有3种.故选B .6.D 7.B【解析】 根据题意,得⎩⎨⎧m +2n =4,4m -2n =1,解得⎩⎨⎧m =1,n =1.5.8.B【解析】 ⎩⎨⎧x +y =5k ,①x -y =9k .②①+②,得2x =14k ,∴x =7k . ①-②,得2y =-4k ,∴y =-2k .∴方程组的解为⎩⎨⎧x =7k ,y =-2k .把⎩⎨⎧x =7k ,y =-2k代入2x +3y =6,得14k -6k =6, 合并同类项,得8k =6,解得k =34.9.D10.B【解析】 设未知数x ,y ,已经列出一个方程x 3+y 4=5460,则另一个方程正确的是x 5+y 4=4260.故选B .二、填空题(每题4分,共24分)11.7【解析】 ⎩⎨⎧3x +y =17,①x -y =3.②,①+②,得4x =20,解得x =5.把x =5代入②,得y =2,则x +y =5+2=7.12.-2【解析】 解二元一次方程组⎩⎨⎧a -3b =2,3a -b =6,得⎩⎨⎧a =2,b =0,∴b -a =-2.13. 56【解析】 设1个大桶可以盛米x 斛,1个小桶可以盛米y 斛,则⎩⎨⎧5x +y =3,x +5y =2,故5x +x +y +5y =5,则x +y =56.所以1大桶加1小桶共盛56斛米.14. 10 20【解析】 设该幼儿园购买了甲种玩具x 个,乙种玩具y 个.根据题意,得⎩⎨⎧x +y =30,2x +4y =100,解得⎩⎨⎧x =10,y =20,即该幼儿园购买了甲种玩具10个,乙种玩具20个.15.0 -1【解析】 ∵|x +y +1|+(2x +y +1)2=0,∴⎩⎨⎧x +y =-1,2x +y =-1,解得⎩⎨⎧x =0,y =-1.16.60【解析】 由题意可知⎩⎨⎧4x -y =8,x +2y =29,解得⎩⎨⎧x =5,y =12.因为x <y ,所以x ◆y =xy =60.三、解答题(共66分)17.解:(1)把①代入②,得7x +6(4-x )=3,解得x =-21.把x =-21代入①,得y =4+21=25.所以原方程组的解为⎩⎨⎧x =-21,y =25.(2)①×2,得6x +4y =16.③②+③,得13x =26,解得x =2.把x =2代入①,得6+2y =8,解得y =1.所以原方程组的解为⎩⎨⎧x =2,y =1.(3)①×6,②×10,得⎩⎨⎧3x +2y =12,③2x -3y =8.④③×3,得9x +6y =36.⑤④×2,得4x -6y =16.⑥⑤+⑥,得13x =52,解得x =4.把x =4代入③,得y =0.所以原方程组的解为⎩⎨⎧x =4,y =0.18.解:(1)将⎩⎨⎧x =4,y =2和⎩⎨⎧x =-1,y =-3分别代入y =kx +b ,得⎩⎨⎧2=4k +b , ①-3=-k +b .②①-②,得5k =5,解得k =1.将k =1代入②,得-3=-1+b ,解得b =-2.所以k =1,b =-2.(2)由(1)知y =x -2.将x =5代入y =x -2,得y =3.19.解:设每节火车车皮装物资x 吨,每辆汽车装物资y 吨.根据题意,得⎩⎨⎧2x +5y =130,4x +3y =218,解得⎩⎨⎧x =50,y =6.答:每节火车车皮装物资50吨,每辆汽车装物资6吨.20.解:(1)设跳绳的单价为x 元/根,毽子的单价为y 元/个.由题意,得⎩⎨⎧30x +60y =720,10x +50y =360,解得⎩⎨⎧x =16,y =4.答:跳绳的单价为16元/根,毽子的单价为5元/个.(2)设该店的商品按原价的a 折销售.由题意,得(100×16+100×4)×a 10=1 800,解得a =9.答:该店的商品按原价的9折销售.21.解:∵看错方程组中的n 得到的解为⎩⎨⎧x =4,y =3,∴4m +15=-17,解得m =-8.∵看错方程组中的m 得到的解为⎩⎨⎧x =-3,y =-1,∴-12+n =1,解得n =13.因此,方程组为⎩⎨⎧-8x +5y =-17,4x -13y =1,解得⎩⎪⎨⎪⎧x =187,y =57.22.解:(1)设这批游客的人数是x 人,原计划租用45座客车y 辆.根据题意,得⎩⎨⎧45y +15=x ,60(y -1)=x ,解得⎩⎨⎧x =240,y =5.答:这批游客共有240人,原计划租用5辆45座客车.(2)租45座客车:240÷45≈5.3(辆),故需租6辆,租金为220×6=1 320(元).租60座客车:240÷60=4(辆),故需租4辆,租金为300×4=1200(元).∵1 200<1 320,∴租4辆60座客车更合算.23.(3)150(1)解:由题意,得⎩⎨⎧x +200y =1 400,x +150y =1 250,解得⎩⎨⎧x =800,y =3,即x 的值为800,y 的值为3.(2)解:设小丽当月要卖服装z 件.由题意,知800+3z =1 800.解得z =33313.由题意,得z 为正整数,故在z >33313中的最小正整数是334.答:小丽当月至少要卖服装334件.(3)【解析】 设一件甲为a 元,一件乙为b 元,一件丙为c 元.由题意,得⎩⎨⎧3a +2b +c =315,a +2b +3c =285,将两式相加,得4a+4b+4c=600,则a+b+c=150.答:购买甲、乙、丙各一件共需150元.。
第7章《二元一次方程组》常考题集(09):7.3 二元一次方程组的应用
第7章《二元一次方程组》常考题集(09):7.3 二元一次方程组的应用解答题67.实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.68.一个农机服务队有技术员工和辅助员工共15人,技术员工人数是辅助员工人数的2倍.服务队计划对员工发放奖金共计20 000元,按“技术员工个人奖金”A(元)和“辅助员工个人奖金”B(元)两种标准发放,其中A≥B≥800,并且A,B都是100的整数倍.注:农机服务队是一种农业机械化服务组织,为农民提供耕种、收割等有偿服务.(1)求该农机服务队中技术员工和辅助员工的人数;(2)求本次奖金发放的具体方案.69.教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同.请你根据第一,二束鲜花提供的信息,求出第三束鲜花的价格.70.“5•12”汶川大地震后,灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?71.为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?(2)已知第4排有18个座位,第15排座位数是第5排座位数的2倍,求第21排有多少个座位?83.某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?84.小英和小强相约一起去某超市购买他们看中的随身听和书包.你能根据他们的对话内容(如图),求出他们看中的随身听和书包单价各是多少元吗?85.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.86.备换题:如图,在3×3的方格内,填写了一些代数式和数.(1)在图1中各行、各列及对角线上三个数之和都相等,请你求出x,y的值;(2)把满足(1)的其它6个数填入图2中的方格内.87.福林制衣厂现有24名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等,则应各安排多少人制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润2100元,则需要安排多少名工人制作衬衫?。
第八章 二元一次方程组 (单元测试)【解析版】
第八章二元一次方程组章节测试一、单选题:1.下列方程组中是二元一次方程组的是()A .141y xx v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩2.已知方程237x y =+,用含y 的代数式表示x 的是()A .237x y =+B .237x y =-+C .372x y =+D .3722=+x y 3.将13x y -=-代入21x y -=的可得()A .1213x x --⨯=B .()2113x x --=C .2213x x ++=D .2213x x -+=4.将三元一次方程组5x 4y z 03x y 4z 11x y z 2++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是()A .4x 3y 27x 5y 3+=⎧⎨+=⎩B .4x 3y 223x 17y 11+=⎧⎨+=⎩C .3x 4y 223x 17y 11+=⎧⎨+=⎩D .3x 4y 27x 5y 3+=⎧⎨+=⎩【答案】A【分析】根据题意先得出①-③后的方程,再得到③×4+②的方程,从而得出二元一次方程组.【详解】解:根据题意得:①-③得:4x+3y=2,③×4+②得:7x+5y=3,则三元一次方程组54034112x y z x y z x y z ++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是432753x y x y +=⎧⎨+=⎩;故选:A .【点睛】本题主要考查了三元一次方程组的解,解题的关键是掌握加减消元法消去未知数项,从而得到二元一次方程组.5.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为()A .0B .3-C .3D .6【答案】A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:∵324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,∴=1324=1a b a b +⎧⎨+-⎩,解得:=3=2a b ⎧⎨-⎩,∴23=660+-=a b ,故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.6.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式().A .1x y +=B .1x y +=-C .9x y +=D .9x y -=【答案】C【分析】方程组中的两个方程相加得出x +y +m -5=4+m ,整理后即可得出答案.【详解】解:45x m y m +⎧⎨-⎩=①=②,①+②得:x +y +m -5=4+m ,即x +y =9,故选:C .【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能理解二元一次方程组的解的定义是解此题的关键.7.对于非零的两个实数a ,b ,规定a b am bn ⊗=-,若3⊗(-5)=-15,4⊗(-7)=-28,则(-1)⊗2的值为()A .-13B .13C .2D .-2【答案】B【分析】根据已知规定及两式,确定出m 、n 的值,再利用新规定化简原式即可得到结果.【详解】根据题意得:3⊗(-5)3515m n =+=-,4⊗(-7)4728m n =+=-,∴35154728m n m n +=-⎧⎨+=-⎩,解得:3524m n =⎧⎨=-⎩,∴(-1)⊗22354813m n =--=-+=,故选:B .【点睛】本题考查了新定义运算,涉及了解二元一次方程组等知识,要求学生能理解题目规则,正确列出等式.解决本题时,求出m 、n 是关键.8.如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .24000cm 【答案】A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键.9.已知关于,x y 的方程组212ax y x by +=⎧⎨-=⎩,甲看错a 得到的解为12x y =⎧⎨=-⎩,乙看错了b 得到的解为11x y =⎧⎨=⎩,他们分别把a b 、错看成的值为()A .5,1a b ==-B .15,2a b ==C .11,2a b =-=D .1,1a b =-=【答案】A【分析】把甲的结果代入第一个方程求出a 的值,把乙的结果代入第二个方程求出b 的值,求解即可.【详解】解:把12x y =⎧⎨=-⎩代入21ax y +=得:41a -=,把11x y =⎧⎨=⎩代入2x by -=得:12b -=,解得:a=5,b=-1,故选A .【点睛】此题主要考查了二元一次方程组的解和解二元一次方程的知识点,解题关键点是看清题意再得出a 、b 的值.10.关于x ,y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x +3y =﹣6的解,则k 的值是()A .﹣34B .34C .43D .﹣43二、填空题:11.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______.【答案】1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】∵本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可∴令1a =,1b =,得x y c +=∴把21x y =⎧⎨=-⎩代入方程x y c+=解出1c =∴1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.12.若11x y =⎧⎨=-⎩是方程组2421ax y bx by a +=⎧⎨-=-⎩的解,则a =_______,b =_______.【答案】3, 1.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.把x 、y 的值代入原方程组可转化成关于a 、b 的二元一次方程组,解方程组即可求出a 、b 的值.【详解】把x ,y 的值代入方程组,得2421a b b a -=⎧⎨+=-⎩解得a=3,b=1,故答案为3, 1.【点睛】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.13.若()235230x y x y ,-++-+=则x y +的值为______.【答案】-3【分析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出x+y 的值.【详解】∵(3x-y+5)2+|2x-y+3|=0,∴3x-y+5=0,2x-y+3=0,∴x=-2,y=-1.∴x+y=-3.【点睛】本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.14.在y=ax 2+bx+c 中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10,则当x=4时,y=___.【答案】18【分析】先把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c ,求出a ,b ,c 的值,从而得出等式y=x 2+x-2,再把x=4代入,即可求出y 的值.【详解】把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c 得:04249310a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:112a b c =⎧⎪=⎨⎪=-⎩,则等式y=x 2+x-2,把x=4代入上式得:y=18.【点睛】本题考查了三元一次方程组的解法,掌握解三元一次方程组的步骤是本题的关键15.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____.【答案】-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=⎧⎨++=⎩;解得:33x y =-⎧⎨=-⎩,∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.16.若二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,则可通过解方程组_____求得这个解.【答案】23151x y x y -=⎧⎨+=⎩【分析】联立两方程组中不含a 与b 的方程重新组成新的方程组即可.【详解】解:∵二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,∴可通过解方程组23151x y x y -=⎧⎨+=⎩求得这个解,故答案为:23151x y x y -=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组同解的问题,解题的关键在于能够熟练掌握相关知识进行求解.17.已知关于x ,y 的二元一次方程组224x y mx y +=⎧⎨+=⎩的解满足x ﹣y =3,则m 的值为_____【答案】1【分析】②−①得到x−y =4−m ,代入x−y =3中计算即可求出m 的值.【详解】解:224x y m x y +=⎧⎨+=⎩①②,②−①得:x−y =4−m ,∵x−y =3,∴4−m =3,解得:m =1,故答案为1【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.19.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为_________.【答案】5210258x y x y +=⎧⎨+=⎩【分析】设1头牛值金x 两,1只羊值金y 两,根据等量关系“①5头牛,2只羊共值10两金;②2头牛,5只羊共价值8两金”,分别列出方程即可求解.【详解】设1头牛值金x 两,1只羊值金y 两,由题意可得,5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.20.为鼓励居民节约用气,某省决定对天然气收费实行阶梯气价,阶梯气价划分为两个档级:(1)第一档气量为每户每月30立方米(含30立方米)以内,执行基准价格;(2)第二档气量为每户每月超出30立方米以上部分,执行市场调节价格.小明家5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,若小明7月份用气29立方米,则他家应交费________元.【答案】87【分析】根据5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,列出方程组求得气价,再进一步根据7月份用气29立方米选择气价计算即可.【详解】设基准价格为x 元,市场调节价格为y 元,由题意得305112.5,3011139.5,x y x y +=⎧⎨+=⎩解得3,4.5.x y =⎧⎨=⎩7月份用气29立方米,则他家应交费29×3=87元.故答案为87.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组.三、解答题:21.解方程:(1)32339x y x y +=⎧⎨-=⎩(用代入消元法)(2)734831x y x y -=⎧⎨-=-⎩(用加减消元法)(3)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩(4)281223x y z x y x z y ++=⎧⎪-=-⎨⎪+=+⎩【答案】(1)56x y =⎧⎨=⎩;(2)513x y =-⎧⎨=-⎩;(3)22x y =⎧⎨=⎩;(4)123x y z =⎧⎪=⎨⎪=⎩【分析】(1)由方程②变形得39y x =-,并代入方程①,解方程即可求得x 的值,再将求得的x 值代入39y x =-中,可求得y 的值,从而得方程组的解;(2)考虑两方程中y 的系数相同,两式相减即可消去未知数y ,求得x ,再将x 的值代入第一个方程即可求得y 的值,从而得方程组的解;(3)先化简方程组中的每一个方程,再用加减法解方程组即可;(4)先消去未知数z ,转化为二元一次方程组,解二元一次方程组求得x 与y 的值,最后求得z 的值即可.【详解】(1)32339x y x y +=⎧⎨-=⎩①②,方程②变形得:39y x =-③,把③代入①,得:()33923x x +-=,解得:5x =,把5x =代入③得:6y =,所以方程组的解为:56x y =⎧⎨=⎩;(2)734831x y x y -=⎧⎨-=-⎩①②,②-①得:5x =-,把5x =-代入①得:3534y --=解得:13y =-所以方程组的解为:513x y =-⎧⎨=-⎩;(3)方程组化简得:432342x y x y -=⎧⎨-=-⎩①②①+②得:770x y -=,即y x =,把y x =代入①得:2x =,∴2y x ==,所以原方程组的解为:22x y ==⎧⎨⎩;(4)原方程组化为:281223x y z x y x y z ++=⎧⎪-=-⎨⎪-+=⎩①②③①×2-③得:613x y +=④,④-②得:714y =,解得:2y =,把2y =代入②得:1x =,把2y =,1x =代入①得:3z =,所以原方程组的解为:123x y z =⎧⎪=⎨⎪=⎩.【点睛】题目主要考查解二元一次方程组和三元一次方程组,解法有代入消元法和加减消元法两种,能够根据方程组的特点,灵活选取适当的方法,熟练而准确地掌握解方程组方法是本题的关键.22.一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?【答案】原两位数是53.【分析】设原两位数的个位数字为x ,十位数字为y ,根据“个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入10y +x 即可得出结论.【详解】解:设原两位数的个位数字为x ,十位数字为y ,根据题意得:()8101018x y y x x y +=⎧⎨+-+=⎩解得:35x y =⎧⎨=⎩∴10y+x =53.答:原两位数是53.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车.问一共多少名学生、多少辆汽车.【答案】240名学生,5辆车.【分析】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==即可解.【详解】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==,解方程组可得:5240x y ⎧⎨⎩==.所以一共有学生240人,车5辆.故答案为一共有学生240人,车5辆.【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.24.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.【答案】41m n =⎧⎨=-⎩【分析】先解不含m 、n 的方程组,解得x 、y 的值,再代入含有m 、n 的方程组求解即可.【详解】解:∵3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,∴32453x y y x -=⎧⎨-=⎩和23197-=⎧⎨+=⎩mx ny mx ny 也有相同的解,∴解方程组324{53x y y x -=-=,得21x y =⎧⎨=⎩,代入23197-=⎧⎨+=⎩mx ny mx ny 中得431927m n m n -=⎧⎨+=⎩,∴解方程组得41m n =⎧⎨=-⎩.故答案为41m n =⎧⎨=-⎩.【点睛】本题主要考查了与二元一次方程组的解有关的知识点,解题的关键是准确理解方程组有相同解的情况,组成新的二元一次方程组求解.25.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩26.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时间内把一批抗洪物质从物资局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物资局仓库离水库有多远?27.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?当m=5,n=3时,支付租金:100×5+120×3=860元当m=1,n=6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.。
2023年春学期华师版七年级数学下册第七章《一次方程组》综合测评卷附答案解析
2023年春学期七年级数学下册第七章《一次方程组》综合测评卷一、单选题(每小题4分,共48分)1.下列方程中,是二元一次方程的是()A.xy =1B.x +1y=2C.y =3x -1D.x +y +z =12.下列方程组中,表示二元一次方程组的是()A.3{5x y z x +=+=B.5{1x y x y+==C.3{5x y xy +==D.11{122x y y x =++=3.下列各组数中,是二元一次方程52x y -=的一个解的是()A.31x y =⎧⎨=⎩B.13x y =⎧⎨=⎩C.20x y =⎧⎨=⎩D.02x y =⎧⎨=⎩4.将方程2x -3y -4=0变形为用含有y 的式子表示x ,正确的是()A.2x =3y +4B.x =32y +2C.3y =2x -4D.y =243x -5.方程01ax y x by +=⎧⎨+=⎩的解是11x y =⎧⎨=-⎩,则a ,b 为()A.01a b =⎧⎨=⎩B.10a b =⎧⎨=⎩C.11a b =⎧⎨=⎩D.00a b =⎧⎨=⎩6.已知e ,f 满足方程组32,26,e f f e -=⎧⎨-=⎩则2e +f 的值为()A.2B.4C.6D.87.已知23x y --+(2x+y+11)2=0,则()A.21x y =⎧⎨=⎩B.03x y =⎧⎨=-⎩C.15x y =-⎧⎨=-⎩D.27x y =-⎧⎨=-⎩8.已知关于x ,y 的方程组2342x y ax by -=⎧⎨+=⎩,与3564x y bx ay -=⎧⎨+=-⎩,有相同的解,则a ,b 的值为()A.21a b =-⎧⎨=⎩B.12a b =⎧⎨=-⎩C.12a b =⎧⎨=⎩D.12a b =-⎧⎨=-⎩9.若方程组()213431kx k y x y ⎧+-=⎨+=⎩,的解x 和y 互为相反数,则k 的值为()A.2B.-2C.3D.-310.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b 对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1B.1,-3C.-3,1D.-1,311.若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是()A.8.31.2x y =⎧⎨=⎩B.10.32.2x y =⎧⎨=⎩C. 6.32.2x y =⎧⎨=⎩D.10.30.2x y =⎧⎨=⎩12.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是()A.6036241680x y x y +=⎧⎨+=⎩B.6024361680x y x y +=⎧⎨+=⎩C.3624601680x y x y +=⎧⎨+=⎩D.2436601680x y x y +=⎧⎨+=⎩二、填空题(每小题4分,共16分)13.若mx 3m -2n -nym +2n =1是关于x ,y 的二元一次方程,则mn=____________14.关于x ,y 的二元一次方程组23,1ax by ax by +=⎧⎨-=⎩的解为1,1x y =⎧⎨=-⎩,则2a b -的值为______15.一桶油,连桶共8kg,用去一半以后,连桶的质量为4.5kg.问原来有油多少千克?若设油的质量为x kg,桶的质量为y kg,则根据题意可列方程组为______.16.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是6{8x y ==,则方程组111222345{345a x b y c a x b y c +=+=的解是_________.三、解答题(6个小题,共56分)17.用适当的方法解下列方程组.(1)21437x y x y =-⎧⎨+=⎩;(2)3222328x y x y +=⎧⎨+=⎩.18.为预防新冠肺炎病毒,市面上95KN 等防护型口罩出现热销.已知3个A 型口罩和2个B 型口罩共需31元;6个A 型口罩和5个B 型口罩共需70元.(1)求一个A 型口罩和一个B 型口罩的售价各是多少元?(2)小红打算用160元(全部用完)购买A 型,B 型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A 型口罩售价上涨40%,B 型口罩按原价出售,则小红有多少种不同的购买方案?请设计出来.19.某超市代理销售,A B 两种鲜牛奶,这两种鲜奶的成本价和销售价如表格所示,它们的保质期为一天,当天未售出的鲜奶必须全部销毁.该超市某天用1320元购进,A B 两种鲜奶共200瓶,卖出180瓶,当天共获得570元的利润.价格类别成本价(元/瓶)销售价(元/瓶)A 种鲜奶58B 种鲜奶914(1)求该超市这一天购进,A B 种鲜奶各多少瓶;(2)小明列出方程180(85)(149)570m n m n +=⎧⎨-+-=⎩来解决另一个问题,你认为小明要解决的问题可能是什么?小明所列的方程组解决这个问题能得出正确的答案吗?若可以,请求结果;若不可以,请列出正确的方程或方程组,不必求解.20.某文具店有甲,乙两种水笔,它们的单价分别为a 元/支,b 元/支,若购买甲种水笔5支,乙种水笔2支,共花费25元,购买甲种水笔3支,乙种水笔4支,共花费29元.(1)求a 和b 的值;(2)甲种水笔涨价m 元/支(02m <<),乙种水笔单价不变,小明花了40元购买了两种水笔10支,那么购买甲种水笔多少支?(用含m 的代数式表示).21.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元,玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)设甲公司的每周工作效率为m,乙公司每周的工作效率为n,则可列出方程为.(2)如果从节约时间的角度考虑应选哪家公司?(3)如果从节的开支的角度考虑呢?请说明理由.22.小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第_____________次购物打了折扣;(2)求出商品A,B的标价;(3)若商品A,B的折扣相同,问商店是打几折出售这两种商品的?参考答案:1.C【详解】根据二元一次方程的定义:只含有两个未知数,并且未知数最高次数是2的整式方程,故选C. 2.D【详解】A、有三个未知数,故不是二元一次方程组;B、有两个未知数,第二个方程不是整式方程,故不是二元一次方程组;C、有两个未知数,第二个方程的次数是2次,故不是二元一次方程组;D、有两个未知数,方程的次数是1次,所以是二元一次方程组,故选D.3.B【详解】解:A、把31xy=⎧⎨=⎩代入方程得:左边=15-1=14,右边=2,∵左边≠右边,∴不是方程的解;B、把13xy=⎧⎨=⎩代入方程得:左边=5-3=2,右边=2,∵左边=右边,∴是方程的解;C、把2xy=⎧⎨=⎩代入方程得:左边=10-0=10,右边=2,∵左边≠右边,∴不是方程的解;D、把2xy=⎧⎨=⎩代入方程得:左边=0-2=-2,右边=2,∵左边≠右边,∴不是方程的解;故选:B.4.B【详解】2x-3y-4=0,2x=4+3y,x=32y+2,故选B. 5.B【详解】解:由题意得:1011a b -=⎧⎨-=⎩,解得:10a b =⎧⎨=⎩.故选B6.D【详解】3226e f f e -=⎧⎨-=⎩①②,①+②得,2e +f =8,故选:D.7.D【详解】由题意得:2302110x y x y --=⎧⎨++=⎩,解得:27x y =-⎧⎨=-⎩,故选D.8.B【详解】关于x ,y 的方程组2342x y ax by -=⎧⎨+=⎩与3564x y bx ay -=⎧⎨+=-⎩,有相同的解,所以234356x y x y -=⎧⎨-=⎩,解得20x y =⎧⎨=⎩,将20x y =⎧⎨=⎩代入24ax by bx ay +=⎧⎨+=-⎩可得2224a b =⎧⎨=-⎩,解得12a b =⎧⎨=-⎩,故选B.9.A【详解】由题意可得4310x y x y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,把11x y =⎧⎨=-⎩代入方程2kx+(k-1)y=3得2k-(k-1)=3,解得k=2;故选A.10.A【详解】由题意得:2127a b a b +=⎧⎨-=⎩,解得:31a b =⎧⎨=-⎩,故选A.11.C【详解】由题意知,28.31 1.2x y +=⎧⎨-=⎩,解得, 6.32.2x y =⎧⎨=⎩,故选:C.12.B【详解】解:设购买A 型商品x 件、B 型商品y 件,依题意列方程组:6024361680x y x y +=⎧⎨+=⎩故选B.13.2【详解】因为mx 3m -2n -nym +2n =1是关于x ,y 的二元一次方程,所以可得:32121m n m n -=⎧⎨+=⎩,解得:12 14m n ⎧=⎪⎪⎨⎪=⎪⎩,所以2mn=,故答案为:2.14.2【详解】解:由题意,得231a b a b -⎧⎨+⎩=①=②,解得4313a b ⎧=⎪⎪⎨⎪=-⎪⎩,2a b -=41233⎛⎫-⨯- ⎪⎝⎭=2,故答案为:2.15.814.52x y x y +=⎧⎪⎨+=⎪⎩【详解】油的质量为x kg,桶的质量为y kg,由题意得81 4.52x y x y +=⎧⎪⎨+=⎪⎩故答案为81 4.52x y x y +=⎧⎪⎨+=⎪⎩.16.1010x y =⎧⎨=⎩【详解】试题分析:根据题意,把方程组的解6{8x y ==代入111222{a x b y c a x b y c +=+=,可得11122268{68a b c a b c +=+=①②,把①和②分别乘以5可得11122230405{30405a b c a b c +=+=,和所求方程组111222345{345a x b y c a x b y c +=+=比较,可知1112223104105{3104105a b c a b c ⨯+⨯=⨯+⨯=,因此方程组的解为10{10x y ==.17.(1)11x y =⎧⎨=⎩;(2)1016x y =-⎧⎨=⎩【详解】(1)21,437,x y x y =-⎧⎨+=⎩①②将①代入②,()42137y y -+=,解得,1y =,把1y =代入①得,1x =,∴原方程组的解为11x y =⎧⎨=⎩.(2)322,2328,x y x y +=⎧⎨+=⎩①②,32⨯-⨯②①,得,580y =,解得,16y =.将16y =代入①:3322x +=解得,10x =-,∴原方程组的解为1016x y =-⎧⎨=⎩.18.(1)一个A 型口罩的售价为5元,一个B 型口罩的售价为8元(2)小红有2种不同的购买方案,方案1:购买8个A 型口罩,13个B 型口罩;方案2:购买16个A 型口罩,6个B 型口罩【详解】(1)设一个A 型口罩的售价为x 元,一个B 型口罩的售价为y 元,依题意,得:32316570x y x y +=⎧⎨+=⎩,解得:58x y =⎧⎨=⎩,答:一个A 型口罩的售价为5元,一个B 型口罩的售价为8元;(2)解:设购买A 型口罩m 个,B 型口罩n 个,根据题意,得5(140%)8160m n ++=,即78160m n +=,∴满足条件的m ,n 有:8m =,13n =或16m =,6n =,∴小红有2种购买方案:第一种方案:A 型口罩购买8个,B 型口罩购买13个;第二种方案:A 型口罩购买16个,B 型口罩购买6个;19.(1)该超市这一天购进A 种鲜奶120瓶,购买B 种鲜奶80瓶.(2)要解决的问题是A 种鲜奶与B 种鲜奶各销售了多少瓶?小明所列的方程组不能解决这个问题,其中利润的计算是错误的,正确的方程组是:1808141320570m n m n +=⎧⎨+=+⎩.【详解】(1)解:设该超市这一天购进A 种鲜奶x 瓶,购买B 种鲜奶()200x -瓶,则()592001320x x +-=,解得:120x =,则80200=-x ,答:该超市这一天购进A 种鲜奶120瓶,购买B 种鲜奶80瓶.(2)小明列出方程180(85)(149)570m n m n +=⎧⎨-+-=⎩要解决的问题是A 种鲜奶与B 种鲜奶各销售了多少瓶?小明所列的方程组不能解决这个问题,其中利润的计算是错误的,设A 种鲜奶卖出m 瓶,卖出B 种鲜奶n 瓶,则正确的方程组是:1808141320570m n m n +=⎧⎨+=+⎩.20.(1)a 的值为3,b 的值为5;(2)购买甲102m-支【详解】(1)依题意有52253429a b a b +=⎧⎨+=⎩,解得35a b =⎧⎨=⎩.故a 的值为3,b 的值为5;(2)设购买甲种水笔x 支,则购买乙种糖果()10x -支,依题意有:()()351040m x x ++-=,解得:102x m=-;故购买甲102m -支.21.(1)16m n +=;(2)时间上考虑选择甲公司;(3)从节约开支上考虑选择乙公司【详解】(1)解:设工作总量为1,设甲公司的每周工作效率为m ,乙公司每周的工作效率为n ,则16m n +=,故答案为:16m n +=.(2)解:设工作总量为1,设甲公司的每周工作效率为m ,乙公司每周的工作效率为n ,根据题意得,16491m n m n ⎧+=⎪⎨⎪+=⎩;解得:110115m n ⎧=⎪⎪⎨⎪=⎪⎩∵111015>∴甲公司的效率高,所以从时间上考虑选择甲公司.(3)解:设甲公司每周费用为a 万元,乙公司每周费用为b 万元,根据题意得:66 5.249 4.8a b a b +=⎧⎨+=⎩;解得:35415a b ⎧=⎪⎪⎨⎪=⎪⎩∴公司共需33010655⨯==万元,乙公司共需415415⨯=万元,4万元<6万元,∴从节约开支上考虑选择乙公司.22.(1)三;(2)商品A 的标价为90元,商品B 的标价为120元;(3)商店是打6折出售这两种商品的【详解】(1)解:由表中数据可知,第三次购买商品数量比第一次、第二次都多,但总费用却比第一次、第二次低,从而确定第三次购物打了折扣,故答案为:三;(2)解:设商品A 的标价为x 元,商品B 的标价为y 元,则651140371110x y x y +=⎧⎨+=⎩①②,②2⨯-①得91080y =,解得120y =,将120y =代入①得到90x =,答:商品A 的标价为90元,商品B 的标价为120元;(3)解:设商店是打m 折出售这两种商品,则()9908120·106210m⨯+⨯=,解得6m =,答:若商品A ,B 的折扣相同,问商店是打6折出售这两种商品的.。
初中数学华师大版七年级下学期第第7章一次方程组单元测试卷(含解析)
初中数学华师大版七年级下学期第第7章一次方程组单元测试卷(含解析)一、单选题1.已知方程组,则x+y+z的值为( )A. 6B. -6C. 5D. -52.已知方程组和方程组有相同的解,则的值是()A. 1B.C. 2D.3.下列方程组中是二元一次方程组的是()A. B. C. D.4.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔相遇一次,若同向而行,则每隔相遇一次,已知甲比乙跑得快,设甲每秒跑米,乙每秒跑米,则可列方程为()A. B. C. D.5.利用两块长方体木块测量两张桌子的高度.首先按图方式放置,再交换两木块的位置,按图方式放置.测量的数据如图,则桌子高度是()A. B. C. D.6.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为张.根据题意,下面所列方程正确的是()A. B. C. D.7.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A. 12人,15人B. 14人,13人C. 15人,12人D. 13人,14人8.《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A. B. C. D.9.小明和小亮在一起探究一个数学活动.首先小亮站立在箱子上,小明站立在地面上(如图1),然后交换位置(如图2),测量的数据如图所示,想要探究的问题有:①小明的身高;②小亮的身高;③箱子的高度;④小明与小亮的身高和.根据图上信息,你认为可以计算出的是()A. ①B. ②C. ③D. ④10.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A,B,C,D表示的数分别是整数a、b、c、d,且满足,则的值为()A. B. C. D.二、填空题11.有A、B、C三种商品,如果购5件A、2件B、3件C共需513元,购3件A、6件B、5件C共需375件,那么购A、B、C各一件共需________元.12.如图,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.5 4则________,第2019个格子填入的整数为________13.陕北的放羊娃隔着沟唱着信天游,比他们养的羊数.一个唱到:“你羊没有我羊多,你若给我一只羊,我的是你的两倍”,另一个随声唱到:“你要给我一只养,咱俩的羊儿一样多” 听了他们的对唱,你能知道他们各有多少只羊吗?答:________.14.若方程2x2a+b-4+4y3a-2b-3=1是关于x,y的二元一次方程,则a=________,b=________.15.已知,方程是关于的二元一次方程,则________.三、计算题16.解下列方程组.(1)(2)四、解答题17.关于x、y的二元一次方程组与的解相同,求a、b的值.18.某景点的门票价格如下表:某校八年级(一)、(二)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1828元,如果两班联合起来作为一个团体购票,则只需花费1020元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少元?19.解方程组时,由于粗心,小天看错了方程组中的a,得到解为,小轩看错了方程组中的b,得到解为,求方程组正确的解.20.有一场足球比赛,共有九支球队参加,采取单循环赛,其记分和奖励方案如下表:甲队参加完了全部8场比赛,共得积分16分.(1)求甲队胜负的所有可能情况;(2)若每一场比赛,每一个参赛队员均可得出场费500元,求甲队参加了所有8场比赛的队员的个人总收入(奖金加上出场费).21.7月4日,2020长白山地下森林徒步活动鸣枪开始,一名34岁的男子带着他的两个孩子一同参加了比赛.下面是两个孩子与记者的部分对话:妹妹:我和哥哥的年龄和是16岁.哥哥:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.根据对话内容,请你用方程的知识帮记者求出现在..哥哥和妹妹的年龄各是多少岁?答案解析部分一、单选题1.【答案】C【解析】【解答】解:∵,①+②+③,得x+y+z=5,故答案为:C.【分析】根据方程组,三个方程相加即可得到x+y+z的值.2.【答案】A【解析】【解答】解:解方程组,得,代入x+y+m=0得,m=1,故答案为:A.【分析】根据两方程组有相同的解,将方程组中两个已知方程组成方程组,求出x、y的值,然后将其代入x+y+m=0中,即可求出m.3.【答案】D【解析】【解答】解:A. ,不是二元一次方程组;B. ,不是二元一次方程组;C. ,不是二元一次方程组;D. ,是二元一次方程组;故答案为:D.【分析】根据二元一次方程组的定义逐项判定即可。
七年级数学下册第7章一次方程组7.3三元一次方程组及其解法习题课件新版华东师大版7
6 ,y=______ 8 ,z=______ 3 . _____
x+y=2, 9 13.已知y+z=3, 则x+y+z=________ . 2 z+x=4, 14.若|x+2y-5|+(2y+3z-13)2+(3z+x-10)2=0,则x=
1 ,y=______ 2 ,z=______ 3 . ______
知识点2:三元一次方程组的简单应用
7.在△ABC中,∠A-∠C=25°,∠B-∠A=10°,则∠A=
65° ,∠B=________ 75° ,∠C=_________ 40° . ________ 8.在等式y=ax2+bx+c中,当x=0时,y=2;当x=-1时,y=0
1 ,b=_____ 3 ,c=_____ 2 . ;当x=2时,y=12,则a=_____
4x+3y=2 A. 7x+5y=3 3x+4y=2 C. 7x+5y=3 4x+3y=2 B. 23x+17y=11 3x+4y=2 D. 23x+17y=11
2x+y=4 ① ② 6.解三元一次方程组:x+3z=1 x+y+z=7 ③ x=-2 解:y=8 z=1
3-y+z=-2 x B.x-2y+z=9 y=-3
3x-y+2z=3, 2.观察方程组2x+y-4z=11,的系数特点,若要使求解简便, 7x+y-5z=1 消元的方法应选取( B ) A.先消去x B.先消去y
C.先消去z D.以上说法都不对
3x-y+z=4 ①, 3.解方程组2x+3y-z=12 ②, 以下解法中不正确的是( D ) x+y-2z=3 ③, A.由①、②消去z,再由①、③消去z B.由①、②消去z,再由②、③消去z C.由①、③消去y,再由①、②消去y D.由①、②消去z,再由①、③消去y
第7章 二元一次方程组复习--
求得另一个未知数的值,这样就得到了方程的解 x a
y
b
加减法解二元一次方程组的一般步骤:
1。把一个方程(或两个方程)的两边都乘以一个 适当的数,使两个方程的一个未知数的系数的绝 对值相等; 2。把一个未知数系数绝对值相等的两个方程的两边 分别相加(或相减),得到一个一元一次方程,求 得一个未知数的值;
它的解是唯一的
•4.二元一次方程组的解:适合二元一次方程组里 各个方程的一对未知数的值,叫做这个方程组里 各个方程的公共解,也叫做这个方程组的解
• 注意:
• ①书写方程组的解时,必需用“ ”把各个未知
数的值连在一起,即写成的
x y
a b
形式;
6.同解方程组:
如果第一个方程组的解都是第二个方程组的 解,而第二个方程组的解也都是第一个方程组的 解,即两个方程组的解集相等,就把这两个方程 组叫做同解方程组
①实际施肥 (6x) = 库存化肥 + 缺少化肥200千克
②实际施肥 (5x) = 库存化肥 - 剩余300千克
例例22、、用用白白铁铁皮皮做做罐罐头头盒盒。。每每张张铁铁皮皮可可制制 盒盒身身1166个个,,或或制制盒盒底底4433个个,,一一个个盒盒身身与与两两个个盒盒 底底配配成成一一套套罐罐头头盒盒。。现现有有115500张张白白铁铁皮皮,,用用多多 少少张张制制盒盒身身,,多多少少张张制制盒盒底底,,可可以以刚刚好好配配套套??
解:设第一车间有x人,第二车间有y人
根据题意得:
y = 4 x -30
3
5
( x-10) =
y+10
4
解得: x 250, y 170
经检验,符合题意.
华师大版七年级下册数学第7章 一次方程组含答案(完美版)
华师大版七年级下册数学第7章一次方程组含答案一、单选题(共15题,共计45分)1、一商店以每件60元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损8元B.盈利20元C.亏损10元D.不盈不亏2、我国古代数学家张丘建在《张丘建算经)里,提出了“百钱买百鸡”这个有名的数学问题.用100个钱买100只鸡,公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.问公鸡,小鸡各买了多少只?在这个问题中,小鸡的只数不可能是()A.87B.84C.81D.783、我国古代数学巨著《孙子算经》中的“鸡兔同笼”题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉兔各几何”,正确答案是()A.鸡24只,兔11只B.鸡23只,兔12只C.鸡11只,兔24只D.鸡12只,兔23只4、整数使得关于,的二元一次方程组的解为正整数(,均为正整数),且使得关于的不等式组无解,则所有满足条件的的和为()A.9B.16C.17D.305、下列二元一次方程组中,以为解的是()A. B. C. D.6、下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.6xy+9=0C.D.7、我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大小和尚各几人?设大、小和尚各有x、y人,则可以列方程组()A. B. C. D.8、已知关于x、y的二元一次方程组的解是,则的值是()A.1B.2C.﹣1D.09、如下表,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,若前m个格子中所填整数之和是2020,则m的值为()A.202B.303C.606D.90910、甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨.若设甲仓库原来存粮x吨.乙仓库原来存粮y吨,则有()A. B. C.D.11、已知,则a+b等于( )A.3B.C.2D.112、6年前,A的年龄是B的3倍,现在A的年龄是B的2倍,A现在的年龄是( )岁。
完整版华师大版七年级下册数学第7章 一次方程组含答案
华师大版七年级下册数学第7章一次方程组含答案一、单选题(共15题,共计45分)1、以下说法:①关于x的方程x+ =c+ 的解是x=c(c≠0);②方程组的正整数解有2组;③已知关于x,y的方程组,其中﹣3≤a≤1,当a=1时,方程组的解也是方程x+y=4﹣a的解;其中正确的有()A.②③B.①②C.①③D.①②③2、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.2003、如果关于x,y的方程组的解是二元一次方程3x+2y=14的一个解,那么m的值( )A.1B.-1C.2D.-24、甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A. B. C. D.5、某中学现有学生500人,计划一年后女生在校人数增加,男生在校人数增加,这样,在校学生总数将增加.问该校现有女生和男生的人数分别是()A.女生180和男生320B.女生320和男生180C.女生200和男生300D.女生300和男生2006、足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A. B. C. D.7、若是关于x、y的二元一次方程,则m的值是()A.1或2B.1C.2D.38、若二元一次方程组的解为则的值是()A.3B.1C.D.29、已知是方程组的解,则a,b间的关系是()A.4b+9a=1B.4b-9a=1C.3a+2b=1D.4b+9a=-110、某课外活动小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则少5人.求课外活动小组的人数x和应分成的组数y,依题意得方程组为()A. B. C. D.11、利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×212、下列是二元一次方程组的是()A. B. C. D.13、三元一次方程组,的解为()A. B. C. D.14、已知是二元一次方程组的解,那么 x+y 的值是( )A.0B.5C.-1D.115、若是二元一次方程,则()A.m=3,n=4B.m=2,n=1C.m=1,n=2D.m=-1, n=2二、填空题(共10题,共计30分)16、已知方程组与有相同的解,则m2﹣2mn+n2=________17、某市政府筹集了抗疫情必需物资120吨运往武汉灾区,现有甲、乙两种车型,每辆的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙汽车运载量(吨/辆) 5 8汽车运费(元/辆) 400 500若全部物资都用甲、乙两种车型来运送,需要运费8200元.设用甲、乙两种车型分别为x辆,y辆,依题意,列出方程组为________.18、已知方程组和的解相同,则2m﹣n=________.19、某校初三在综合实践活动中举行了“应用数字”智能比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多________ 分.20、如图,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.5 4 则________,第2019个格子填入的整数为________21、若关于x、y的二元一次方程组的解是二元一次方程的2x+3y=15的解,则k的值为________.22、孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为,又已知3k+b=1,则b 符合题意值应该是________.23、若关于x,y的方程组的解满足,则的最小整数解为________.24、小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数和▲,请你帮他找回▲这个数,▲=________.25、一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为________.三、解答题(共5题,共计25分)26、解方程组:27、某中学积极响应国家号召,落实垃圾“分类回收,科学处理"的政策,准备购买A、B两种型号的垃圾分类回收箱共20只,放在校园各个合适位置,以方便师生进行垃圾分类投放。
【数学】人教版七年级数学下册第7章《平面直角坐标系》培优试题(2)
人教版七年级数学下册第7章《平面直角坐标系》培优试题(2) 一.选择题(共10小题)1.如图所示,横坐标是正数,纵坐标是负数的点是( )A .A 点B .B 点C .C 点D .D 点2.若x 轴上的点P 到y 轴的距离为3,则点P 为( ) A .(3,0) B .(3,0)或(3,0)- C .(0,3)D .(0,3)或(0,3)-3.若0ab >,则(,)P a b 在( ) A .第一象限 B .第一或第三象限 C .第二或第四象限D .以上都不对 4.点(1,3)M m m ++在x 轴上,则M 点坐标为( ) A .(0,4)-B .(4,0)C .(2,0)-D .(0,2)-5.在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保特不变,则所得图形在原图形基础上( ) A .向左平移了3个单位 B .向下平移了3个单位 C .向上平移了3个单位D .向右平移了3个单位6.如图,是象棋盘的一部分.若“帅”位于点(1,2)-上,“相”位于点(3,2)-上,则“炮”位于点( )上.A.(1,1)-D.(2,2)--C.(2,1)-B.(1,2)7.将以A(-2,7),B(-2,2)为端点的线段AB向右平移2个单位得线段A B,11以下点在线段A B上的是()11A.(0,3)B.(-2,1)C.(0,8)D.(-2,0)8.点(0,2)A在()A.第二象限B.x轴的正半轴上C.y轴的正半轴上D.第四象限9.将点(3,2)B-A-先向右平移3个单位,再向下平移5个单位,得到A'、将点(3,6)先向下平移5个单位,再向右平移3个单位,得到B',则A'与B'相距() A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度10.已知点(,)A m n在第二象限,则点(||,)B m n-在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共8小题)11.已知2|2|(1)0-++=,则点(,)x yP x y在第个象限,坐标为.12.点(3,5)P--到x轴距离为,到y轴距离为.13.在平面直角坐标系中,将点(1,4)P-向右平移2个单位长度后,再向下平移3个单位长度,得到点P,则点1P的坐标为.114.李明的座位在第5 排第4 列,简记为(5,4),张扬的座位在第3 排第2 列,简记为(3,2),若周伟的座位在李明的前面相距 2 排,同时在他的右边相距2 列,则周伟的座位可简记为.15.如图,在三角形ABC中,(0,4)C,且三角形ABC面积为10,则B点A,(3,0)坐标为.16.点(21,3)-+在第一、三象限角平分线上,则x的值为,P点坐标P x x为.17.在平面直角坐标系中,点A的坐标为(1,3)-,线段//AB=,则点AB x轴,且4 B的坐标为.18.在平面直角坐标系中,若点(1,)M x人教版七年级下册数学第七章平面直角坐标系单元试题一、选择题(共10小题,每小题3分,共30分)1.在平面直角坐标系中,点P(-3,-8)的位置在( )A.第一象限B.第二象限C.第三象限D.第四象限2.如图是象棋盘的一部分,若位于点(1,-2)上,位于点(3,-2)上,则位于点 ( )A.(-1,1) B.(-1,2)C.(-2,1) D.(-2,2)3.已知x轴上的点P到y轴的距离为3,则点P的坐标为( )A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为( )A.(0,-2) B.(2,0) C.(0,2) D.(0,-4)5.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A.东南方向B.东北方向C.西南方向D.西北方向6.平面直角坐标系中,一个三角形的三个顶点的坐标,横坐标保持不变,纵坐标增加3个单位,则所得的图形与原图形相比( )A.形状不变,大小扩大为原来的3倍B.形状不变,向右平移了3个单位C.形状不变,向上平移了3个单位D.三角形被纵向拉伸为原来的3倍7.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )A.(2,3) B.(-2,-3)C.(-3,2) D.(3,-2)8.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0 B.y>0 C.y≤0D.y≥09.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A.(2,2) B.(3,2) C.(3,3) D.(2,3)10.线段AB两端点坐标分别为A(-1,4),B(-4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1,B1的坐标分别为( )A.A1(-5,0),B1(-8,-3) B.A1(3,7), B1(0,5)C.A1(-5,4),B1(-8,1) D.A1(3,4), B1(0,1)二、填空题(共5小题,每小题4分,共20分)11.点P(a,b)在第四象限,则点Q(b,-a)在第象限.12.把点A(-4,6)先向左平移2个单位,再向下平移4个单位,此时的位置是.13.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是.14.在坐标平面内,已知点M(1,2)和点N(1,-4),那么线段MN的长为个单位长度,MN中点的坐标为.15.观察图象,与图1中的鱼相比,图2中的鱼发生了一些变化.若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标为(图中的方格是1×1).三、解答题(共5小题,每小题10分,共50分)16.如图,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?17.在平面直角坐标系中,标出下列各点:(1)点A在x轴的正半轴上,距离原点1个单位长度;(2)点B在y轴的负半轴上,距离原点2个单位长度;(3)点C在第四象限,距离x轴1个单位长度,距离y轴3个单位长度;(4)点D在第一象限,距离x轴1个单位长度,距离y轴4个单位长度.请用线段依次连接这些点,你能得到什么图形?18.如图,梯形A′B′C′D′可以由梯形ABCD经过怎样的平移得到?对应点的坐标有什么变化?19.如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A 4点,再向正东方向走15米到达A 5点,按如此规律走下去,建立适当的坐标系,当机器人走到A 6点时,求A 6点的坐标.人教版七年级数学下册第8章《二元一次方程组》培优试题(2) 一.填空题(共8小题,每小题3分,共24分)1.已知二元一次方程2350x y --=的一组解为x ay b =⎧⎨=⎩,则643b a -+= .2.已知39x y -=,请用含x 的代数式表示y ,则y = .3.若实数x ,y 满足条件23x y +=,试写出一个x 和一个y 使它们满足这个条件,此时x = ;y = . 4.若12x y =⎧⎨=-⎩是二元一次方程组2022ax y bx ay -=⎧⎨+=⎩的解,则a b -= . 5.甲、乙两人同时解关于x 、y 的方程组321,ax y x by -=⎧⎨+=⎩但是甲看错了a ,求得解为11x y =⎧⎨=-⎩,乙看错了b ,求得解为14x y =-⎧⎨=-⎩,则a b += . 6.若54413,27319,3218x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩则51x y z ---的立方根是 .7.若37a x y -与2a b x y +是同类项,则b = . 8.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,⋯,若21010b b a a+=⨯符合前面式子的规律,则a b += .二.选择题(共10小题,每小题3分,共30分)9.若||2017||3(2018)(4)2018m n m x n y ---++=是关于x ,y 的二元一次方程,则( ) A .2018m =±,4n =± B .2018m =-,4n =± C .2018m =±,4n =-D .2018m =-,4n =10.下列4组数值,哪个是二元一次方程235x y +=的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩11.下列方程组中不是二元一次方程组的是( ) A .23x y =⎧⎨=⎩B .12x y x y +=⎧⎨-=⎩C .51x y xy +=⎧⎨=⎩D .21y xx y =⎧⎨-=⎩12.以方程组23327x y x y +=-⎧⎨-=⎩的解为坐标的点在( )A .第一象限B .第二象限C .第三象限D .第四象限13.已知222,44,x y a x y a +=⎧⎨-=-⎩且320x y -=,则a 的值为( )A .2B .0C .4-D .514.已知实数x ,y ,z 满足7422x y z x y z ++=⎧⎨+-=⎩,则代数式3()1x z -+的值是( )A .2-B .4-C .5-D .6-15.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( ) A .15 B .15-人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
第7章《一次方程组》课后作业
轻松学习,愉快学习,高效学习 1.用代入法解方程组: x+y-z=6 (1) x-3y+2z=1 3x+2y-z=4 (3)
资中二中初 2016 级备课组导学案
x+y-z=11 (2) y+z-x=5 z+x-y=1
2.在 y=ax2+bx+c 中,当 x=-2,1,2 时,y=9,3, 5。(1)求 a,b,c 的值,(2)当 x=-1 时,y• 的 值是多少?
x2 y 1
是方程组
ax y b 的 4 x by a 5
解.求 a 、 b 的值.
y 2 x 1, ① 把①代入②可得 3x 2 y 8 ②
_______________. 4.若 x、y 互为相反数,且 x+3y=4,那么 3x-2y =_____________. 5.解方程组 1 x 8 y =3x-1是方程 x -ay=6 的解, 2.已知 求 a 的值. 2 y 10 2x +4y=24
2
轻松学习,愉快学习,高效学习 1、将二元一次方程 5x+2y=3 化成用含有 x 的式子 表示 y 的形式是 y= 示 x 的形式是 x= ; 化成用含有 y 的式子表 。
2
资中二中初 2016 级备课组导学案 (3)
x y 8 5 x 2( x y) 1
2、若|2x-y+1|+(x+2y-5) =0,则 x=
资中二中初 2016 级备课组导学案 x-3y+2z=0 3 羊圈里白羊的只数比黑羊的脚数少 黑羊的只 2z, 2、 、已知 ,求 x∶y∶ = ______. 3x - 3y - 4z = 0 数比白羊的脚数少 187 ,则白羊、黑羊有多少只?
x y = 3 2 (2) y z = 4 5 x+y+z=60 2、一张试卷有 25 道题,做对一道得 4 分,做错一 道扣 1 分.•小英做了全部试题得 70 分,则她做对 了多少道题?
七年级数学上册《一元一次方程》单元测试卷
七年级数学上册《一元一次方程》单元测试卷一、单选题1.关于x 的方程2(x-1)-a=0的根是3,则a 的值为( )A .4B .-4C .5D .-52.下列式子,是一元一次方程的是( )A .21x x -=B .7x y +=C .248x x-= D .132x x -= 3.若 3x =- 是关于 x 的方 =1x m + 的解,则关于 y 的不等式 ()2126y m -≥-+ 的最大整数解为( ) A .1B .2C .3D .44.已知等式 a b = , c 为任意有理数,则下列等式中,不一定成立的是( )A .22a c b c +=+B .0ac bc -=C .22a c b c -=-D .a b c c= 5.在数轴上,表示哪个数的点与表示﹣2和4的点的距离相等?( )A .原点B .1C .﹣1D .26.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元7.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( )A .312x ++ 8x=1 B .312x ++ 38x - =1 C .12x + 8x =1D .12x + 38x - =18.李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为x ,那么可得方程( ) A .2000(1+x )=2120 B .2000(1+x %)=2120 C . 2000(1+x·80%)=2120D .2000(1+x·20%)=21209.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P ,则P 的值是( )A .12B .15C .18D .2110.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人B .10人C .12人D .14人11.下列等式一定成立的是( )A .x 2+3=0B .x+2=x+3C .x+2=2+xD .x y -=-212.下列各对等式,是根据等式的性质进行变形的,其中错误的是( ).A .4x-1=5x+2→x=-3B .1.82101820232300.50.757x x x x---=→-= C .0.030.050.135100.23232424x x xx --+=→+= D .()()5312533632x x x x +--=→+--= 二、填空题13.若1x =-是关于x 的方程33x m +=-的解,则m 的值为 .14.若 1x = 是关于x 的方程1222a x a x -=-+ 的解,则 a = . 15.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是 %.16.如图,点A 、点B 在数轴上表示的数分别是-4和4.若在数轴上存在一点P 到A 的距离是点P 到B 的距离的3倍,则点P 所表示的数是 .三、解答题17.如图,已知∠1=∠2,∠3=∠4,试说明AB∠CD .18.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润不低于5%,则最多打几折?19.某商店有两种书包,每个小书包比大书包的进价少25元,而它们的售后所获利润相同,其中,每个小书包的利润率为30%,每个大书包的利润率为20%,求两种书包的进价.20.现有180件机器零件需加工,任务由甲、乙两个小组合作完成.甲组每天加工12件,乙组每天加工8件,结果共用20天完成任务.求甲、乙两组分别加工机器零件多少个.21.数轴是一个非常重要的数学工具,实数和数轴上的点能建立一一对应的关系,它建立了数与形的联系,是初中“数形结合”的基础。
专题05一次方程组【解析版】
专题05一次方程组一.选择题(共16小题)1.(2022•株洲)对于二元一次方程组y=x―1①x+2y=7②,将①式代入②式,消去y可以得到( )A.x+2x﹣1=7B.x+2x﹣2=7C.x+x﹣1=7D.x+2x+2=7【分析】将①式代入②式,得x+2(x﹣1)=7,去括号即可.【解析】y=x―1①x+2y=7②,将①式代入②式,得x+2(x﹣1)=7,∴x+2x﹣2=7,故选:B.【点评】本题考查了解二元一次方程组,掌握代入消元法解二元一次方程组是解题关键.2.(2022•扬州)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x只,兔有y只,那么可列方程组为( )A.x+y=35,4x+4y=94B.x+y=35,4x+2y=94C.x+y=94,2x+4y=35D.x+y=35,2x+4y=94【分析】关系式为:鸡的只数+兔的只数=35;2×鸡的只数+4×兔的只数=94,把相关数值代入即可求解.【解析】设鸡有x只,兔有y只,可列方程组为:x+y=352x+4y=94.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,解决本题的关键是得到鸡和兔的总只数及鸡和兔的脚的总只数的等量关系.3.(2022•宁波)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为( )A .x +y =10x +35y =7B y =10x +y =7C .x +7=7x +53y =10D y =7x +y =10【分析】根据原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7即可得出答案.【解析】根据题意得:x +y =10x +35y =7,故选:A .【点评】本题考查了由实际问题抽象出二元一次方程组,找到等量关系:原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7是解题的关键.4.(2022•舟山)上学期某班的学生都是双人桌,其中14男生与女生同桌,这些女生占全班女生的15,本学期该班新转入4个男生后,男女生刚好一样多.设上学期该班有男生x 人,女生y 人,根据题意可得方程组为( )A 4=y=y5B 4=y=y4C 4=y =y5D 4=y=y4【分析】根据14男生与女生同桌,这些女生占全班女生的15,可以得到14x =15y ,根据本学期该班新转入4个男生后,男女生刚好一样多,可得x +4=y ,从而可以列出相应的方程组,本题得以解决.【解析】由题意可得,4=yx =15y ,故选:A .【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.5.(2022•达州)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .4x +6y =382x +5y =48B .4x +6y =482x +5y =38C.4x+6y=485x+2y=38D.4y+6x=48 2y+5x=38【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解析】设马每匹x两,牛每头y两,根据题意可列方程组为:4x+6y=482x+5y=38.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.6.(2022•成都)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y个,则可列方程组为( )Ay=1000,x+119y=999By=1000,x+911y=999C.x+y=1000,7x+9y=999D.x+y=1000,4x+11y=999【分析】利用总价=单价×数量,结合用九百九十九文钱共买了一千个苦果和甜果,即可得出关于x,y的二元一次方程组,此题得解.【解析】∵共买了一千个苦果和甜果,∴x+y=1000;∵共花费九百九十九文钱,且四文钱可以买苦果七个,十一文钱可以买甜果九个,∴47x+119y=999.y=1000x+119y=999.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.(2022•湘潭)为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有x张桌子,有y条凳子,根据题意所列方程组正确的是( )A.x+y=404x+3y=12B.x+y=12 4x+3y=40C.x+y=403x+4y=12D.x+y=12 3x+4y=40【分析】根据“组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,且桌子腿数与凳子腿数的和为40条”,即可得出关于x,y的二元一次方程组,此题得解.【解析】∵组委会为每个比赛场地准备了桌子和凳子共12个,∴x+y=12;又∵桌子腿数与凳子腿数的和为40条,且每张桌子有4条腿,每条凳子有3条腿,∴4x+3y=40.∴列出的方程组为x+y=124x+3y=40.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(2022•“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是( )A.7x―7=y9(x―1)=y B.7x+7=y 9(x―1)=yC.7x+7=y9x―1=y D.7x―7=y 9x―1=y【分析】设该店有客房x间,房客y人;根据“一房七客多七客,一房九客一房空”得出方程组即可.【解析】设该店有客房x间,房客y人;根据题意得:7x+7=y9(x―1)=y,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组.根据题意得出方程组是解决问题的关键.9.(2022•武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是( )A.9B.10C.11D.12【分析】由题意:每一横行、每一竖列以及两条对角线上的3个数之和相等,表示出最中间的数和最右下角的数,列出二元一次方程组,解方程组即可.【解析】∵每一横行、每一竖列以及两条对角线上的3个数之和相等,∴最左下角的数为:6+20﹣22=4,∴最中间的数为:x+6﹣4=x+2,或x+6+20﹣22﹣y=x﹣y+4,最右下角的数为:6+20﹣(x+2)=24﹣x,或x+6﹣y=x﹣y+6,∴x+2=x―y+4 24―x=x―y+6,解得:x=10 y=2,∴x+y=12,故选:D.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.(2022•眉山)我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x两银子,1只羊y两银子,则可列方程组为( )A.5x+2y=192x+3y=12B.5x+2y=12 2x+3y=19C.2x+5y=193x+2y=12D.2x+5y=12 3x+2y=19【分析】根据“5头牛、2只羊共19两银子;2头牛、3只羊共12两银子”,即可得出关于x,y的二元一次方程组,此题得解.【解析】∵5头牛,2只羊共19两银子,∴5x+2y=19;∵2头牛,3只羊共12两银子,∴2x+3y=12.∴可列方程组为5x+2y=192x+3y=12.故选:A.【点评】本题考查由实际问题抽象初二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.11.(2022•嘉兴)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为( )A.x+y=73x+y=17B.x+y=9 3x+y=17C.x+y=7x+3y=17D.x+y=9 x+3y=17【分析】由题意:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.列出二元一次方程组即可.【解析】根据题意得:x+y=9―2 3x+y=17,即x+y=73x+y=17,故选:A.【点评】此题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.(2022•随州)我国元朝朱世杰所著的《算学启蒙》中记载:“良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.”意思是:“跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x天可以追上慢马,则可列方程为( )A.150(12+x)=240x B.240(12+x)=150xC.150(x﹣12)=240x D.240(x﹣12)=150x【分析】设快马x天可以追上慢马,根据路程=速度×时间,即可得出关于x的一元一次方程,此题得解.【解析】设快马x天可以追上慢马,依题意,得:150(x+12)=240x.故选:A .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.13.(2022•苏州)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( )A .x =100―60100xB .x =100+60100xC .10060x =100+xD .10060x =100﹣x【分析】设走路快的人要走x 步才能追上,由走路快的人走x 步所用时间内比走路慢的人多行100步,即可得出关于x 的一元一次方程,此题得解.【解析】设走路快的人要走x 步才能追上,则走路慢的人走x100×60,依题意,得:x100×60+100=x .故选:B .【点评】本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.14.(2022•武威)《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x 天相遇,根据题意可列方程为( )A .(17+19)x =1B .(17―19)x =1C .(9﹣7)x =1D .(9+7)x =1【分析】设总路程为1,野鸭每天飞17,大雁每天飞19,当相遇的时候,根据野鸭的路程+大雁的路程=总路程即可得出答案.【解析】设经过x 天相遇,根据题意得:17x +19x =1,∴(17+19)x=1,故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.15.(2022•滨州)在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻R之间有以下关系:I=UR,去分母得IR=U,那么其变形的依据是( )A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质2【分析】根据等式的基本性质,对原式进行分析即可.【解析】将等式I=UR,去分母得IR=U,实质上是在等式的两边同时乘R,用到的是等式的基本性质2.故选:B.【点评】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.16.(2022•南充)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为( )A.4x+2(94﹣x)=35B.4x+2(35﹣x)=94C.2x+4(94﹣x)=35D.2x+4(35﹣x)=94【分析】由上有三十五头且鸡有x只,可得出兔有(35﹣x)只,利用足的数量=2×鸡的只数+4×兔的只数,即可得出关于x的一元一次方程,此题得解.【解析】∵上有三十五头,且鸡有x只,∴兔有(35﹣x)只.依题意得:2x+4(35﹣x)=94.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.二.填空题(共4小题)17.(2022•随州)已知二元一次方程组x+2y=42x+y=5,则x﹣y的值为 1 .【分析】将第一个方程化为x=4﹣2y,并代入第二个方程中,可得2(4﹣2y)+y=5,解得y=1,将y=1代入第一个方程中,可得x=2,即可求解.【解析】解法一:由x+2y=4可得:x=4﹣2y,代入第二个方程中,可得:2(4﹣2y)+y=5,解得:y=1,将y=1代入第一个方程中,可得x+2×1=4,解得:x=2,∴x﹣y=2﹣1=1,故答案为:1;解法二:∵x+2y=4①2x+y=5②,由②﹣①可得:x﹣y=1,故答案为:1.【点评】本题考查解二元一次方程组,解题的关键是熟练掌握加减消元法与代入消元法.18.(2022•重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为 35 .【分析】分别设出甲乙丙三山的香樟数量、红枫数量及总量,根据甲乙两山红枫数量关系,得出甲乙丙三山香樟和红枫的数量(只含一个字母),进而根据“所花费用和预算费用相等”列出等式,从而求得香樟和红枫的单价之间关系,进一步求得结果.【解析】根据题意,如表格所设:香樟数量红枫数量总量甲4x5y﹣4x5y乙3x6y﹣3x6y丙9x7y﹣9x7y ∵甲、乙两山需红枫数量之比为2:3,∴5y―4x6y―3x=23,∴y=2x,故数量可如下表:香樟数量红枫数量总量甲4x6x10x 乙3x9x12x 丙9x5x14x 所以香樟的总量是16x,红枫的总量是20x,设香樟的单价为a,红枫的单价为b,由题意得,[16x•(1﹣6.25%)]•[a•(1﹣20%)]+20x•[b•(1+25%)]=16x•a+20x•b,∴12a+25b=16a+20b,∴4a=5b,设a=5k,b=4k,∴12a25b=12×5k25×4k=35,故答案为:3 5.【点评】本题考查了用字母表示数,根据相等关系列方程进行化简等知识,解决问题的关键是设需要的量,列出关系式,进行数据处理.19.(2022•乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为 5 .【分析】设正方形b的边长为x,则正方形a的边长为2x,正方形c的边长为3x,正方形d的边长为5x,利用矩形的周长计算公式,即可得出关于x的一元一次方程,解之即可求出x的值,再将其代入5x中即可求出结论.【解析】设正方形b的边长为x,则正方形a的边长为2x,正方形c的边长为3x,正方形d的边长为5x,依题意得:(3x+5x+5x)×2=26,解得:x=1,∴5x=5×1=5,即正方形d的边长为5.故答案为:5.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.(2022•绍兴)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是 20 .【分析】设良马x天追上劣马,根据良马追上劣马所走路程相同可得:240x=150(x+12),即可解得良马20天追上劣马.【解析】设良马x天追上劣马,根据题意得:240x=150(x+12),解得x=20,答:良马20天追上劣马;故答案为:20.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.三.解答题(共9小题)21.(2022•广元)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【分析】(1)设科技类图书的单价为x元,文学类图书的单价为y元,根据“购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设科技类图书的购买数量为m本,购买这两种图书的总金额为w元,则文学类图书的购买数量为(100﹣m)本,分30≤m≤40,40<m≤50及50<m≤60三种情况考虑,利用总价=单价×数量,即可得出w 关于m的函数关系式,再利用一次函数的性质及一次函数图象上点的坐标特征(或二次函数的性质及二次函数图象上点的坐标特征),可求出w的取值范围,取其最小值即可得出结论.【解析】(1)设科技类图书的单价为x元,文学类图书的单价为y元,依题意得:2x+3y=1544x+5y=282,解得:x=38 y=26.答:科技类图书的单价为38元,文学类图书的单价为26元.(2)设科技类图书的购买数量为m本,购买这两种图书的总金额为w元,则文学类图书的购买数量为(100﹣m)本.①当30≤m≤40时,w=38m+26(100﹣m)=12m+2600,∵12>0,∴w随m的增大而增大,∴2960≤w≤3080;②当40<m≤50时,w=[38﹣(m﹣40)]m+26(100﹣m)=﹣(m﹣26)2+3276,∵﹣1<0,∴当m>26时,w随m的增大而减小,∴2700≤w<3080;③当50<m≤60时,w=[38﹣(50﹣40)]m+26(100﹣m)=2m+2600,∵2>0,∴w随m的增大而增大,∴2700<w≤2720.综上,当30≤m≤60时,w的最小值为2700.答:社区至少要准备2700元购书款.【点评】本题考查了二元一次方程组的应用、一次函数的应用以及二次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)分30≤m≤40,40<m≤50及50<m≤60三种情况,找出w关于m的函数关系式.22.(2022•娄底)“绿水青山就是金山银山”,科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg.(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶.问这三棵银杏树一年的平均滞尘总量约多少千克?【分析】(1)设一片银杏树叶一年的平均滞尘量为xmg,一片国槐树叶一年的平均滞尘量为ymg,由题意:一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg.列出二元一次方程组,解方程组即可;(2)由(1)的结果列式计算即可.【解析】(1)设一片银杏树叶一年的平均滞尘量为xmg,一片国槐树叶一年的平均滞尘量为ymg,由题意得:x+y=62x=2y―4,解得:x=40 y=22,答:一片银杏树叶一年的平均滞尘量为40mg,一片国槐树叶一年的平均滞尘量为22mg;(2)50000×40=2000000(mg)=2kg,答:这三棵银杏树一年的平均滞尘总量约2千克.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.(2022•台州)解方程组:x+2y=4x+3y=5.【分析】通过加减消元法消去x求出y的值,代入第一个方程求出x的值即可得出答案.【解析】x+2y=4①x+3y=5②,②﹣①得:y=1,把y=1代入①得:x=2,∴原方程组的解为x=2 y=1.【点评】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.24.(2022•怀化)去年防汛期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防汛工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折;若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W 关于a的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【分析】(1)设每件雨衣x元,则每双雨鞋(x﹣5)元,根据购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双)列出方程并解答;(2)根据题意求出a的取值范围,并求出w与a的关系式解答即可;(3)根据题意列出不等式并解答.【解析】(1)设每件雨衣x元,则每双雨鞋(x﹣5)元,根据题意,得400x=350x―5,解得x=40,经检验x=40是所列方程的根,并符合题意.所以x﹣5=35,答:每件雨衣40元,则每双雨鞋35元;(2)由题意知,一套雨衣雨鞋的单价为:(40+35)×(1﹣20%)=60(元),当购买a套雨衣和雨鞋a≤5时,费用为w=0.9x60a=54a;当购买a套雨衣和雨鞋a>5时,费用为w=0.9×60×5+(a﹣5)×60×0.8=48a+30,∴W关于a的函数关系式为:w=54a(a≤5)48a+30(a>5);(3)由题意得:48a+30≤320,解得a≤61 24,答:最多可购买6套.【点评】本题考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.25.(2022•泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.【分析】设第一次购进A种茶的价格为x元/盒,B种茶的价格为y元/盒,利用总价=单价×数量,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解析】设第一次购进A种茶的价格为x元/盒,B种茶的价格为y元/盒,依题意得:30x+20y=600020×(1+20%)x+15×(1+20%)y=5100,解得:x=100 y=150.答:第一次购进A种茶的价格为100元/盒,B种茶的价格为150元/盒.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.26.(2022•连云港)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.【分析】设有x个人,物品的价格为y钱,由题意:每人出8钱,剩余3钱;每人出7钱,还缺4钱.列出二元一次方程组,解方程组即可.【解析】设有x个人,物品的价格为y钱,由题意得:y=8x―3 y=7x+4,解得:x=7y=53,答:有7个人,物品的价格为53钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.27.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y 1.25x+1.3y (2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?【分析】(1)根据题意和表格中的数据,可以用含x、y的代数式表示出2021年进出口总额;(2)根据题意和题目中的数据,可以列出相应的方程组,然后求解即可.【解析】(1)由表格可得,2021年进出口总额为:1.25x+1.3y,故答案为:1.25x+1.3y;(2)由题意可得,x+y=5201.25x+1.3y=520+140,解得x=320 y=200,∴1.25x=400,1.3y=260,答:2021年进口额是400亿元,出口额是260亿元.【点评】本题考查二元一次方程组的应用、列代数式,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.28.(2022•重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:12×1.2x=2+12x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:30y―301.2y=2060,。
华东师大版2019-2020学年七年级下册数学第七章 二元一次方程组单元测试卷(含答案)
华东师大版2019-2020学年七年级下册数学第七章 二元一次方程组单元测试卷(含答案)一、选择题(共10题;共30分)1.下列各式是二元一次方程的是 ( )A. 3x 2+5=21B. x +2y =0C. −5x =25D. x +2y =12.如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为( )A. 10g , 40gB. 15g , 35gC. 20g , 30gD. 30g , 20g3.用代入法解方程组 {y =1−x ①x −2y =4②时,将方程①代入方程②正确的是( ) A. x −2+2x =4 B. x −2−2x =4 C. x −2+x =4 D. x −2−x =4 4.如果方程 x +2y =−4,kx −y −5=0,2x −y =7 有公共解,则 k 的值是( )A. -1B. 1C. -2D. 45.已知 {x =2y =1 是方程组 {ax +by =5bx +ay =1的解,则 3−a −b 的值是( ) A. –1 B. 1 C. 2 D. 36.已知关于x 、y 的二元一次方程组 {2x −y =k x −2y =−1满足x=y ,则k 的值为( ) A. -1 B. 0 C. 1 D. 27.已知两数x , y 之和是10,x 比y 的2倍小1,则所列方程组正确的是( ) A. {x +y =10x =2y −1 B. {x +y =10x =2y +1 C. {x +y =10y =2x −1 D. {x +y =10y =2x +18.已知关于x ,y 的二元一次方程组 {2ax +by =3ax −by =1的解为 {x =1y =−1 ,则a ﹣2b 的值是( ) A. ﹣2 B. 2 C. 3 D. ﹣39.中华文化十大精深,源远流长,我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子短一托。
鲁教版2019七年级数学下册第七章二元一次方程组应用课堂基础达标检测题一(含答案)
鲁教版2019七年级数学下册第七章二元一次方程组应用课堂基础达标检测题一(含答案)1.一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x角,大瓶为y角,可列方程为()A.398{32x yy x+=-=B.398{32x yy x+=+=C.298{34x yy x+=-=D.398{24x yx y-=+=2.若实数满足(x+y+2)(x+y﹣1)=0,则x+y的值为()A.1B.﹣2C.2或﹣1D.﹣2或13.某校运动员分组训练,若每组7人,则余3人;若每组8人,则缺5人.设运动员人数为x人,组数为y组,则可列方程为()A.73{85y xy x=-=+B.73{85y xy x=++=C.73{85y xy x=-+=D.73{85y xy x=+=+4.已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.25.运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车.则10节火车车厢和20辆汽车能运输多少吨化肥?()A.720 B.860 C.1100 D.5806.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是A.B.C.D.7.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是 ()A.B.C.D.8.四个形状、大小相同的长方形,如图,拼成一个大的长方形,如果大长方形的周长为280厘米,那么,每块小长方形的面积是()A.900平方厘米B.1200平方厘米C.1600平方厘米D.1800平方厘米9.用四个完全一样的长方形(长、宽分别设为x、y)拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则x2+y2=_______10.若则2(2x+3y)+3(3x-2y)=________.11.大数和小数的差为12,这两个数的和为60,则大数是______,小数是______.12.某班同学去观影,甲种票每张35元,乙种票每张25元,如果56名同学每人购买1张甲种票或者1张乙种票,购票恰好用去1370元,设甲种票买了张,乙种票买了张,根据题意,可列方程组为________________.13.在等式5×口+3×Δ=4的口=____和Δ=____处分别填入一个数,使这两个数互为相反数.14.为了加强公民的节水意识,合理利用水资源.某市采用价格调控手段达到节约用水的目的,规定每户每月用水不超过6立方米时,按其本价格收费,超过6立方米时,超过的部分要加价收费,该市某户居民今年4、5月份的用水量和水费如下表所示,则用水收费的两种价格为不超过6立方米时每m3收_______元,超过6立方米时,超过的部分每m3收_______元.表格如下:15.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.16.一只船在A、B两码头间航行,从A到B顺流航行需2小时,从B到A逆流航行需3小时,那么一只救生圈从A顺流漂到B需要________小时.17.现有甲、乙两个体育用品商店出售乒乓球拍和乒乓球,球拍每块价格为48元,乒乓球每个价格为2元,已知甲店制定的优惠方法是买一块球拍送6个乒乓球,乙店按总价的90%收费,某球队需要买球拍4块,乒乓球若干(不少于24个).(1)当购买多少个乒乓球时,两个商店的收费一样多?(2)当需要购买240个乒乓球时,选择哪家商店购买更优惠?请说明理由.18.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵两次共花费940元两次购进的A、B两种花草价格均分别相同.、B两种花草每棵的价格分别是多少元?若再次购买A、B两种花草共12棵、B两种花草价格不变,且A种花草的数量不少于B种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.19.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?20.用如图1中的长方形和正方形纸板作侧面和底面,做成如图2中竖式和横式的两种无盖纸盒。