2020年小学数学典型应用题讲解

合集下载

小学数学典型应用题例题详解

小学数学典型应用题例题详解

小学数学典型应用题例题详解归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求几份的数量;另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1. 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:买1支铅笔多少钱?0.6÷5=0.12(元)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例3. 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)7辆汽车1次能运多少吨钢材?5×7=35(吨)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量;总量÷1份数量=份数;总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

小学数学必考应用题思路解析(附例题)

小学数学必考应用题思路解析(附例题)

小学数学必考应用题思路解析(附例题)(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

例1. 一辆汽车以每小时100 千米的速度从甲地开往乙地,又以每小时60 千米的速度从乙地开往甲地。

求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。

此题可以把甲地到乙地的路程设为“1 ”,则汽车行驶的总路程为“2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为60 千米,所用的时间是,汽车共行的时间为+ = , 汽车的平均速度为2 ÷=75 (千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。

又称“单归一。

”两次归一问题,用两步运算就能求出“单一量”的归一问题。

又称“双归一。

”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

小学数学应用题典型例题(一)(含答案解析)

小学数学应用题典型例题(一)(含答案解析)

小学数学应用题典型例题(一)(含答案解析)1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题讲解应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题. 以下主要研究30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25 、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

小学数学典型易错应用题技巧及解析(2020)

小学数学典型易错应用题技巧及解析(2020)

小学数学典型易错应用题技巧及解析(2020)一、路程问题(1)相遇问题【技巧】:相遇那一刻,路程全走过。

除以速度和,就把时间得。

例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?相遇那一刻,路程全走过。

即甲乙走过的路程和恰好是两地的距离120千米。

除以速度和,就把时间得。

即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)(2)追及问题【技巧】:慢鸟要先飞,快的随后追。

先走的路程,除以速度差,时间就求对。

例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先走的路程,为3X2=6(千米)速度的差,为6-3=3(千米/小时)。

所以追上的时间为:6/3=2(小时)。

二、鸡兔同笼问题【技巧】:假设全是鸡,假设全是兔。

多了几只脚,少了几只足?除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36 ,有脚120,求鸡兔数。

求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12三、浓度问题(1)加水稀释【技巧】:加水先求糖,糖完求糖水。

糖水减糖水,便是加糖量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【技巧】:加糖先求水,水完求糖水。

糖水减糖水,求出便解题。

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X (1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)四、和差问题已知两数的和与差,求这两个数。

小学数学30种典型应用题和例题完美版

小学数学30种典型应用题和例题完美版

小学数学30种典型应用题和例题完美版1. 简介数学是我们日常生活中不可或缺的一部分。

在小学数学学习中,了解典型应用题和例题对学生的数学素养和问题解决能力的提升至关重要。

本文将为你介绍小学数学中的30种典型应用题和例题,帮助你更好地掌握数学知识。

2. 加减法例题1:小明有10本书,他借给小红3本,借给小芳2本。

请问小明还剩下几本书?解答:小明还剩下10本 - 3本 - 2本 = 5本书。

例题2:一根绳子长5米,小明用了2米,小华用了1米。

还剩下多长?解答:绳子还剩下5米 - 2米 - 1米 = 2米。

3. 乘除法例题1:小明今年考了六次数学考试,每次的成绩分别是85分、92分、78分、89分、90分和87分。

他的平均分是多少?解答:小明的总分是85分 + 92分 + 78分 + 89分 + 90分 + 87分 = 521分,平均分是521分 ÷ 6次 = 86.83分。

例题2:一个班级有40名学生,老师希望将他们分成4个小组,每个小组有多少名学生?解答:每个小组有40名学生 ÷ 4个小组 = 10名学生。

4. 分数例题1:小明吃了一个苹果的四分之三,还剩下四分之一。

苹果一共有多少份?解答:一个苹果的四分之三 + 四分之一 = 一份,即4分之3 + 4分之1 = 4分之4 = 1份。

例题2:小华走了整条路程的三分之二,还剩下400米。

整条路程有多长?解答:整条路程的三分之二 + 400米 = 整条路程,即3分之2 + 400 = 2分之3 = 整条路程。

5. 长方形和正方形例题1:一块长方形的地板长8米,宽4米。

计算地板的面积。

解答:地板的面积是8米 × 4米 = 32平方米。

例题2:一块正方形的地砖边长为6厘米。

计算地砖的周长。

解答:地砖的周长是4条边相加,即6厘米 × 4 = 24厘米。

6. 圆形例题1:一个圆的半径是5厘米,计算圆的周长。

解答:圆的周长是2 × 3.14 × 5厘米 = 31.4厘米。

小学数学典型应用题归类精讲商品利润问题

小学数学典型应用题归类精讲商品利润问题

小学数学典型应用题归类精讲商品利润问题【含义】这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。

【数量关系】利润=售价-进货价利润率=(售价-进货价)÷进货价×100%售价=进货价×(1+利润率)亏损=进货价-售价亏损率=(进货价-售价)÷进货价×100%【解题思路和方法】简单的题目可以直接利用公式,复杂的题目变通后利用公式。

例1 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?解设这种商品的原价为1,则一月份售价为(1+10%),二月份的售价为(1+10%)×(1-10%),所以二月份售价比原价下降了1-(1+10%)×(1-10%)=1%答:二月份比原价下降了1%。

例2 某服装店因搬迁,店内商品八折销售。

苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?解要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。

因为52元是原价的80%,所以原价为(52÷80%)元;又因为原价是按期望盈利30%定的,所以成本为 52÷80%÷(1+30%)=50(元)可以看出该店是盈利的,盈利率为(52-50)÷50=4%答:该店是盈利的,盈利率是4%。

例3 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。

问剩下的作业本出售时按定价打了多少折扣?解问题是要计算剩下的作业本每册实际售价是原定价的百分之几。

从题意可知,每册的原定价是0.25×(1+40%),所以关键是求出剩下的每册的实际售价,为此要知道剩下的每册盈利多少元。

剩下的作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即0.25×1200×40%×86%-0.25×1200×40%×80%=7.20(元)剩下的作业本每册盈利 7.20÷[1200×(1-80%)]=0.03(元)又可知(0.25+0.03)÷[0.25×(1+40%)]=80%答:剩下的作业本是按原定价的八折出售的。

小学数学最典型的30道应用题:定义+数量关系+例题详解

小学数学最典型的30道应用题:定义+数量关系+例题详解

小学数学最典型的30道应用题:定义+数量关系+例题详解典型的30道应用题归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求几份的数量;另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1. 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:买1支铅笔多少钱?0.6÷5=0.12(元)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例3. 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)7辆汽车1次能运多少吨钢材?5×7=35(吨)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学数学典型的30道应用题:定义+数量关系+例题详解

小学数学典型的30道应用题:定义+数量关系+例题详解

小学数学典型的30道应用题:定义+数量关系+例题详解1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求几份的数量;另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例 1.买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:买1支铅笔多少钱?0.6÷5=0.12(元)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要 1.92元。

例 2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例 3. 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)7辆汽车1次能运多少吨钢材?5×7=35(吨)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学数学应用题典型例题(含答案解析)

小学数学应用题典型例题(含答案解析)

小学数学应用题典型例题(含答案解析)小学数学应用题典型例题(含答案解析)1. 甲乙两个人合伙经营生意,甲出资4000元,乙出资6000元,合作期满后,盈利12%归甲;如果甲出资比例增加到40%,则盈利归甲的比例是多少?解析:根据合伙人出资比例计算盈利归属比例,盈利归甲的比例为甲出资数额与合伙人总出资数额的比例。

合作期满后,盈利归甲的比例为12%。

现在甲出资比例增加到40%,则甲出资数额为4000元的40%,即4000×0.4=1600元,乙出资数额为6000元的60%,即6000×0.6=3600元。

合伙人总出资数额为4000元+6000元=10000元。

因此,盈利归甲的比例为1600元/10000元=16%。

2. 小明家的电费单如下所示:月份用电量(kWh) 电价(元/kWh)一月 120 0.5二月 150 0.6三月 180 0.6四月 100 0.5请计算小明四个月的电费总额。

解析:根据电费单中的用电量和电价,计算每个月的电费,并将各个月的电费相加得到总额。

一月电费=120kWh × 0.5元/kWh = 60元,二月电费=150kWh × 0.6元/kWh = 90元,三月电费=180kWh × 0.6元/kWh = 108元,四月电费=100kWh × 0.5元/kWh = 50元。

四个月的电费总额为60元 + 90元 + 108元 + 50元 = 308元。

3. 一辆汽车从A地到B地,全程120公里。

上午开了2小时,行驶了60公里;下午从B地返回A地,下午的速度是上午速度的120%。

请问,汽车在下午从B地返回A地需要的时间是多少?解析:上午行驶了60公里,耗时2小时,所以上午的速度为60公里/2小时 = 30公里/小时。

下午的速度为上午速度的120%,即30公里/小时 × 1.2 = 36公里/小时。

下午的行驶距离为60公里,根据速度和距离的关系,时间等于距离除以速度,下午返回A地所需时间为60公里/36公里/小时≈ 1.67小时,约等于1小时40分钟。

小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题分类讲解附带例题和解题过程
解题思路:一般采用比例法或方程法进行求解,需要先列出方程或比例关系,然后求解未知数。
常见题型:例如,一项工程甲单独做需要10天完成,乙单独做需要15天完成,如果甲先做了3天后, 乙加入一起做,还需几天完成?
解题方法:先计算甲、乙两人单独完成工程所需的时间和效率,然后根据题目条件列出方程,最后 求解未知数。
题目:钟表上分针 转动的速度是时针 的几倍。
题目:钟表上时针 转动的速度是分针 的几分之几。
题目:钟表上分针 转动一圈,时针转 动多少度。
添加 标题
定义:日历问题是指与日期有关的数学问题,通常涉及到平年、闰年的计算以及日历的转换等。
添加 标题
解题思路:首先确定问题的类型,然后根据不同的类型采用不同的计算方法。对于平年或闰年的计算,需要 了解平年或闰年的天数和月份的天数;对于日历的转换,需要了解不同年份或月份的转换规则。
添加标题
添加标题
添加标题
添加标题
应用题的作用是帮助学生理解数学 概念,提高数学思维能力。
应用题在小学数学教学中占有重要 地位,是提高学生数学素养的重要 途径。
01
代数应用题:涉及代数方程、不等式、函数等数学 概念的问题,如鸡兔同笼问题。
03
概率与统计应用题:涉及概率、统计、数据分析等 概念的问题,如扔骰子求概率。
解题方法:解决 比例应用题的方 法通常包括找出 比例关系,建立 数学模型,然后 求解。
常见题型:例如 “一杯水中有 200克糖,糖和 水的比例是1:5, 求水的重量是多 少克?”
解题思路:首先 找出比例关系, 然后根据比例关 系建立数学模型, 最后求解。
定义:工程问题是指与工程项目相关的数学问题,涉及到工作量、工作效率和工作时间等概念。

小学数学13种典型应用题解析与掌握的口诀

小学数学13种典型应用题解析与掌握的口诀

一、正方体展开图:正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:1、141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。

4、33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。

二、和差问题已知两数的和与差,求这两个数。

【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。

例:已知两数和是10,差是2,求这两个数。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。

三、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。

多了几只脚,少了几只足?除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36 ,有脚120,求鸡兔数。

求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12四、浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。

糖水减糖水,便是加糖量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。

糖水减糖水,求出便解题。

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)五、路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。

小学数学知识点典型应用题

小学数学知识点典型应用题

小学数学知识点:典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开往甲地。

求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。

此题可以把甲地到乙地的路程设为“1”,则汽车行驶的总路程为“2”,从甲地到乙地的速度为100,所用的时间为,汽车从乙地到甲地速度为60千米,所用的时间是,汽车共行的时间为+=,汽车的平均速度为2÷=75(千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。

又称“单归一”。

两次归一问题,用两步运算就能求出“单一量”的归一问题。

又称“双归一”。

正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

实战小学数学应用题解析

实战小学数学应用题解析

实战小学数学应用题解析数学是一门既抽象又具体的学科,而应用题则是数学学习中的一个重要部分。

实战小学数学应用题是指将数学知识应用于实际问题的题目。

通过解析实战小学数学应用题,可以帮助学生理解数学知识的实际应用,提高解决实际问题的能力。

本文将通过几个典型的实战小学数学应用题,来解析其中的解题思路和方法。

一、购物问题小明去超市买了一些东西,其中一件商品原价为100元,但打了8折,另一件商品原价为80元,但打了5折。

小明一共花了多少钱?解析:首先,我们需要计算每件商品的折扣后的价格。

第一件商品打了8折,所以折后价格为100 × 0.8 = 80元;第二件商品打了5折,所以折后价格为80 × 0.5 = 40元。

接下来,我们将两件商品的折后价格相加,得到总共花费的金额:80 +40 = 120元。

所以小明一共花了120元。

二、时间问题小明从家出发去学校,上学需要花费30分钟。

小明在家里花了10分钟准备,然后步行了15分钟到达学校。

请问小明从离开家到到达学校一共花了多少时间?解析:首先,我们需要将小明从家到学校的时间分为三个部分:准备时间、步行时间和上学时间。

准备时间为10分钟,步行时间为15分钟,上学时间为30分钟。

接下来,我们将这三个时间相加,得到小明从离开家到到达学校一共花费的时间:10 + 15 + 30 = 55分钟。

所以小明一共花了55分钟。

三、几何问题小明有一个正方形花坛,边长为2米。

他想在花坛的四个角上各种一株花,然后在花坛的中心也种一株花。

请问小明一共需要多少株花?解析:首先,我们需要计算花坛的四个角上的花的数量。

由于花坛是正方形,所以四个角上的花的数量相同。

接下来,我们需要计算正方形的周长,即四条边的长度之和。

正方形的周长为2 + 2 + 2 + 2 = 8米。

由于花坛的四个角上的花的数量相同,所以每个角上的花的数量为8 ÷ 4 = 2株。

最后,在花坛的中心种一株花,所以小明一共需要4 + 1 = 5株花。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 和倍问题 【含义】 已知两个数的和及大数是小数的几 倍(或小数是大数的几分之几),要求这两 个数各是多少,这类应用题叫做和倍问题。
【数量关系】 总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数 较小的数 ×几倍 = 较大的数
【解题思路和方法】 简单的题目直接利用 公式,复杂的题目变通后利用公式。
(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷) 列成综合算式
90÷3÷3×5×6=10×30=300(公顷) 答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材, 如果用同样的7辆汽车运送105吨钢材,需 要运几次?
例1 果园里有杏树和桃树共248棵,桃 树的棵数是杏树的3倍,求杏树、桃树 各多少棵?
2020年小学数学典型应用题讲解
应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题, 叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和 方法来解答的应用题,叫做典型应用题.
1、归一问题 11、行船问题
21、方阵问题
2、归总问题 12、列车问题
22、商品利润问题
3、和差问题 13、时钟问题
【数量关系】 1份数量×份数=总量 总量÷1份数量=份数
总量÷份数=每份数量
【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进 裁剪方法后,每套衣服用布2.8米。原来做 791套衣服的布,现在可以做多少套?
(1)这批布总共有多少米? 3.2×791=2531.2(米)
例3 食堂运来一批蔬菜,原计划每天吃50 千克,30天慢慢消费完这批蔬菜。后来根 据大家的意见,每天比原计划多吃10千克, 这批蔬菜可以吃多少天?
(1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天) 列成综合算式
50×30÷(50+10)=1500÷60=25(天) 答:这批蔬菜可以吃25天
甲乙两袋、乙丙两袋都含有乙,从中可以看出 甲比丙多(32-30)=2千克,且甲是大数, 丙是小数。由此可知 甲袋化肥重量=(22+2)÷2=12(千克) 丙袋化肥重量=(22-2)÷2=10(千克) 乙袋化肥重量=32-12=20(千克) 答:甲袋化肥重12千克,乙袋化肥重20千克, 丙袋化肥重10千克。
10、年龄问题 20、鸡兔同笼问题 30、列方程问题
1 归一问题
【含义】 在解题时,先求出一份是多少(即单一量), 然后以单一量为标准,求出所要求的数量。这类应用 题叫做归一问题。
【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数
【解题思路和方法】 先求出单一量,以单一量为标准, 求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样 的铅笔16支,需要多少钱?
(1)买1支铅笔多少钱? 0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱? 0.12×16=1.92(元)
列成综合算式 0.6÷5×16=0.12×16=1.92(元) 答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样 计算,5台拖拉机6 天耕地多少公顷?
例2 长方形的长和宽之和为18厘米,长 比宽多2厘米,求长方形的面积。
长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米)
长方形的面积 =10×8=80(平方厘米) 答:长方形的面积为80平方厘米。
例3 有甲乙丙三袋化肥,甲乙两袋共重32千克, 乙丙两袋共重30千克,甲丙两袋共重22千克, 求三袋化肥各重多少千克。
例4 甲乙两车原来共装苹果97筐,从甲车 取下14筐放到乙车上,结果甲车比乙车还 多3筐,两车原来各装苹果多少筐?
“从甲车取下14筐放到乙车上,结果甲车比 乙车还多3筐”,这说明甲车是大数,乙车 是小数,甲与乙的差是(14×2+3),甲与 乙的和是97,因此 甲车筐数=(97+14×2+3)÷2=64(筐) 乙车筐数=97-64=33(筐) 答:甲车原来装苹果64筐,乙车原来装苹果 33筐。
(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次) 列成综合算式
105÷(100÷5÷4×7)=3(次) 答:需要运3次。
2 归总问题
【含义】 解题时,常常先找出“总数量”, 然后再根据其它条件算出所求的问题,叫归 总问题。所谓“总数量”是指货物的总价、 几小时(几天)的总工作量、几公亩地上的 总产量、几小时行的总路程等。
(2)现在可以做多少套? 2531.2÷2.8=904(套) 列成综合算式 3.2×791÷2.8=904(套) 答:现在可以做904套。
例2 小华每天读24页书,12天读完了《红 岩》一书。小明每天读36页书,几天可以 读完《红岩》?
(1)《红岩》这本书总共多少页? 24×12=288(页)
(2)小明几天可以读完《红岩》? 288÷36=8(天) 列成综合算式 24×12÷36=8(天) 答:小明8天可以读完《红岩》。
23、存款利率Βιβλιοθήκη 题4、和倍问题 14、盈亏问题
24、溶液浓度问题
5、差倍问题 15、工程问题
25、构图布数问题
6、倍比问题 16、正反比例问题 26、幻方问题
7、相遇问题 17、按比例分配
27、抽屉原则问题
8、追及问题 18、百分数问题
28、公约公倍问题
9、植树问题 19、“牛吃草”问题 29、最值问题
3 和差问题
【含义】 已知两个数量的和与差,求这两 个数量各是多少,这类应用题叫和差问题。
【数量关系】 大数=(和+差)÷ 2 小数=(和-差)÷ 2
【解题思路和方法】 简单的题目可以直 接套用公式;复杂的题目变通后再用公式。
例1 甲乙两班共有学生98人,甲班比 乙班多6人,求两班各有多少人?
甲班人数=(98+6)÷2=52(人) 乙班人数=(98-6)÷2=46(人) 答:甲班有52人,乙班有46人。
相关文档
最新文档