§2、1 二次函数所描述的关系
二次函数关系式
二次函数关系式一、二次函数的定义二次函数是形如f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0。
它的图像是一个开口向上或向下的抛物线。
二、二次函数关系式1. 顶点式二次函数的顶点式为f(x) = a(x - h)² + k,其中(h, k)为顶点坐标。
2. 标准式二次函数的标准式为f(x) = ax² + bx + c,其中a、b、c分别表示抛物线的形状和位置。
3. 一般式二次函数的一般式为y = ax² + bx + c,其中x和y表示平面直角坐标系中某个点的横纵坐标。
三、二次函数图像特征1. 对称轴二次函数的对称轴是过顶点且垂直于x轴的直线。
对称轴方程为x = h。
2. 开口方向当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 最值当a>0时,最小值等于k;当a<0时,最大值等于k。
4. 零点二次函数在x轴上与x轴交点称为零点。
零点可以通过求解ax²+bx+c=0得到。
四、二次函数的应用1. 求解问题二次函数可以用来求解各种实际问题,如求解最大值、最小值、零点等。
2. 经济学应用在经济学中,二次函数可以用来表示成本、收益、利润等与产量相关的关系。
3. 物理学应用在物理学中,二次函数可以用来表示自由落体运动的高度和时间之间的关系。
五、二次函数的图像绘制1. 找出顶点坐标通过顶点式或标准式可以找到抛物线的顶点坐标。
2. 找出对称轴方程对称轴方程为x = h,其中h为顶点横坐标。
3. 找出零点通过一般式可以求得零点,也可以通过图像上与x轴交点得到。
4. 确定开口方向和最值根据a的正负性可以确定抛物线开口方向和最值。
5. 绘制图像根据以上步骤确定抛物线的各个特征后,就可以绘制出完整的二次函数图像了。
六、总结本文介绍了二次函数的定义、关系式、图像特征以及应用,并详细说明了如何绘制一个完整的二次函数图像。
二次函数所描述的关系
二次函数所描述的关系引言二次函数是一种常见的数学函数形式,由形如y=ax2+bx+c的方程所描述。
其中a、b和c是实数常数,并且a eq0。
二次函数的图像通常是一个开口朝上或朝下的曲线,它在数学、物理和工程等领域中都有广泛的应用。
本文将介绍二次函数的基本概念,探讨二次函数图像的性质,以及二次函数在现实世界中的应用。
二次函数的基本形式二次函数是一种以x的二次幂为最高次的多项式函数。
其基本形式是y=ax2+bx+c,其中a、b和c分别是函数的系数。
•当a>0时,二次函数的图像开口朝上,称为正向开口的二次函数。
•当a<0时,二次函数的图像开口朝下,称为负向开口的二次函数。
二次函数的图像通常是一条平滑的曲线,关于 $x = -\\frac{b}{2a}$ 对称。
二次函数图像的性质二次函数的图像具有一些重要的性质,包括顶点、对称轴、开口方向和零点等。
1.顶点:二次函数的顶点表示图像的最高点或最低点。
顶点坐标可以通过 $x = -\\frac{b}{2a}$ 计算得出,并且x的值表示对称轴的位置,y的值表示函数的最大值或最小值。
2.对称轴:二次函数的对称轴是通过顶点和垂直于x轴的直线得出的。
对称轴的方程是 $x = -\\frac{b}{2a}$,它将图像分成两个对称的部分。
3.开口方向:二次函数的开口方向由系数a的符号决定。
当a>0时,图像开口朝上;当a<0时,图像开口朝下。
4.零点:二次函数的零点是函数曲线与x轴交点的横坐标值。
零点可以通过求解方程ax2+bx+c=0得到。
当方程有两个不同的实数解时,图像与x轴交于两个点;当方程有一个实数解时,图像与x轴相切;当方程无实数解时,图像与x轴没有交点。
二次函数的应用二次函数在现实世界中有着广泛的应用,以下是其中几个常见的应用领域:物理学二次函数的图像可以描述一些物体的运动轨迹。
例如,抛体运动的高度和时间之间的关系可以用二次函数来表示。
二次函数的关系知识点总结
二次函数的关系知识点总结一、基本概念1. 二次函数的定义:二次函数是指数为2的多项式函数,形如y=ax^2+bx+c的函数,其中a、b、c是常数,且a不等于0。
2. 二次函数的一般形式:y=ax^2+bx+c,其中a、b、c分别表示二次项系数、一次项系数和常数项。
3. 二次函数的定义域:二次函数的定义域是实数集R,即自变量x的取值范围是整个实数集。
4. 二次函数的值域:二次函数的值域取决于二次项系数a的正负性,当a>0时,值域为[0,+∞),当a<0时,值域为(-∞,0]。
5. 二次函数的最值:二次函数的最值与二次项系数a的正负性有关,当a>0时,最小值为c,无最大值;当a<0时,最大值为c,无最小值。
6. 二次函数的零点:二次函数的零点是指二次函数与x轴相交的点,是方程ax^2+bx+c=0的根,可以通过求根公式或配方法求得。
二、图像特征1. 二次函数的图像特征:二次函数的图像是一个抛物线,抛物线开口的方向取决于二次项系数a的正负性,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 二次函数的对称轴:二次函数的对称轴是垂直于x轴的一条直线,x=-b/2a即为二次函数的对称轴,对称轴上的点为抛物线的对称中心。
3. 二次函数的顶点:二次函数的顶点是抛物线的最低点或最高点,即抛物线的最值点,顶点的横坐标为对称轴的横坐标,纵坐标为函数的最值。
4. 二次函数的焦点:二次函数的焦点是指抛物线的对称轴与抛物线的顶点之间的中点。
5. 二次函数的平移变换:二次函数的图像可以通过平移变换实现平移,平移的一般形式为y=ax^2+b(x-h)+k,其中h、k分别表示横坐标和纵坐标的平移量。
三、性质1. 二次函数的奇偶性:二次函数的奇偶性与一次项系数b有关,当b为偶数时,二次函数为偶函数;当b为奇数时,二次函数为奇函数。
2. 二次函数的导数:二次函数的导数是一次函数,由导数的定义可知,二次函数的导数等于二次项系数与一次项系数的和。
二次函数和一次函数的关系
二次函数和一次函数的关系函数是数学中的一个重要概念,描述了数值之间的关系。
二次函数和一次函数是常见的函数类型,它们之间存在着一定的关系。
本文将探讨二次函数和一次函数的关系,以及它们在数学和实际生活中的应用。
一、二次函数的定义和特点二次函数是指函数的表达式中含有二次项的函数,一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
二次函数的图像呈现出抛物线的形状,开口方向由a的正负决定,开口向上时a>0,开口向下时a<0。
特点:1. 二次函数的对称轴垂直于y轴,表达式为x = -b/2a。
2. 二次函数的顶点即抛物线的最值点,当a>0时为最小值,当a<0时为最大值。
3. 二次函数的零点即方程f(x) = 0的解,可以通过求根公式或配方法求得。
二、一次函数的定义和特点一次函数是指函数的表达式中只含有一次项,形式为f(x) = kx + d,其中k 和 d为常数,k表示直线的斜率,d表示直线的截距。
特点:1. 一次函数的图像为一条直线。
2. 直线的斜率k表示了直线的倾斜程度,斜率大于0表示向上倾斜,斜率小于0表示向下倾斜,斜率为0时表示水平直线。
3. 直线的截距d表示了直线与y轴的交点,也就是当x=0时的函数值。
三、二次函数和一次函数的关系在二次函数和一次函数之间存在着紧密的关系。
实际上,当二次函数的a=0时,二次函数退化为一次函数。
具体而言,当a=0且b≠0,二次函数f(x) = bx + c退化为一次函数;当a=0,b=0,c≠0时,f(x) = c成为常数函数;当a=b=0时,f(x)为零函数。
另外,二次函数和一次函数在实际应用中也有联系。
例如,在物理学中,抛物线运动的轨迹可以用二次函数来描述;而直线运动可以用一次函数来描述。
在经济学中,成本和收益等关系也可以通过二次函数和一次函数来进行建模和分析。
四、二次函数和一次函数在实际生活中的应用举例1. 投射运动:当我们抛出一个物体时,物体的轨迹是一个抛物线,可以用二次函数来描述。
二次函数的关系
第二章 二次函数§2.1 二次函数所描述的关系学习目标:1.探索并归纳二次函数的定义.2.能够表示简单变量之间的二次函数关系.学习重点:1.经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数.学习难点:经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验. 学习方法:讨论探索法.学习过程:【例1】 函数y=(m +2)x 22 m +2x -1是二次函数,则m= .【例2】 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x . A .1个 B .2个 C .3个 D .4个【例3】正方形的边长是5,若边长增加x ,面积增加y ,求y 与x 之间的函数表达式.1、 已知正方形的周长为20,若其边长增加x ,面积增加y ,求y 与x 之间的表达式.2、 已知正方形的周长是x ,面积为y ,求y 与x 之间的函数表达式.3、已知正方形的边长为x ,若边长增加5,求面积y 与x 的函数表达式.【例4】如果人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存,到期支取时,银行将扣除利息的20%作为利息税.请你写出两年后支付时的本息和y (元)与年利率x 的函数表达式.【例5】某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x ,请你得出每天销售利润y 与售价的函数表达式.【例6】如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,第一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数表达式(不要求写出自变量n 的取值范围);(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值;(4)若黑瓷砖每块4元,白瓷砖每块3元,在问题(3)中,共需花多少元购买瓷砖?(5)是否存在黑瓷砖与白瓷砖相等的情形?请通过计算说明为什么?课堂小结:课后练习:1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数.2.当m 时,y=(m -2)x 22 m 是二次函数.3.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.4.已知:一等腰直角三角形的面积为S ,请写出S 与其斜边长a 的关系表达式,并分别求出a=1,a=2,a=2时三角形的面积.5.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=21mv 2(m 为定值). (1)若物体质量为1,填表表示物体在v 取下列值时,E 的取值:(2)若物体的运动速度变为原来的2倍,则它运动时的能量E 扩大为原来的多少倍?课后反思:。
初中数学知识归纳二次函数的基本关系与计算
初中数学知识归纳二次函数的基本关系与计算二次函数是初中数学中的重要知识点之一。
它是指形式为f(x) =ax^2 + bx + c的函数,其中a、b、c是常数且a不等于0。
本文将对二次函数的基本关系和计算进行归纳总结。
一、基本关系1. 零点:对于二次函数f(x) = ax^2 + bx + c,其零点是使得f(x) = 0的x值。
二次函数的零点可以通过因式分解、配方法、求根公式等方法求得。
2. 顶点:二次函数的图像是一个抛物线,抛物线的顶点是其最高(或最低)点。
顶点的x坐标可以通过公式x = -b / (2a)求得,y坐标则是将x坐标代入函数中得到。
3. 对称轴:二次函数的图像是关于其对称轴对称的。
对称轴的方程为x = -b / (2a)。
4. 开口方向:二次函数的a的值决定了其开口方向。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
二、计算方法1. 函数值计算:给定二次函数的表达式和x的值,可以通过将x的值代入函数中计算得到对应的y值。
例如,计算f(x) = 2x^2 + 3x + 1在x = 2处的函数值,只需将x = 2代入函数中,得到f(2) = 2(2)^2 + 3(2) +1 = 15。
2. 相反数计算:对于二次函数f(x),若已知f(a) = b,则可以通过解方程ax^2 + bx + c = 0求得x的值。
若已知一个二次函数的两个零点x1和x2,可以求得该二次函数的因式分解形式为a(x - x1)(x - x2)。
3. 过点求二次函数:已知二次函数过某个点(x1,y1),可以通过代入点坐标求解得到函数的表达式。
例如,过点(1,4)且开口向上的二次函数,可以设为f(x) = ax^2 + bx + c,代入点坐标得到4 = a(1)^2 + b(1) + c。
4. 函数图像绘制:对于给定的二次函数,可以通过绘制其函数图像来更直观地理解其性质和特点。
首先可以计算出函数的零点、顶点、对称轴等重要信息,然后绘制出相应的图像。
北师大版九年级数学下册2.1二次函数所描述的关系导学案
,c
m
时,是正比例函数. .
3.若 y (m2 1) xm
是二次函数,则 m=
4.下列函数关系中,可以看作二次函数 y=ax2+bx+c (a≠0)模型的是( ).
A. 在一定的距离内汽车的行驶速度与行驶时间的关系; B.我国人口年自然增长率为 1%,这样我国人口总数 随年份的变化关系; C.竖直向上发射的信号弹,从发射到落回地面,信号 弹的高度与时间的关系(不计空气阻力); D.圆的周长与圆的半径之间的关系.
第 1 页 /共 5 页
,它的二次项系数为 一次项系数为 ,常数项为 .
,自我评价:小Fra bibliotek长评价:第 2 页 /共 5 页
合作探究一:
某果园有 100 棵橙子树,每一棵树平均结 600 个橙子. 现准备多种一些橙子树以提高产量,但是如果多种树,那么 树之间的距离和每一棵树所接受的阳光就会减少.根据经验 估计,每多种一棵树,平均每棵树就会少结 5 个橙子,且增 加的橙子树最多不得超过 20 棵. (1)问题中的变量是 其中 是自变量, 和 . 是因变量.
2
.
m4
(m 2) x 3 . 当 m
为何值时,y 为二次函数?当 m 为何值时,y 为一次函 数?
课后作业:
课本第 39 页,习题 2.1,知识技能,1;问题解决,3.
教师评价: 补案:
第 5 页 /共 5 页
3、 (15 分)下列各式中,y 是 x 的二次函数的是(
A. xy=x2-1;B.x2+y-2=0;C. y2-ax=-2;D. x2-y2+1=0. 4、 (15 分)某商场将进价为 40 元的某种服装按 50 元售出
达标 检测:
时,每天可以售出 300 套.据市场调查发现,这种服装 每提高 1 元售价,销量就减少 5 套.则每天销售利润 y 与售价 x 的函数表达式为 5、 (40 分)已知函数 y (m 3) xm
二次函数课标细化解读
细化解读课程标准案例设计科目:数学年级:九年级教材版本:北师大版章(节)或单元:九年级下册第二章第二节课题:2.1 二次函数所描述的关系一、教学目标确定依据一:数学课程标准的有关内容:通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
课程标准为本节制定的教学目标,目标用含糊的内隐心理活动词语,而不是可观察测量的外显行为动词,不够具体、明晰。
需对课程标准作进一步的细化、分解,以使不同的人在数学上得到不同的发展。
分析课程标准发现:(名词)核心知识是分析确定二次函数的表达式,并体会二次函数的意义。
1、确定二次函数的表达式。
细化为:根据具体的问题情境,通过自主探究、合作交流,能找到常量、变量之间的关系,列出二次函数表达式。
达标率为80%。
2、体会二次函数的意义。
体会一词含糊,不够具体,可分解为说出、概述、判断等动词。
因此,可细化为:能根据所列函数表达式,通过观察、交流,能说出它们的共同特征,能概述出二次函数的意义。
能判断所给的函数表达式是否二次函数的。
达标率90%依据二:教学参考书要求:1、经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验。
2、能过表示简单变量之间的二次函数关系。
3、你能过利用尝试求值的方法解决实际问题,如猜测增种多少棵橙子树可以使橙子的总产量最多的问题。
依据三:中招考试说明在每年的中招试题中常常二次函数解答题,并且是作为大题、难题出现,有明显的区分度。
所以它是中招的重要知识点。
依据四:教材内容二次函数使描述现实世界变量之间关系的重要数学模型,也是某些单变量最优化的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数还是一种非常基本的初等的函数,对二次函数的研究将为学生进一步学习函数、进而体会函数的思想奠定基础。
依据五:学生情况我校是农村初中,地处边远,学生程度参差不齐。
学生在八、九年级已经学一次函数、反比例函数。
导学法教学模式在我校已全面开展,学生能够通过自主探究、合作交流、教师引领等方式探索新知。
二次函数关系式的三种形式
二次函数关系式的三种形式1.引言1.1 概述二次函数是数学中的重要概念,在许多领域都有广泛的应用。
它是一个拥有二次项的多项式函数,通常用一般形式表示为f(x) = ax^2 + bx + c。
其中,a、b和c分别代表函数的系数。
二次函数关系式可以通过三种形式来表示:标准形式、顶点形式和描点形式。
本文将对这三种形式进行详细介绍,包括定义和特点,并给出一些示例和应用。
在二次函数关系式的标准形式中,函数表达式会经过整理化简,常见形式为f(x) = ax^2 + bx + c。
标准形式的特点是系数a、b和c可以直接体现函数的性质,例如a决定了函数的开口方向,b决定了函数的对称轴以及接触或穿过x轴的情况,c则是函数在y轴上的截距。
标准形式的示例和应用可帮助读者更好地理解和应用二次函数关系式。
另一种常见的表达形式是二次函数关系式的顶点形式。
顶点形式的函数表达式为f(x) = a(x-h)^2 + k,其中(h,k)代表二次函数的顶点坐标。
顶点形式的特点是可以直观地描述二次函数的顶点位置及函数的凹凸性,方便进行图像的绘制和分析。
顶点形式的示例和应用将帮助读者更深入地理解二次函数的几何性质和图像特点。
此外,二次函数关系式还可以通过描点形式来表示。
描点形式的函数表达式为f(x) = a(x-x_1)(x-x_2),其中(x_1,y_1)和(x_2,y_2)分别为二次函数的两个描点坐标。
描点形式的特点是可以通过已知点的坐标,直接构造出二次函数的表达式,方便进行函数的推导和计算。
描点形式的示例和应用将帮助读者更好地理解和使用二次函数关系式。
总之,本文将详细介绍二次函数关系式的三种形式:标准形式、顶点形式和描点形式。
通过深入理解这三种形式的定义、特点和应用,读者将能够更好地掌握二次函数的性质和图像特点,进而在实际问题中灵活运用。
文章结构部分的内容可以如下编写:1.2 文章结构本文将分为三个主要部分进行讨论。
首先,在引言部分,我们将简要概述本文的主题和目的,为读者提供一个整体了解的框架。
二次函数所描述的关系 教学课件
你能根据表格中的数据作出猜想 吗
用心想一想, 用心想一想,马到功成
60495 60480 60455 60420 60375 60500 60495 60480 60455 60420 60375
y是随着X的变化而变化,但是 随着X直线型的变化它有最大值 或最小值 。
做一做,看谁最快结束战斗!!! 做一做,看谁最快结束战斗!!!
作业设计 课本习题2.1 课本习题2.1 第3,4题; 3,4题 教后反思: 教后反思:
银行的储蓄利率是随时间的变化而变化 也就是说,利率是一个变量.在我国, 的,也就是说,利率是一个变量.在我国,利 率的调整是由中国人民银行根据国民经济发 展的情况而决定的. 展的情况而决定的. 设人民币一年定期储蓄的年利率是x, x,一年到 设人民币一年定期储蓄的年利率是x,一年到 期后, 期后,银行将本金和利息自动按一年定期储蓄 转存.如果存款是100 100元 转存.如果存款是100元,那么请你写出两年后的 本息和y( 的表达式(不考虑利息税). y(元 本息和y(元)的表达式(不考虑利息税).
2、定义:一般地,形如 、定义:一般地, y=ax²+bx+c(a,b,c是常数 是常数,a≠ 0)的函数 是常数 的函数 叫做x的二次函数。 叫做 的二次函数。
注意: 注意: (1)关于 的代数式一定是整 )关于x的代数式一定是整 为常数, 式,a,b,c为常数,且a≠0. 为常数 等式的右边最高次数为 最高次数为2, (2 )等式的右边最高次数为 ,可以没有 一次项和常数项, 不能没有二次项。 一次项和常数项,但不能没有二次项。
y=100(x+1)²=100x +200x+100 y=100(x+1) =100x²+200x+100 =100x
二次函数所描述的关系
§2.1 二次函数所描述的关系学习目标:1、经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间的关系的体验。
2、理解并掌握二次函数的概念。
3、能够利用尝试求值的方法解决实际问题。
4、能够表示简单变量之间的二次函数关系。
学习重点:理解并掌握二次函数的概念 学习难点:表示简单变量之间的二次函数关系学习过程:一、复习旧知,温故知新1、设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应。
那么就说y 是x 的 ,x 叫做 。
2、正比例函数的表达式为 ,一次函数的表达式为 , 反比例函数表达式为 。
3、08922=+-x x 是 方程,化为一元二次方程一般形式为 ,它的二次项系数为 , 一次项系数为 ,常数项为 。
二、创设情境,引入新知探究:利用已经学过的知识解决下列问题;探究1、某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1)问题中有哪些变量?自变量是 ,因变量是 。
(2)假设果园增种x 棵橙子树,那么果园共有 棵橙子树,这时平均每棵树结 个橙子。
(3)如果果园橙子的总产量为y 个,写出y 与x 之间的关系式 。
想一想:在上述问题中,使果园橙子的总产量最多,要增种多少棵橙子树呢?我们可以列表表示橙子的总产量随橙子树的增加而变化的情况。
根据表中的数据作出猜测:探究2、某商场销售一批T 恤衫,在一段时间内,单价15元时,销售量是500件,市场调查发现,单价每降低1元,就多销售出100件。
请你分析:(1)在这一问题中有哪些变量?自变量是 ,因变量是 。
(2)假设单价降低x 元,那么每件T 恤衫的单价是 元,这时的销售量为 件。
(3)请写出销售额y (元)与x (元)之间的函数关系式 。
三、合作探究,发现新知Y/个 1413 12 11 10 9 8 7 6 5 4 3 2 1 X/棵【探索发现,同伴交流】(1)从以上两个例子中,你发现这函数关系式有什么共同特征?(2)仿照以前所学知识,你能给它起个合适的名字吗?(3)你能用一个通用的表达式表示它们的共性吗?试试看。
《二次函数所描述的关系》二次函数PPT优秀课件2
当x=4时, y=100-16=84;
当x=6时, y=100-36=64; ∴当x取2cm,4cm,6cm时,相应的y值分别是96 cm2 ,84 cm2 , 64cm2。
学以致用
在交通法规宣传标语中常用这么一句话:“保持车距,注意 安全”,意思是说同向行驶时,前后相邻的两车要有一定的距 离。 汽车刹车时向前滑行的距离称为刹车距离
一个正方形的边长为10cm,若从中挖出一个边长为x(x<10)cm 的小正方形,则剩余部分的面积为y 。 (1)写出y(cm2 )与x(cm)之间的关系表达式,并指出它是一个 什么函数; 解:y=100-x² ,是二次函数 (2)当x取2cm,4cm,6cm时,相应的y值分别是多少? 解:当x=2时, y=100-4=96;
80m
x
x y与x的函数关系式是: y=(100-x)(80-x) 即y=x² -180x+8000.
勇于探索
银行的储蓄利率是随时间的 变化而变化的,也就是说,利 率是一个变量。在我国,利率 的调整是中国人民银行根据国 民经济的发展情况而决定的。
设人民币一年定期储蓄的年利率是x ,如果存款额是100元, 一年到期后的本息和是多少? (不考虑利息税) 100(1+x) 一年到期后,银行将以上本息自动按一年定期储蓄转存。 设又过一年后的本息和为y(元) 。则y与 x之间是函数关系 吗?若是,请写出y与x之间的函数关系式; y与x的函数关系式是:y=100(1+x)2
定义:一般地,形如y=ax² +bx+c(a,b,c是常数,a≠ 0)的
函数叫做x的二次函数。
初试牛刀
(1)y=3(x-1)² +1 (3)y=(x+3)² -x²
一次函数与二次函数的关系
一次函数与二次函数的关系一次函数和二次函数是数学中常见的两种函数类型,在数学中起到了重要的作用。
它们之间存在着密切的联系和关系。
本文将就一次函数与二次函数的关系展开讨论。
一、定义和特点1. 一次函数:一次函数又称为线性函数,其定义为f(x) = ax + b,其中a和b为常数,且a≠0。
一次函数的图像是一条直线,斜率为a,截距为b。
一次函数的图像呈现线性关系,随着x的变化,y的值也会按一定比例的变化。
2. 二次函数:二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c是常数,且a≠0。
二次函数的图像是一个抛物线,开口的方向取决于二次项的系数a的正负。
二次函数的图像一般呈现非线性关系,具有曲线的特点。
二、图像关系一次函数和二次函数的图像具有不同的形态,但它们之间存在着一些关系。
1. 平移关系:一次函数和二次函数可以通过平移来相互转换。
通过对一次函数的图像进行水平、垂直方向的平移,可以得到二次函数的图像,反之亦然。
这种平移关系体现了一次函数和二次函数之间的相似性和联系。
2. 变换关系:一次函数和二次函数的图像在作一些变换时也存在关系。
例如,通过改变二次函数的二次项系数a的大小和正负可以改变抛物线的开口方向,使其与直线的趋势更接近,从而与一次函数的图像相似。
三、求解方法1. 交点求解:一次函数和二次函数的图像在某些情况下会相交,求解它们的交点有着重要的意义。
通过联立一次函数和二次函数的表达式,可以得到方程 ax + b = cx^2 + dx + f。
通过解这个方程,可以求得一次函数和二次函数的交点坐标,进而研究它们之间的关系。
2. 最值求解:一次函数和二次函数都有其定义域范围内的最值。
通过求解一次函数的最值和二次函数的最值,比较它们的大小关系,可以进一步研究二者之间的关系。
四、应用场景1. 经济学:一次函数和二次函数可以用来描述经济学中的一些现象。
例如,成本函数和收入函数可以分别为一次函数和二次函数,通过研究它们之间的关系,可以得到经济学中的重要结论,如均衡价格、利润最大化等。
第2章 二次函数知识点
第二章 二次函数第1节 二次函数所描述的关系1、二次函数的定义:一般地,形如的二次函数。
的函数叫做是常数,x a c b a c bx ax y )0,,(2≠++= 2、列函数关系式(重点):因变量&自变量第2节 结识抛物线1、 二次函数=y 2ax 的图象的画法(重点):描点法:列表——描点——连线2、 二次函数=y 2ax 的图象的性质(难点)对称图形,对称轴是y 轴,顶点是原点(0,0)——顶点是指对称轴与抛物线的交点。
当a >0时,开口向上,在y 轴左边,下降趋势;在y 轴右边,上升趋势。
顶点处取得最小值0。
当a <0时,开口向下,在y 轴左边,上升趋势;在y 轴右边,下降趋势。
顶点处取得最大值0。
第3节 刹车距离与二次函数1、二次函数2ax y =中的a 的作用:(1)a 的符号决定抛物线的开口方向(2)a 的值决定抛物线的形状和开口大小2、比较)0()0(22≠+=≠=a c ax y a ax y 与的图象的异同(难点)二次函数)0(2≠+=a c ax y 的图象是一条抛物线,它的对称轴是y 轴,顶点坐标是(0,c )。
对于)0(2≠=a ax y 和)0(2≠+=a c ax y 的图象,形状相同,只是位置不同。
)0(2≠+=a c ax y 可以看做是把)0(2≠=a ax y 的图象向上(c>0)或向下(c<0)平移|c|个单位长度得到的。
第4节 二次函数c bx ax y ++=2的图象1、二次函数c bx ax y ++=2的图象的平移(1)二次函数k ax y +=2的图象可由抛物线2ax y =向上(或向下)平移而得到。
(2)二次函数2)(h x a y -=的图象可由抛物线2ax y =向左(或向右)平移而得到。
(3)二次函数k h x a y +-=2)(的图象可由抛物线2ax y =向左(或向右)平移再向上(或向下)平移|k|个单位而得到。
2.1 二次函数所描述的关系教学案1
1【学习目标】1、经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验;2、能够表示简单变量之间的二次函数关系;3、能够利用尝试求值的方法解决实际问题。
【学习重点】表示简单变量之间的二次函数关系【学习难点】利用尝试求值的方法解决实际问题【学习过程】一、课前准备1、一次函数的表达式为 ,正比例函数的表达式为 , 反比例函数表达式为 。
2、某果园有100棵橙子树,每一棵树平均结600个橙子。
现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
请问种多少棵树才能达到30000个的总产量?你能解决这个问题吗? (请列出方程,不用计算)二、自主学习活动一1、某果园有100棵橙子树,每一棵树平均结600个橙子。
现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1)假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(2)如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式。
2、设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存。
如果存款额是100元,那么请你写出两年后的本息和y (元)的表达式(不考虑利息税)。
依题意,一年后的本息和是 ,此即为第二年的本金,则可得=y活动二1、一般地,形如 ( )的函数叫做x 的二次函数。
其中,x 是自变量,a 、b 、c 分别是函数解析式的二次项系数、一次项系数和常数项。
2、下列函数中,y 是x 的二次函数的是( )A 、B 、C 、D 、 x y 1=2321x y +-=12-x y =2532+-=x x y2 3、设正方体的棱长为x ,表面积为y ,则y 与x 之间的函数关系式y=4、设圆的半径为r ,面积为S ,则S 与r 之间的函数关系式S=三、课堂练习1、下列各式中,y 是x 的二次函数的是( ) A 、 B 、 C 、 D 、2、正方形的边长是2cm ,假设边长增加x cm 时,正方形的面积增加ycm 2,则y 与x 的函数关系式为3、已知x x a y 2)1(2+-=是二次函数,那么a 的取值范围是______________4、已知函数42)2(-m x m y -=是y 关于x 的二次函数,则m 的值是5、某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件。
《二次函数所描述的关系》二次函数PPT课件(上课用)
有信心 的人,可以 化渺小为伟 大,化平庸 为神奇.
同学们再见
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不到,又何必抱怨这个世界都和你作对?人生的道理很简单,你想要什么,就去付出足够的努力。 2、时间是最公平的,活一天就拥有24小时,差别只是珍惜。你若不相信努力和时光,时光一定第一个辜负你。有梦想就立刻行动,因为现在过的每一天,都是余生中最年轻的一天。 3、无论正在经历什么,都请不要轻言放弃,因为从来没有一种坚持会被辜负。谁的人生不是荆棘前行,生活从来不会一蹴而就,也不会永远安稳,只要努力,就能做独一无二平凡可贵的自己。 4、努力本就是年轻人应有的状态,是件充实且美好的事,可一旦有了表演的成分,就会显得廉价,努力,不该是为了朋友圈多获得几个赞,不该是每次长篇赘述后的自我感动,它是一件平凡而自然而然的事,最佳的努力不过是:但行好事,莫问前程。愿努力,成就更好 的你! 5、付出努力却没能实现的梦想,爱了很久却没能在一起的人,活得用力却平淡寂寞的青春,遗憾是每一次小的挫折,它磨去最初柔软的心智、让我们懂得累积时间的力量;那些孤独沉寂的时光,让我们学会守候内心的平和与坚定。那些脆弱的不完美,都会在努力和坚持 下,改变模样。 6、人生中总会有一段艰难的路,需要自己独自走完,没人帮助,没人陪伴,不必畏惧,昂头走过去就是了,经历所有的挫折与磨难,你会发现,自己远比想象中要强大得多。多走弯路,才会找到捷径,经历也是人生,修炼一颗强大的内心,做更好的自己! 7、“一定要成功”这种内在的推动力是我们生命中最神奇最有趣的东西。一个人要做成大事,绝不能缺少这种力量,因为这种力量能够驱动人不停地提高自己的能力。一个人只有先在心里肯定自己,相信自己,才能成就自己! 8、人生的旅途中,最清晰的脚印,往往印在最泥泞的路上,所以,别畏惧暂时的困顿,即使无人鼓掌,也要全情投入,优雅坚持。真正改变命运的,并不是等来的机遇,而是我们的态度。 9、这世上没有所谓的天才,也没有不劳而获的回报,你所看到的每个光鲜人物,其背后都付出了令人震惊的努力。请相信,你的潜力还远远没有爆发出来,不要给自己的人生设限,你自以为的极限,只是别人的起点。写给渴望突破瓶颈、实现快速跨越的你。 10、生活中,有人给予帮助,那是幸运,没人给予帮助,那是命运。我们要学会在幸运青睐自己的时候学会感恩,在命运磨练自己的时候学会坚韧。这既是对自己的尊重,也是对自己的负责。 11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。 12、有些压力总是得自己扛过去,说出来就成了充满负能量的抱怨。寻求安慰也无济于事,还徒增了别人的烦恼。 13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。 14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。 15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋! 16、人生在世:可以缺钱,但不能缺德;可以失言,但不能失信;可以倒下,但不能跪下;可以求名,但不能盗名;可以低落,但不能堕落;可以放松,但不能放纵;可以虚荣,但不能虚伪;可以平凡,但不能平庸;可以浪漫,但不能浪荡;可以生气,但不能生事。 17、人生没有笔直路,当你感到迷茫、失落时,找几部这种充满正能量的电影,坐下来静静欣赏,去发现生命中真正重要的东西。 18、在人生的舞台上,当有人愿意在台下陪你度过无数个没有未来的夜时,你就更想展现精彩绝伦的自己。但愿每个被努力支撑的灵魂能吸引更多的人同行。 19、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会中看到了某种忧患。莫找借口失败,只找理由成功。 20、每一个成就和长进,都蕴含着曾经受过的寂寞、洒过的汗水、流过的眼泪。许多时候不是看到希望才去坚持,而是坚持了才能看到希望。 1、有时候,我们活得累,并非生活过于刻薄,而是我们太容易被外界的氛围所感染,被他人的情绪所左右。 2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。 3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。 4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。 5、世上最美好的事是:我已经长大,父母还未老;我有能力报答,父母仍然健康。 6、没什么可怕的,大家都一样,在试探中不断前行。 7、时间就像一张网,你撒在哪里,你的收获就在哪里。纽扣第一颗就扣错了,可你扣到最后一颗才发现。有些事一开始就是错的,可只有到最后才不得不承认。 8、世上的事,只要肯用心去学,没有一件是太晚的。要始终保持敬畏之心,对阳光,对美,对痛楚。 9、别再去抱怨身边人善变,多懂一些道理,明白一些事理,毕竟每个人都是越活越现实。 10、山有封顶,还有彼岸,慢慢长途,终有回转,余味苦涩,终有回甘。 11、人生就像是一个马尔可夫链,你的未来取决于你当下正在做的事,而无关于过去做完的事。 12、女人,要么有美貌,要么有智慧,如果两者你都不占绝对优势,那你就选择善良。 13、时间,抓住了就是黄金,虚度了就是流水。理想,努力了才叫梦想,放弃了那只是妄想。努力,虽然未必会收获,但放弃,就一定一无所获。 14、一个人的知识,通过学习可以得到;一个人的成长,就必须通过磨练。若是自己没有尽力,就没有资格批评别人不用心。开口抱怨很容易,但是闭嘴努力的人更加值得尊敬。 15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随堂练习
知道就做别客气
2.用总长为60m的篱笆围成矩形场地,场 地面积S(m² )与矩形一边长a(m)之间的关系 是什么?是函数关系吗?是哪一种函数?
解:S=a(
60 - a)=a(30-a) 2
=30a-a²
= -a²+30a .
是二次函数关系式.
小试牛刀
心动不如行动
如果函数y=
0或3 则k的值一定是______
喷泉(2)
喷泉(1)
第二章
二次函数
§2.1二次函数所描述的关系
06 12 03
回顾与思考
温故知新
变量之间的关系 函 数
函数知多少
一次函数 y=kx+b (k≠0) 正比例函数 y=kx(k≠0)
反比例函数 二次函数 k y k 0. x y=ax²+bx+c(
a,b,c是常 数,a≠ 0)
?
y=100(x+1)² 100x² = +200x+100.
思索归纳
二次函数
y=-5x²+100x+60000, y=100x²+200x+100.
y是x的函数吗? y是x的一次函数?是反比例函数?
有何 特点
你能根据所学的一次函数、反 比例函数的定义,并结合上述 式子的形式给它下一个定义吗?
思索归纳
(4) s=1+t+5t²
小试牛刀
心动不如行动
圆的半径是4cm,假设半径增加xcm时, 圆的面积增加ycm² .
(1)写出y与x之间的函数关系表达式;
(2)当圆的半径分别增加1cm,
2cm
,
2cm时,圆的面积增加多少?
小结
拓展
回 味 无 穷
定义中应该注意的几个问题:
1.定义:一般地,形如y=ax²+bx+c(a, b,c是常数,a≠0)的函数叫做x的二次函数. y=ax²+bx+c(a,b,c是常数,a≠0) 的几种不同表示形式: (1)y=ax² --------- (a≠0,b=0,c=0,). (2)y=ax²+c ------ (a≠0,b=0,c≠0).
t/s h/m 1 2 3 4 5
小试牛刀
ቤተ መጻሕፍቲ ባይዱ
实践出真知
2.某工厂计划为一批长方体形状的产 品涂上油漆,长方体的长和宽相等,高 比长多0.5m. (1).长方体的长和宽用x(m)表示,长方 体需要涂漆的表面积S(m2)如何表示? (2).如果涂漆每平米所顼要的费用是5 元,油漆每个长方体所需要费用y(元) 表示,那么y的表达式是什么?
x
k 2 3k 2
+kx+1是二次函数,
如果函数y=(k-3) x +kx+1是二 0 次函数,则k的值一定是______
k 2 3k 2
小试牛刀
心动不如行动
下列函数中,(x,t是自变量), 哪些是二次函数
(1)y=
1 +3x² 2
(2) y=
1 2x²+x³+25
(3) y=2²+2x
(3)y=ax²+bx ---- (a≠0,b≠0,c=0).
小结
拓展
回 味 无 穷
定义中应该注意的几个问题 : 2.定义的实质是:ax² +bx+c是整 式,自变量x的最高次数是二次, 自变量x的取值范围是全体实数.
作 业
课本P36页习题2.1
第1,2题;
小试牛刀
实践出真知
1、物体从某一高度落下,已知下落的 高度h(m)与下落的时间(s)的关系是 h=4.9t2,填表表示物体在5s前下落 的高度:
X/棵 Y/个
你能根据表格中的数据作出猜想 吗
1
2
3
4
5 6
7
8 9 10 11 12 13 14
想一想
行家看“门道”
在种树问题中,种多少棵橙子树,可以 使果园橙子的总产量最多?
y=-5x²+100x+60000,
x y - 5 60375
6
60420
7
60455
8
60480
9
60495
10 11 12 13 14 15 60500 60480 60420 60455 60375 60495
想一想
源于生活的数学
某果园有100棵橙子树,每一棵树平均结600个 橙子.现准备多种一些橙子树以提高产量,但是如 果多种树,那么树之间的距离和每一棵树所接的阳 光就会减少,根据经验每多种一棵树,平均每棵树 就会少结5个橙子.
(1)问题中有哪 些变量? 其中 哪些是自变量? 哪些是因变量?
解:1)变量有:树的数量,每棵树 上平均结的橙子数,所有树上共结 的橙子数,其中,树的数量是自变 量,每棵树上平均结的橙子数以及 所有树上共结的橙子数是因变量 。
一般地,形如y=ax2+bx+c(a,b,c是常数, a≠0)的函数叫做x的二次函数 其中,ax2叫二次项,a叫做二次项系数 bx叫做一次项, b叫做一次项系数 c叫做常数项 -5 100 60000 如:y=-5x2+100x+60000 y=100x2+200x+100 a b c
y=100x2+200x+100 100 200 100
-
例题欣赏
数学真奇妙
你发现了吗?
60500
60495 60480 60455 60420 60375
60495 60480 60455 60420
60375
想一想
亲历知识的发生和发展
银行的储蓄利率是随时间的变 化而变化的,也就是说,利率是一 个变量.在我国,利率的调整是由中 国人民银行根据国民经济发展的情 况而决定的.
( x+100)棵
5x个 (600- 5x )个
(3)如果果园橙子的总产量为y个,那么请你写出y 与x之间的关系式.
想一想
生活问题数学化
果园共有(100+x)棵树,平均每棵树结 (600-5x)个橙子,因此果园橙子的总产量 +100x+60000. y=(100+x)(600-5x)= -5x² 在上述问题中,种多少棵橙子树,可以使果 园橙子的总产量最多?
二次函数
y=-5x²+100x+60000, y=100x²+200x+100.
定义:一般地,形如y=ax²+bx+c(a,b,c 是常数,a≠ 0)的函数叫做x的二次函数.
提示:
(1)关于x的代数式一定是整式,a,b,c为常数,且 a≠0. (2)等式的右边最高次数为2,可以没有一次项 和常数项,但不能没有二次项.
想一想
亲历知识的发生和发展
银行的储蓄利率是随时间的变化而变化的,也就 是说,利率是一个变量.在我国,利率的调整是由 中国人民银行根据国民经济发展的情况而决定的.
设人民币一年定期储蓄的年利率是x,一年到 期后,银行将本金和利息自动按一年定期储蓄转 存.如果存款是100元,那么请你写出两年后的本 息和y(元)的表达式(不考虑利息税).
想一想
源于生活的数学
某果园有100棵橙子树,每一棵树平均结600 个橙子.现准备多种一些橙子树以提高产量,但 是如果多种树,那么树之间的距离和每一棵树所 接受的阳光就会减少.根据经验估计,每多种一 棵树,平均每棵树就会少结5个橙子.
(2)假设果园增种x棵橙子树,那么果园共有多少 棵橙子树?这时平均每棵树结多少个橙子?
随堂练习
在实践中感悟
1.下列函数中,哪些是二次函数? 1 (1)y=3(x-1)²+1; (2). y x . 怎 x (是) (不是)
么 判 断
?
1 (3) s=3-2t². (4). y . 2 x x (是) (5)y=(x+3)²-x². (不是)
(不是)
(6) v=10πr².