数学人教版七年级上册有理数乘法
七年级数学人教版(上册)【知识讲解】第1课时有理数的乘法法则
11.如果 ab=0,那么一定有( D )
A.a=b=0
B.a=0
C.b=0
D.a,b 中至少有一个为 0
12.如图,A,B 两点在数轴上表示的数分别为 a,b,下列式子 成立的是( C )
A.ab>0 C.(b-1)(a+1)>0
B.a+b<0 D.(b-1)(a-1)>0
13.已知|x|=3,|y|=2,且 xy>0,则 x-y 的值等于( B )
23 解:原式=-(3×2)
=-1.
5 (5)(-6) ×(-16).
11 解:原式=-6×(- 6 )
11 =6× 6 =11.
(6)|-4|×(-3). 解:原式=4×(-3) =-12.
知识点 2 倒数
1
1
7.(1)因为 3× 3 =1,所以 3 的倒数是 3
(-2)
1 =1,所以-2的倒数是 -2 .
2.下列算式中,积为正数的是( B )
A.-2×5
B.-6×(-2)
C.0×(-1)
D.5×(-3)
3.(2021·陕西)计算:3×(-2)=( D )
A.1
B.-1
C.6
D.-6
4.一个有理数和它的相反数之积( D )
A.一定为正数
B.一定为负数
C.一定为非负数
D.一定为非正数
5.a,b,c 在数轴上的位置如图所示,请用“>”“<”或“=” 填空.
A.5 或-5
B.1 或-1
C.x|=3,|y|=2,且 x+y>0,则 xy= ±6 .
14.如图,现有 5 张写着不同数字的卡片,若从中取出 2 张卡 片,使这 2 张卡片上的数字相乘所得的积最小,则这个最小值 为 -35 .
人教版数学七年级上册第一章有理数有理数的乘法
1.4.1 有理数的乘法
栏目索引
3.(独家原创试题)我们用有理数的运算研究下面的问题.规定:水位上升 为正,水位下降为负.如果水位每天下降4 cm,那么5天后的水位变化用算 式表示正确的是 ( ) A.(+4)×(+5) B.(+4)×(-5) C.(-4)×(+5) D.(-4)×(-5)
答案 C 根据“水位每天的变化情况×天数”列出算式即可.故选C.
(3)0×(-2 019)=0.
(4)(-3.25)× 123
=- 3.25
2 13
=- 143
2 13
=- 1 .
2
1.4.1 有理数的乘法
栏目索引
温馨提示 运用乘法法则计算时,先确定积的符号,再确定积的绝对值, 然后进行计算.为了便于运算,是带分数的因数先将其化为假分数再运 算.
12
6
正解
-24× 172
5 6
1
=-24× 7 -(-24)× 5-(-24)×1=-14+20+24=30.
12
6
栏目索引
1.4.1 有理数的乘法
栏目索引
错因分析 错解一运用分配律把括号前面的数乘进括号内时,忽略了24 前面的负号,导致错误;错解二运用分配律把括号前面的数乘进括号内
栏目索引
1.4.1 有理数的乘法
栏目索引
知识点二 有理数的倒数
5.(2018江苏常州中考)-3的倒数是 ( )
A.-3 B.3 C.- 1 D. 1
3
3
答案 C 乘积为1的两个数互为倒数,因为-3与- 1 的乘积为1,所以-3的
人教版七年级数学上册:1.4.1有理数的乘法(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个负数相乘得到正数的情况?”(例如,温度连续下降两天,每次下降5摄氏度,总下降了多少摄氏度?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘法的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数乘法的基本概念。有理数乘法是指两个有理数相乘的运算,其结果遵循特定的法则。这些法则是我们解决实际问题的数学工具,帮助我们更好地理解和计算生活中的变化。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算温度连续下降两天,每次下降5摄氏度,总下降了多少摄氏度。通过有理数乘法,我们可以得出答案。
3.应用乘法法则解决实际问题,例如计算温度变化、距离变化等。
4.乘法运算的简便计算方法,如分配律、结合律等在有理数乘法中的应用。
5.练习不同类型的有理数乘法题目,提高运算速度和准确性。
二、核心素养目标
1.培养学生运用数学语言进行有效表达和交流的能力,通过有理数乘法法则的理解与运用,提高学生的数学思维能力。
在学生小组讨论环节,我尽量以引导者的身份参与其中,鼓励学生发表自己的观点。从讨论成果来看,这种方法有助于培养学生的独立思考能力。然而,我也发现有的学生在讨论中较为内向,发言不够积极。针对这一问题,我将在今后的教学中关注这部分学生,鼓励他们大胆表达自己的看法。
人教版七年级数学上册:1.4.1有理数的乘法(教案)
一、教学内容
人教版七年级数学上册:1.4.1有理数的乘法。本节课将围绕以下内容展开:
有理数的乘法人教版七年级数学上册PPT精品课件
三级拓展延伸练
15. 在整数集合{-3,-2,-1,0,1,2,3,4,5,
6}中选取两个整数填入“□×□=6”的□内
使等式成立,则选取并填入的方法有( C )
A. 2种
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
第一章 有理数
第13课 有理数的乘法(1)
新课学习
知识点1.有理数的乘法法则 1. 有理数的乘法法则
(1)两数相乘,同号为正,异号为负,并把绝 对值相乘.
(2)任何数与0相乘,都得0. 口诀:负负得正.
2. (例1)计算: (1) 8×(-4)=___-_3_2______; (2)(-7)×2=____-_1_4_____; (3)(-3)×(-12)=____3_6____; (4)(-4)×0=_____0_______.
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
B. 4种
C. 6种
D. 8种
16. 定义一种正整数的“H运算”是:①当它是奇
数时,则该数乘以3加13;②当它是偶数时, 则取该数的一半,一直取到结果为奇数停止.
如:数3经过1次“H运算”的结果是22,经过 2次“H运算”的结果为11,经过3次“H运算” 的结果为46.那么28经过2 020次“H运算”得
人教版七年级上册数学《有理数的乘法》有理数教学说课课件
思考3
利用上面归纳的结论计算下面的算式,你发现 什么规律? (-3)×3= -9 , (-3)×2= -6 , (-3)×1= -3 , (-3)×0= 0 . 上述算式有什么规律? 随着后一乘数逐次递减1,积逐次增加3.
利用上面归纳的结论计算下面的算式,你发现什 么规律?
(-3)×(-1)= 3 , (-3)×(-2)= 6 , (-3)×(-3)= 9 .
归纳结论: 负数乘负数,积为正数,乘积的绝对值等于各 乘数绝对值的积.
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.
思考: 通过上题,你认为:非零两数相乘,关键是 什么?
有理数乘法的步骤:
两个有理数相乘,先确定积的_符__号__, 再确定积的_绝__对__值_.
强化练习 1.计算:
(﹣6)×0 = 0
1 3
1 4
1 12
2 3
9 4
3 2
例1 计算:
(1) (3) 9 (2) 8 (1)
解:(1) (3) 9 = -27
(2) 8 (1) = -8
(3)
1 2
(2)
=
1
(3)
1 2
(2)
例3 用正负数表示气温的变化量,上升为正, 下降为负,登山队攀登一座山峰,每登高1 km气温的变化量为-6 ºC,攀登3 km后,气 温有什么变化?
知识点1 有理数乘法法则
观察下面的乘法算式,你能发现什么规律吗?
3×3=9 3×(-1)= -3 ,
3×2=6 3×(-2)= -6 ,
3×1=3 3×0=0
3×(-3)= -9 .
观察下面的算式,你又能发现什么规律吗?
有理数的乘法法则+课件+人教版七年级数学上册
因数 因数 积的符号 积的绝对值 积
+3 +3
+
9
9
+3 +2
+
6
6
+3 +1
+
3
3
+3 0
0
0
正数乘正数积的符号为_正_;
积的绝对值等于各因数绝对值相_乘_.
正数乘0积为_0_;
-3×3=-9, -3×2=-6, -3×1=-3, -3×0=0.
因数 因数 积的符号 积的绝对值 积
-3 +3
-
9
3×(-1)= -3 3×(-2)= -6 3×(-3)= -9
3×(-4)= -12
(-3)×(-1)= 3 (-3)×(-2)= 6 (-3)×(-3)= 9
(-3)×(-4)= 12
寻找规律
①正数乘正数积为_正_数; ②负数乘正数积为_负_数;
③正数乘负数积为_负_数; ④负数乘负数积为_正_数; 积的绝对值等于各因数绝对值相_乘_. ⑤0与任何数相乘结果是 0 . →1.两数相乘,同号得正,异号得负,并把绝对值相乘. →2.任何数同0相乘,都得0.
为更有效的开展抢险救援工作,研究者发现抢险前后水库当中 的水位变化具有如下规律:抢险前的水位每天升高3厘米,抢险 后的水位每天下降3厘米,抢险之前,3天的水位总变化情况如何? 抢险之后,3天的水位的总变化又如何?
第三天 第二天 第一天
第一天 第二天 第三天
抢险前的水库
抢险后的水库
合作探究
抢险之前:
-9
-3 +2
-
6
-6
-3 +1
-
3
七年级数学人教版(上册)【知识讲解】第2课时多个有理数的乘法
63 =-(20×5×10×5)
=-36.
=-.
5
8
3
(3)(-11)×|-13|×(-2.2) ×(-14).
58
11
7
解:原式=-11×13×(- 5 )×(-4)
5 8 11 7 =-(11×13× 5 ×4)
14 =-13.
12.有一个游戏,规则如下:如图,城中人想要冲出围城,可 以横走也可以竖走,但不可以斜走,每走一格就可以得到格中相应 的分数作为生命值,每格中的分数用乘法累计.当生命值小于+9, 并且处于最外圈时,就可以冲出围城,生命值为负数则不可以出 城.例如:(-2)×(+2)×(+2)×(-1)=+8,就是一条冲出围城的路 线.把你找到的冲出围城的路线写下来,也可以直接用箭头将路线 在图中表示出来.
A.大于 0
B.小于 0
C.大于或等于 0
D.小于或等于 0
8.【数形结合思想】有理数 a,b,c,d 在数轴上的对应点的位 置如图所示,则 abc > 0,abcd > 0.(填“>”或“<”)
9.除 0 外绝对值小于 3 的所有整数的积是 4 .
10.已知“!”是一种运算符号,并且 1!=1,2!=1×2,3!
解:原式=0.
3
4
7
(4)(-7)×(-5)×(-12).
34 7 解:原式=-(7×5×12)
1 =-5.
54
3
(5)(-12)×15×(-2)×(-6).
5 43 解:原式=-12×15×2×6
=-1.
5
1
(6)4×(-1.2)×(-9).
56
1
解:原式=4×(-5)×(-9)
561 =4×5×9
人教版七年级数学上册1.4有理数乘除法(包含答案)
1.4有理数乘除法1.乘法交换律:有理数乘法中,两个数相乘,交换因数的位置,积相等.表达式:ab=ba .2.乘法结合律:三个数相乘,先把其中的两个数相乘,积相等.表达式:(ab )c=a (bc ).3.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.表达式:a (b+c )=ab+ac .4.有理数的乘法法则:两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0;5.倒数的定义:乘积为1的两个数互为倒数.6.除以一个数等于乘以这个数的倒数.7.两数相除,同号得正,异号得负,并把绝对值相除一、单选题1.下列四组数:①1和-1;①-1和-1;①23-和112;①23-和112-.互为倒数的是( ) A.①①B.①①C.①①D.①① 2.12的倒数的绝对值是( ) A.12 B.-12 C.2 D.-23.下列计算正确的是( )A .(-7)×(-6)=-42B .(-3)×(+5)=15C .(-2)×0=0D .−712×4=(−7+12)×4=−26 1(0)a b a b b÷=⨯≠其中4.下面的说法正确的是()A.0的倒数是0 B.0的倒数是1 C.0没有倒数D.以上说法都不对5.0.24×116×(−514)的结果是()A.1B.−25C.−110D.0.16.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,以此类推,则a2 019的值为()A.-1 007B.-1 008C.-1 009D.-2 0167.计算12﹣7×(﹣4)+8÷(﹣2)的结果是()A.36B.﹣20C.6D.﹣248.对有理数a,b,规定运算如下:a①b=a+ab,则-2①3的值为()A.-10B.-8C.-6D.-49.在﹣2、3、﹣4、﹣5这四个数中任取两个数相乘,得到的积最大的是()A.20 B.﹣20 C.10 D.810.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷32=36×23﹣12×23=16丁:(﹣3)2÷13×3=9÷1=9A.甲B.乙C.丙D.丁二、填空题11.实数6-的倒数是_____12.若a与b互为相反数,c与d互为倒数,则2019a+2018b+bcd=_________.13.计算下列各题:(1)−2+4=___________;(2)(−3)2×59=___________;(3)−4÷12×2=___________;(4)2a−5a=___________;14.计算(﹣4)×11(1)42⎡⎤-+⎢⎥⎣⎦=_____.15.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点1A,第二次将点1A,向右移动4个单位长度到达点2A,第三次将点2A向左移动6个单位长度到达点3A,按照这种移动规律移动下去,第n次移动到点n A,如果点n A 与原点的距离等于19,那么n的值是________.三、解答题16.计算: (1)()21 3.25÷-; (2)121143⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭. 17.简便运算:(1)(-2)×(-8.5)×(-5); (2)17211127853⎡⎤⎛⎫⎛⎫⎛⎫-⨯-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 18.数学老师布置了一道思考题“计算:(-112)÷(13−56)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题. 小明的解法:原式的倒数为(13−56)÷(−112)=(13−56)×(-12)=-4+10=6,所以(-112)÷(13−56)=16. (1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(-124)÷(13−16+38). 19.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.(1)请求出这七天中平均每天行驶多少千米?(2)若每天行驶100km需用汽油6升,汽油价7.5元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?20.规定一种新的运算:a①b=a×b-a-b2+1.例如:3①(-4)=3×(-4)-3-(-4)2+1=-30.请用上述规定计算下列各式:(1)2①5;(2)(-2)①(-5)答案1.D2.C3.C4.C5.C6.C7.A8.B9.A 10.C11.1 6 -12.013.2, 5, -16, −3a 14.3.15.18或1916.(1) 原式716757 5551616⎛⎫⎛⎫=÷-=⨯-=-⎪ ⎪⎝⎭⎝⎭.(2) 原式5553343454⎛⎫⎛⎫⎛⎫=-÷-=+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.17.(1) 原式=[(-2)×(-5)]×(-8.5)=10×(-8.5)=-85.(2) 原式878787883117875735315⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-+-⨯+-⨯-=-+=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.18.解:(1)正确,理由为:一个数的倒数的倒数等于原数;(2)原式的倒数为(13−16+38)÷(-124)= (13−16+38) ×(-24)=-8+4-9= -13,则(-124)÷(13−16+38)= -113.故答案为:(1)正确,理由见详解;(2)-1 13.19.解:(1)50+(﹣6+11﹣15+0﹣13+17+6)÷7=50(千米).答:这七天中平均每天行驶50千米(2)平均每天所需用汽油费用为50×(6÷100)×7.5=22.5(元),估计小明家一个月的汽油费用是22.5×30=675 (元).答:估计小明家一个月的汽油费用是675元.20.解:(1)2①5=2⨯5-2-52+1=-16,(2)(-2)①(-5)= (-2)⨯(-5)- (-2)-(-5)2+1=10+2-25+1=-12。
人教数学七年级上册有理数的乘法
只“一次性地”先定号,再绝对值相乘即可.
探究新知
知识点 3 倒数
【想一想】计算并观察结果有何特点
倒数的概念:有理数中,乘积是1的两个数互为倒数.
【思考】数a(a≠0)的倒数是什么?
(a≠0时,a的倒数是
1 a
)
探究新知
互为倒数与互为相反数的区别
倒数 相反数
表示方法
a1 1 a
a +(–a)=0
符号 相同 相异
性质 积为1 和为0
特殊数0
没有 倒数
相反数 是自己
探究新知
求一个数的倒数的方法:
1. 求一个不为0的正数的倒数,就是将该整数作分母,1作分子; 2. 求一个真分数的倒数,就是将这个真分数的分母和分子交换
位置; 3. 求一个带分数的倒数,先将该数化成假分数,再将其分子和
1. 2×3×4×(–5)
负
2. 2×3×(–4)×(–5)
正
3. 2×(–3)×(–4)×(–5)
负
4. (–2)×(–3)×(–4)×(–5)
正
5. 7.8×(–8.1)×0×(–19.6)
零
【思考】几个有理数相乘,因数都不为 0 时,积的符号怎样确定?
有一个因数为 0 时,积是多少?
探究新知
5 6
(1
4 5
)
(
1) 4
解:(1)原式
(3
5 6
9 5
1 4
)
9 8
(2)原式 5 6 4 1 54
6
(2)(5)
6
(
4) 5
1 4
多个有理数相乘
时若存在带分数,要 先将其画成假分数, 然后再进行计算.
人教版七年级数学上册1.乘方——有理数的乘方运算
计算器显示的结果为-410 338 673. (4)按键顺序为 2 3 × 6 ÷ 5 = ,
计算器显示的结果为27.6.
总结
知3-讲
用计算器计算时,要弄清计算器的每个按键 的作用,结合有理数运算的顺序,进行计算.
A.1
B.-1
C.2 016
D.-2 016
知2-练
4 下列等式成立的是( B )
A.(-3)2=-32
B.-23=(-2)3
C.23=(-2)3
D.32=-32
5 计算: (1)(-4)3;
(2) (-2)4;
(3) (- 2 )3.
3
(1)-64;(2)16;(3) 8 .
27
知识点 3 利用计算器计算有理数的乘方
第一章 有理数
1.5 有理数的乘方
第1课时 乘方——有理数 的乘方运算
1 课堂讲授 有理数的乘方的意义
有理数的乘方运算
利用计算器计算有理数的乘方
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 1.如图,边长为a厘米的正方形的面积为_a_×__a_平方厘米. 2.如图,一正方体的棱长为a厘米, 则它的体积 为
(1)-(-3)3;
(2)
3 42 ;(3)源自2 33 ;
(4)
1
2 3
2
.
解:(1)-(-3)3=-(-33)=33=3×3×3=27.
(2)
3 4
2
3 4
3 4
9 16
.
(3)
2 3
3
2 3
人教版数学七年级上册第一章第四节有理数的乘法
(-6 )×5=-30
5× (-6) = (-6) ×5 三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.
解:原式=(-85)×[(-25)×(-4)]
数的范围已扩充到有理数.
任何数和零相乘,都得0.
5×3+5×(-7 )=
(2)
[3×(-4)]×(-
5)=
(-12)×(-5)
=
60
用字母表示乘数时,“×”号可以写成“·”或省略,
(2)第二组式子中数的范围是 ________;
根据以上信息,请求出下式的结果.
5×3+5×(-7 )=
1.有理数的乘法法则是什么?
数的范围已扩充到有理数.
(1) 2×3=
3×2=
10月3日的游客人数为2.
新知演练
新知应用
一(-个24数)×同( 几-个数+的和-相乘,) 等于把这个数分别同这几个数相乘,再把积相加.
拓展练习
1.阅读材料,回答问题
(1 1) (1 1) 3 2 1
2
3 23
(1 1) (1 1) (1 1) (1 1) 3 5 2 4 ( 3 2) (5 4) 1
2
4
3
5 2435 23 45
根据以上信息,请求出下式的结果.
(1 1) (1 1) (1 1) (1 1 ) (1 1) (1 1) (1 1) (1 1 )
新知讲解
结论: (1)第一组式子中数的范围是 __正__数____; (2)第二组式子中数的范围是 _有__理__数___; (3)比较第一组和第二组中的算式,可以发现
_各__运__算__律__在__有__理__数__范__围__内__仍__然__适__用___.
人教版数学七年级上册1..1有理数的乘法课件
-80 -60 -40 -20 0 20 40 60 80
(+20)×(+4)=+80 4分钟后它应该在点O右边80m处
(2)如果汽车一直以每分20m的速 度向左行驶,3分钟后它在什么位置?
O
-80 -60 -40 -20 0 20 40 60 80
m
(-20)×(+3)=-60 3分钟后它应该在点O左边60m处
新课导入
计算:
6 ×4
解:6×4= 24
36 45 0 3
5
解: 3 6 9
4 5 10
解:0 3 0 5
视察数轴,点A表示-3,点B表 示什么?
A
B
●
●
-4 -3 -2 -1 0 1 2 3 4
甲
乙
甲水库的水位每天升高 3厘米,乙水 库的水位每天降落 3厘米,6 天后甲、乙 水库水位的总变化量各是多少?
m
(-20)×(-3)=+60 3分钟前它应该在点O右边60m处
(+20)×(+4)=+80 (-20)×(+3)=-60 (+20)×(-4)=-80 (-20)×(-3)=+60
正数乘正数积为_正___数 负数乘正数积为__负__数 正数乘负数积为__负__数 负数乘负数积为__正__数
乘积的绝对值等于各乘数绝对值的乘积
如果用正号表示水位上升,用负号表示 水位降落
那么4天后甲水库的水位变化量为:
3 + 3+ 3+ 3 = 3×4 =12(厘米)
乙水库的水位变化量为:
(-3)+(-3)+(-3)+(-3) =(-3)×4 =-12(厘米)
我们已经熟悉正数及0的乘法运算, 引入负数以后,怎样进行有理数的乘 法运算呢?
(3)如果汽车一直以每分20cm的速 度向右行驶,4分钟前它在什么位置?
人教版七年级上册数学第1章 有理数 目标一 有理数的乘法法则
第1章有理数
课1题.42 有 理 数 的 乘 除 法
第1课时 有理数的乘法 目标一 有理数的乘法法则
习题链接
温馨提示:点击 进入讲评
1 2B 3A 4D
5C 6B 7B 8C
答案呈现
9 ±12 10 11
1 【原创题】填空. (1)(-2)×(-3)
=______(______×______)
解(-4)×(-8)-(-5)×|-7|=32+35=67.
(2)-114×45+-13×+112.
解:-114×45+(-13)×(+112) =-54×45+(-13)×(+32) =-1-12=-32.
11 规定一种新运算“※”,两数a,b通过“※”运算得(a +2)×2-b,即a※b=(a+2)×2-b. 例如:3※5=(3+2)×2-5=10-5=5. 根据上面规定解答以下题目:
3 【2020•贵阳】计算(-3)×2的结果是( A ) A.-6B.-1C.1D.6
4 【2020•枣庄】数a,b在数轴上对应点的位置如 图所示,下列判断正确的是( ) D A.|a|<பைடு நூலகம் B.ab>0 C.a+b>0 D.1-a>1
5 下列说法中,错误的是( C ) A.一个数同1相乘,仍得这个数 B.一个数同-1相乘,得原数的相反数 C.互为相反数的两数的积为1 D.一个数同0相乘,得0
B.a-b>0
C.(a+1)(b-1)>0
D.(a-1)(b-1)>0
9 若|a|=3,|b|=4,且a+b<0,则ab=__±__1_2___.
【点拨】 绝对值中,由于正负不定,因此要进行分类.交叉分 类时,注意不要漏掉任何一种情况.
10 【教材P30例1变式】计算: (1)(-4)×(-8)-(-5)×|-7|;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘法教学反思
-----数学组
我今年任教的班级是七年级(1)班,共有46名学生,这届学生普遍数学基础差,对小学数学知识掌握不扎实,计算能力和理解能力都一般,而且缺乏数学语言,表达和交流的能力,他们学习数学的兴趣也不浓厚。
本节课主要学习有理数的乘法运算,我采用了自主学习,合作交流的方式,共同找出有理数乘法的规律,并学会如何利用乘法法则正确进行有理数乘法运算。
在教学实施中我比较注重过程教学,引导学生探索、归纳,真正体现以学生为主体的教学理念;也注意到培养学生分析归纳能力和团结协作能力。
在教学过程中,我首先结合小学乘法的意义引入新课,然后根据负有理数的意义,以复习数轴巩固旧知识,为新知识作铺垫,学生配合表演的形式进行情景引入,激发学生的学习兴趣,使学生迅速进入角色,提高本节课的教学效率,得出不同情况下两个有理数相乘的结果,进而由学生观察、思考、讨论、归纳出两个有理数相乘的乘法法则;以小组竞赛的形式,活跃课堂气氛,巩固知识点并突破积的符号的确定这个难点,让学生牢记同号得正、异号得负的规律,特别是两负数相乘,积为正;通过自主学习和具体例子学会如何正确运用法则进行计算,利用课堂检测当堂反馈学习效果,以课堂小结和适当的课后作业,强化学生对知识的理解和记忆,初步培养学生的自我评价能力。
通过学生课上的表现和课堂作业的反馈,这一节课所学的概念和有理数的乘法法则基本上掌握了,但是在运用法则上还存在着符号差错,不熟练。
从课堂教学的参与度来看,在故事和学生配合表演的情境下,学生积极性还是很高的,学生的学习兴趣被调动起来了,在观察思考、交流讨论、探索归纳环节中,学生表现的有些束手无策,虽然得出了有理数乘法的法则,但是个别学生还存在着一些困惑;其次,课堂气氛活跃,在小组比赛的过程中,同学们团结协作,很顺利的学会了如何去确定两数相乘的符号,突破了难点;再次,很好的培养了学生的自主学习能力,学生基本上在理解了有理数乘法法则的基础上能正确利用法则解决问题,掌握了本节课的重点。
不足之处,课堂环节安排的还不够紧凑,小组讨论有些学生不专注,在时间的把握上不够好,课本上的例题在学生自学之后,没有再重复讲解以加深学生的印象。
不过,
在点评课堂作业的时候,规范了计算题的解题步骤,让学生理解和掌握了准确的解题格式。
这节课我总体感觉还是一节比较成功的课,教学过程设计比较合乎这些学生的实际情况,坡度小,贴近实际,易于学生接受,情景设计也很有趣,能很好的激发学生的学习兴趣,能尽快的投入到学习中来,学生学习积极性强,整节课课堂气氛活跃,我非常注重适时鼓励和表扬学生,教师语言丰富,课堂气氛生动、活泼;课堂上讲、练、演、思、算结合,形式多样;遗憾的是节奏不够快,容量比较少,练习的题目有些简单,同时上黑板演算的同学太多,显得乱;画数轴用的时间太长,可以再抓紧些,还能节省一些时间在安排一点训练。
在今后的备课准备、教学设计和教法运用上加强,我会特别注意时间的分配和练习题的设计,
让优生和后进生都能得到很好的训练和发展,使我的课堂教学更加精彩。