2021中考专题1——几何模型之双子型
专题01 相似三角形重要模型之(双)A字型与(双)8字型(原卷版)
专题01 相似三角形重要模型之(双)A 字型与(双)8字型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。
本专题重点讲解相似三角形的(双)A 字模型和(双)8(X )字模型.A 字型和8 (X )字型的应用难点在于过分割点(将线段分割的点)作平行线构造模型,有的是直接作平行线,有的是间接作平行线(倍长中线就可以理解为一种间接作平行线) , 这一点在模考中无论小题还是大题都是屡见不鲜的。
模型1. “A ”字模型【模型解读与图示】“A ”字模型图形(通常只有一个公共顶点)的两个三角形有一个“公共角”(是对应角),再有一个角相等或夹这个公共角的两边对应成比例,就可以判定这两个三角形相似.图1 图2 图31)“A ”字模型 条件:如图1,DE ∥BC ;结论:△ADE ∽△ABC ⇔AD AB =AE AC =DE BC.2)反“A ”字模型 条件:如图2,∠AE D =∠B ;结论:△ADE ∽△ACB ⇔AD AC =AE AB =DE BC .3)同向双“A ”字模型条件:如图3,EF ∥BC ;结论:△AEF ∽△ABC ,△AEG ∽△ABD ,△AGF ∽△ADC ⇔EG FG AG BD CD AD ==例1.(2022·湖南怀化·中考真题)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若S △ADE =2,则S △ABC =_____.例2.(2023春·陕西西安·八年级校考阶段练习)如图,在三角形纸片ABC 中,C Ð3BC =,若沿AB 的垂直平分线的长为 .例3.(2021·山东菏泽·中考真题)如图,在ABC V 中,AD BC ^,垂足为D ,5AD =,10BC =,四边形EFGH 和四边形HGNM 均为正方形,且点E 、F 、G 、H 、N 、M 都在ABC V 的边上,那么AEM △与四边形BCME 的面积比为______.例4.(2023.绵阳市九年级期中)如图,在ABC D 中,点,E F 分别在,AB AC 上,且AE AB AF AC=.(1)求证:AEF ABC D D ;(2)若点D 在BC 上,AD 与EF 交于点G ,求证:EG FG BD CD =.模型2. “X ”字模型(“8”模型)【模型解读与图示】“8”字模型图形的两个三角形有“对顶角”,再有一个角相等或夹对顶角的两边对应成比例就可以判定这两个三角形相似.图1 图2 图3 图41)“8”字模型条件:如图1,AB ∥CD ;结论:△AOB ∽△COD ⇔AB CD =OA OC =OB OD.2)反“8”字模型条件:如图2,∠A =∠D ;结论:△AOB ∽△DOC ⇔AB CD =OA OD =OB OC .3)平行双“8”字模型条件:如图3,AB ∥CD ;结论:AE BE AB DF CF CD==4)斜双“8”字模型条件:如图4,∠1=∠2;结论:△AOD ∽△BOC ,△AOB ∽△DOC ⇔∠3=∠4.例1.(2022·广东·九年级期中)如图,在平行四边形ABCD 中,E 为边AD 的中点,连接AC ,BE 交于点F .若△AEF 的面积为2,则△ABC 的面积为( )A .8B .10C .12D .14例2.(2023·黑龙江·哈尔滨九年级阶段练习)如图,,AB CD AE FD ∥∥,AE ,FD 分别交BC 于点G ,H ,则下列结论中错误的是( )A .DH CH FH BH =B .GE CG DF CB =C .AF HG CE CG =D .=FH BF AG FA例3.(2022·贵州铜仁·中考真题)如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,记COD △的面积为1S ,AOB V 的面积为2S .(1)问题解决:如图①,若AB //CD ,求证:12×=×S OC OD S OA OB(2)探索推广:如图②,若AB 与CD 不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.(3)拓展应用:如图③,在OA 上取一点E ,使OE OC =,过点E 作EF CD ∥交OD 于点F ,点H 为AB 的中点,OH 交EF 于点G ,且2=OG GH ,若56=OE OA ,求12S S值.例4.(2022·江苏镇江·九年级期末)梅涅劳斯(Menelaus )是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图(1),如果一条直线与△ABC 的三边AB ,BC ,CA 或它们的延长线交于F 、D 、E 三点,那么一定有••1AF BD CE FB DC EA=.下面是利用相似三角形的有关知识证明该定理的部分过程:证明:如图(2),过点A 作AG BC ∥,交DF 的延长线于点G ,则有AF AG FB BD =,CE CD EA AG =,∴1AF BD CE AG BD CD FB DC EA BD DC AG··=··=.请用上述定理的证明方法解决以下问题:(1)如图(3),△ABC 三边CB ,AB ,AC 的延长线分别交直线l 于X ,Y ,Z 三点,证明:1BX CZ AY XC ZA YB××=.(2)如图(4),等边△ABC 的边长为2,点D 为BC 的中点,点F 在AB 上,且2BF AF =,CF 与AD 交于点E ,则AE 的长为________.(3)如图(5),△ABC 的面积为2,F 为AB 中点,延长BC 至D ,使CD BC =,连接FD 交AC 于E ,则四边形BCEF 的面积为________.模型3. “AX ”字模型(“A 8”模型)【模型解读与图示】图1 图2 图31)一“A ”一“8”模型条件:如图1,DE ∥BC ;结论:△ADE ∽△ABC ,△DEF ∽△CBF ⇔AD AE DE DF FE AB AC BC FC BF ====2)两“A ”一“8”模型条件:如图2,DE ∥AF ∥BC ;结论:111BC DE AF +=.3)四“A ”一“8”模型条件:如图3,DE ∥AF ∥BC,1111BC DE AF AG+==;结论:AF =AG 例1.(2022·山东东营·中考真题)如图,点D 为ABC V 边AB 上任一点,DE BC ∥交AC 于点E ,连接BE CD 、相交于点F ,则下列等式中不成立的是( )A .AD AE DB EC =B .DE DF BC FC =C .DE AE BC EC =D .EF AE BF AC =例2.(2020·浙江·杭州启正中学九年级期中)如图,ABC V 中,中线AD ,BE 交于点F ,//EG BC 交AD 于点G .(1)求AG GF的值.(2)如果BD =4DF =,请找出与BDA V 相似的三角形,并挑出一个进行证明.例3.(2023·安徽·九年级期中)图,AB GH CD ∥∥,点H 在BC 上,AC 与BD 交于点G ,AB =2,CD =3,求GH 的长.例4.(2022•安庆模拟)在四边形ABCD 中,对角线AC 、BD 相交于点O .(1)如图①,若四边形ABCD 为矩形,过点O 作OE ⊥BC ,求证:OE =CD .(2)如图②,若AB ∥CD ,过点O 作EF ∥AB 分别交BC 、AD 于点E 、F .求证:=2.(3)如图③,若OC 平分∠AOB ,D 、E 分别为OA 、OB 上的点,DE 交OC 于点M ,作MN ∥OB 交OA 于一点N ,若OD =8,OE =6,直接写出线段MN 长度.课后专项训练1.(2022·湖北十堰·中考真题)如图,某零件的外径为10cm ,用一个交叉卡钳(两条尺长AC 和BD 相等)可测量零件的内孔直径AB .如果OA :OC =OB :OD =3,且量得CD =3cm ,则零件的厚度x 为( )A .0.3cmB .0.5cmC .0.7cmD .1cm2.(2022·四川宜宾·中考真题)如图,ABC V 中,点E 、F 分别在边AB 、AC 上,12Ð=Ð.若4BC =,2AF =,3CF =,则EF =______.3.(2022·辽宁阜新·中考真题)如图,在矩形ABCD 中,E 是AD 边上一点,且2AE DE =,BD 与CE 相交于点F ,若DEF V 的面积是3,则BCF △的面积是______.4.(2022·湖北荆门·中考真题)如图,点G 为△ABC 的重心,D ,E ,F 分别为BC ,CA ,AB 的中点,具有性质:AG :GD =BG :GE =CG :GF =2:1.已知△AFG 的面积为3,则△ABC 的面积为 _____.5.(2021·江苏徐州·中考真题)如图,在ABC D 中,点,D E 分别在边,BA BC 上,且32AD CE DB EB ==,DBE D 与四边形ADEC 的面积的比为__________.6.(2021·辽宁营口·中考真题)如图,矩形ABCD 中,5AB =,4BC =,点E 是AB 边上一点,3AE =,连接DE ,点F 是BC 延长线上一点,连接AF ,且12F EDC Ð=Ð,则CF =_________.7.(2021·内蒙古·中考真题)如图,在Rt ABC V 中,90ACB Ð=°,过点B 作BD CB ^,垂足为B ,且3BD =,连接CD ,与AB 相交于点M ,过点M 作MN CB ^,垂足为N .若2AC =,则MN 的长为__________.8.(2021·湖南郴州·中考真题)下图是一架梯子的示意图,其中1111//////AA BB CC DD ,且AB BC CD ==.为使其更稳固,在A ,1D 间加绑一条安全绳(线段1AD ),量得0.4m AE =,则1AD =________m .9.(2022·陕西渭南·八年级期末)如图在平行四边形ABCD 中,E 是CD 的中点,F 是AE 的中点,CF 交BE 于点G ,若8BE =,则GE =___.10.(2021·广西玉林·中考真题)如图,在ABC V 中,D 在AC 上,//DE BC ,//DF AB .(1)求证:DFC △∽AED V ;(2)若13CD AC =,求DFC AED S S △△的值.11.(2022·湖北随州·九年级期末)请阅读下列材料,并完成相应的任务.梅涅劳斯(Menelaus )是公元一世纪时的希腊数学家兼天文学家,著有几何学和三角学方面的许多书籍.梅涅劳斯发现,三角形各边(或其延长线)被一条不过任何一个顶点也不与任何一条边平行的直线所截,这条直线可能与三角形的两条边相交(一定还会与一条边的延长线相交),也可能与三条边都不相交(与三条边的延长线都相交).他进行了深入研究并证明了著名的梅涅劳斯定理(简称梅氏定理):设D ,E ,F 依次是△ABC 的三边AB ,BC ,CA 或其延长线上的点,且这三点共线,则满足1AD BE CF DB EC FA××=.这个定理的证明步骤如下:情况①:如图1,直线DE 交△ABC 的边AB 于点D ,交边AC 于点F ,交边BC 的延长线与点E .过点C 作CM ∥DE 交AB 于点M ,则BE BD EC DM =,AD AF DM FC=(依据),∴BE AD EC DM ×=BD AF DM FC×,∴BE •AD •FC =BD •AF •EC ,即1AD BE CF DB EC FA××=.情况②:如图2,直线DE 分别交△ABC 的边BA ,BC ,CA 的延长线于点D ,E ,F .…(1)情况①中的依据指: ;(2)请你根据情况①的证明思路完成情况②的证明;(3)如图3,D ,F 分别是△ABC 的边AB ,AC 上的点,且AD :DB =CF :FA =2:3,连接DF 并延长,交BC 的延长线于点E ,那么BE :CE = .12.(2022·吉林·中考真题)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC V 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC h =×V ,12DBC S BC h =×△.∴ABC DBC S S =V V .【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ¢,则ABC DBC S h S h =¢△△.证明:∵ABC S V(2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM=△△.证明:过点A 作AE BM ^,垂足为E ,过点D 作DF BM ^,垂足为F ,则90AEM DFM Ð=Ð=°,∴AE ∥ .∴AEM △∽ .∴AE AM DF DM=.由【探究】(1)可知ABC DBCS S =△△ ,∴ABC DBC S AM S DM =△△.(3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBC S S △△的值为 .13.(2023·江苏连云港·校考三模)【阅读材料】教材习题:如图,AB 、CD 相交于点O ,O 是AB 中点,ACBD ∥,求证:O 是CD 中点.问题分析:由条件易证AOC BOD ≌V V ,从而得到OC OD =,即点O 是CD 的中点方法提取:构造“平行8字型”全等三角形模型是证明线段相等的一种常用方法 请运用上述阅读材料中获取的经验和方法解决下列问题.【基础应用】已知ABC V 中,90B Ð=°,点E 在边AB 上,点F 在边BC 的延长线上,连接D .(1)如图1,若AB BC =,AE CF =,求证:点D 是EF 的中点;(2)如图2,若2AB BC =,2AE CF =,探究CD 与BE 之间的数量关系;【灵活应用】如图3,AB 是半圆O 的直径,点C 是半圆上一点,点E 是AB 上一点,点小明利用皮尺测量,求出了小水池的最大宽度AB ,其测量及求解过程如下:测量过程:(ⅰ)在小水池外选点C ,如图4,测得m AC a =,m BC b =;(ⅱ)分别在AC ,BC ,上测得3a CM m =,m 3b CN =;测得m MN c =.求解过程:15.(2022长宁一模)已知, 在 △ABC 中, 5,8AB AC BC ===, 点 E 是射线 CA 上的动点, 点 O 是边 BC 上的动点,且 OC OE =, 射线 OE 交射线 BA 于点 D .(1)如图 1, 如果 2OC =, 求 S △ADES △ODB 的值;(2)联结AO , 如果 AEO △ 是以AE 为腰的等腰三角形,求线段OC 的长;(3)当点E 在边AC 上时, 联结,BE CD DBE CDO ÐÐ=、, 求线段OC 的长.16.(2023·上海市徐汇中学九年级期中)已知:矩形ABCD 中,AB =9,AD =6,点E 在对角线AC 上,且满足AE =2EC ,点F 在线段CD 上,作直线FE ,交线段AB 于点M ,交直线BC 于点N .(1)当CF =2时,求线段BN 的长;(2)若设CF =x ,△BNE 的面积为y ,求y 关于x 的函数解析式,并写出自变量的取值范围;(3)试判断△BME 能不能成为等腰三角形,若能,请直接写出x 的值.17.(2023·上海奉贤·二模)已知:如图,在梯形ABCD 中,CD ∥AB ,∠DAB =90°,对角线AC 、BD 相交于点E ,AC ⊥BC ,垂足为点C ,且BC 2=CE •CA .(1)求证:AD =DE ;(2)过点D 作AC 的垂线,交AC 于点F ,求证:CE 2=AE •AF .18.(2023·河南省淮滨县九年级期中) 如图,正方形ABCD 的边长为12,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F ,将ABE △沿直线AE 翻折,点B 落在点B ¢处.(1)当1BE CE=时,如图1,延长AB ¢,交CD 于点M ,①CF 的长为________;②求证:AM FM =. (2)当点B ¢恰好落在对角线AC 上时,如图2,此时CF 的长为________;BE CE =________; (3)当3BE CE =时,求DAB ¢Ð的正弦值.。
中考数学几何模型专题一几何初步
专题一几何初步模型1双中点模型模型展现基础模型已知:点P是线段AB的中点已知:点C是线段AB上任意一点,点P1,P2分别是线段AC, BC的中点已知:点C是线段AB延长线上任意一点,点P1,P2分别是线段AC,BC的中点11怎么用?1.找模型遇到题目中有两个中点或多个中点,则考虑用“双中点模型”2.用模型中点产生“一半”,是解决问题的关键结论分析结论2:P1P2=12 AB证明:∵P1,P2分别是线段AC ,BC的中点,∵P1C= 12AC,P2C=12BC,∵P1P2=P1C+P2C,∵P1P2= P1C+P2C=12AC+12BC=12AB.结论3:P1P2=12 AB∵P1,P2分别是线段AC ,BC的中点,∵P1C= 12AC,P2C=12BC,∵P1P2=P1C-P2C,∵P1P2=P1C-P2C= 12AC-12BC=12AB.模型拓展满分技法解题的关键是抓住题中关键量中点,中点产生一半,将所求线段写成两个线段的和或差.典例小试例1如图,C,D两点把线段AB分成三部分,且AC:CD : DB=1:2∵4,点P是线段AB 的中点(点拔:一个中点,考虑中点平分线段),DP=1,则AB的长为( )A.2B.4C. 8D. 14考什么?中点的性质,线段比例关系思路点拨中点产生一半,是解题的关键.例2如图,A ,B ,C三点在同一直线上,M,N分别为线段AB,BC的中点(点拔:双中点,考虑双中点模型),且AB=6,BC=4.那么线段MN的长为( )A. 2B.4 C . 5 D.6考什么?中点的性质思路点拨以双中点模型考查中点的性质,熟悉使用双中点的性质和结论.例3(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点(点拔:三等分点有2个).若线段AB=12 cm,则线段BD的长为( ) A. 10 cm B. 8 cm C. 10 cm或8 cm D. 2 cm或4 cm考什么?中点的性质,线段的和差,分类讨论思想思路点拨已知三等分点,需要分情况讨论.实战实演1.已知线段AB,CD有四分之一重合,E,F分别是AC ,BD的中点,且EF=12,则AD 的长度为( )A. 12B. 16C. 21D. 242加图C.D是线段AB上两点,E,F分别是线段AD,BC的中点。
2024中考数学常见几何模型归纳总结—三角形中的倒角模型-高分线模型、双(三)垂直模型
2024中考数学常见几何模型归纳总结—三角形中的倒角模型-高分线模型、双(三)垂直模型近年来各地考试中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。
熟悉这些模型可以快速得到角的关系,求出所需的角。
本专题高分线模型、双垂直模型、子母型双垂直模型(射影定理模型)进行梳理及对应试题分析,方便掌握。
模型1:高分线模型条件:AD 是高,AE 是角平分线结论:∠DAE=2B C∠∠-例1.(2023秋·浙江·八年级专题练习)如图,在ABC 中,30A ∠=︒,50B ∠=︒,CD 为ACB ∠的平分线,CE AB ⊥于点E ,则ECD ∠度数为()A .5︒B .8︒C .10︒D .12︒【答案】C 【分析】依据直角三角形,即可得到40BCE ∠=︒,再根据30A ∠=︒,CD 平分ACB ∠,即可得到BCD ∠的度数,再根据DCE BCD BCE ∠=∠-∠进行计算即可.【详解】解:50,B CE AB ∠=︒⊥ ,40BCE ∴∠=︒,又30A ∠=︒ ,CD 平分ACB ∠,1118050305022()BCD BCA ∴∠=∠=⨯︒-︒-︒=︒,504010DCE BCD BCE ∴∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键.例2.(2023春·河南南阳·七年级统考期末)如图,在△ABC 中,∠1=∠2,G 为AD 的中点,BG 的延长线交AC 于点E ,F 为AB 上的一点,CF 与AD 垂直,交AD 于点H ,则下面判断正确的有()①AD 是△ABE 的角平分线;②BE 是△ABD 的边AD 上的中线;③CH 是△ACD 的边AD 上的高;④AH 是△ACF 的角平分线和高A .1个B .2个C .3个D .4个【答案】B【详解】解:①根据三角形的角平分线的概念,知AG 是△ABE 的角平分线,故此说法错误;②根据三角形的中线的概念,知BG 是△ABD 的边AD 上的中线,故此说法错误;③根据三角形的高的概念,知CH 为△ACD 的边AD 上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH 是△ACF 的角平分线和高线,故此说法正确.故选:B .【点睛】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.例3.(2023·安徽合肥·七年级统考期末)如图,已知AD 、AE 分别是Rt △ABC 的高和中线,AB =9cm ,AC =12cm ,BC =15cm ,试求:(1)AD 的长度;(2)△ACE 和△ABE 的周长的差.【答案】(1)AD 的长度为365cm ;(2)△ACE 和△ABE 的周长的差是3cm .【分析】(1)利用直角三角形的面积法来求线段AD 的长度;(2)由于AE 是中线,那么BE =CE ,再表示△ACE 的周长和△ABE 的周长,化简可得△ACE 的周长﹣△ABE 的周长=AC ﹣AB 即可.【详解】解:(1)∵∠BAC =90°,AD 是边BC 上的高,∴S △ACB =12AB•AC =12BC•AD ,∵AB =9cm ,AC =12cm ,BC =15cm ,∴AD =AB AC CB ⋅=91215⨯=365(cm ),即AD 的长度为365cm ;(2)∵AE 为BC 边上的中线,∴BE =CE ,∴△ACE 的周长﹣△ABE 的周长=AC+AE+CE ﹣(AB+BE+AE )=AC ﹣AB =12﹣9=3(cm ),即△ACE 和△ABE 的周长的差是3cm .【点睛】此题主要考查了三角形的面积,关键是掌握直角三角形的面积求法.例4.(2023·广东东莞·八年级校考阶段练习)如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30B ∠=︒,50C ∠=︒.(1)求DAE ∠的度数.(2)试写出DAE ∠与C B ∠-∠关系式,并证明.(3)如图,F 为AE 的延长线上的一点,FD BC ⊥于D ,这时AFD ∠与C B ∠-∠的关系式是否变化,说明理由.【答案】(1)10︒(2)()12DAE C B ∠=∠-∠(3)不变,理由见解析【分析】(1)根据三角形内角和求出BAC ∠,根据角平分线的定义得到50BAE ∠=︒,根据高线的性质得到90ADE ∠=︒,从而求出60BAD ∠=︒,继而根据角的和差得到结果;(2)根据角平分线的定义得到12BAE BAC ∠=∠,根据三角形内角和求出119022EAC B C ∠=︒-∠-∠,根据角的和差得到结果;(3)过A 作AG BC ⊥于G ,结合(2)知1()2EAG C B ∠=∠-∠,证明FD AG ∥,得到AFD EAG ∠=∠,即可证明.【详解】(1)解:∵30B ∠=︒,50C ∠=︒,∴1805030100BAC ∠=︒-︒-︒=︒,∵AE 平分BAC ∠,∴1502BAE CAE BAC ∠=∠=∠=︒,∵AD 是高,∴90ADE ∠=︒,∵30B ∠=︒,∴60BAD ∠=︒,∴10DAE BAD BAE ∠=∠-∠=︒;(2)()12DAE C B ∠=∠-∠,证明如下:∵AE 平分BAC ∠,∴12EAC BAC ∠=∠,∵180BAC B C ∠=︒-∠-∠,∴()11101902822B C B C EAC ︒-∠-∠-∠︒-==∠∠,∴EAD EAC DAC ∠=∠-∠()11090922B C C =︒∠---∠︒-∠()12C B =∠-∠;(3)不变,理由是:如图,过A 作AG BC ⊥于G ,由(2)可知:1()2EAG C B ∠=∠-∠,AG BC ⊥ ,90AGB ∠=︒,FD BC ⊥ ,90FDC ∴∠=︒,AGD FDC ∴∠=∠,FD AG ∴∥,AFD EAG ∴∠=∠,1()2AFD C B ∴∠=∠-∠.【点睛】本题主要考查三角形的内角和定理、角平分线的性质、直角三角形的性质和平行线的判定与性质,熟练掌握三角形的内角和定理和角平分线的性质是解题的关键.模型2:双垂直模型结论:①∠A =∠C ;②∠B =∠AFD =∠CFE ;③AB CD AE BC ⋅=⋅。
2021年于新华中考数学16讲第5讲 基本几何模型
第5讲 基本几何模型一、对角互补模型(构造全等) 1.双90°型(1)条件①∠AOB =∠DCE =90°;②OC 平分∠AOB .结论:① ;② ;③ .DBCO E【答案】①CD =CE ;②OD +OE;③S 四边形DOEC =S △ODC +S △OEC =12OC 2. (2)当∠DCE 的一边与AO 的延长线相交时, 条件:①∠AOB =∠DCE =90°;②OC 平分∠AOB .结论:① ;② ;③ .O EDBC【答案】①CD =CE ;②OE -OD;③S △OEC -S △ODC =12OC 2. 【注意】(1)条件①②和结论中的①,任意替换其一都成为一个新的真命题; (2)既可以过点C 作“双垂”,即CM ⊥OA 于点M , CN ⊥OE 于点N (利用角平分线构造双垂筝型),又可过点C 作CG ⊥OC 交OE 的延长线于点G (围绕点C 构造旋转全等形). 例题讲解 如图,正方形ABCD 与正方形OMNP 的边长均为10,点O 是正方形ABCD 的中心,正方形OMNP 绕点O 旋转.证明:无论正方形OMNP 旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,并求这个定值. O P MN B CDA【答案】连接OB ,OC ,可构造两个三角形全等,进一步得到S 重合=14S 正方形ABCD =25.2.60°,120°型(1)条件:①∠AOB =2∠DCE =120°;②OC 平分∠AOB .结论:① ;② ;③ .OE DCBA答案:①CD =C E ;②OD +OE =OC ;③ S 四边形DOEC =S △ODC + S △OEC =2 (2)当∠DCE 的一边与AO 的延长线相交时. 条件:①∠AOB =2∠DCE =120°;②OC 平分∠AOB . 结论:① ;② ;③ .OE DCBA答案:①CD =C E ;②OE - OD +=OC ;③ S 四边形DOEC = S △OEC -S △ODC +=2. 【注意】(1)条件①②和结论中的①,任意替换其一都能成为一个新命题;(2)既可以过点C 作“双垂”,即CM ⊥OA 于点M ,CN ⊥OE 于点N (利用角平分线构造双垂筝型),又可以OC 为边,构造等边△OCG ,或将线段CO 绕点C 逆时针旋转60°(围绕点C 构造旋转全等形). 例题讲解把两个边长都等于4的等边三角形拼成菱形ABCD (如下图).有一个含60°角的三角尺,使三角尺的60°角的顶点与点A 重合,两边分别与AB ,AC 重合.(1)将三角尺绕点A 按逆时针方向旋转,当三角尺的两边分别与菱形的两边BC ,CD 相交于点E ,F 时(如图1),通过观察或测量AE ,AF 的长度,你能得出什么结论?并证明你的结论;(2)在旋转过程中四边形AECF 的周长是否发生变化?如果没有变化,请说明理由;如果有变化,请求出周长的最小值;(3)若将(1)中三角尺的60°角的顶点P 在AC 上移动且与点A 、C 都不重合,三角尺的两边分别与菱形的两边BC 、CD 相交于点E 、F 时(如图2),那么PE 、PF 之间又有什么数量关系?并证明你的结论.答案:(1)AE =AF ,可证△ABE ≌△ACF (ASA )(2)四边形AECF 的周长=2AE +CE +CF =2AE +BC =2AE +4.当AE ⊥BC 时,AE 有最小值,故四边形AECF 的周长的最小值为4;(在旋转过程中四边形AECF 的面积不发生变化) (3)PE =PF (过点P 利用角平分线构造双垂筝型全等).二、角含半角模型(必旋转)1、条件:①正方形ABCD ;②∠EAF =45°.结论:① ;② .图①E D CF答案:结论:DF +BE =EF 或DF -DE =EF . 如题图①,将△ADF 绕点A 顺时针旋转90°到△ABG 的位置,此时C ,B ,G 共线; 如题图②,将△ABE 绕点A 顺时针旋转90°到△ADG 的位置,此时D ,G ,C 共线; 【注意】(1)但凡旋转,必然有边对应相等,只需用圆规将共旋转点、边旋转过去即可: (2) 旋转后.往往涉及三点共线问题(须简单证明之);(3) 旋转后,一般需要再证一对共旋转点的三角形全 等 (SAS ).例题讲解如图,在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,O 为坐标原点.现将正方形OABC 绕O 点顺时针旋转,旋转角为θ,当A点第一次落在直线y =x 上时停止旋转,旋转过程中,AB 边交直线y =x 于点M ,BC 边交x 轴于点N . (1)当A 点第一次落在直线y =x 上时,求点A ,B 两点坐标(直接写出结果);(2)设△MBN 的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.答案:(1)(2)p值不会发生变化,将△OAM绕点O顺时针旋转90°到△OCG的位置,此时B,C,G三点共线,得MN==BM+CN,∴△MBN的周长p=MN+BM+BN=AM+CN+BM+NB=2AB=4.变式1:如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于M交AC于点N,连接MN,则△AMN的周长C答案:将△BDM绕点D顺时针旋转120°到△CDE的位置,此时A,C,E三点共线,得MN=BM+CN,∴△AMN 的周长为:AM+MN+AN=AM+BM+CN+AN=2AB=6.变式2ACF答案:EF=DE+BF.将△ADE绕点A旋转到△CDE的位置,此时C,B,G共线(或延长CB至点G,使BG=DE),再证△AFG≌△AFE (SAS),可得EF=FG=BG+BF=DE+BF.2.条件:①等腰Rt△ABC中;②∠DAE=45°.结论:.图①BC图②答案:222BD CE DF +=.图①FBC图②如图①②,将△ACE 绕点A 按顺时针旋转90°到△AB F 的位置,此时FB ⊥BC ,连接DF ,可证△ADF ≌△ADE (SAS ),于是DF =DE .在Rt △FBD 中,由勾股定理可知222FB BD DF +=,进一步得到222BD CE DF +=变式1:已知在△ABC 中,∠BAC =45°,AD ⊥BC 于点D ,若BD =6,CD =4,求△ABC 的面积.DC答案:法1:过点B 作BF ⊥AC 于点F ,如图①所示,∴△AFE ≌△BFC (ASA ),∴AE =BC =10. 又由△BDE ∽△BFC (ASA),∴BD AD DE CD =,∴6104DEDE +=,∴DE =2,则AD =12,∴S △ABC =60. 变式1图①C变式1图②ED CB法2:以D 为圆心,DA 长为半径画弧,交直线BC 于E ,F 两点(以AD 为高,构造等腰△AEF ),如图②所示,利用“角含半角模型”知道222BE CF BC +=,有222(BE 2)10BE ++=,∴BE =6,AD =DE =12,∴S △ABC =60.变式2:如图,等边△ABC 中,点P ,Q 在BC 边上,且∠P AQ =30°.若BP =2,QC =3,求AB 的长.答案:将△ABP 绕点A 按顺时针旋转60°至△ACD 的位置,过点D 作DE ⊥BC 于点E .在Rt △DEC 中,DC在Rt △又可证△AQP ≌△AQD (SAS ), 得PQ=DQ ∴BC =AB =5三、一线三等角模型如图①,∠ABC =∠ACE =∠CDE =90°; 如图②,∠ABC =∠ACE =∠CDE =60°; 如图③,∠ABC =∠ACE =∠CDE =45°.图①C E图②BEC图③ABDC例题讲解1.△ABC 和△DEF 均为正三角形,E 是BC 边的中点.(1)如图①,DE 交AB 于点M ,EF 交AC 于点N ,求证:△BEM ∽△CNE ;(2)如图②,将△DEF 绕点E 旋转,使得DE 交BA 的延长线于点M ,EF 交AC 于点N ,则第(1)题的结论是否依旧成立?图1E BF图2E FB【答案】答案略(可再追问证明△CEN ∽△EMN ).2.如图,将等边△ABC 折叠,使得点C 落在AB 边上的点D 处,折痕为EF ,点E ,F 分别在AC 和BC 边上.若AC =8,AD =2,则CF :CE 的值为________.第2题图C A BD【答案】7:5简答:由翻折知CE DECF DF=,再由“一线三等角模型”可知△ADE ∽△BFD ,根据“相似三角形的周长之比等于相似比”得ADE DEBFD DF=△△,而△ADE 的周长=AC +AD =10,△BFD 的周长=BC +BD =14,∴57CE DE CF DF ==.变式1:如图,在等边△ABC 中,D 是BC 边上一点,且BD :DC =1:3,把△ABC 折叠,使点A 落在BC 边上的点D 处,那么AM :AN 的值为________.变式1图A CB D【答案】5:7变式2:如图,在平面直角坐标系中,O (0,0),A (6,,B (12,0).将△OAB 沿直线CD 折叠,使点A 恰好落在线段OB 上的点E 处.若OE =245,则CE :DE 的值是________.变式2图【答案】提示:先证△OAB 为等边三角形,后面方法同例2. 四、K 字模型探究在学习几何知识时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K 字型是非常重要的基本图形,可以建立如下的“模块”(如图①):图1A DCB(1)已知∠A =∠D =∠BCE =90°,则△ABC ∽△DCE ;请就图①证明上述“模块”的合理性; 【答案】略(2)请直接利用上述“模块”的结论解决下面两个问题: (i )如图②,已知点A (-2,1),点B 在直线y =-2x +3上运动,若∠AOB =90°,求此时点B 的坐标;图2A【答案】(i )过点A 作AD ⊥x 轴于点D ,过点B 作BE ⊥x 轴于点E ,可证△ODA ∽△BEO , ∴AD OEOD BE=. 点B 在直线y =-2x +3上,可设B (m ,-2m +3), ∴1=223m m -+,∴34m =.故3342B ⎛⎫ ⎪⎝⎭,.(ii )如图③,过点A (-2,1)分别作与x 轴,y 轴平行的线,交直线y =-2x +3于点C ,D ,求点A 关于直线CD 的对称点E 的坐标.图3【答案】(ii )过点E 作EG ∥y 轴,过点D 作DF ⊥FG 于点F ,延长AC 交FE 于点G (构造“K 字模型”),有△EGC ∽△DFE ,易得D (-2,7),C (1,1).又由对称可知DE =DA =6,EC =CA =3,△EGC 与△DFE 的相似比为1∶2,设CG =x ,则EF =2x ,EG =6-2x ,∴DF =12-4x ,故12-4x =3+x ,有x =95.故E (145,175).归纳若知道直角三角形的两直角边的长度(比值),可通过两个锐角顶点作过直角顶点直线的垂线段构造K 字型全等或相似. 结论应用1.如图,在Rt △AOB 中,O 为坐标原点,∠AOB =90°,OA :OB =1:2,如果点A 在反比例函数()10y x x=>的图象上运动,那么点B 在函数________(填函数解析式)的图象上运动.【答案】4y x=-提示:分别过点A ,B 作y 轴的垂线于点C ,D ,由“K 字模型”知△OCA ∽△BDO ,且知相似比为1:2.设A (m ,1m ),AC =m ,OC =1m ,则OD =2m ,BD =2m ,∴B (2m,-2m ),故点B 在4y x =-上.B变式1:如图,在Rt △AOB 中,O 为坐标原点,∠AOB =90°,∠B =30°,如果点A 在反比例函数()10y x x=>的图象上运动,那么点B 在函数________(填函数解析式)的图象上运动.变式1图【答案】3y x =-提示:构造“K 字型”,其中OA OB =.变式2:已知A 是反比例函数3y x=的图象在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.已知点C 的位置始终在一函数图象上运动,则这个函数解析式为________.变式2图【答案】9y x=-提示:由反比例函数图象的中心对称性可知,OA =OB ,故连接OC ,后续步骤同变式1. 变式3:已知△ABC 为等边三角形,点A 与点D 的坐标分别是A (4,0),D (10,0). (1)如图①,当点C 与点O 重合时,求直线BD 的解析式;图①【答案】(1)42y x =-(2)如图②,点C 从点O 沿y 轴向下移动,当以点B 为圆心,AB 为半径的⊙B 与y 轴相切(切点为C )时,求点B 的坐标;图②【答案】B (8,-)(3)如图③,点C 从点O 沿y 轴向下移动,当点C 的坐标为C (0,-)时,求∠ODB 的正切值.图③【答案】法1:在x 轴上找点E ,F 使∠OEC =∠AFB=60°(构造“一线三等角),如图①所示,显然有△AEC ≌△BF A (AAS ).在Rt △OEC 中,OC =OEC =60°,则OE =2,∴AE =6.于是由全等得BF =AE =6.过点B 作BG ⊥x 轴于点G ,在Rt △FGB 中,∠GFB =60°,BF =6,∴FG =3,BG=DG =5,故tan ∠ODB图③【答案】法2:过点B 作BE ⊥AC 于点E ,过点E作直线FG ⊥x 轴于点F ,过点B 作BG ⊥FG 于点G ,如图②所示(构造“K 字模型”),有△AFE ∽△EGB,且AE BE =.由“三线合一”知E 为AC 的中点,则EF 为△AOC 的中位线,∴AF =2,EF EG=BG =3,则B (5,-,易求tan ∠ODB图③归纳只要知道等边三角形两个点的坐标,经过定边的中点构造.“K 字型”.变式4:如图,在等腰Rt △OAB 中,∠OAB =90°,顶点O 为坐标原点,顶点A ,B 在某反比例函数的图象上,点A 的横坐标为2,则OAB S =△________.变式4图【答案】5A 作MN ∥y 轴交x 轴于点N ,过点B 作BM ⊥MN 于点M (构造“K 字模型”),有△BMA ≌△ANO (AAS ).设A (2,m )(m >0),则可得B (2-m ,2+m ).根据“双曲线上的点横、纵坐标的积相等”,得(2-m )(2+m )=2m ,解得m 1,∴()22114522ABC S OA m ==+=-△变式4图2.如图,直线123l l l ∥∥,且1l 与2l 的距离为1,2l 与3l 的距离为3.把一块含有45°的直角三角板按图所示放置,顶点A ,B,C 恰好分别落在三条直线上,AC 与直线2l 交于点D ,则线段BD =________.【答案】2543.如图,点P 是正方形ABCD 的BC 边上的动点,以AP 为斜边在正方形内部作一等腰 Rt △APQ ,∠AQP=90°;AQ=PQ. (1)求∠ADQ 的度数;(2)若正方形边长为4,BP=1,求DQ 的长.P答案:法1:(1)过点Q 作EF//AB 分别交AD ,BC 于点E ,F ,如图所示(构造“K 字模型”),显然△AEQ ≌△QFP (AAS ),∴AE=QF.又AD=EF ,则AD-AE=EF-QF ,即ED=EQ ,∴∠ADQ=45°. (2)设DE=EQ=FP=m,又BP=1, 则CF=3-m=DE=m ,∴32m =,则2. 法2:(1)连接AC ,如图②所示,AQ AD AP AC ==, 则△AQD△APC ,∠ADQ=∠ACB=45°.(2)由△AQD△APC 可得DQ PC =PC=3,则DQ=2. 图①FEBP 图②AP变式:如图,以ABCD 的CD 边为斜边向内作等腰Rt △CDE ,使AD=DE=CE ,∠DEC=90°,且点E 在平行四边形内部.连接AE ,BE ,则∠AEB 的度数是____________.B答案:135°提示:过点E作FG⊥AD交AD,BC于点G,F,利用“等腰三角形腰上的高与底的夹角等于顶角的一半”,得∠1=12∠3,∠2=12∠4.而∠3+∠4=180°-2×45°=90°,∴∠1+∠2=45°,故∠AEB=135°.4.如图,在平面直角坐标系中,直线34y x b=-+分别与x轴,y轴交于点A,B,且点A的坐标为(8,0),四边形ABCD是正方形.备用图(1)填空:b=_________;(2)求点D的坐标;(3)M是线段AB上的一个动点(点A,B除外),试探索在x轴上方是否存在另一个点N,使得以0,B,M,N 为顶点的四边形是菱形.若不存在,请说明理由;若存在,请求出点N的坐标.答案:(1)6. (2)D(14,8). (3)存在,点N的坐标为144192(,)2525或(-4,3).变式:如图,在平面直角坐标系中,矩形OABC的顶点A,B在双曲线kyx=(x>0)上,BC与x转交于点D.若点A的坐标为(2,4),求点D的坐标.答案:过点A作EF//x轴交y轴于点E,过点B作BF//y轴交EF于点F(构造“K字模型”),显然有△AEO △BFA ,设B (m ,8m ),则AF=m-2,BF=4-8m, ∴AE BF OE AF =,即m-2=8-16m, ∴m=8,则点B (8,1), 又BC//OA ,则BC OA k k ==2, ∴BC l :y=2x-15,与x 轴的交点D (152,0). 五、双子型 1.全等双子型(1)如图,△ABC 和△CED 均为等边三角形,C 为公共点,那么,在下图中,我们能得到哪些结论呢?BB常见结论:三角形全等:___________;线段相等:______________;角的结论:__________________. (2)稍微变一下形,如下图,△ABC 和△CED 均为等腰直角三角形,C 为公共点.B B常见结论:三角形全等:___________;线段相等:______________;角的结论:__________________. (3)再稍微变一下形,我们把两个等腰直角三角形换成两个正方形,你还能找出结论吗?EFEF常见结论:三角形全等:___________;线段相等:______________;角的结论:__________________.(4)我们拓展到一般情况,如下图,△ABC 和△ADE 均为等腰三角形,C 为公共点,且满足∠BAC=∠DAE.BD常见结论:三角形全等:___________;线段相等:______________;角的结论:__________________. 答案:(1)结论:△BCE ≌△ACD (SAS );BE=AD ;∠AFB=60°(可补充FC 平分∠BFD ); (2)结论:△BCE ≌△ACD (SAS );BE=AD ;∠AFB=90°(可补充FC 平分∠BFD ); (3)结论:△BCG ≌△DCE (SAS );BE=DG ;∠BHE=90°(可补充HC 平分∠BHE ); (4)结论:△BAD ≌△CAE (SAS );BD=CE ;∠BFC=∠BAC (可补充FA 平分∠BFE ). 2.相似双子型上面的结论都是全等,既然全等是特殊的相似,那相似肯定也是有的!如图,△ABC 和△CED 均为直角三角形,C 为公共点,且满足∠BAC=∠CDE.BB仿照上面的结论,有:三角形相似:______;相似比为_______;线段关系:_______;角的结论:____________. (若命题人将上面的图形补成矩形,可要慧眼识珠哦!) 答案:结论:△BCE△ACD ;BC AC (或tanA );BE BCAD AC;∠AFB=90°归纳 在双子型的公共点除必存在旋转类的全等或相似外,同时极易出现“八字形”.练一练1.已知:如图①,在△AOB 和△COD 中,OA = OB ,OC =OD ,∠AOB=∠COD = 50°. (1)求证:①AC = BD ;②∠APB=50°;(2)如图②,在△AOB 和△COD 中,OA=OB ,OC=OD ,∠AOB=∠COD=a ,则AC 与BD 间的数量关系为_________,∠APB 的大小为___________.图①DAQ图②AB答案:(1)略. (2)AC=BD ,∠APB=a.2.(1)只需证△BAM ≌△CAN .(2)仍然成立(还可发现∠MAC =∠CNM ) 【构造双子型】1.6提示:以C 为顶点,CD 为边向右下方作等边△CDE ﹙构造“双子型”﹚,连接AE,有△BCD ≌△ACE﹙SAS ﹚,AE =BD=7.5,在Rt △ADE 中,AD =4.5,AE =7.5,由勾股定理得DE =6,即CD =6.2.13提示:以A 为顶点,AB 为腰向左上方作等腰Rt △ABE ﹙构造“双子型”﹚,连接CE ,有△ABD ≌△AEC ﹙SAS ﹚在Rt △EBC 中,EB =5,BC =12, 由勾股定理得CE =13,即BD =CE =13.变式1:10提示:以A 为顶点,AB 为腰作等腰△AEB ,且使∠EAB =120°﹙构造“双子型”﹚,连接CE,有△BAD ≌△EAC﹙SAS ﹚,在Rt △EBC 中,EB =6,BC =8,由勾股定理得CE =10,即BD =10.ED C B AE D AB CEDBCA变式2:2提示:以P 为顶点,PB 为边长向右下方作等边△PBE ,连接CE ,有△BP A ≌△BEC ﹙SAS ﹚,∠BEC =∠A PB=150°,又∠BEP =∠BPE =60°,在Rt △PEC 中,PE =1,∠EPC=60°,得CP =2.提示:以A 为顶点,AD 为腰作等腰Rt △ADE ﹙构造“双子型”﹚,连接CE,有△BAD ≌△CAE ﹙SAS ﹚在Rt △EDC 中,EDCD =2,由勾股定理得CE故BD4.4≤AC ≤6 提示:以B 为顶点,OB 为边向上方作等腰Rt △OBP ﹙构造“双子型”﹚,连接CP ,OM,有△BOM ≌△BPC ﹙SAS ﹚,PC =OM =1,则点C 在以P 为圆心,1为半径的圆上,这样就转1C ,2C 两化为“圆外一点到圆上的最值问题”,作射线AP ,交⊙P 于点,A 1C =4,A 2C =6.故4≤AC ≤6.﹙本题亦可以理解为“捆绑旋转”﹚变式1OD ≤3:以O 为顶点,OC 为边向上方作等腰Rt △OEC ︰,则﹙构造“双子型”﹚,连接DE ,OP ,有△OPC ∽△EDC ,且相似比为1DE =则点D 在以E 为圆心,作射线⊙E 于点1D ,2D ,O 1DO 2D=3故OD ≤3﹢变式2:2≤OD ≤4 提示:以OC 为边向上方作等边△OCE ,连接DE,OP.EBAD25.3 提示以O 为顶点,OC 为边向下方作等边△OCE ﹙构造“双子型”﹚,连接EP ,显然有△PCE ≌△DCO ﹙SAS ﹚,故OD =EP ,这样OD 的最值转化到EP 的最值,E 为定点,点P 在⊙O 上,根据“圆内一点到圆上各点最值问题”可以得解,作直线OE 交⊙O 于1P ,2P 两点,则E 1P 为最大值,E 1P =3,E 2P 为最小值, E 2P =1,故OD 的最大值为3,﹙本题还可以问最小值,甚至问OD 的取值范围﹚6.2 提示:以OA 为边向上方等边△OAD ﹙构造“双子型”﹚,连接BD,显然有△ADB ≌△AOC ﹙SAS ﹚,则OC =BD ,D 为定点,动点B 在y 轴上,根据“点到直线的距离,垂线段最短”,可知当DE ⊥y 轴时﹙即E,B 重合时﹚,DB 最短,此时DB =2,故OC 的最小值为2.7.提示:以OA 为腰向上作等腰Rt △AOD ﹙构造“双子型”﹚,连接BD ,显然有△AOC ∽△ADB ,∴OC BD =OA AD,则OCD 为定点,动点B 在直线y =2上运动,根据“点到直线的距离,垂线段最短”,可知当DB ⊥直线y =2时,DB 有最小值2.故OC 的最小值为8.﹙2-以AB 为腰向上作等腰Rt △DAB ,如图①所示﹙构造“双子型”﹚,连接DM ,有△MDB ∽△P AB ,∴2DM DB APAB,则DM则M 在以D为圆心, ,∴maxAM =3minAM 但求点P 的坐标,会比较烦琐,我们看下面的处理方法.以AB 为底向下作等腰Rt △ABN ,连接NP ,如图②所示,有△MAB ∽△PNB ,∴AM .N 为定点,P 在以A 为圆心,2为半径的圆上,当N,A,P 三点共线时,NP 最大,在Rt △ADP 中,AP =2,∠P AD =45°,∴AD=DP 故点P 坐标为﹙2-DM'O AMPB DNBPMAO六、十字架型【正方形内十字架型】1.△BAF≌△ADE﹙SAS﹚;AE=BF2.在正方形ABCD中,E、F、G、H分别为AB、CD、AD、BC边上的点. 若EF⊥GH,上述结论是否仍然成立?解:仍然成立提示:过点G作GN⊥BC于点N,过点F作FM⊥AB于点M,再证△GNH≌△FME即可.思路正方形中“十字架的顶点分别在四条边上”→“垂直”可以利用全等推导出十字架“相等”.3.如图,将边长为4的正方形纸片ABCD折叠,使得点A落在CD的中点E处,折痕为FG,点F在AD边上,求折痕FG的长.解:连结AE. FG为折痕,AE为对称点的连线,则AE⊥FG. 又四边形ABCD为正方形,根据“正方形内十字架型”可得FG=AE=52.【矩形内十字架型】1.如图,在矩形ABCD中,AB=m,AD=n,在AD边上有一点E. 若CE⊥BD,则CE和BD之间有什么数量关系?解:可证△CDE ∽△BCD ,∴nmBC CD BD CE ==,即CE ,BD 之比等于矩形邻边之比.2. 如图所示为一般情况,在矩形ABCD 中,E 、F 、G 、H 分别为AD ,BC ,AB ,CD 边上的点,当EF ⊥GH ,上诉结论是否仍然成立?解:仍然成立,BCCDGH EF =.思路 矩形中“十字架的顶点分别在四条边上”→“垂直”可以利用相似推导出十字架之比和邻边“成比例”. 3. (秒算)如图,把边长为AB=6,BC=8的矩形ABCD 对折,使点A 和点C 重合,求折痕EF 的长.解:连结AC ,BC CD AC EF =,∴8610=EF ,故EF=215.探究证明某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两相邻边的数量关系进行探究,提出下列问题,请你给出证明.如图,在矩形ABCD 中,EF ⊥GH ,EF 分别角AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H. 求证:ABADGH EF =.结论应用如图,在满足上题的条件下,又AM ⊥BN ,点M 、N 分别在BC ,CD 边上,若1511=GH EF ,则=AMBN.答案:1511联系拓展如图,在四边形ABCD 中,∠ABC=90°,AB=AD=10,BC=CD=5,AM ⊥DN ,点M ,N 分别在BC ,AB 边上,求AMDN 的值.解:可证△ADC≌△ABC ,∴∠ADC=∠ABC=90°. 过点D 作EF ∥AB ,过点A 作AF ⊥EF 于点F ,延长BC 交EF 于点E ,如图(构造“K 字模型”),又有△DEC ∽△AFD ,且相似比为1:2.设CE=x ,则DF=x 2,∴DE=x 210-,∴AF=x 420-=BE=x +5,∴3=x ,则BE=8. 根据“矩形内十字架型”可得54==AB BE AM DN .【直角三角形内十字架型】直角三角形可以看成是连接矩形对角线后分成的图形,所以矩形内的结论可沿用至直角三角形内. 1.如图,在Rt 三角形ABC 中,∠ABC =90°,BA =BC ,D 是BC 边上的中点。
中考必会几何模型:线段(双中点)、角(双角平分线)模型
线段(双中点)、角(双角平分线)模型线段(双中点)模型讲解【口诀】字母去重,线段留半 【结论1】已知点B 在线段AC 上,AB=8cm ,AC=18cm.(1)P 、Q 分别是AB 、BC 的中点,则PQ 为_________cm. (2) P 、Q 分别是AC 、BC 的中点,则PQ 为_________cm. (3) P 、Q 分别是AB 、AC 的中点,则PQ 为_________cm. 已知点B 在直线AC 上,AB=8cm ,AC=18cm.(1)P 、Q 分别是AB 、BC 的中点,则PQ 为_________cm. (2) P 、Q 分别是AC 、BC 的中点,则PQ 为_________cm. (3) P 、Q 分别是AB 、AC 的中点,则PQ 为_________cm. 【答案】9;4;5;9;4;5或13【结论2】已知点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点,则MN= 12AB.【证明】∵M ,N 分别是AC ,BC 的中点, ∴CM= 12AC ,CN= 12BC,∴MN=CM+CN= 12AC+ 12BC= 12(AC+BC)= 12AB.【结论3】已知点C 是线段AB 延长线上一点,点M ,N 分别是AC ,BC 的中点,则MN= 12AB.【证明】∵M.N 分别是AC ,BC 的中点, ∴MC= 12AC ,NC= 12BC ,∴MN=MC-NC= 12AC- 12BC= 12(AC-BC)= 12AB.拓展已知点C 是线段BA 延长线上一点,点M ,N 分别是AC.BC 的中点,则MN= 12AB.无论线段之间的和差关系怎样变,MN 的长度只与AB 有美,即MN= 12AB.典型例题典例1如图,点C 是线段AB 上一点,AC <CB ,M ,N 分别是AB 和CB 的中点,AC=8,NB=5,则线段MN=___________.典例2如图,已知点A ,B ,C 在同一直线上,M ,N 分别是AC ,BC 的中点.(1)若AB=20,BC=8.求MN的长;(2)若AB= a,BC=8.求MN的长;(3)若AB= a,BC= b.求MN的长;(4)从(1) (2) (3)的结果中能得到什么结论?典例3如图,线段AB=10cm,BC=3cm,点D,E分别为AC和AB的中点,则DE的长是_________.初露锋芒1.已知线段AB=10cm,点C是直线AB上一点,BC=4 cm,若M是AC 的中点,N是BC的中点,则线段MN的长度是( ).A.7 cmB.3 cmC.5 cmD.7 cm或3 cm2.如图,已知A,B.C三点在同一直线上,AB=24.BC= 3AB,E是AC8的中点,D是AB的中点,则DE的长度是___________.3. 如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( ).A.5cmB.1cmC.5或1cmD.无法确定4. 已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC 的中点,N是BC的中点,则线段MN的长度是( )A.7cmB.3cmC.7cm或3cmD.5cm感受中考1.(2018贵州铜仁中考模拟)C为线段AB上任意一点,D、E分别是AC,CB的中点,若AB=10cm.则DE的长是( ).A.2 cmB.3 cmC.4 cmD.5 cm2.(2018湖南邵阳中考模拟)已知点C为线段AB上任一点,AC=8 cm,CB=6cm,M,N分别是AC,BC的中点.(1)求线段MN的长;(2)点C为线段AB上任一点,满足AC+CB= a cm,点M,N分别是AC,BC的中点,你能猜想MN的长度吗?并说明理由.(3)点C在线段AB的延长线上,满足AC-BC=b cm,M,N分别是AC,BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.(4)你能用一句简洁的话,描述你发现的结论吗?3.如图,已知A、B是数轴上的两个点,点A表示的数为13,点B表示的数为-5,动点P从点B出发,以每秒4个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)BP=________,点P表示的数________ (分别用含t的代数式表示);(2)点P运动多少秒时,PB=2PA.(3)若M为BP的中点,N为PA的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.参考答案典例1 【答案】4【解析】∵M ,N 分别是AB 和CB 的中点, ∴根据线段(双中点)的结论,有MN= 12AC.则MN=4. 典例2【答案】从(1)(2)(3)的结果中能得到:线段MN 始终等于线段AB 的一半,与C 点的位置无关. 【解析】(1)∵AB=20,BC=8. ∴AC=AB+BC=28.∵点A ,B ,C 在同一直线上,M ,N 分别是AC ,BC 的中点. ∴MC= 12AC.NC= 12BC.∴MN=MC-NC= 12(AC-BC)= 12AB=10.(2)根据(1)得MN= 12 (AC-BC)= 12AB= 12a .(3)根据(1)得MN= 12(AC-BC)= 12AB= 12a .(4)从(1)(2)(3)的结果中能得到:线段MN 始终等于线段 AB 的一半,与C 点的位置无关.典例3 【答案】1.5【解析】∵AB=10cm ,BC=3cm ,(已知) ∴AC=AB-BC=7cm.∵点D 为AC 中点,点E 为AB 的中点,(已知) ∴AD= 12AC,AE= 12AB.(线段中点定义)∴AD=3.5cm,AE=5cm. ∴DE=AE-AD=1.5cm. 故答案为:1.5.初露锋芒1.【答案】C.【解析】当点C 在线段AB 上时,如图.∵M ,N 分别是AC ,BC 的中点,∴根据线段(双中点)的结论,可知MN= 12AB=5 cm.当点C 在线段AB 的延长线上时,如图.∵M ,N 分别是AC ,BC 的中点,∴根据线段(双中点)的结论,可知MN= 12AB=5 cm.综上所述,MN 的长为5cm. 故选C.2. 【答案】92.【解析】∵AB=24,BC= 38AB ,∴BC=9.∵E 是AC 的中点,D 是AB 的中点,∴根据线段(双中点)的结论,可知DE= 12BC= 92.3. 【答案】C【解析】如图1,当点B 在线段AC 上时,∵AB=6cm ,BC=4cm ,M ,N 分别为AB ,BC 的中点, ∴MB= 12AB = 3cm,BN = 12BC = 2cm,∴MN=MB+NB=5cm,如图2,当点C 在线段AB 上时,∵AB=6cm ,BC=4cm ,M ,N 分别为AB ,BC 的中点, ∴MB= 12AB = 3cm ,BN= 12BC=2cm,∴MN=MB-NB=1cm 。
几何图形的基本模型
几何图形的基本模型【典型例题】模型一:双子型(手拉手模型)——全等(1)等边三角形条件:ΔOAB, ΔOCD均为等边三角形。
结论:①ΔOAC≌ΔOBD ②AC=BD ③∠AEB=600④OE平分∠AED ⑤点E在ΔOAB的外接圆上(2)等腰直角三角形条件:ΔOAB, ΔOC D均为等腰直角三角形。
结论:①ΔOAC≌ΔOBD ②AC=BD ③∠AEB=900 ④OE平分∠AED ⑤点E在ΔOAB的外接圆上(3)任意等腰三角形条件:ΔOAB, ΔOCD均为等腰三角形。
结论:①ΔOAC≌ΔOBD ②AC=BD ③∠AEB=∠A0B ④OE平分∠AED(或∠AED的外角)⑤点E在ΔOAB的外接圆上例题:(1)如图①,△ABC中,AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰三角形ABD,ACE,分别取BD,CE,BC的中点M、N、G,连接GM、GN,线段GM与GN数量关系是;位置关系是(2)如图②,把等腰三角形ABC换为一般的锐角三角形,AB﹥AC,其中,其它条件不变,上述结论还成立吗?请说明理由。
(3)如图③,在(2)的基础上,又作了进一步的探究,向△ABC的内侧分别作等腰直角三角形ABD、ACE,其它条件不变,试判断△GMN的形状,并给与证明。
模型二:双子型(手拉手模型)——相似(1)一般情况条件:CD ∥AB(ΔOCD ∽ΔOAB ),将ΔOCD 旋转至右图位置结论:右图中①ΔOCD ∽ΔOAB⇔ΔOAC ∽ΔOBD ②延长AC 交BD 于点E ,必有∠AEB=∠AOB ③点E 在ΔOAB 的外接圆上。
(2) 特殊情况条件:CD ∥AB (ΔOCD ∽ΔOAB ), ∠AOB=∠COD=900将ΔOCD 旋转至右图位置结论:右图中①ΔOCD ∽ΔOAB ⇔ΔOAC ∽ΔOBD ②延长AC 交BD 于点E ,必有∠AEB=900(BD ⊥AC )③连接AD,BC ,则S ABCD =12AC ×BD ④OD OC =OBOA =tan ∠OCD ⑤点E 在ΔOAB 的外接圆上(A,O,E,B 四点共圆) ⑥必有AD 2+BC 2=AB 2+CD 2例题:以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD ,其中∠ABO=∠DCO=300(1)点E 、F 、M 分别是AC 、CD 、DB 的中点,连接FM 、EM. ① 如图1,当点D 、C 分别在AO 、BO 的延长线上时,FMEM =② 如图2,将图1中△AOB 的绕点O 沿顺时针方向旋转α角(00<α<600),其他条件不变,判断FM EM的值是否发生变化,并对你的结论进行证明(3) 如图3,若B0=3√3,点N 在线段OD 上,且NO=2.点P 是线段AB 上的一个动点,在将ΔOAB 绕点0旋转过程中,线段PN 长度的最小值为 ,最大值为 。
几何的五大模型
5、 想想?正方形ABCD中,还有哪些没有包块进去,及与份数之间旳关系
6、SΔADE =S2+S3,S ΔBCF =S4+S3 想想?为何,用了什么模型
7、∴正方形ABCD被提成了24份 S阴影=S2+S4=6÷24×12=3cm2
例题:相同模型
例题4:如图,长方形ABCD中,E为AD旳中点,AF与BE、BD分别交于
例题:二分之一模型
例题3:如图ABFE和CDEF都是矩形,AB旳长是4厘米,BC旳长是3厘 米,那么图中阴影部分旳面积是多少平方厘米。
分析:阴影部分是一种个三角形,矩形CDEF中阴影 A
B
部分旳三角形底边长度为矩形旳长,高与矩 E
F
形宽相等,根据面积公式可知S阴影=SEDCF÷2
D
C
思索:二分之一模型是什么意思?
分析:SΔ黄+SΔ绿=S长方形÷2(=宽×长÷2)
黄色三角形面积21cm2,占长方形面积百分比
黄
50%-15%=35% 所以,长方形面积=21÷35%=60cm2
红
红
绿
例题:等积变换
例题2:图中ABCD是个直角梯形,以AD为一边向外作长方形ADEF, 其面积为6.36平方厘米,连接BE交AD于P,再连接PC,则图 中阴影部分旳面积是多少平方厘米?
AB
S1 S2
a
b
图1
CD 图2
概念
2、鸟头定理(共角定理)模型
1)两个三角形中有一种角相等或互补,这两个三角形叫做共角三角形
2)共角三角形旳面积比等于相应交(相等或互补角)两夹边旳乘积之比
D
E
A
D
A
A
E D
BC
2020中考数学专题1——几何模型之双子型-含答案
◆条件:CD∥AB(△OCD∽△OAB),将△OCD 旋转至右图位置◆结论:右图中①△OCD∽△OAB △OAC∽△OBD;②延长AC交BD于点E,必有∠AEB=∠AOB;③点 E 在△OAB 的外接圆上.【模型解析】2020 中考专题 1——几何模型之双子型班级姓名.【例题分析】例1.如图1,直角坐标系中,点A 的坐标为(1,0),以线段OA 为边在第四象限内作等边△AOB,点C 为x 正半轴上一动点(OC>1),连接BC,以线段BC 为边在第四象限内作等边△CBD,直线DA 交y 轴于点E.(1)△OBC 与△ABD 全等吗?判断并证明你的结论;(2)着点C 位置的变化,点E 的位置是否会发生变化?若没有变化,求出点E 的坐标;若有变化,请说明理由.图 1◆条件:△OAB,△OCD 均为等腰三角形,OA=OB,OC=OD,∠AOB=∠COD◆结论:①△OAC≌△OBD;②AC=BD;③∠AEB=∠AOB;④OE平分∠AED(或∠AED的外角);⑤点E在△OAB的外接圆上.3例2.如图 2-1,在Rt△ABC 中,∠B=90°,cosC=5,点6D、E 分别是边BC、AC 的中点,连接DE,AE将△EDC 绕点C 按顺时针方向旋转,记旋转角为θ.当0°≤θ<360°时,仅就图2-2 的情况给出证明.图2-1 图2-2的大小有无变化?请BD例3.如图3 所示,在四边形ABCD 中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD 的长为.图3 图4例4.如图4,在△ABC 中,∠ABC=60°,AB=2 ,BC=8,以AC 为腰,点A 为顶点作等腰△ACD,且∠DAC=120°,则BD 的长为.【巩固练习】1.如图1,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O 为AC 中点,若点D 在直线BC 上运动,连接OE,则在点D 运动过程中,线段OE 的最小值是为()A1B.C.1.2 2图1 图22.如图2,△ABC 为等边三角形,AB=2,点D 为BC 边上的动点,连接AD,以AD 为一边向右作等边△ADE,连接CE. (1)在点D 从点B 运动到点C 的过程中,点E 运动的路径长为;(2)在点D 的运动过程中,是否存在∠DEC=60°,若存在,求出BD 的长,若不存在,请说明理由.(3)取AC 中点P,连接PE,在点D 的运动过程中,求PE 的最小值.2D. 23.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图3-1,当点C1在线段C A的延长线上时,求∠CC1A1的度数;(2)如图3-2,连接AA1,CC1.若△A1BA1的面积为4,求△CBC1的面积;图3-1 图3-24.【提出问题】(1)如图4-1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM 为边作等边△AMN,连结CN.求证:BM=CN.【类比探究】(2)如图4-2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论BM=CN 还成立吗?请说明理由.【拓展延伸】(3)如图4-3,在等腰△ABC 中,BA=BC,AB=6,AC=4,点M 是BC 上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究BM与CN的数量关系,并说明理由.图4-1 图4-2 图4-35.如图5,正方形ABCD、BGFE 边长分别为2、1,正方形BGFE 绕点B 旋转,直线AE、GC 相交于点H.(1)在正方形BGFE绕点B旋转过程中,∠AHC的大小是否始终为90°,请说明理由;(2)连接DH、BH,在正方形BGFE 绕点B 旋转过程中,求DH 的最大值;图5 备用图6.如图6-1,已知点A(0,-3)和x 轴上的动点C(m,0),△AOB 和△BCD 都是等边三角形.(1)在C 点运动的过程中,始终有两点的距离等于OC 的长度,请将它找出来,并说明理由.(2)如图6-2,将△BCD 沿CD 翻折得△ECD,当点C 在x 轴上运动时,设点E(x,y),请你用m 来表示点E 的坐标并求出点E 运动时所在图象的解析式.(3)在C 点运动的过程中,当m 时,直接写出△ABD 是等腰三角形时E 点的坐标.图1 图237.【问题探究】(1)如图7-1,锐角△ABC 中分别以AB、AC 为边向外作等腰△ABE 和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD 与CE 的大小关系,并说明理由.【深入探究】(2)如图7-2,四边形ABCD 中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD 的长.(3)如图7-3,在(2)的条件下,当△ACD 在线段AC 的左侧时,求BD 的长.图7-1 图7-2 图7-38.(1)如图8-1,已知△ABC,以AB、AC 为边分别向△ABC 外作等边△ABD 和等边△ACE,连接BE、CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;(2)如图8-2,利用(1)中的方法解决如下问题:在四边形ABCD 中,AD=3,BD=2,∠ABC=∠ACB=∠ADB=45°,求BD 的长;(3)如图8-3,四边形ABCD中,∠BAC=90°,∠ADB=∠ABC=α,tanα=4,B D=5,AD=12,求BD 3的长.图8-1 图8-2 图8-32020 中考专题1——几何模型之双子型参考答案例1.解:①全等.理由:∵△AOB 和△CBD 是等边三角形,∴OB=AB,∠OBA=∠OAB=60°,BC=BD,∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC 和△ABD 中,∵,∴△OBC≌△ABD(SAS).②不变.理由:∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,又∵∠OAB=60°,∴∠OAE=180°﹣∠OAB﹣∠BAD=60°,∴Rt△OEA 中,AE=2OA=2,∴OE=,∴点E的位置不会发生变化,E的坐标为E(0,).例2.当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵==,∴△ECA∽△DCB,∴==;例3.解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD 与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′==3 ,∠D′DA+∠ADC=90°,由勾股定理得CD′==,∴BD=CD′=.故答案为:.例4.解:以A 为旋转中心,把△BAC 逆时针旋转120°,得到△EAD,连接BE,作AP⊥BE 于P,则∠BAE=120°,AB=AE,∴∠ABE=∠AEB=30°,∴BP=AB•cos∠ABP=3,∠AEB=90°,∴BE=2BP=6,在Rt△BED 中,BD==10,故答案为:10.【巩固训练】1. 解:设 Q 是 AB 的中点,连接 DQ ,∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE , ∵AB =AC =2,O 为 AC 中点,∴AQ =AO , 在△AQD 和△AOE 中,,∴△AQD ≌△AOE (SAS ),∴QD =OE ,∵点 D 在直线 BC 上运动,∴当 QD ⊥BC 时,QD 最小,∵△ABC 是等腰直角三角形,∴∠B =45°, ∵QD ⊥BC ,∴△QBD 是等腰直角三角形,∴QD =QB ,∵QB = AB =1,∴QD =,∴线段 OE 的最小值是为.故选:B .2. 解:(1)△ABD ≌△ACE 可得 BD =CE ,E 的运动路径的长即 D 的运动路径长,BC =2.(2) ∠DEC =60°相当于∠AEC =∠ADB =120°,即∠EDC =0°,此时点 D 与点 B 重合.因此不存在.(3) ∠ACE =60°,当 PE ⊥CE 时取最小值.PE =PC cos 60°=1.23. 解:(1)由旋转的性质可得:∠A 1C 1B =∠ACB =45°,BC =BC 1, ∴∠CC 1B =∠C 1CB =45°,∴∠CC 1A 1=∠CC 1B +∠A 1C 1B =45°+45°=90°. (2)∵△ABC ≌△A 1BC 1,∴BA =BA 1,BC =BC 1,∠ABC =∠A 1BC 1,∴,∠ABC +∠ABC 1=∠A 1BC 1+∠ABC 1,∴∠ABA 1=∠CBC 1,∴△ABA 1∽△CBC 1.∴,∵S △ABA 1=4,∴S △CBC 1= ;4.(1)证明:∵△ABC 、△AMN 是等边三角形, ∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°, ∴∠BAM =∠CAN ,∵在△BAM 和△CAN 中,∴△BAM ≌△CAN (SAS ), ∴∠ABC =∠ACN .(2) 解:结论∠ABC =∠ACN 仍成立;理由如下:∵△ABC 、△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,∴∠BAM =∠CAN ,∵在△BAM 和△CAN 中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(3)解:∠ABC=∠ACN;理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴=,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.5.解:(1)是,理由如下:如图,由旋转知,∠ABE=CBG,在正方形ABCD,BGFE 中,AB=BC,BE=BG,∠ADC=∠BCD=∠BAD=∠ABC=90°,∴△ABE≌△CBG,∴∠BAE=∠BCG,记AH 与BC 的交点为点P,∵∠APB=∠CPH,∠ABC+∠BAE+∠APB=180°∠AHC+∠BCG+∠CPH=180°,∴∠AHC=∠ABC=90°,(2)DH≤DE+EG=BD=2 26.解:(1)连接AD,如图1所示.A、D 两点间的距离始终等于OC 的长度.理由如下:∵△AOB 和△BCD 都是等边三角形,∴AB=OB,BD=BC,∠ABO=∠CBD=60°,∵∠ABD=∠ABO+∠OBD,∠OBC=∠OBD+∠DBC,∴∠ABD=∠OBC.在△ABD 和△OBC 中,有,∴△ABD≌△OBC(SAS),∴AD=OC.(2)过D 作DF⊥y 轴于F,连接BE,如图2 所示.由(1)可知△ABD≌△OBC,∴AD=OC=m,∠DAF=∠BAO﹣∠BAD=60°﹣(90°﹣60°)=30°∴DF=AD•sin∠DAF=m,AF=AD•cos∠DAF=m,∵A(0,﹣3),∴D(m,m﹣3).∵将△BCD 沿CD 翻折得△ECD 且△BCD 是等边三角形,∴四边形BCED 是菱形,∴BE、CD 互相平分.∵△AOB是等边三角形,且点O(0,0),点A(0,﹣3),∴点B(,﹣),∴E(m﹣,m﹣).∵m﹣=(m﹣),∴点E在图形y=x上运动.(3)∵点A(0,﹣3),点B(,﹣),点D(m,m﹣3),∴AB=3,AD=m,BD==,△ABD 为等腰三角形分三种情况:①当AB=AD 时,有3=m,此时点E的坐标为(﹣,﹣);②当AB=BD 时,有3=,解得:m=0(舍去),或m=3,此时点E的坐标为(3,3);③当AD=BD 时,有m=,解得:m=(舍去).综上可知:在C 点运动的过程中,当m>时,△ABD是等腰三角形时E点的坐标为(﹣,﹣)或(3,3).7.解:(1)BD=CE.理由是:∵∠BAE=∠CAD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC 和△BAD 中,,∴△EAC≌△BAD,∴BD=CE;(2)如图2,在△ABC 的外部,以A 为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC 和△BAD 中,,∴△EAC≌△BAD,∴BD=CE.∵AE=AB=7,∴BE==7 ,∠ABE=∠AEB=45°,又∵∠ABC=45°,∴∠ABC+∠ABE=45°+45°=90°,∴EC===,∴BD=CE=.(3)如图3,在线段AC 的右侧过点A 作AE⊥AB 于点A,交BC 的延长线于点E,连接BE.∵AE⊥AB,∴∠BAE=90°,又∵∠ABC=45°,∴∠E=∠ABC=45°,∴AE=AB=7,BE==7 ,又∵∠ACD=∠ADC=45°,∴∠BAE=∠DAC=90°,∴∠BAE﹣∠BAC=∠DAC﹣∠BAC,即∠EAC=∠BAD,在△EAC 和△BAD 中,,∴△EAC≌△BAD,∴BD=CE,∵BC=3,∴BD=CE=(7 ﹣3)cm.8.解:(1)如图1,分别以点A、B为圆心,以AB为半径画弧,交于点D,连接AD、BD,再分别以A、C 为圆心,以AC 为半径画弧,交于点E,连接AE、CE则△ABD、△ACE 就是所求作的等边三角形;证明:如图1,∵△ABD 和△ACE 都是等边三角形,∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,∴△DAC≌△BAE(SAS),∴BE=CD;(2)如图2,过A 作AE⊥AD,使AD=AE=3,连接DE、CE,由勾股定理得:DE==3 ,∴∠EDA=45°,∵∠ADC=45°,∴∠EDC=∠EDA+∠ADC=90°,∵∠ACB=∠ABC=45°,∴∠CAB=90°,∴∠CAB+∠DAC=∠EAD+∠DAC,即∠EAC=∠DAB,∵AE=AD,AC=AB,∴△DAB≌△EAC(SAS),∴EC=BD,在Rt△DCE 中,EC===,∴BD=EC=;(3)如图3,作直角三角形DAE,使得∠DAE=90°,∠DEA=∠ACB,连接EC,容易得到△DAE∽△BAC,∴,即,∵∠DAE=∠BAC=90°,∴∠DAE+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,∴△EAC∽△DAB,∴,在△DCE 中,∠ADC=∠ACB,∠EDA=∠ABC,∴∠EDC=90°,∵,AD=12,∴AE=9,∠DAE=90°,∴DE==15,CE==5 ,由△EAC∽△DAB,∴BD=.第 11 页共 11 页。
专题六 几何图形的基本模型
几何图形的基本模型【典型例题】模型一:双子型(手拉手模型)——全等(1)等边三角形条件:ΔOAB,ΔOCD均为等边三角形。
结论:①ΔOAC≌ΔOBD②AC=BD③∠AEB=600④OE平分∠AED⑤点E在ΔOAB的外接圆上(2)等腰直角三角形条件:ΔOAB,ΔOC D均为等腰直角三角形。
结论:①ΔOAC≌ΔOBD②AC=BD③∠AEB=900④OE平分∠AED⑤点E在ΔOAB的外接圆上(3)任意等腰三角形条件:ΔOAB,ΔOCD均为等腰三角形。
结论:①ΔOAC≌ΔOBD②AC=BD③∠AEB=∠A0B④OE平分∠AED(或∠AED的外角)⑤点E在ΔOAB的外接圆上例题:(1)如图①,△ABC中,AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰三角形ABD,ACE,分别取BD,CE,BC的中点M、N、G,连接GM、GN,线段GM与GN数量关系是;位置关系是(2)如图②,把等腰三角形ABC换为一般的锐角三角形,AB﹥AC,其中,其它条件不变,上述结论还成立吗?请说明理由。
(3)如图③,在(2)的基础上,又作了进一步的探究,向△ABC的内侧分别作等腰直角三角形ABD、ACE,其它条件不变,试判断△GMN的形状,并给与证明。
模型二:双子型(手拉手模型)——相似(1)一般情况条件:CD∥AB(ΔOCD∽ΔOAB),将ΔOCD旋转至右图位置结论:右图中①ΔOCD∽ΔOAB⇔ΔOAC∽ΔOBD②延长AC交BD于点E,必有∠AEB=∠AOB ③点E在ΔOAB的外接圆上。
(2)特殊情况条件:CD∥AB(ΔOCD∽ΔOAB),∠AOB=∠COD=900将ΔOCD旋转至右图位置结论:右图中①ΔOCD∽ΔOAB⇔ΔOAC∽ΔOBD②延长AC交BD于点E,必有∠AEB=900(BD ⊥AC)③连接AD,BC,则S ABCD=12AC×BD④OD OC=OB OA=tan∠OCD⑤点E在ΔOAB的外接圆上(A,O,E,B四点共圆)⑥必有AD2+BC2=AB2+CD2例题:以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=300(1)点E、F、M分别是AC、CD、DB的中点,连接FM、EM.1如图1,当点D、C分别在AO、BO的延长线上时,FM EM=2如图2,将图1中△AOB的绕点O沿顺时针方向旋转α角(00<α<600),其他条件不变,判断 的值是否发生变化,并对你的结论进行证明(3)如图3,若B0=33,点N在线段OD上,且NO=2.点P是线段AB上的一个动点,在将ΔOAB绕点0旋转过程中,线段PN长度的最小值为,最大值为。
中考数学第5讲 基本几何模型
中考16讲第5讲基本几何模型一、对角互补模型(构造全等)1.双90°型(1)条件:①∠AOB=∠DCE=90°;②OC平分∠AOB.结论:①_______________②______________③_______________(2)当∠DCE的一边与AO的延长线相交时,条件:①∠AOB=∠DCE=90°;②OC平分∠AOB.结论:①_______________②______________③_______________1.如图,正方形ABCD与正方形OMNP的边长均为10,点O是正方形ABCD的中心,正方形OMNP绕O点旋转,证明:无论正方形OMNP旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,并求这个定值.2.60°,120°型(1)条件:∠AOB=2∠DCE=120°;②OC平分∠AOB.结论:①_______________②______________③_______________(2)当∠DCE的一边与AO的延长线相交时,条件:∠AOB=2∠DCE=120°;②OC平分∠AOB.结论:①_______________②______________③_______________2.把两个边长都等于4的等边三角形拼成菱形ABCD(如下图).有一个含60°角的三角尺,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.(1)将尺绕点A按逆时针方向旋转,当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时(图1),通过观察或测量AE,AF的长度,你能得出什么结论?并证明你的结论;(2)在旋转过程中四边形AECF的周长是否发生变化?如果没有变化,请说明理由;如果有变化,请求出周长的最小值;(3)若将(1)中三角尺的60°角的顶点P在AC上移动且与点A、C都不重合,三角尺的两边分别与菱形的两边BC、CD相交于点E、F时(如图3),那么PE、PF之间又有什么数量关系?并证明你的结论.二、角含半角模型(必旋转)1.条件:①正方形ABCD;②∠EAF=45°.结论:①_______________②____________________________图①图②3.如图,在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,旋转角为θ,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x于点M,BC边交轴于点N.(1)当A点第一次落在直线y=x上时,求A、B两点坐标(直接写出结果);(2)设△MBN的周长为P,在旋转正方形OABC的过程中,P值是否有变化?请证明你的结论.变式1、如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为_____变式2、如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上1∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的的点,且∠EAF=2猜想.2.条件:①等腰Rt△ABC;②∠DAE=45°,如图所示.结论:____________________变式1、如图,在△ABC中,∠BAC=45°,AD⊥BC于D,若BD=6,CD=4,求AD的长.变式2、如图,等边△ABC中,点P、Q在BC边上,且∠PAQ=30°,若BP=2,QC=3,求AB的长.三、一线三等角模型如图①,∠ABC=∠ACE=∠CDE=90°;如图②,∠ABC=∠ACE=∠CDE=60°;如图③,∠ABC=∠ACE=∠CDE=45°;图①图②图③4.△ABC和△DEF均为正三角形,E是BC边的中点.(1)如图甲,DE交AB于M,EF交AC于N,求证:△BEM∽△CNE;(2)如图乙,将△DEF绕点E旋转,使得DE交BA的延长线于M,EF交AC于N,则(1)中的结论是否依旧还成立.5.如图,将等边三角形ABC折叠,使得点C落在边AB上的点D处,折痕为EF,CE=_______________.点E,F分别在AC和BC上.若AC=8,AD=2,则CF变式1、如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC 上的点D处,那么AM:AN的值为__________.变式2、如图坐标系中,O(0,0),A(6,36),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落24,则CE:DE的值是__________.在线段OB上的点E处,若OE=5四、K字模型探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):(1)请就图①证明上述“模块”的合理性.已知:∠A=∠D=∠BCE=90°,求证:△ABC∽△DCE;(2)请直接利用上述“模块”的结论解决下面两个问题:①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB=90°,求此时点B的坐标;②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x+3于点C、D,求点A关于直线CD 的对称点E的坐标.6.如图,Rt△AOB中,O为坐标原点,∠AOB=90°,OA∶OB=1∶2,如果点A在反比例函数1(x>0)的图像上运动,那么点B在函数(填函数解析式)的图y=x像上运动.变式1、如图,Rt △AOB 中,O 为坐标原点,∠AOB=90°,∠B=30°,如果点A 在反比例函数xy 1=(x >0)的图象上运动,那么点B 在函数________(填函数解析式)的图象上运动.变式2、已知点A 是双曲线xy 3=在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为一边作等边△ABC ,点C 在第四象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为_____ 。
中考必会几何模型——线段的计算双中点模型专项练习题
线段双中点模型专项练习题一、基础知识回顾1)线段中点的概念: 把一条线段分成两条相等的线段的点叫线段中点。
2)线段中点的性质: 线段的中点平分这条线段。
已知点 C 是线段A B 的中点,则AC=BC= AB ( 单中点模型 )二、线段双中点模型的概述:两线段在同一直线上且有一个共同的端点,求中点距离。
模型一:两线段无公共部分( 作和)已知点 B 是线段 A C 上任意一点,点 M 、 N 分别为线段 A B 、 B C 的中点,则 M N = AC证明:∵点M 、N 为线段A B 、B C 的中点∴ MB = AB , BN= BC 则MN=MB+BN= AB+ BC= AC 结论: 两中点的距离=被平分的两条线段和的一半121212 121212模型二:两线段有公共部分( 作差)1 )已知点 B 在线段 A C 的延长线上,点 M 、 N 分别为线段 A B 、B C 的中点,则 MN = AC证明:∵点M 、N 为线段A B 、B C 的中点∴ MB = AB , BN= BC 则MN=MB-BN= AB- BC= AC2 ) 已知点 B 在线段 CA 的延长线上,点 M 、 N 分别为线段 A B 、B C 的中点,则 M N = AC证明:∵点M 、N 为线段A B 、B C 的中点∴ MB = AB , BN= BC 则MN=NB - MB= BC - AB= AC 结论: 两中点的距离=被平分的两条线段差的一半1212 12 12121212 1212 1212 12总结论:两线段在同一条直线上且有一个相同的端点,已知两线段重点,则两线段中点距离=第三条线段长的一半(去掉公共端点剩下两端点组成的线段的一半)巩固练习1.如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=9 cm,CB=6 cm,则线段MN的长为 cm;(2)若AC=a cm,CB=b cm,则线段MN的长为 cm;(3)若点C为线段AB上任意一点,且AB=n cm,其他条件不变,你能猜想MN的长度吗?并用一句简洁的话描述你发现的结论.2.如图,已知线段AB = 12cm,点C线在线段AB上,点M是线段AC的中点,点N是线段BC的中点,那么线段MN长多少?3.如图,点C是线段AB上的点,M是AC的中点,N是BC中点,如果AB=16cm,那么MN的长是多少 .4.如图所示,P是线段AB上一点,M,N分别是线段AB,AP的中点,若AB=16,BP=6,求线段MN的长.5.如图,E、F分别是线段AC、AB的中点,若EF=20cm,求BC的长。
中考数学:几何题常用模型总结
中考数学:几何题常用模型总结几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间。
全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
高中物理 科学思维系列——双星模型 新人教版必修第二册-新人教版高一第二册物理试题
科学思维系列——双星模型1.模型构建在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期一样的匀速圆周运动的星球称为双星.2.模型特点①两颗星球角速度一样,间距不变,绕两者连线上某点旋转,轨迹为同心圆. ②两颗星球各自需要的向心力由彼此间的万有引力提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L2=m 2ω22r 2. ③两颗星球的周期与角速度都一样,即T 1=T 2,ω1=ω2,且T 1=T 2=2πL 3G m 1+m 2.④两颗星球的轨道半径与两者间的距离关系为r 1+r 2=L ,要注意r 1、r 2和L 的区别. ⑤由m 1a 1=m 2a 2可以推出a 1a 2=m 2m 1. 【典例】天文学家观测河外星系大麦哲伦云时,发现了LMCX -3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如下列图.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力F A 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m ′(用m 1、m 2表示);(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式. 【解析】 (1)设A 、B 的圆轨道半径分别为r 1、r 2,角速度均为ω. 由双星所受向心力大小相等,可得 m 1ω2r 1=m 2ω2r 2. 设A 、B 之间的距离为L ,又因为L =r 1+r 2. 联立可得L =m 1+m 2m 2r 1① 由万有引力定律得双星间的引力F =G m 1m 2L 2,将①式代入上式得F =Gm 1m 32m 1+m 22r21②由题意,将此引力视为O 点处质量为m ′的星体对可见星A 的引力,如此有F =Gm 1m ′r 21③ 由②③可得m ′=m 32m 1+m 22④(2)对可见星A 有G m 1m ′r 21=m 1v 2r 1⑤可见星A 的轨道半径r 1=vT2π⑥由④⑤⑥式解得m 32m 1+m 22=v 3T2πG . 【答案】 (1)m 32m 1+m 22 (2)m 32m 1+m 22=v 3T2πG方法技巧解决双星问题的关键对于双星问题,关键抓住“四个相等〞,即向心力、角速度、周期大小相等,轨道半径之和等于两星间距,然后运用万有引力提供向心力列式求解.变式训练1 (多项选择)两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的答案是( )A .它们做圆周运动的角速度之比与其质量成反比B .它们做圆周运动的线速度之比与其质量成反比C .它们做圆周运动的半径与其质量成正比D .它们做圆周运动的半径与其质量成反比解析:两天体绕连线上的某点做圆周运动的周期相等,角速度也相等,故A 错误;因为两天体做圆周运动的向心力由两天体间的万有引力提供,向心力大小相等,由Gm 1m 2L2=m 1r 1ω2,Gm 1m 2L2=m 2r 2ω2可知,m 1r 1ω2=m 2r 2ω2,所以它们的轨道半径与它们的质量成反比,C 错误,D 正确;而线速度又与轨道半径成正比,所以线速度与它们的质量也是成反比的,B 正确.答案:BD变式训练 2 (多项选择)经长期观测,人们在宇宙中已经发现了“双星系统〞,“双星系统〞由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体,如下列图.两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期一样的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1:m 2=3:2.如此可知( )A .m 1、m 2做圆周运动的线速度之比为3:2B .m 1、m 2做圆周运动的角速度之比为2:3C .m 1做圆周运动的半径为25LD .m 1、m 2做圆周运动的向心力大小相等解析:双星系统周期一样(角速度一样),所受万有引力作为向心力一样,所以B 项错误,D 项正确;由F =mω2r ,m 1r 1ω2=m 2r 2ω2,得m 1v 1=m 2v 2,v 1v 2=m 2m 1=23,A 项错误;r 1r 2=m 2m 1又r 1+r 2=L ,所以r 1=m 2m 1+m 2L =25L ,C 项正确.答案:CD变式训练3 银河系的恒星中大约四分之一是双星,某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观测得其周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,万有引力常量为G .由此可求出S 2的质量为( )A.4π2r 2r -r 1GT 2 B.4π2r 31GT 2C.4π2r3GT 2D.4π2r 2r 1GT2解析:设S 1、S 2两星体的质量分别为m 1、m 2,根据万有引力定律和牛顿定律得:对S 1有Gm 1m 2r 2=m 1⎝ ⎛⎭⎪⎫2πT 2r 1, 解之可得m 2=4π2r 2r 1GT2.所以正确选项是D. 答案:D变式训练4 月球与地球质量之比约为180,月球和地球可视为一个由两质点构成的双星系统,它们都围绕地月连线上某点O 做匀速圆周运动.据此观点,可知月球与地球绕O 点运动线速度大小之比约为( )A .1:6 400B .1:80C .80:1D .6 400:1解析:月球和地球绕O 点做匀速圆周运动,它们之间的万有引力提供各自的向心力,如此地球和月球的向心力相等.且月球和地球与O 点始终共线,说明月球和地球有一样的角速度和周期,因此有mω2r =Mω2R ,所以v v ′=r R =Mm,线速度和质量成反比,正确答案为C 项. 答案:C。
2024中考数学常见几何模型归纳总结—平分平行构等腰、角平分线第二定理模型
2024中考数学常见几何模型归纳总结—三角形中的重要模型-平分平行(平分射影)构等腰、角平分线第二定理模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。
平分平行(射影)构等腰模型、角平行线第二定理模型(内角平分线定理和外角平分线定理模型)模型1、平分平行(射影)构等腰1)角平分线加平行线必出等腰三角形.模型分析:由平行线得到内错角相等,由角平分线得到相等的角,等量代换进行解题.平行线、角平分线及等腰,任意由其中两个条件都可以得出第三个。
(简称:“知二求一”,在以后还会遇到很多类似总结)。
平行四边形中的翻折问题就常出现该类模型。
图1图2图3条件:如图1,OO ’平分∠MON ,过OO ’的一点P 作PQ//ON.结论:△OPQ 是等腰三角形。
条件:如图2,△ABC 中,BD 是∠ABC 的角平分线,DE ∥BC 。
结论:△BDE 是等腰三角形。
条件:如图3,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,过点O 作BC 的平行线与AB ,AC 分别相交于点M ,N .结论:△BOM 、△CON 都是等腰三角形。
2)角平分线加射影模型必出等腰三角形.→图4条件:如图4,BE 平分∠CBA ,∠ACB =∠CDA =90°.结论:三角形CEF 是等腰三角形。
例1.(2023·河南濮阳·统考二模)如图,直线12l l ∥,点C 、A 分别在1l 、2l 上,以点A 为圆心,适当长为半径画弧,交AC 、2l 于点D 、E ;分别以D 、E 为圆心,大于12DE 长为半径画弧,两弧交于点F ;作射线AF 交1l 于点B .若130BCA ∠=︒,则1∠的度数为()A .20︒B .25︒C .30︒D .50︒【答案】B 【分析】根据作图可知AB 是CAE ∠的角平分线,进而根据平行线的性质即可求解.【详解】解:∵12l l ∥,∴180BCA CAE ∠+∠=︒∵130BCA ∠=︒,∴50CAE ∠=︒根据作图可知AB 是CAE ∠的角平分线,∴11252CAB ∠=∠=︒,故选:B .【点睛】本题考查了作角平分线,平行线的性质,熟练掌握基本作图是解题的关键.例2.(2023.湖南长沙八年级期中)如图,点O 为△ABC 的∠ABC 和∠ACB 的平分线的交点,OD //AB 交BC 于点D ,OE //AC 交BC 于点E .若AB =5cm ,BC =10cm ,AC =9cm ,则△ODE 的周长为()A.10cm B.9cm C.8cm D.5cm【答案】A【分析】根据角平分线的性质以及平行线的性质,把△ODE三条边转移到同一条线段BC上,即可解答.【详解】解:如图:∵OC、OB分别是∠ACB、∠ABC的角平分线,∴∠5=∠6,∠1=∠2,∵OD∥AB,OE∥AC,∴∠4=∠6,∠1=∠3.∴∠4=∠5,∠2=∠3,即OD=BD,OE=CE.∴△ODE的周长=OD+DE+OE=BD+DE+CE=BC=10cm.故选:A.【点睛】此题考查了等腰三角形的判定与性质,以及平行线的性质,关键是证明△BDO,△OEC都是等腰三角形.例3.(2023·广东·八年级期末)如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为cm.【答案】1【分析】根据角平分线的概念、平行线的性质及等腰三角形的性质,可分别推出AE=AB ,DF=DC ,进而推出EF=AE+DF-AD .【详解】∵四边形ABCD 是平行四边形,∴∠AEB =∠EBC ,AD =BC =5cm ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,则∠ABE =∠AEB ,∴AB =AE =3cm ,同理可证:DF =DC =AB =3cm ,则EF =AE +FD ﹣AD =3+3﹣5=1cm .故答案为:1.【点睛】本题考查了平行四边形的性质,关键是运用角平分线的概念和平行线的性质,由等角推出等边.例4.(2023.成都市青羊区八年级期中)如图,在ABC △中,90BAC ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线BE 交AD 于F ,交AC 于E ,若3AE =,2DF =,则AD =_____________.【答案】5【详解】由角度分析易知AEF AFE ∠=∠,即AE AF =,∵3AE =∴3AF =∵2DF =∴5AD AF DF =+=【点睛】这道题主要讲解角平分线加射影模型必出等腰三角形的模型.例5.(2023.山东八年级期末)如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF 与BE 、CF 之间有怎样的关系.(2)如图②,若AB ≠AC ,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF 与BE 、CF 间的关系还存在吗?(3)如图③,若△ABC 中∠B 的平分线BO 与三角形外角平分线CO 交于O ,过O 点作OE ∥BC 交AB 于E ,交AC 于F .这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.【答案】(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.【分析】(1)由AB=AC,可得∠ABC=∠ACB;又已知OB、OC分别平分∠ABC、∠ACB;故∠EBO=∠OBC=∠FCO=∠OCB;根据EF∥BC,可得:∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO;由此可得出的等腰三角形有:△AEF、△OEB、△OFC、△OBC、△ABC;已知了△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.(2)由(1)的证明过程可知:在证△OEB、△OFC是等腰三角形的过程中,与AB=AC的条件没有关系,故这两个等腰三角形还成立.所以(1)中得出的EF=BE+FC的结论仍成立.(3)思路与(2)相同,只不过结果变成了EF=BE-FC.【详解】解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;EF、BE、FC的关系是EF=BE+FC.理由如下:∵AB=AC,∴∠ACB=∠ABC,△ABC是等腰三角形;∵BO、CO分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=12∠ABC,∠OCB=∠ACO=12∠ACB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠ABO=∠OBC=∠EOB=∠OCB=∠FOC=∠FCO,∴△EOB、△OBC、△FOC都是等腰三角形,∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴∠AEF=∠AFE,∴△AEF是等腰三角形,∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF;(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF;(3)△EOB和△FOC仍是等腰三角形,EF=BE-FC.理由如下:同(1)可证得△EOB是等腰三角形;∵EO∥BC,∴∠FOC=∠OCG;∵OC平分∠ACG,∴∠ACO=∠FOC=∠OCG,∴FO=FC,故△FOC是等腰三角形;∴EF=EO-FO=BE-FC.【点睛】本题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.进行线段的等量代换是正确解答本题的关键.模型2、角平行线第二定理(内角平分线定理和外角平分线定理)模型1)内角平分线定理图1图2图3条件:如图1,在△ABC 中,若AD 是∠BAC 的平分线。
2021中考数学必会8大模型汇总
模型一 中点四大模型模型1:倍长中线或类中线(与中点有关的线段)构造全等三角形②图①图构造全等倍长类中线倍长中线DCBAF F ACABCDCBA模型分析如图①,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS ). 如图②,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS ) 当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移.模型实例例题1 如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF =EF ,求证:AC =BE .FECA巩固提升1.如图,在△ABC 中,AB =12,AC =20,求BC 边上中线AD 的范围.D CBA【解析】延长AD 到E ,使AD =DE ,连接BE , ∵AD 是△ABC 的中线, ∴BD =CD ,在△ADC 与△EDB 中,⎪⎩⎪⎨⎧=∠=∠=DE AD BDE ADC CD BD ,∴△ADC ≌△EDB (SAS ),∴EB =AC =20,根据三角形的三边关系定理:20-12<AE <20+12, ∴4<AD <16,故AD 的取值范围为4<AD <16.2.如图,在△ABC 中,D 是BC 的中点,DM ⊥DN ,如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). NMD CBA【证明】如图,过点B 作AC 的平行线交ND 的延长线于E ,连ME .∵BD =DC , ∴ED =DN .在△BED 与△CND 中,∵⎪⎩⎪⎨⎧=∠=∠=DN ED CDN BDE DC BD ,∴△BED ≌△CND (SAS ).∴BE =NC . ∵∠MDN =90°, ∴MD 为EN 的中垂线. ∴EM =MN .∴BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2, ∴△BEM 为直角三角形,∠MBE =90°. ∴∠ABC +∠ACB =∠ABC +∠EBC =90°. ∴∠BAC =90°. ∴AD 2=(21BC )2=41(AB 2+AC 2).模型2:已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到: “边等、角等、三线合一”.模型实例例题2 如图,在△AB C 中,AB =A C =5,B C =6,M 为B C 的中点,MN ⊥A C 于点N ,求MN 长度.NMC BA【解析】连接AM∵AB =AC =5,BC =6,点M 为BC 中点,∴AM ⊥BC ,BM =CM =21BC =3 ∵AB =5,∴AM =4352222=-=-BM AB∵MN ⊥AC ,∴S △ANC =21MC ·AM =21AC ·MN 即21×3×4=21×5×MN ,∴MN =512巩固提升1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AE ⊥DE ,AF ⊥DF ,且AE =AF ,求证:∠EDB =∠FDC .FEDCBA【证明】连结AD∵AB =AC ,D 是BC 的中点 ∴AD ⊥BC ,∠ADB =∠ADC =90° 在Rt △AED 与Rt △AFD 中,⎩⎨⎧==AD AD AFAB ,∴Rt △AED ≌Rt △AFD .(HL ),∴∠ADE =∠ADF∵∠ADB +∠ADC =90° ∴∠EDB =∠FDC2.已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当∠EDF 绕D 点旋转到DF ⊥AC 于E 时(如图①),求证:S △DEF +S △CEF =21S △ABC ; (2)当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、S △CEF 、S △ABC 又有怎样的数量关系?请写出你的猜想,不需要证明.③图②图①图ABCDEFABCDEF F EDCBA【解析】(1)连接CD ;如图2所示: ∵AC =BC ,∠ACB =90°,D 为AB 中点 ∴∠B =45°,∠DCE =21∠ACB =45°,CD ⊥AB ,CD =21AB =BD ∴∠DCE =∠B ,∠CDB =90° ∵∠EDF =90°,∴∠1=∠2在△CDE 和△BDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠B DCB BD CD 21,∴△CDE ≌△BDF (ASA )∴S △DEF +S △CEF =S △ADE +S △BDF =21S △ABC ; (2)不成立;S △DEF −S △C EF =21S △ABC ;理由如下:连接CD ,如图3所示:同(1)得:△DEC ≌△DBF ,∠DCE =∠DBF =135° ∴S △DEF =S 五边形DBFEC =S △CFE +S △DBC =S △CFE +21S △ABC ∴S △DEF -S △CFE =21S △ABC ∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF -S △CEF =21S △ABC 21ABCDE F模型3:已知三角形一边的中点,可考虑中位线定理构造中位线取另一边中点EABC DDCBA模型分析在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理: DE ∥BC ,且DE =21BC 来解题.中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型实例例题3 如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M ,N .求证:∠BME =∠CNE .NM FEDCBA【解析】如图,连接BD ,取BD 的中点H ,连接HE 、HF . ∵E 、F 分别是BC 、AD 的中点,∴FH =21AB ,FH ∥AB ,HE =21DC ,HE ∥NC . 又∵AB =CD ,∴HE =HF ,∴∠HFE =∠HEF . ∵FH ∥MB ,HE ∥NC ,∴∠BME =∠HFE ,∠CNE =∠FEH ∴∠BME =∠CNE .巩固提升1.(1)如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AD ⊥BD ,AE ⊥CE ,垂足分别为D ,E ,连接DE ,求证:DE ∥BC ,DE =12(AB +BC +AC );(2)如图2,BD ,CE 分别是△ABC 的内角平分线,其他条件不变,上述结论是否成立? (3)如图3,BD 是△ABC 的内角平分线,CE 是△ABC 的外角平分线,其他条件不变,DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中一种情况进行证明.ED C BA图1G FEDCBA图2FED CBA图3【解析】(1)如图①,分别延长AE ,AD 交BC 于H ,K在△BAD 和△BKD 中,ABD DBKBD BD BDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌ △BKD (ASA )∴AD =KD ,AB =KB同理可证,AE =HE ,AC =HC ,∴DE =12HK又∵HK =BK +BC +CH =AB +BC +AC ,∴DE =12(AB +AC +BC )(2)猜想结果:图②结论为DE =12(AB +AC -BC ) 【证明】分别延长AE ,AD 交BC 于H ,K在△BAD 和△BKD 中,ABD DBK BD BD BDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△BKD (ASA ),∴AD =KD ,AB =KB同理可证,AE =HE ,AC =HC ,∴DE =12HK .又∵HK =BK +CH -BC =AB +AC -BC ,∴DE =12(AB +AC -BC )GABCDEKHF 图2(3)图③的结论为DE =12(BC +AC -AB )【证明】分别延长AE ,AD 交BC 或延长线于H ,K .在△BAD 和△BKD 中,ABD DBK BD BD BDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△BKD (ASA ),∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC ,∴DE =12KH .又∵HK =BH -BK =BC +CH -BK =BC +AC -AB ,∴DE =12(BC +AC -AB ).ABCD EKHF图32.问题一:如图①,在四边形ABCD 中,AB 与CD 相交于点O ,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF ,分别交DC ,AB 于点M ,N ,判断△OMN 的形状,请直接写出结论. 问题二:如图②,在△ABC 中,AC >AB ,D 点在AC 上,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC =60°,连接GD ,判断△AGD 的形状并证明.图1NMO FE DC BAE图2GABCDF【证明】(1)等腰三角形(提示:取AC 中点H ,连接FH ,EH ,如图①)(2)△AGD 是直角三角形如图②,连接BD ,取BD 的中点H ,连接HF ,HE . ∵F 是AD 的中点,∴HF ∥AB ,HF =12AB ,∴∠1=∠3. 同理,HE ∥CD ,HE =12CD ,∴∠2=∠EFC , ∴AB =CD ,∴HF =HE ,∴∠1=∠2.∵∠EFC =60°,∴∠3=∠EFC =∠AFG =60°,∴△AGF 是等边三角形. ∴AF =FG ,∴GF =FD , ∴∠FGD =∠FDG =30°.∴∠AGD =90°,即△AGD 是直角三角形.图2321G A BCDF H模型4:已知直角三角形斜边中点,可以考虑构造斜边中线DCBA模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12AB ,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用.模型实例例题4 如图,在△ABC 中,BE ,CF 分别为AC ,AB 上的高,D 为BC 的中点,DM ⊥ EF 于点M ,求证:FM =EM .M FEDCBA【证明】连接DE ,DF .∵BE ,CF 分别为边AC ,AB 上的高,D 为BC 的中点,∴DF =12BC ,DE =12BC∴DF =DE ,即△DEF 是等腰三角形,DM ⊥EF ,∴点M 是EF 的中点,即FM =EM .ABCDEFM巩固提升1.如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点,AB=10,求DM的长度.【解析】取AB中点N,连接DN,MN.在Rt△ADB中,N是斜边AB上的中点,∴DN=12AB=BN=5.∴∠NDB=∠B.在△ABC中,M,N分别是BC,AB的中点,∴MN∥AC∴∠NMB=∠C,又∵∠NDB是△NDM的外角,∴∠NDB=∠NMD+∠DNM.即∠B=∠NMD+∠DNM=∠C+∠DNM.又∵∠B=2∠C,∴∠DNM=∠C=∠NMD.∴DM=DN.∴DM=5.NM D CBA2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,M 为DE 的中点,连接MB ,MC ,求证:MB =MC .MDCBA【证明】延长BM 交CE 于G , ∵△ABD 和△ACE 都是直角三角形, ∴CE ∥BD ,∴∠BDM =∠GEM .又∵M 是DE 中点,即DM =EM ,且∠BMD =∠GME , ∴△BMD ≌△GME∴BM =MG ,∴M 是BG 的中点, ∴在Rt △CBG 中,BM =CM .3.问题1:如图①,三角形ABC 中,点D 是AB 边的中点,AE ⊥ BC ,BF ⊥AC ,垂足分别为点E ,F .AE 、BF 交于点M ,连接DE ,DF ,若DE =kDF ,则k 的值为 . 问题2:如图②,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥ AC ,垂足分别为点E ,F ,连接DE ,DF ,求证:DE =DF .问题3:如图③,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他 条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.图1MF E DCBA图2ABCDE FM图3ABCDF M【解析】∵(1)AE ⊥BC ,BF ⊥AC , ∴△AEB 和△AFB 都是直角三角形, ∵D 是AB 的中点, ∴DE =12AB ,DF =12AB . ∴DE =DF . ∵DE =KDF , ∴k =1.(2)∵CB =CA , ∴∠CBA =∠CAB . ∵∠MAC =∠MBC ,∴∠CBA -∠MBC =∠CAB -∠MAC ,即∠ABM =∠BAM . ∴AM =BM .∵ME ⊥BC ,MF ⊥AC , ∴∠MEB =∠MF A =90°. 又∵∠MBE =∠MAF , ∴△MEB ≌△MF A (AAS ) ∴BE =AF .∵D是AB 的中点,即BD=AD,又∵∠DBE=∠DAF,∴△DBE≌△DAF(SAS)∴DE=DF.(3)DE=DF.如图,作AM的中点G,BM的中点H,连DG,FG,DH,EH.∵点D是边AB的中点,∴DG∥BM,DG=12 BM.同理可得:DH∥AM,DH=12 AM.∵ME⊥BC于E,H是BM的中点.∴在Rt△BEM中,HE=12BM=BH.∴∠HBE=∠HEB,∴∠MHE=2∠HBE.又∵DG=12BM,HE=12BM,∴DG=HE.同理可得:DH=FG. ∠MGF=2∠MAC.∵DG∥BM,DH∥GM,∴四边形DHMG是平行四边形.∴∠DGM=∠DHM.∵∠MGF=2∠MAC,∠MHE=2∠MBC,∠MBC=∠MAC,∴∠MGF=∠MHE.∴∠DGM+∠MGF=∠DHM+∠MHE.∴∠DGF=∠DHE.在△DHE与△FGD中,DG HEDGF DHEDH FG=⎧⎪∠=∠⎨⎪=⎩,∴△DHE≌△FGD(SAS),∴DE=DF.模型二截长补短辅助线模型模型:截长补短如图①,若证明线段AB、CD、EF之间存在EF=AB+CD,可以考虑截长补短法截长法:如图②,在EF上截取EG=AB,再证明GF=CD即可补短法:如图③,延长AB至H点,使BH=CD,再证明AH=EF即可模型分析截长补短的方法适用于求证线段的和差倍分关系. 截长,指在长线端中截取一段等于已知的线段;补短,指将一条短线端延长,延长部分等于已知线段. 该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程.模型实例例题1 如图,已知在△ABC中,∠C=2∠B,∠1=∠2 .求证:AB=AC+CD. 证法一,截长法:如图①,在AB上取一点E,使AE=AC,连接DE.∵AE=AC,∠1=∠2,AD=AD,∴△ACD≌△AED,∴CD=DE,∠C=∠3 .∵∠C=2∠B,∴∠3=2∠B=∠4+∠B,∴∠4=∠B,∴DE=BE,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD.证法二,补短法:如图②,延长AC到点E,使CE=CD,连接DE .∵CE=CD,∴∠4=∠E.∵∠3=∠4+∠E,∴∠3=2∠E.∵∠3=2∠B,∴∠E=∠B .∵∠1=∠2,AD=AD,∴△EAD≌△BAD,∴AE=AB.又∵AE=AC+CE,∴∴AB=AC+CD.例题2 如图,O D平分∠A O B,DC⊥O A于点C,∠A=∠GBD . 求证:A O+B O=2C O .【证明】在线段A O上取一点E,使CE=AC,连接DE .∵CD=CD,DC⊥O A,∴△ACD≌△ECD,∴∠A=∠CED .∵∠A=∠GBD,∴∠CED=∠GBD,∴1800-∠CED=1800-∠GBD,∴∠O ED=∠O BD .∵O D平分∠A O B,∴∠A O D=∠B O D .∵O D=O D,∴△O ED≌△O BD,∴O B=O E,∴A O+B O=A O+O E=O E+2CE+O E=O E+CE+O E+CE=2(CE+O E)=2C O .巩固提升1. 如图,在△ABC中,∠BAC=600,AD是∠BAC的平分线,且AC=AB+BD.求∠ABC 的度数 .证法一:补短延长AB到点E,使BE=BD .在△BDE中,∵BE=BD,∴∠E=∠BDE,∴∠ABC=∠BDE+∠E=2∠E .又∵AC=AB+BD,∴AC=AB+BE,∴AC=AE .∵AD是∠BAC的平分线,∠BAC=600,∴∠EAD=∠CAD=600÷2=300 .∵AD=AD,∴△AED≌△ACD,∴∠E=∠C,又∵∠ABC=2∠E,∴∠ABC=2∠C .∵∠BAC=600,∴∠ABC+∠C=1800-600=1200,∴32∠ABC=1200,∴∠ABC=800 .证法二:在AC上取一点F,使AF=AB,连接DF.∵AD是∠BAC的平分线,∴∠BAD=∠F AD.∵AD=AD,∴△BAD≌△F AD,∴∠B=∠AFD,BD=FD.∵AC=AB+BD,AC=AF+FC,∴FD=FC,∴∠FDC=∠C.∵∠AFD=∠FDC+∠C,∴∠B=∠FDC+∠C=2∠C .∵∠BAC+∠B+∠C=1800,∴32∠ABC=1200,∴∠ABC=800 .2. 在△ABC 中,∠ABC =600,AD 、CE 分别平分∠BAC 、∠ACB . 求证:AC =AE +CD .【解析】如图,在AC 边上取点F ,使AE =AF ,连接O F . ∵∠ABC =600,∴∠BAC +∠ACB =1800-∠ABC =1200 . ∵AD 、CE 分别平分∠BAC 、∠ACB , ∴∠O AC =∠O AB =2BAC ,∠O CA =∠O CB =2ACB, ∴∠A O E =∠C O D =∠O AC +∠O CA =2BACACB=600,∴∠A O C =1800-∠A O E =1200 .∵AE =AF ,∠EA O =∠F A O ,A O =A O , ∴△A O E ≌△A O F (S A S ), ∴∠A O F =∠A O E =600,∴∠C O F =∠A O C -∠A O F =600, ∴∠C O F =∠C O D .∵C O =C O ,CE 平分∠ACB , ∴△C O D ≌△C O F (A S A ), ∴CD =CF . ∵AC =AF +CF , ∴AC =AE +CD ,3. 如图,∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB .求证:AB+CD=BC .【解析】证法一:截长如图①,在BC上取一点F,使BF=AB,连接EF.∵∠1=∠ABE,BE=BE,∴△ABE≌△FBE,∴∠3=∠4 .∵∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB,∴∠1+∠2=12∠ABC+12∠DCB=12×1800=900,∴∠BEC=900,∴∠4+∠5=900,∠3+∠6=900 .∵∠3=∠4 ,∴∠5=∠6 .∵CE=CE,∠2=∠DCE,∴△CEF≌△CED,∴CF=CD .∵BC=BF+CF,AB=BF,∴AB+CD=BC证法二:补短如图②,延长BA到点F,使BF=BC,连接EF .∵∠1=∠ABE,BE=BE,∴△BEF≌△BEC,∴EF=EC,∠BEC=∠BEF .∵∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB,∴∠1+∠2=12∠ABC+12∠DCB=12×1800=900,∴∠BEC=900,∴∠BEF=∠BEC=900,∴∠BEF+∠BEC=1800,∴C、E、F三点共线 .∵AB∥CD,∴∠F=∠FCD.∵EF=EC,∠FEA=∠DEC,∴△AEF≌△DEC,∴AF=CD .∵BF=AB+AF,∴BC=AB+CD .4.如图,在△ABC中,∠ABC=900,AD平分∠BAC交BC于D,∠C=300,BE⊥AD于点E.求证:AC-AB=2BE .【解析】延长BE交AC于点M.∵BE⊥AD,∴∠AEB=∠AEM=900.∵∠3=900-∠1,∠4=900-∠2,∠1=∠2,∴∠3=∠4,∴AB=AM.∵BE⊥AE,∴BM=2BE.∵∠ABC=900,∠C=300,∴∠BAC=600.∵AB=AM,∴∠3=∠4=600,∴∠5=900-∠3=300,∴∠5=∠C,∴CM=BM,∴AC-AB=CM=BM=2BE .5. 如图,R t△ACB中,A=BC,AD平分∠BAC交BC于点D,CE⊥AD交AD于点F,交AB于点E.求证:AD=2DF+CE.【解析】在AD上取一点G,使AG=CE,连接CG.∵CE⊥AD,∴∠AFC=900,∠1+∠ACF=900.∵∠2+∠ACF=900,∴∠1=∠2 .∵AC=BC,AG=CE,∴△ACG≌△CBE,∴∠3=∠B=450,∴∠2+∠4=900-∠3=450.∵∠2=∠1=12∠BAC=22.50,∴∠4=450-∠2=22.50,∴∠4=∠2=22.50.又∵CF=CF,DG⊥CF,∴△CDF≌△CGF,∴DF=GF .∵AD=AG+DG,∴AD=CE+2DF.6. 如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠E=1800.求证:AD平分∠CDE【解析】如图,延长CB到点F,使BF=DE,连接AF、AC∵∠1+∠2=1800,∠E+∠1=1800,∴∠2=∠E∵AB=AE,∠2=∠E,BF=DE∴△ABF≌△AED,∴∠F=∠4,AF=AD∵BC+DE=CD,∴BC+BF=CD,即FC=CD又∵AC=AC,∴△ACF≌△ACD∴∠F=∠3∵∠F=∠4∴∠3=∠4∴AD平分∠CDE模型三角平分线四大模型模型1:角平分线的点向两边作垂线如图,P是∠M O N的平分线上一点,过点P作P A⊥O M于点A,PB⊥O N于点B,则PB=P A模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口模型实例例题1 (1)如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直线AB的距离是【解析】如图,过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE∵CB=6,BD=4,∴DE=CD=2即点D到直线AB的距离是2(2)如图②,∠1=∠2,∠3=∠4,求证:AP平分∠BAC【证明】如图,过点P作PD⊥AB于点D,PE⊥BC于点E,PF⊥AC于点F,∵∠1=∠2,∴PD=PE,∵∠3=∠4,∴PE=PF,∴PD=PF又∵PD⊥AB,PF⊥AC,∴AP平分∠BAC(角平分线的判定)巩固提升1.如下图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC,求证:∠BAD+∠BCD=180°【证明】作DE⊥BC于E,作DF⊥BA的延长线于F,∴∠F=∠DEC=90°,∵BD平分∠ABC,∴DF=DE,又∵AD=DC,∴△DFA≌DEC,∴∠FAD=∠C∵∠F AD+∠BAD=180°,∴∠BAD+∠BCD=180°2. 如图,△ABC的外角∠ACD∠的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=.【解析】如图所示,作PN⊥BD于N,作PF⊥BA,交BA延长线于F,作PM⊥AC于M∵BP、CP分别是∠CBA和∠DCA的角平分线,∴∠ABP=∠CBP,∠DCP=∠ACP,PF=PN=PM,∵∠BAC=∠ACD-∠ABC,∠BPC=∠PCD-∠PBC(外角性质)∴∠BAC=2∠PCD-2∠PBC=2(∠PCD-∠PBC)=2∠BPC=80°∴∠CAF=180°-∠BAC=100°,∵PF=PM∴AP是∠F AC的角平分线,∴∠CAP=∠P AF=50°模型2:截取构造对称全等如图,P是∠M O N的平分线上的一点,点A是射线O M上任意一点,在O N上截取O B=O A,连接PB,则△O PB≌△O P A模型分析利用角平分线图形的对称性,在铁的两边构造对称全等三角形,可以得到对应边,对应角相等,利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧模型实例例题2 (1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A 的任意一点,试比较PB+PC与AB+AC的大小,并说明理由解题:PB+PC>AB+AC【证明】在BA的延长线上取点E,使AE=AB,连接PE,∵AD平分∠CAE∴∠CAD=∠EAD,在△AEP与△ACP中,∵AE=AB,∠CAD=∠EAD,AP=AP,∴△AEP≌△ACP(S A S),∴PE=PC∵在△PBE中:PB+PE>BE,BE=AB+AE=AB+AC,∴PB+PC>AB+AC(2)如图②所示,AD 是△ABC 的内角平分线,其它条件不变,试比较PC -PB 与AC -AB 的大小,并说明理由解答:AC -AB >PC -PB证明:在△ABC 中, 在AC 上取一点E ,使AE =AB ,∴AC -AE =AB -AC =BE ∵AD 平分∠BAC ,∴∠EAP =∠BAP ,在△AEP 和△ACP 中∴△AEP ≌△ABP (S A S) ,∴PE =PB ,∵在△CPE 中,CE >CP -PE ,∴AC -AB >PC -PB巩固提升1. 已知,在△ABC 中,∠A =2∠B ,CD 是∠ACB 的平分线,AC =16,AD =8, 求线段BC 的长【解析】如图在BC 边上截取CE =AC ,连结DE ,在△ACD 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=CD CD ECD ACD EC AC ,∴△ACD ≌△ECD (S A S)∴AD =DE , ∠A =∠1 ,∵∠A =2∠B ,∴∠1=2∠B , ∵∠1=∠B +∠EDB , ∴∠B =∠EDB∴EBB =ED , ∴EB =DA =8,BC =EC +BE =AC +DA =16+8=242. 在△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC ,求证:BC =AB +CD【证明】在BC 上截取BE =BA ,连结DE , ∵BD 平分∠ABC ,BE =AB ,BD =BD ,∴△ABD ≌△EBD (S A S),∴∠DEB =∠A =108°,∴∠DEC =180°-108°=72° ∵AB =AC ,∴∠C =∠ABC =12(180°-108°)=36°,∴∠EDC =72°∴∠DEC =∠EDC ,∴CE =CD ,∴BE +CE =AB +CD ,∴BC =AB +CD3.如图所示,在△ABC 中,∠A =100°,∠ABC =40°,BD 是∠ABC 的平分线,延长BD 至E ,使DE =AD ,求证:BC =AB +CE【证明】在CB 上取点F ,使得BF =AB ,连结DF ,∵BD 平分∠ABC ,BD =BD ∴△ABD ≌△FBD ,∴DF =AD =DE ,∠ADB =∠FDB ,∴BD 平分∠ABC ∴∠ABD =20°,则∠ADB =180°-20°-100°=60°=∠CDE ∠CDF =180°-∠ADB -∠FDB =60°,∴∠CDF =∠CDE ,在△CDE 和△CDF 中,⎪⎩⎪⎨⎧=∠=∠=CD CD CDE CDF DFDE ,∴△CDE ≌CDF ,∴CE =CF ,∴BC =BF +FC =AB +CE模型3:角平分线+垂线构造等腰三角形如图,P是∠M O N的平分线上一点,AP丄O P于P点,延长AP交O N于点.B,则△A O B 是等腰三角形.模型分析构造此模型可以利用等腰三角形的"三线合一”,也可以得到两个全等的直角三角形.进而得到对应边.对应角相等.这个模型巧妙地把角平分线和三线合一联系了起来.模型实例例题3 如图,己知等腰直角三角形ABC中,∠A=90°,AB=AC,BD平分∠ABC,C£丄BD.垂足为E.求证:BD=2C£.【解析】如图,延长CE、BA交于点F,∵CE丄BD于E,∠BAC=90°,∴∠BAD=∠CED ∴∠ABD=∠ACF。
中考数学几何模型及构造解析,搞定压轴题!
中考数学几何模型及构造解析,搞定压轴题!全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最值模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
初中常见几何模型—双子型
初中常见⼏何模型—双⼦型
许多数学模型是完美的,有对称的,有成双成对的,有像圆⼀样圆满的,今天,我们就来讲⼀个⽩⾸不分离的爱情故事,啊呸,数学模型!
全等双⼦型
如图,△ABC和△CED均为等边三⾓形,点C为公共点,那么,在这张图中,我们能得到哪些结论呢?
常见结论:
三⾓形全等:△BCE≌△ACD
线段相等:BE=AD
⾓的结论:∠AFB=∠ACB=60°
稍微变⼀下型,如下图,△ABC和△CED均为等腰直⾓三⾓形,点C为公共点
常见结论:
三⾓形全等:△BCE≌△ACD
线段相等:BE=AD
⾓的结论:∠AFB=∠ACB=90°
发现了吗?除了最后⼀个,其它完全⼀样。
再稍微变⼀下型,我们把两个等腰直⾓三⾓形换成两个正⽅形,你还能找出结论吗?
连接BD和GE,你会发现,就是上⾯那道题!
⼀般情况
我们拓展到⼀般情况,如下图,△ABC和△CED均为等腰三⾓形,点C为公共点,且满⾜
∠BAC=∠CED.
结论:△ABE≌ACD,BE=CD,∠BFC=∠BAC
要求:⾄少有两条边相等,顶点重合。
【可以思考⼀下两个相似的菱形顶点重合,是否还有上⾯的结论呢?】
相似双⼦型
上⾯的都是全等,既然全等是特殊的相似,那相似肯定也是有的咯!
如图,△ABC和△CED均为直⾓三⾓形,点C为公共点,且满⾜∠BAC=∠CDE.
【当狡猾的出题⼈把上⾯的直⾓三⾓形补成矩形的时候,你可别看不出来哦!】
练⼀练
构造双⼦型
当然也可以⽤下图的构造法,这题就留给⼤家⾃⼰思考吧!。
2021中考专题 几何模型之双子型
◆条件:△OAB,△OCD 均为等腰三角形,OA=OB,OC=OD,∠AOB=∠COD◆结论:①△OAC≌△OBD;②AC=BD;③∠AEB=∠AOB;④OE平分∠AED(或∠AED的外角);⑤点E在△OAB的外接圆上.◆条件:CD∥AB(△OCD∽△OAB),将△OCD 旋转至右图位置◆结论:右图中①△OCD∽△OAB △OAC∽△OBD;②延长AC交BD于点E,必有∠AEB=∠AOB;③点 E 在△OAB 的外接圆上.2021 中考专题 1——几何模型之双子型【模型解析】【例题分析】例 1.如图1,直角坐标系中,点A 的坐标为(1,0),以线段OA 为边在第四象限内作等边△AOB,点C 为x 正半轴上一动点(OC>1),连接BC,以线段BC 为边在第四象限内作等边△CBD,直线DA 交y 轴于点E.(1)△OBC 与△ABD 全等吗?判断并证明你的结论;(2)着点C 位置的变化,点E 的位置是否会发生变化?若没有变化,求出点E 的坐标;若有变化,请说明理由.图13微信公众号例2.如图 2-1,在Rt△ABC 中,∠B=90°,cosC=5,点D、E 分别是边BC、AC 的中点,连接DE,6将△EDC 绕点C 按顺时针方向旋转,记旋转角为θ.当0°≤θ<360°时,仅就图2-2 的情况给出证明.图2-1 图2-2AE的大小有无变化?请BD例3.如图3 所示,在四边形ABCD 中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD 的长为.图3 图4例4.如图4,在△ABC 中,∠ABC=60°,AB=2 ,BC=8,以AC 为腰,点A 为顶点作等腰△ACD, 且∠DAC=120°,则BD 的长为.【巩固练习】1. 如图1,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O 为AC 中点,若点D 在直线BC 上运动,连接OE,则在点D 运动过程中,线段OE 的最小值是为()A B.2.C.1D.2 2图1 图22. 如图2,△ABC 为等边三角形,AB=2,点D 为BC 边上的动点,连接AD,以AD 为一边向右作等边△ADE,连接CE. (1)在点D 从点B 运动到点C 的过程中,点E 运动的路径长为;(2)在点D 的运动过程中,是否存在∠DEC=60°,若存在,求出BD 的长,若不存在,请说明理由.(3)取AC 中点P,连接PE,在点D 的运动过程中,求PE 的最小值.23.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图3-1,当点C1在线段C A的延长线上时,求∠CC1A1的度数;(2)如图3-2,连接AA1,CC1.若△A1BA1的面积为4,求△CBC1的面积;图3-1 图3-24. 【提出问题】(1)如图4-1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:BM=CN.【类比探究】(2)如图4-2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论BM=CN 还成立吗?请说明理由.【拓展延伸】(3)如图4-3,在等腰△ABC 中,BA=BC,AB=6,AC=4,点M 是BC 上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究BM与CN的数量关系,并说明理由.图4-1 图4-2 图4-33 5. 如图 5,正方形 ABCD 、BGFE 边长分别为 2、1,正方形 BGFE 绕点 B 旋转,直线 AE 、GC 相交于点 H .(1)在正方形 BGFE 绕点 B 旋转过程中,∠AHC 的大小是否始终为 90°,请说明理由; (2)连接 DH 、BH ,在正方形 BGFE 绕点 B 旋转过程中,求 DH 的最大值;图 5 备用图6. 如图 6-1,已知点 A (0,-3)和 x 轴上的动点 C (m ,0),△AOB 和△BCD 都是等边三角形. (1) 在 C 点运动的过程中,始终有两点的距离等于 OC 的长度,请将它找出来,并说明理由. (2) 如图 6-2,将△BCD 沿 CD 翻折得△ECD ,当点 C 在 x 轴上运动时,设点 E (x ,y ),请你用 m 来表示点 E 的坐标并求出点 E 运动时所在图象的解析式.(3) 在 C 点运动的过程中,当 m时,直接写出△ABD 是等腰三角形时 E 点的坐标.图 1 图27.【问题探究】(1)如图7-1,锐角△ABC 中分别以AB、AC 为边向外作等腰△ABE 和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD 与CE 的大小关系,并说明理由.【深入探究】(2)如图7-2,四边形ABCD 中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD 的长.(3)如图7-3,在(2)的条件下,当△ACD 在线段AC 的左侧时,求BD 的长.图7-1 图7-2 图7-38.(1)如图8-1,已知△ABC,以AB、AC 为边分别向△ABC 外作等边△ABD 和等边△ACE,连接BE、CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;(2)如图8-2,利用(1)中的方法解决如下问题:在四边形ABCD 中,AD=3,BD=2,∠ABC=∠ACB=∠ADB=45°,求BD 的长;4(3)如图8-3,四边形ABCD中,∠BAC=90°,∠ADB=∠ABC=α,tanα=,B D=5,AD=12,求BD3的长.图8-1 图8-2 图8-32020 中考专题1——几何模型之双子型参考答案例1.解:①全等.理由:∵△AOB 和△CBD 是等边三角形,∴OB=AB,∠OBA=∠OAB=60°,BC=BD,∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC 和△ABD 中,∵,∴△OBC≌△ABD(SAS).②不变.理由:∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,又∵∠OAB=60°,∴∠OAE=180°﹣∠OAB﹣∠BAD=60°,∴Rt△OEA 中,∴点E的位置不会发生变化,E的坐标为E(0,).例2.当0°≤α<360°时的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵==,∴△ECA∽△DCB,∴==;例3.解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD 与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′,∠DAD′=90°,由勾股定理得=3 ,∠D′DA+∠ADC=90°,由勾股定理得=,∴BD=CD′=.故答案为:.例4.解:以A 为旋转中心,把△BAC 逆时针旋转120°,得到△EAD,连接BE,作AP⊥BE 于P,则∠BAE=120°,AB=AE,∴∠ABE=∠AEB=30°,∴BP=AB•cos∠ABP=3,∠AEB=90°,∴BE=2BP=6,在Rt△BED 中=10,故答案为:10.1. 解:设Q 是AB 的中点,连接DQ,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵AB=AC=2,O 为AC 中点,∴AQ=AO,在△AQD 和△AOE 中,,∴△AQD≌△AOE(SAS),∴QD=OE,∵点D 在直线BC 上运动,∴当QD⊥BC 时,QD 最小,∵△ABC 是等腰直角三角形,∴∠B=45°,∵QD⊥BC,∴△QBD 是等腰直角三角形QB,∵QB=AB=1,∴QD=,∴线段OE 的最小值是.故选:B.2. 解:(1)△ABD≌△ACE 可得BD=CE,E 的运动路径的长即D 的运动路径长,BC=2.(2)∠DEC=60°相当于∠AEC=∠ADB=120°,即∠EDC=0°,此时点D 与点B 重合.因此不存在.1(3)∠ACE=60°,当PE⊥CE 时取最小值.PE=PC cos60°= .23. 解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,∴∠CC1B=∠C1CB=45°,∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.(2)∵△ABC≌△A1BC1,∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,∴∠ABA1=∠CBC1,∴△ABA1∽△CBC1.∴,∵S△ABA1=4,∴S△CBC1=;4.(1)证明:∵△ABC、△AMN 是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM 和△CAN 中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(2)解:结论∠ABC=∠ACN 仍成立;理由如下:∵△ABC、△AMN 是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM 和△CAN 中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(3)解:∠ABC=∠ACN;理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴=,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.5. 解:(1)是,理由如下:如图,由旋转知,∠ABE=CBG,在正方形ABCD,BGFE 中,AB=BC,BE=BG,∠ADC=∠BCD=∠BAD=∠ABC=90°,∴△ABE≌△CBG,∴∠BAE=∠BCG,记AH 与BC 的交点为点P,∵∠APB=∠CPH,∠ABC+∠BAE+∠APB=180°∠AHC+∠BCG+∠CPH=180°,∴∠AHC=∠ABC=90°,2(2)DH≤DE+EG=BD=26. 解:(1)连接AD,如图1 所示.A、D 两点间的距离始终等于OC 的长度.理由如下:∵△AOB 和△BCD 都是等边三角形,∴AB=OB,BD=BC,∠ABO=∠CBD=60°,∵∠ABD=∠ABO+∠OBD,∠OBC=∠OBD+∠DBC,∴∠ABD=∠OBC.在△ABD 和△OBC 中,有,∴△ABD≌△OBC(SAS),∴AD=OC.(2)过D 作DF⊥y 轴于F,连接BE,如图2 所示.由(1)可知△ABD≌△OBC,∴AD=OC=m,∠DAF=∠BAO﹣∠BAD=60°﹣(90°﹣60°)=30°∴DF=AD•sin∠DAF=m,AF=AD•cos∠DAF=m,∵A(0,﹣3),∴D(m,m﹣3).∵将△BCD 沿CD 翻折得△ECD 且△BCD 是等边三角形,∴四边形BCED 是菱形,∴BE、CD 互相平分.∵△AOB是等边三角形,且点O(0,0),点A(0,﹣3),∴点B(,﹣),∴E(m﹣,m﹣).∵m﹣=(m﹣),∴点E在图形y=x上运动.(3)∵点A(0,﹣3),点B(,﹣),点D(m,m﹣3),∴AB=3,AD=m,BD=,△ABD 为等腰三角形分三种情况:①当AB=AD 时,有3=m,此时点E的坐标为(﹣,﹣);②当AB=BD 时,有,解得:m=0(舍去),或m=3,此时点E的坐标为(3,3);③当AD=BD 时,有,解得:m=(舍去).综上可知:在C 点运动的过程中,当时,△ABD是等腰三角形时E点的坐标为(﹣,﹣)或(3,3).7.解:(1)BD=CE.理由是:∵∠BAE=∠CAD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC 和△BAD 中,,∴△EAC≌△BAD,∴BD=CE;(2)如图2,在△ABC 的外部,以A 为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC 和△BAD 中,,∴△EAC≌△BAD,∴BD=CE.∵AE=AB=7,∴BE==7 ,∠ABE=∠AEB=45°,又∵∠ABC=45°,∴∠ABC+∠ABE=45°+45°=90°,∴EC===,∴BD=CE=.(3)如图3,在线段AC 的右侧过点A 作AE⊥AB 于点A,交BC 的延长线于点E,连接BE.∵AE⊥AB,∴∠BAE=90°,又∵∠ABC=45°,∴∠E=∠ABC=45°,∴AE=AB=7,BE==7 ,又∵∠ACD=∠ADC=45°,∴∠BAE=∠DAC=90°,∴∠BAE﹣∠BAC=∠DAC﹣∠BAC,即∠EAC=∠BAD,在△EAC 和△BAD 中,,∴△EAC≌△BAD,∴BD=CE,∵BC=3,∴BD=CE=(7 ﹣3)cm.8.解:(1)如图1,分别以点A、B 为圆心,以AB 为半径画弧,交于点D,连接AD、BD,再分别以A、C 为圆心,以AC 为半径画弧,交于点E,连接AE、CE则△ABD、△ACE 就是所求作的等边三角形;证明:如图1,∵△ABD 和△ACE 都是等边三角形,∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,∴△DAC≌△BAE(SAS),∴BE=CD;(2)如图2,过A 作AE⊥AD,使AD=AE=3,连接DE、CE,由勾股定理得:DE==3,∴∠EDA=45°,∵∠ADC=45°,∴∠EDC=∠EDA+∠ADC=90°,∵∠ACB=∠ABC=45°,∴∠CAB=90°,∴∠CAB+∠DAC=∠EAD+∠DAC,即∠EAC=∠DAB,∵AE=AD,AC=AB,∴△DAB≌△EAC(SAS),∴EC=BD,在Rt△DCE 中==,∴BD=EC=;(3)如图3,作直角三角形DAE,使得∠DAE=90°,∠DEA=∠ACB,连接EC,容易得到△DAE∽△BAC,∴,,∵∠DAE=∠BAC=90°,∴∠DAE+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,∴△EAC∽△DAB,∴,在△DCE 中,∠ADC=∠ACB,∠EDA=∠ABC,∴∠EDC=90°,∵,AD=12,∴AE=9,∠DAE=90°,∴DE==15,CE==5,由△EAC∽△DAB,∴BD=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【模型解析】2021中考专题1——几何模型之双子型◆条件:△O A B ,△O C D均为等腰三角形,O A =O B ,O C =O D ,∠A O B =∠C O D ◆结论:①△O A C ≌△O B D ;②A C =B D ;③∠A E B =∠A O B ;④O E 平分∠A E D (或∠A E D的外角);⑤点E 在△O A B 的外接圆上.【例题分析】例1.如图1,直角坐标系中,点A 的坐标为(1,0),以线段O A 为边在第四象限内作等边△A O B ,点C 为x 正半轴上一动点(O C >1),连接B C ,以线段B C 为边在第四象限内作等边△C B D ,直线D A 交y 轴于点E .(1)△O B C 与△A B D 全等吗?判断并证明你的结论;(2)着点C 位置的变化,点E 的位置是否会发生变化?若没有变化,求出点E 的坐标;若有变化,请说明理由.图1◆条件:C D ∥A B (△O C D ∽△O A B ),将△O C D旋转至右图位置◆结论:右图中①△O C D ∽△O A B △O A C ∽△O B D ;②延长A C 交B D 于点E ,必有∠A E B =∠A OB ;③点E 在△O A B 的外接圆上.3例2.如图2-1,在R t △A B C 中,∠B =90°,c o s C =5,点6D 、E 分别是边B C 、A C 的中点,连接D E ,A E将△E D C 绕点C 按顺时针方向旋转,记旋转角为θ.当0°≤θ<360°时,仅就图2-2的情况给出证明.图2-1图2-2的大小有无变化?请B D例3.如图3所示,在四边形A B C D 中,A D =3,C D =2,∠A B C =∠A C B =∠A D C =45°,则B D 的长为.图3图4例4.如图4,在△A B C 中,∠A B C =60°,A B =2,B C =8,以A C 为腰,点A 为顶点作等腰△A C D ,且∠D A C =120°,则B D 的长为.【巩固练习】1.如图1,△A B C 和△A D E 都是等腰直角三角形,∠B A C =∠D A E =90°,A B =A C =2,O 为A C 中点,若点D 在直线B C 上运动,连接O E ,则在点D 运动过程中,线段O E 的最小值是为()A 1B .C .1.22图1图22.如图2,△A B C 为等边三角形,A B =2,点D 为B C 边上的动点,连接A D ,以A D 为一边向右作等边△A D E ,连接C E .(1)在点D 从点B 运动到点C 的过程中,点E 运动的路径长为;(2)在点D 的运动过程中,是否存在∠D E C =60°,若存在,求出B D 的长,若不存在,请说明理由.(3)取A C 中点P ,连接P E ,在点D 的运动过程中,求P E 的最小值.2D .23.在锐角△A B C中,A B=4,B C=5,∠A C B=45°,将△A B C绕点B按逆时针方向旋转,得到△A1B C1.(1)如图3-1,当点C1在线段C A的延长线上时,求∠C C1A1的度数;(2)如图3-2,连接A A1,C C1.若△A1B A1的面积为4,求△C B C1的面积;图3-1图3-24.【提出问题】(1)如图4-1,在等边△A B C中,点M是B C上的任意一点(不含端点B、C),连结A M,以A M 为边作等边△A M N,连结C N.求证:B M=C N.【类比探究】(2)如图4-2,在等边△A B C中,点M是B C延长线上的任意一点(不含端点C),其它条件不变,(1)中结论B M=C N还成立吗?请说明理由.【拓展延伸】(3)如图4-3,在等腰△A B C中,B A=B C,A B=6,A C=4,点M是B C上的任意一点(不含端点B、C),连结A M,以A M为边作等腰△A MN,使顶角∠A MN=∠A B C.连结C N.试探究B M与C N的数量关系,并说明理由.图4-1图4-2图4-35.如图5,正方形A B C D、B G F E边长分别为2、1,正方形B G F E绕点B旋转,直线A E、G C相交于点H.(1)在正方形B G F E绕点B旋转过程中,∠A H C的大小是否始终为90°,请说明理由;(2)连接D H、B H,在正方形B G F E绕点B旋转过程中,求D H的最大值;图5备用图6.如图6-1,已知点A(0,-3)和x轴上的动点C(m,0),△A O B和△B C D都是等边三角形.(1)在C点运动的过程中,始终有两点的距离等于O C的长度,请将它找出来,并说明理由.(2)如图6-2,将△B C D沿C D翻折得△E C D,当点C在x轴上运动时,设点E(x,y),请你用m来表示点E的坐标并求出点E运动时所在图象的解析式.(3)在C点运动的过程中,当m时,直接写出△A B D是等腰三角形时E点的坐标.图1图237.【问题探究】(1)如图7-1,锐角△A B C中分别以A B、A C为边向外作等腰△A B E和等腰△A C D,使A E=A B,A D=A C,∠B A E=∠C A D,连接B D,C E,试猜想B D与C E的大小关系,并说明理由.【深入探究】(2)如图7-2,四边形A B C D中,A B=7c m,B C=3c m,∠A B C=∠A C D=∠A D C=45°,求B D的长.(3)如图7-3,在(2)的条件下,当△A C D在线段A C的左侧时,求B D的长.图7-1图7-2图7-38.(1)如图8-1,已知△A B C,以A B、A C为边分别向△A B C外作等边△A B D和等边△A C E,连接B E、C D,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:B E=C D;(2)如图8-2,利用(1)中的方法解决如下问题:在四边形A B C D中,A D=3,B D=2,∠A B C=∠A C B=∠A D B=45°,求B D的长;(3)如图8-3,四边形A B C D中,∠B A C=90°,∠A D B=∠A B C=α,t a nα=4,B D=5,A D=12,求B D 3的长.图8-1图8-2图8-32020中考专题1——几何模型之双子型参考答案例1.解:①全等.理由:∵△A O B和△C B D是等边三角形,∴O B=A B,∠O B A=∠O A B=60°,B C=B D,∠C B D=60°,∴∠O B A+∠A B C=∠C B D+∠A B C,即∠O B C=∠A B D,在△O B C和△A B D中,∵,∴△O B C≌△A B D(S A S).②不变.理由:∵△O B C≌△A B D,∴∠B A D=∠B O C=60°,又∵∠O A B=60°,∴∠O A E=180°﹣∠O A B﹣∠B A D=60°,∴R t△O E A中,A E=2O A=2,∴O E=,∴点E的位置不会发生变化,E的坐标为E(0,).例2.当0°≤α<360°时,的大小没有变化,∵∠E C D=∠A C B,∴∠E C A=∠D C B,又∵==,∴△E C A∽△D C B,∴==;例3.解:作A D′⊥A D,A D′=A D,连接C D′,D D′,如图:∵∠B A C+∠C A D=∠D A D′+∠C A D,即∠B A D=∠C A D′,在△B A D与△C A D′中,,∴△B A D≌△C A D′(S A S),∴B D=C D′,∠D A D′=90°,由勾股定理得D D′==3,∠D′D A+∠A D C=90°,由勾股定理得C D′==,∴B D=C D′=.故答案为:.例4.解:以A为旋转中心,把△B A C逆时针旋转120°,得到△E A D,连接B E,作A P⊥B E于P,则∠B A E=120°,A B=A E,∴∠A B E=∠A E B=30°,∴B P=A B•c o s∠A B P=3,∠A E B=90°,∴B E=2B P=6,在R t△B E D中,B D==10,故答案为:10.【巩固训练】1.解:设Q 是A B 的中点,连接D Q ,∵∠B A C =∠D A E =90°,∴∠B A C ﹣∠D A C =∠D A E ﹣∠D A C ,即∠B A D =∠C A E ,∵A B =A C =2,O 为A C 中点,∴A Q =A O ,在△A Q D 和△A O E 中,,∴△A Q D ≌△A O E (S A S ),∴Q D =O E ,∵点D 在直线B C 上运动,∴当Q D ⊥B C 时,Q D 最小,∵△A B C 是等腰直角三角形,∴∠B =45°,∵Q D ⊥B C ,∴△Q B D 是等腰直角三角形,∴Q D =Q B ,∵Q B =A B =1,∴Q D =,∴线段O E 的最小值是为.故选:B .2.解:(1)△A B D ≌△A C E 可得B D =C E ,E 的运动路径的长即D 的运动路径长,B C =2.(2)∠D E C =60°相当于∠A E C =∠A D B =120°,即∠E D C =0°,此时点D 与点B 重合.因此不存在.(3)∠A C E =60°,当P E ⊥C E 时取最小值.P E =P C c o s 60°=1.23.解:(1)由旋转的性质可得:∠A 1C 1B =∠A C B =45°,B C =B C 1,∴∠C C 1B =∠C 1C B =45°,∴∠C C 1A 1=∠C C 1B +∠A 1C 1B =45°+45°=90°.(2)∵△A B C ≌△A 1B C 1,∴B A =B A 1,B C =B C 1,∠A B C =∠A 1B C 1,∴,∠A B C +∠A B C 1=∠A 1B C 1+∠A B C 1,∴∠A B A 1=∠C B C 1,∴△A B A 1∽△C B C 1.∴,∵S △A B A 1=4,∴S △CB C 1=;4.(1)证明:∵△A B C 、△A M N 是等边三角形,∴A B =A C ,A M =A N ,∠B A C =∠M A N =60°,∴∠B A M =∠C A N ,∵在△B A M 和△C A N 中,∴△B A M ≌△C A N (S A S ),∴∠A B C =∠A C N .(2)解:结论∠A B C =∠A C N 仍成立;理由如下:∵△A B C 、△A M N 是等边三角形,∴A B =A C ,A M =A N ,∠B A C =∠MA N =60°,∴∠B A M =∠C A N ,∵在△B A M和△C A N中,∴△B A M≌△C A N(S A S),∴∠A B C=∠A C N.(3)解:∠A B C=∠A C N;理由如下:∵B A=B C,M A=M N,顶角∠A B C=∠A M N,∴底角∠B A C=∠M A N,∴△A B C∽△A M N,∴=,又∵∠B A M=∠B A C﹣∠M A C,∠C A N=∠M A N﹣∠M A C,∴∠B A M=∠C A N,∴△B A M∽△C A N,∴∠A B C=∠A C N.5.解:(1)是,理由如下:如图,由旋转知,∠A B E=C B G,在正方形A B C D,B G F E中,A B=B C,B E=B G,∠A D C=∠BC D=∠B A D=∠A B C=90°,∴△A B E≌△C B G,∴∠B A E=∠B C G,记A H与B C的交点为点P,∵∠A P B=∠C P H,∠A B C+∠B A E+∠A P B=180°∠A H C+∠B C G+∠C P H=180°,∴∠A H C=∠A B C=90°,(2)D H≤D E+E G=B D=226.解:(1)连接A D,如图1所示.A、D两点间的距离始终等于O C的长度.理由如下:∵△A O B和△B C D都是等边三角形,∴A B=O B,B D=B C,∠A B O=∠C B D=60°,∵∠A B D=∠A B O+∠O B D,∠O B C=∠O B D+∠D B C,∴∠A B D=∠O B C.在△A B D和△O B C中,有,∴△A B D≌△O B C(S A S),∴A D=O C.(2)过D作D F⊥y轴于F,连接B E,如图2所示.由(1)可知△A B D≌△O B C,∴A D=O C=m,∠D A F=∠B A O﹣∠B A D=60°﹣(90°﹣60°)=30°∴D F=A D•s i n∠D A F=m,A F=A D•c o s∠D A F=m,∵A(0,﹣3),∴D(m,m﹣3).∵将△B C D沿C D翻折得△E C D且△B C D是等边三角形,∴四边形B C E D是菱形,∴B E、C D互相平分.∵△A O B是等边三角形,且点O(0,0),点A(0,﹣3),∴点B(,﹣),∴E(m﹣,m﹣).∵m﹣=(m﹣),∴点E在图形y=x上运动.(3)∵点A(0,﹣3),点B(,﹣),点D(m,m﹣3),∴A B=3,A D=m,B D==,△A B D为等腰三角形分三种情况:①当A B=A D时,有3=m,此时点E的坐标为(﹣,﹣);②当A B=B D时,有3=,解得:m=0(舍去),或m=3,此时点E的坐标为(3,3);③当A D=B D时,有m=,解得:m=(舍去).综上可知:在C点运动的过程中,当m>时,△A B D是等腰三角形时E点的坐标为(﹣,﹣)或(3,3).7.解:(1)B D=C E.理由是:∵∠B A E=∠C A D,∴∠B A E+∠B A C=∠C A D+∠B A C,即∠E A C=∠B A D,在△E A C和△B A D中,,∴△E A C≌△B A D,∴B D=C E;(2)如图2,在△A B C的外部,以A为直角顶点作等腰直角△B A E,使∠B A E=90°,A E=A B,连接E A、E B、E C.∵∠A C D=∠A D C=45°,∴A C=A D,∠C A D=90°,∴∠B A E+∠B A C=∠C A D+∠B A C,即∠E A C=∠B A D,在△E A C和△B A D中,,∴△E A C≌△B A D,∴B D=C E.∵A E=A B=7,∴B E==7,∠A B E=∠A E B=45°,又∵∠A B C=45°,∴∠A B C+∠A B E=45°+45°=90°,∴E C===,∴B D=C E=.(3)如图3,在线段A C的右侧过点A作A E⊥A B于点A,交B C的延长线于点E,连接B E.∵A E⊥A B,∴∠B A E=90°,又∵∠A B C=45°,∴∠E=∠A B C=45°,∴A E=A B=7,B E==7,又∵∠A C D=∠A D C=45°,∴∠B A E=∠D A C=90°,∴∠B A E﹣∠B A C=∠D A C﹣∠B A C,即∠E A C=∠B A D,在△E A C和△B A D中,,∴△E A C≌△B A D,∴B D=C E,∵B C=3,∴B D=C E=(7﹣3)c m.8.解:(1)如图1,分别以点A、B为圆心,以A B为半径画弧,交于点D,连接A D、B D,再分别以A、C为圆心,以A C为半径画弧,交于点E,连接A E、C E则△A B D、△A C E就是所求作的等边三角形;证明:如图1,∵△A B D和△A C E都是等边三角形,∴A D=A B,A C=A E,∠D A B=∠E A C=60°,∴∠D A C=∠B A E,∴△D A C≌△B A E(S A S),∴B E=C D;(2)如图2,过A作A E⊥A D,使A D=A E=3,连接D E、C E,由勾股定理得:D E==3,∴∠E D A=45°,∵∠A D C=45°,∴∠E D C=∠E D A+∠A D C=90°,∵∠A C B=∠A B C=45°,∴∠C A B=90°,∴∠C A B+∠D A C=∠E A D+∠D A C,即∠E A C=∠D A B,∵A E=A D,A C=A B,∴△D A B≌△E A C(S A S),∴E C=B D,在R t△D C E中,E C===,∴B D=E C=;(3)如图3,作直角三角形D A E,使得∠D A E=90°,∠D E A=∠A C B,连接E C,容易得到△D A E∽△B A C,∴,即,∵∠D A E=∠B A C=90°,∴∠D A E+∠D A C=∠B A C+∠D A C,即∠E A C=∠D A B,∴△E A C∽△D A B,∴,在△D C E中,∠A D C=∠A C B,∠E D A=∠A B C,∴∠E D C=90°,∵,A D=12,∴A E=9,∠D A E=90°,∴D E ==15,C E ==5,由△E A C∽△D A B,∴B D=.11。