Royal Netherlands Academy of Arts and Sciences, 2006 Computer algebra and geometry – some
英国艺术类专业排名TOP10的院校有哪些
1、UAL:London College of Fashion 伦敦时装学院
2、University of Southampton南安普顿大学
3、University of Manchester 曼彻斯特大学
4、University of Leeds利兹大学
5、Kingston University London 金斯顿大学
6、The University of Westminster威斯敏斯特大
7、Birmingham City University伯明翰城市大学
8、Nottingham Trent University 诺丁汉特伦特大学
9、lstituto Marangoni the school of fashion,art and design马兰戈尼学院伦敦校区
5、King's College London伦敦国王学院
6、University of Warwick华威大学
7、Edinburgh College of Art(ECA)爱丁堡艺术学院
8、Kingston University,London金斯顿大学
9、University of Bristol布里斯托大学
Design Innovation and Interaction Design(MDes)
Serious Games and Virtual Reality(Bsc/MSc)
9、Westminster University威斯敏斯特大学
10、Brunel University布鲁内尔大学
3-10(以UX为主,偏交互装置、技术应用)
荷兰、英国科研管理组织的基本模式与特点
荷兰、英国科研管理组织的基本模式与特点一、考察概述2009年10月19至30日,受国际合作局委托,由中国社会科学院历史所卜宪群副所长带队,科研局、国际合作局、历史所、人口所、财贸所等单位的科研管理部门一行6人组成科研管理考察团,对荷兰、英国两国的若干科研机构进行了科研管理工作考察。
先后访问了荷兰科学研究组织、荷兰皇家科学院、英国经济与社会理事会、英国艺术与人文科学理事会、英国学术院。
考察团还顺访了莱顿大学汉学研究院。
这些机构大都是该国重要的学术和科研组织,在国际上有重要影响,其中部分机构与中国社会科学院还有着长期的交流与合作。
在访问中考察团听取了有关专家和管理人员的介绍,学习和交流双方的管理模式和经验,他们的许多做法和经验对我们的工作有一定的借鉴和启发。
二、荷英科研管理组织的主要类型及其新变化(一)荷兰国家科研管理机构及其性质与职能1.荷兰国家科学研究组织(Netherlands Organization for Scientific Research,缩写NWO)NWO成立于1988年,是荷兰基础与战略科学研究的中心,是独立的国家机构。
NWO拥有8个学部和两个基金会。
8个学部分别为地球与生命科学学部、化学学部、自然科学学部、人文科学学部、社会科学学部、医学部、物理学部和工艺学部。
两个基金会分别为:荷兰国家计算设施基金会和荷兰热带研究进展基金会(WOTRO)。
NWO在全国拥有9个研究所,领域涉及历史、法律、原子分子物理学、化学、数学、天文学、空间和海洋研究等学科领域。
NWO的职能主要是以通过资助科研活动的方式提高科研水平,促进科学研究的创新,鼓励并推动科研领域的新发展;帮助科研成果的传播,使全社会受益。
目前,NWO每年的基础预算额为4.23亿欧元。
其资金主要来自于政府部门,荷兰教育、文化和科技部(OCW)是NWO的主要资金提供方,其他的政府部门,如经济事务部也提供部分科研经费。
大部分的资金用于资助荷兰13所大学的科研人员;四分之一用于NWO所属科研院所的研究和投资。
世界美术学院排名附权威大学排名相关专业榜单
世界美术学院排名附权威大学排名相关专业榜单 The document was prepared on January 2, 2021世界美术学院排名怎样世界美术学院排名如何参考以下鑫泉留学为准备留学美术专业的小伙伴带来关于世界美术学院排名的相关信息介绍,希望能够对您提供一定的帮助。
下面是世界十大美术学院排名前十的院校介绍:?世界美术学院排名:巴黎美术学院(法国)(巴黎美术学院院是世界美术教育的发源地,是学院派思想的大本营。
学校历史最早可追溯到1641年法国最早的建筑学校,其古典主义和古典折衷主义的建筑思想影响了全世界的城市建筑风格。
任何有关建筑教育的研究中,鲍扎(Beaux-Arts学院派),作为基点是无可质疑的.究其原因:一、它是职业建筑师培养最早的完整教学体系;二、它为全球范围的许多其他学校提供了原型并且对当今的建筑教育仍在产生着影响。
至19世纪后期,巴黎美术学院的学院派建筑思想和方法开始受到全世界的关注,以巴黎美术学院为中心,形成了全球性辐射)?世界美术学院排名:2 列宾美术学院(俄罗斯)(全名是绘画、雕塑与建筑艺术研究学院,于1757年建校,与巴黎的中央美术学院一样是世界着名的四大美术学院之一,主要培养大师级的美术人才。
从该校学院毕业的学生均有较高的油画、风景画、绘画、雕刻、艺术鉴赏的艺术专长。
我国中央美术学院中有不少专家和讲师教授是从该校毕业的,该校在我国乃至世界有较广泛的知名度。
学院的教学内容以教育计划和科目所确定。
在实施这些计划的过程中,以教授指导和个人工作室为主。
这些教授大部分是有名的美术家,大多数是美术科学院的院士和通讯院士。
美术学院为学生营造了独一无二的学习环境,包括工作室,教室,博物馆里的实际操作练习,授课,讲习班和课堂讨论;学习临摹和绘画创作;教师辅导和学生独立工作;实验室工作,年级设计和毕业创作。
学院现有学生850人,外国留学生120名,来自中国,日本,德国,美国等国家和地区。
爱丁堡艺术学院申请指南
爱丁堡艺术学院申请指南爱丁堡艺术学院是英国的一所知名艺术院校,更是深受艺术留学生的青睐。
那么,关于申请爱丁堡艺术学院你了解多少呢?今天,美行思远小编整理了爱丁堡艺术学院申请指南,希望能帮助到大家。
学校介绍:爱丁堡艺术学院是欧洲最大、建校历史最长的艺术学院之一,其历史可以追溯到1760年的爱丁堡美术学院。
现分为两个相连的校园,位于市中心,现有学生两千名,分别来自世界三十八个国家。
爱丁堡艺术学院以其独创能力和研究著称,与许多工业企业及国有部门都有联系。
学院可以为学生提供到欧洲、美国、日本和澳大利亚学习的机会。
爱丁堡艺术学院Edinburgh College of Art(简称ECA)是一所位于苏格兰爱丁堡的艺术、设计、创意及表演艺术院校,为爱丁堡大学(University of Edinburgh)超过2000名学生提供艺术与设计、建筑、艺术史和音乐学等高等教育。
爱丁堡艺术学院拥有大约200名教职研究人员,是欧洲最顶尖的艺术院校之一,享有国际级盛誉;它的宗旨是通过创意实践的学术研究、学习、教学和教育来促进批判性探讨。
爱丁堡艺术学院申请指南本科专业:建筑学-Architecture景观建筑-Landscape Architecture建筑史-Architectural History新媒体艺术-Intermedia Art油画-Painting摄影-Photography雕塑-Sculpture动画-Animation时尚-Fashion影视-Film and Television平面设计-Graphic Design插画-Illustration室内设计-Interior Design珠宝和银器-Jewellery and Silversmithing 戏服-Performance Costume产品设计-Product Design纺织品设计-Textiles语言要求:雅思:6.5分,听说读写各单项不低于5.5分托福(机考):92分,听说读写各单项不低于20分剑桥英语:176分,各部分不低于162分PTE:61,各部分不低于51申请材料:1.高中毕业证中英文件2.高中成绩单中英文件3.信用卡信息,用来支付学校申请费4.护照首页扫描件5.雅思/托福/PTE/成绩单扫描件6.作品集作品集要求:作品集格式:建议电子版PDF格式;作品集大小:建议A4;三维作品如模型、雕塑需要拍成高质量的照片;确保原创,如果有引用需要做引用说明;作品集的表现媒介:铅笔、钢笔、水彩、油画、摄影、软件、模型、雕塑等研究生专业:建筑学Architecture-MArch景观建筑Landscape Architecture-MLA可持续设计Advanced Sustainable Design-MSc建筑与城市设计Architectural&Urban Design-MSc 艺术空间与自然Art,Space&Nature-MFA/MA城市规划与设计Urban Strategies&Design-MSc 艺术-Art MPhil艺术-Art PhD当代艺术实践-Contemporary Art Practice MA/MFA 当代艺术理论-Contemporary Art Theory MA材料实践-Material Practice MSC动画-Animation MA/MFA PhD设计学-Design MPhil/PhD信息设计-Design Informatics MFA,MA时尚设计-Fashion MFA电影导演-Film Directing MFA MA玻璃-Glass MFA MA平面设计-Graphic Design MFA MA插画-Illustration MFA MA室内设计-Interior Design MA珠宝-Jewellery MFA戏服设计-Performance Costume MFA/MA产品设计-Product Design MFA/MA纺织品设计-Textiles MFA/MA语言要求:雅思要求:6.5分,听说读写各单项不低于5,5分。
加拿大艺术院校解读
加拿大艺术院校解读加拿大仅有的四所可以独立颁发学位的公立专业艺术设计学院-原创,转载请注明出处加拿大最大的传媒和艺术学府谢尔丹学院学校简介谢里丹学院是加拿大老牌公立学院,成立于1967年,位于加拿大安大略省(Ontario)的奥克维尔市(Oakville)。
距多伦多30分钟车程,毗邻安大略湖,环境优美。
动画、艺术与设计学院(School of Animation, Arts and Design)位于谢里丹学院的Trafalgar Road校区,谢里丹的动画与新兴技术中心(the Sheridan for Animation and Emerging)也坐落在这里。
谢里丹学院的动画专业在北美地区享有极高的声誉,是全世界第三大传统动画与计算机动画学校,被称为动画界的“哈佛”。
早在1967年,几位著名的动画制作师在谢里丹创办了传统动画专业,其中的创始人之一是迪斯尼动画大师Bill Mathews。
他目前在谢里丹学院担任教授和高级研究员。
谢里丹的计算机动画专业则创办于1979年,是北美最早的计算机动画专业,但谢里丹的主要竞争对手还是美国顶尖的动画学校,如加州艺术学院(California Institute for the Arts),以及北卡罗来纳的The School of Communication Arts。
专业设置动画、艺术与设计学院(谢里丹的二级学院)下设三个方向:数字媒体传播、表演艺术、视觉艺术与设计。
谢里丹学院闻名的动画系隶属于视觉艺术与设计方向。
视觉艺术与设计方向下属的专业有(05-06年度):动画(4年制,应用艺术学士)、艺术与艺术史(4年制,艺术学士)、插画(4年制,应用艺术学士)、设计(4年制,荣誉学士,该专业与约克大学合办)、应用摄影(2年制,安大略省大专文凭)、艺术基础(1年制,安大略省课程毕业证书)、工业设计(4年制,安大略省大专高级文凭)、室内设计(3年制,安大略省大专高级文凭),此外,还有需要学位和相关证书(针对以前曾学过相关大专和大学的人)才能申请入读的计算机动画专业(1年制,安大略省学院毕业证书),包括数字角色设计、数字视觉效果等方向。
The Royal Academy of Art (KABK)学校介绍及申请条件
The Royal Academy of Art (KABK)学校介绍及申请条件The Royal Academy of Art (KABK),中文名称:皇家美术学院(荷兰语Koninklijke Acdemie van Beeldende Kunsten)位于荷兰南荷兰省海牙市,是一所以培养高级艺术人才为宗旨的高等院校。
皇家美术学院于1990年由原皇家音乐学院和原皇家美术、设计、音乐及舞蹈学院合并而成。
皇家美术学院开设本科和硕士层次的专业课程,授课语言为荷兰语,但为了吸引国际留学生,该校还开设了一系列英语授课课程以及交换生项目。
皇家美术学院提供的本科专业如美术,摄影术,平面设计,互动媒体/互动设计,室内设计,纺织品和时装等等,硕士专业有工业设计,类型与媒体,艺术科学/创作与研究发展,摄影研究,媒体技术等。
除此之外,皇家美术学院还为国际自主留学生和国际交换生安排了荷兰语言及文化课程,帮助他们认识荷兰语和荷兰文化,从而为他们的荷兰之行打下基础。
基本信息本科入学条件:语言及相关考试要求:其它要求中国学生需获得Nuffic证书,以证明其英语水平。
申请截止日期暂无数据费用参考学费:4000欧元/学年RMB:28182元/学年生活费:8400-10800欧元/学年RMB:59183-76092元/学年博士入学条件:语言及相关考试要求:其它要求中国学生需获得Nuffic证书,以证明其英语水平。
申请截止日期暂无数据费用注册费:1700欧元RMB:11978元生活费:8400-10800欧元/学年RMB:59183-76092元/学年预科入学条件:语言及相关考试要求:其它要求中国学生需获得Nuffic证书,以证明其英语水平。
申请截止日期暂无数据费用参考学费:1713欧元/学年RMB:12069元/学年生活费:8400-10800欧元/学年RMB:59183-76092元/学年。
rca是什么学校
rca是什么学校
RCA是伦敦皇家艺术学院(Royal College of Art)的简称。
作为一所国际知名的高等艺术与设计学院,RCA位于英国
伦敦,是世界上最早的专业艺术学院之一。
RCA创建于1837年,最初的宗旨是培养英国工艺和设计
的创造力。
学院的成立得到了当时威廉四世和维多利亚女王的支持,并一直扮演着英国艺术与设计教育的先锋角色。
伦敦皇家艺术学院坚持提供给学生全面的课程设置,涵
盖了艺术、设计、建筑和传媒等领域。
学院设有五个学院,分别是建筑、设计、艺术、传媒和人文学科。
每个学院都有自己独特的专业方向,包括时尚设计、产品设计、视觉传达设计、摄影、绘画、雕塑、建筑设计等。
RCA的教学理念注重提高学生的创新能力和实践技能。
学院引入了项目驱动的教学方法,鼓励学生在学术课程中直接参与实际项目的研究与创作。
这种教育方式培养了学生的实践能力和解决问题的能力,使他们能够更好地适应现实世界的挑战。
此外,RCA积极推动学术研究与实践的结合,通过创新的项目和跨学科的合作,为学生提供了更广阔的发展空间。
学院还与业界建立了广泛的合作关系,为学生提供实习和工作机会,帮助他们更好地融入职业领域。
伦敦皇家艺术学院以其卓越的教育质量和艺术设计领域
的知名度成为世界艺术教育的瑰宝。
许多著名的艺术家、设计师和建筑师都毕业于RCA,并在各自领域取得了卓越的成就。
总之,伦敦皇家艺术学院作为世界顶级的艺术与设计学
府,致力于培养具有创新精神和实践能力的艺术家和设计师,为世界艺术与设计领域的发展做出了重要贡献。
从脑科学的新发展看人文学问题
从脑科学的新发展看人文学问题作者:包爱民罗建红[荷兰]迪克•斯瓦伯来源:《浙江大学学报(人文社会科学版)》2012年第07期[摘要]神经科学的发展已经形成了关于人文学某些经典问题的重新思考或认识。
当前的神经科学发现显示:我们的大脑和意识都是物质性的,意识的身心二元论是不能成立的,应该回归于大脑一元论。
大脑很重要的一部分工作是无意识的,但却能很好地完成许多在常人看来需要意识去完成的工作,这种无意识的大脑运作过程也是大脑的一种客观属性。
另外,常识心理学中所谓自由意志的存在是很可疑的,大脑在意识到自己作出决定之前已经作了决定,无意识的意志根据环境中发生的情况而作出瞬间的决定,其过程主要由大脑在发育期间所形成的工作方式以及由之后我们所学到的知识(记忆)决定。
当然,自由意志是否存在这个重要问题的最终答案还应该来自于未来更多的科学实验。
[关键词]神经科学;人文学;大脑;意识;自由意志Notes on Some Fundamental Questions in the Humanities Basedon Progresses in Brain ResearchBao Aimin1 Luo Jianhong1 Dick F.Swaab2(1.School of Medicine, Zhejiang University, Hangzhou 310058, China; herlandsInstitute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts andSciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands)Abstract: The rapid and strong development of brain research in the recent decades necessitates a re thinking or re awaking of some classical questions in the humanities,which may have significant effects on our society.As neuroscientists we would like to share with our colleagues from the humanities our points of view concerning these questions.Our points presented in this paper concern three important issues: (i) essence of the human mind, (ii) consciousness and unconsciousness of the brain,and (iii) free will.Ad (i) Our fundamental point of view is that the classical body mind dualism has disappeared with the new development of neuroscience and should be replaced by a brain monism.The mind is the result of our 100 billion brain cells working together,and is thus a product of the brain.The mind is produced by the brain by action potentials,neurotransmitters and synaptic changes,resulting in changes in the activities of the brain cells,and interactions of the brain areas.The results of brain work areobjective since they are solely the consequences of the changes in transmitter release and activity of nerve cells in particular brain areas.There are also good neuroscientific explanations for the so called ″subjective″ properties of one s personality or character.It is the genetic background,early brain development,and remodeling of the brain caused by later developmental experiences playing together to make each brain unique.These mind differences can be explained on the basis of differences in brain structures and functions and they are purely objective.Ad (ii) Most of our brain work is unconscious and it can very well carry out complex tasks this way.Such unconscious processing of the brain is also one of its objective properties.In addition,the brain (= I) does have the unconscious wish ″to survive,″ which has developed during evolution and that during evolution the wish for food and reproduction are strongly coupled to our brain reward systems has proven to be an extremely efficient mechanism.These basic wishes are sublimated in the human being into products of work,science and art.Ad (iii) Scientific experiments have shown that our brain makes decisions before we are conscious of them.These observations seriously question whether we have any degree of free will.The unconscious will takes split second decisions on the basis of what is going on in our surroundings,a process that is importantly determined by the way our brains were formed during development and by what we have learned since then (=memories).That the feeling of ″free will″ is an illusion has gained support of many experimental data,although the final answer to this important question should come from future experiments.Our current knowledge of neurobiology shows that many inherited factors and environmental influences during early development affect the structure and functioning of our brains for the rest of our lives. This means that along with all kinds of potentials and talents,we have many built in limitations,including a given level of aggression,our gender identity and our sexual orientation,and a greater or lesser tendency to develop brain disorders such as ADHD,borderline personality disorder,depression or schizophrenia.Finally,we think that developments in neuroscience not only promote our penetration into the essence of human beings,but also significantly inspire the improvement in our social ethics and mechanism,as for example,in the case of how we should fairly and efficiently punish the offenders who have psychiatric disorders.Key words: neuroscience; humanities; brain; mind; free will科学的每一项进步都有可能帮助我们在认识人类自身的问题上取得关键性突破,脑科学在近几十年中突飞猛进的发展的确起到了这样的作用。
英国伦敦皇家美术学院介绍
立思辰留学360介绍,Royal Academy of Art 英国皇家美术研究院,简称RA,坐落在伦敦市中心,自从 1768 年成立以来迄今已有 247年,不仅历史悠久而且人才辈出,为培育世界绘画、雕刻、建筑艺术英才做出了巨大贡献。
该研究院每年举行优秀学员及艺术家作品展,也吸引了国内外艺术爱好者的瞩目。
简介
皇家美术研究院现任院长莫里斯考克利尔教授,在研究院办公室接受‘留学英国’专访时说,皇家美术研究院开设为期三年的研究生阶段的课程,并授予毕业学员“皇家研究院.研究生证书”(royal academy postgraduate diploma in fine arts),有意申请的国内外年轻艺术家,必须至少具备绘画、雕刻、数码印刷或摄影专业等领域的一等荣誉学士学位或者更高的研究生学位资格,并在国家级艺术展览或着国际艺术展会中获得过艺术奖项。
很多人不能区分Royal Academy of Arts 和 Royal College of Art。
在英国,有数个以皇家为Title 的学会、机构和组织。
而在艺术领域,主要有三个学术机构,分别是
Royal Society of Arts 英国皇家美术学会RSA;
Royal College of Art 英国皇家艺术学院RCA;
Royal Academy of Arts 英国皇家美术研究院RAA
其中,英国皇家艺术学院RCA以培养学术人才,攻读学位为主;而英国皇家美术研究院RAA以培养专业人才、加强艺术家之间的交流、艺术作品展览为其首要任务。
萨凡纳艺术与设计学院
萨凡纳艺术与设计学院萨凡纳艺术与设计学院Savannah College of Art and Design(SCAD),位于美国佐治亚州的萨凡纳市中心,是全美最大的艺术学院,也是全球最大的艺术大学之一。
许多著名品牌设计师及迪斯尼动画师皆出自该校。
SCAD每年举行多场学术讲座,全美著名作家、设计师应邀参加。
《辛普森一家》(The Simpsons)创作者马特·格勒宁、著名设计师ALexandra Wang都是SCAD 座上宾。
萨凡纳艺术与设计学院现有学生5000多名,分别来自美国50个州和世界80多个不同的国家。
学院的目标是发现和培育每一名学生的独特才智。
萨凡纳艺术与设计学院现有学生5000多名,分别来自美国50个州和世界80多个不同的国家。
学院的目标是发现和培育每一名学生的独特才智。
建筑和设施这是一座神奇的城市,南北战争的传奇和《善恶花园的午夜》使她闻名世界这是一座艺术的殿堂,星罗棋布的百年古屋和缤纷多彩的艺术画廊使她独具魅力这里是设计师们学习的圣地,先进的教学设施和丰富的实践机会是这里最强的吸引力这里是艺术家们成长的摇篮,亲眼目睹、亲耳倾听、创造个性、恢复自我,是这里的座右铭这就是萨凡纳艺术与设计学院.学院设置学校开设院系:建筑艺术学院、传播艺术学院、设计学院、时装学院、数字媒体学院、娱乐艺术学院、美术学院、文学院本科开设专业建筑艺术学院:建筑史、建筑和建筑环境、家居设计、室内设计、保护设计传播艺术学院:广告设计、平面设计、插画、摄影、连环画艺术设计学院:可持续性设计、设计管理、工业设计、服务设计时装学院:配件设计、服装设计、纺织品、珠宝设计、时尚管理数字媒体学院:动画设计、交互设计和游戏设计、视觉传达等娱乐艺术学院:电影、声音设计、表演等美术学院:绘画文学院:艺术史、戏剧写作、写作研究生开设专业建筑艺术学院:建筑史、建筑和建筑环境、家居设计、室内设计、保护设计、城市设计传播艺术学院:广告设计、平面设计、插画、摄影、连环画艺术设计学院:创意商业领导力、可持续性设计、设计管理、工业设计、服务设计时装学院:配件设计、服装设计、纺织品、珠宝设计、时尚管理数字媒体学院:动画设计、交互设计和游戏设计、视觉传达等娱乐艺术学院:电影、声音设计、表演、娱乐设计等美术学院:绘画文学院:艺术史、戏剧写作、写作、电影研究去SCAD要准备什么?本科申请条件申请截至日SCAD全年接受新的申请。
加拿大四大独立艺术院校之一
加拿大四大独立艺术院校之一——艾米丽卡尔艺术与设计大学加拿大四大独立艺术院校之一艾米丽卡尔艺术与设计大学Emily Carr University of Art and Design建立于1925年,是世界上公认的在视觉艺术、影视艺术和设计方面具有创新和卓越风格的学府。
学校培养了一批优秀的艺术设计人才,著名的摄影师Krista Jahnke,BC 创造成就奖获得者Bracken HanuseCorlett等都毕业于此。
艾米丽卡尔艺术与设计大学Emily Carr University of Art and Design的纯艺术、摄影专业较为有名,教学方式风格多样,学校注重学生对艺术设计的概念、评论、文化、就业能力等的培养。
在艾米丽卡尔艺术与设计大学对于纯艺术和摄影专业的教学体系严谨,有5点明确的教学目标:1.培养公民艺术摄影家,对理论、研究、工作室时间、评论有自己的认知,推动艺术设计发展。
2.在视觉艺术文化领域传授先进的摄影实践运用知识。
3.通过studio-based概念和技术知识教育来展现摄影媒介的多样性和复杂性;4.培养学生能再商业社会立足的摄影技术能力,为知识经济做贡献。
5.为在温哥华乃至形成动态视觉艺术文化和社区发展而努力。
在艾米丽卡尔艺术与设计大学学纯艺术和摄影艺术,学制是四年。
第一年是一个基础课程的学习,在第二年才是专业课程的学习。
在第三年和第四年就会在专业领域进入一个纵深的学习,大多数课程是3个学分,在本科学习中,需要修满129个学分。
经过四年的学习之后,学生一般都会是具备专业的实践能力的视觉传播者,毕业生要求制作作品集,而这也是学生进入商业社会立足求生的敲门砖。
艾米丽卡尔艺术与设计大学毕业生就职的职位有:摄影师,视觉设计师、图片编辑、艺术市场分析师、网站创意,艺术家工作室经理,产品经理。
招募毕业生的雇主有:唐纳利集团,Airbnb,登山设备合作社,家庭和生活杂志,温哥华时装周,华纳兄弟,温哥华报纸。
荷兰皇家生态研究院
荷兰皇家生态研究院
荷兰皇家生态研究院简称(NIOO-KNAW),英文全称为Royal Netherlands Academy of Arts and Sciences (KNAW)。
该所成立于1950年,是荷兰最大的生态研究机构,隶属荷兰皇家艺术和科学院,已有两百多年的历史,在欧洲具有极大的影响力。
三个研究课题不同的中心构成,三个研究中心分别位于Nieuwersluis,Heteren和Yerseke (CEME),研究领域包括空间生态学(Spatial ecology)、海洋生态学(marine ecology)、淡水生态学(freshwater ecology)、陆地生态学(terrestrial ecology)。
三个中心分别侧重用不同领域的研究课题和应用,位于Yerseke的研究中心主要侧重河口(Esturary),湿地(Wetland)和海洋生态系统研究;位于Heteren的研究中心主要侧重陆地生态系统的研究;2010年,NIOO-KNAW经过机构调整该所三个中心分别属于两个不同单位。
其中,Yerseke的CEME中心合并于荷兰皇家海洋生态研究所(NIOZ),而其它两个中心合并于Wageningen大学。
英国留学珠宝设计专业三大名校推荐
英国留学珠宝设计专业三大名校推荐皇家艺术学院成立于1837年,世界最著名艺术设计学院之一,也是世界上唯一在校生全部为研究生的艺术设计学院,学院坐落于伦敦,课程讲授者均为国际知名艺术家,从业者和理论家。
皇家艺术学院拥有国家最先进的设施和优秀的研究资源,并且有促进优秀创意和智慧的环境皇家艺术学院是唯一的全研究生大学。
在皇家艺术学院,学生和工作人员的学习和实践艺术拥有独特的设计环境,并设计了一个艺术环境。
皇家艺术学院在1967年,被皇家宪章授予教育权力,皇家艺术学院指定的目的是以推动学习,知识和专业能力,特别是美术水平……通过教学,研究与合作,为学员创造一个良好的发展空间。
1837 年建校,世界最著名的艺术设计学院之一,也是唯一的只有研究生阶段的艺术设计学院1837 年创立,原名为 Government School of Design,位于 Somerset House,Strand1851 年大博览会第一届世博会后,改革并更名为 National Art Training School,移至现今的South Kensington南肯辛顿校区1896 年更名为皇家艺术学院1967 年获皇家特许状,拥有独立颁发学位权利提供MA,MPhil 和 PhD 三种学位,总学生数约 800,平均年龄 26,总约 100 多教职员工,全部为著名艺术家,设计师,作家。
每年10月-7月学期段的访问教授/从业者数量巨大,最密集的年轻艺术家,设计师和传播工作者的团体,学院提供了一个聚焦于设计环境中的艺术与艺术环境中的设计的团体。
学院在世界上的声誉来自杰出的艺术与设计教育,基于员工,学生,以及当然,校友。
学生除了英国外,来自约 35 个国家,混合的背景和天赋使得在学院的学习是一种独特的经历。
学院的中心有着一个强烈的信念:基于 Project 的教育,面对面地教授和专业的指南。
一个以这些途径鼓励毕业生“找到他们自己的声音”的信念2002 年 Higher Education Funding Council for England 所进行的 Research Assessment Exercise RAE ,RCA 在 Art and Design 得到了5 分满分在 1997-2001 的官方统计中,超过 92% 的学生毕业后在曾学习的专业或相关的领域工作公立艺术类London UK作品集难度:4.8雅思:6.5写作>6中央圣马丁艺术与设计学院英文名:Central Saint Martins College of Art and Design是英国一所著名的艺术与设计学院,属于伦敦艺术大学的一部分,是世界四大时装设计学院之一。
荷兰首都阿姆斯特丹英语
荷兰首都阿姆斯特丹英语阿姆斯特丹荷兰首都及最大城市,人口约110万。
位于该国西部省份北荷兰省,世界著名的国际大都市。
接下来,小编给大家准备了荷兰首都阿姆斯特丹英语,欢迎大家参考与借鉴。
荷兰首都阿姆斯特丹英语Amsterdam, seaport and principal city of the western Netherlands, in North Holland Province, near The Hague(海牙). Amsterdam is the country's constitutional capital; the real seat of government, however, is in The Hague. Amsterdam is divided by more than 80 km of canals into about 90 islands joined by about 400 bridges.Amsterdam, chartered as a city in 1300, became a member of the Hanseatic League(汉萨同盟) in 1369. In the 17th century, after the successful conclusion of the Dutch wars for independence from Spain, Amsterdam became the chief commercial center of northern Europe. The city held this position until the late 18th century, when trade declined as a result of the silting(淤积;淤塞) of the Zuider Zee(须德海) and the British blockade before and during the Napoleonic Wars (1799-1815). In 1810 Napoleon incorporated the Netherlands into the French Empire. After his downfall(衰败,垮台) the Netherlands regained its independence and the seat of government was moved to The Hague. In the latter part of the 19th century, commercial activities revived with the opening of the North Sea and North Holland canals. During World War II (1939-1945), Amsterdam was occupied by the German army for five years. The people suffered great hardship and the port was badly damaged, but it has since been rebuilt and improved.Amsterdam is one of the most important commercial centersin Europe. The city is a major port linked to the North Sea and other European countries by a network of railways and canals, notably the North Sea Canal, which is navigable(适于航行的)by oceangoing(远洋航行的) vessels. Among leading industries in the city are shipbuilding, sugar refining, publishing, and the manufacture of heavy machinery, paper products, textiles and clothing, porcelain and glass, aircraft, automobiles, and chemicals. The city is also famous as a center for polishing and cutting diamonds and as the chief financial center of the Netherlands. A major European stock exchange is located in Amsterdam, as are the Bank of the Netherlands and several insurance firms.Amsterdam has been an important center of European cultural life since the 17th century. The city is the site of the National Academy of Art, the Royal Netherlands Academy of Sciences, and the University of Amsterdam (1632). Its Rijksmuseum(阿姆斯特丹国立博物馆) contains one of the largest collections of Dutch and Flemish paintings in the world, and its Stedelijk Museum(市立现代美术馆) has an extensive collection of modern works. The Van Gogh Museum(凡·高博物馆) includes about 800 works by 19th-century painter Vincent van Gogh(文森特· 凡高)in its collection. Amsterdam is also noted as the home of the renowned 17th-century painter Rembrandt(伦布兰特); his home is now a museum. The Concert-gebouw, completed in 1883, is the home of Amsterdam's renowned orchestra. The city has numerous examples of 16th- and 17th-century architecture, as well as two historic churches: Oude Kerk (Old Church), built about 1300, and Nieuwe Kerk (New Church), built in the 15th century. The royal palace, originally built in the 17th century as the town hall, stands on a large square in the center of the city.扩展:With or without you 等你LyricsWith or without you by U2See the stone set in your eyesSee the thorn twist in your sideI wait for youSleight1 of hand and twist of fateOn a bed of nails she makes me wait And I wait without youWith or without youWith or without youThrough the storm we reach the shore You give it all but I want moreAnd I'm waiting for youWith or without youWith or without youI can't liveWith or without youAnd you give yourself awayAnd you give yourself awayAnd you giveAnd you giveAnd you give yourself awayMy hands are tiedMy body bruised2, she's got me with Nothing to win andNothing left to loseAnd you give yourself awayAnd you give yourself awayAnd you giveAnd you giveAnd you give yourself away With or without youWith or without youI can't liveWith or without youWith or without youWith or without youI can't liveWith or without youWith or without you中文歌词等你 by U2看到你眼若冰霜看到你浑身带刺我在等你上天实在作弄人她就让我苦苦的等不论你是否在身旁我在等你我们在暴风雨中达到彼岸即使你献出所有我仍想得到更多我在等你不管你是否在身旁我会在这里等你我的生命中不能没有你你吐露了心声……我束茧自缚我遍体鳞伤她让我丧失了所有的筹码令我一无所有你吐露了心声……不管你是否在身旁我的生命中不能没有你不管你是否在身旁我的生命中不能没有你。
英国四大艺术大学最新介绍
英国四大艺术大学最新介绍英国四大艺术大学 NO.1皇家艺术学院Royal College of Art英国皇家艺术学院成立于1837年,坐落于英国伦敦。
全球唯一的全研究制艺术院校〔无本科教育〕。
教授们均为国际知名艺术家,从业者和理论家。
为世界级的艺术与设计学院,也是迄今历史最悠久的艺术教育机构之一,学院被誉为全球艺术与设计大师的摇篮,学术声誉冠冕全球。
在QS‘艺术类学术声誉’评估指标中,是全球唯一多年蝉联总分值的学校。
学院拥有国家最先进的设施,优秀的研究资和促进创意与智慧的环境。
位于南肯辛顿地区的校区坐落于具有悠久的历史人文气氛的高尔街,毗邻皇家阿尔伯特音乐厅,皇家音乐学院,帝国理工大学,海德公园,维多利亚和阿尔伯特博物馆以及英国自然历史博物馆等。
与帝国理工大学共享局部教育资并有超过35年的合作办学的历史。
NO.2伦敦艺术大学University of the Arts London伦敦艺术大学由六所世界出名的艺术、设计、服装、影视表演、群众传媒和新闻出版学院组成,即坎伯韦尔艺术学院、中央圣马丁学院、切尔西艺术学院、伦敦服装学院、伦敦传媒学院、温布尔登艺术学院。
经过150年的开展,已成为欧洲最大的艺术、设计、服装、影视表演、群众传媒和新闻出版类大学,拥有来自100多个国家的19,000名学生。
QS全球艺术院校排行榜,排名第二。
伦敦艺术大学近几年相继建立了人工智能研究所,社会设计研究所,去殖民化艺术研究所之后,新近又成立了时尚纺织品与技术研究所。
各个研究所都有着明确的社会使命,对于其所关注的问题进展深化的,有创意性的研究以及寻找解决方案。
NO.3格拉斯哥艺术学院The Glasgow School of Art格拉斯哥艺术学院是英国久负盛名和最古老的苏格兰地区的艺术院校,艺术设计名列世界十强名校,也是现存为数不多的独立艺术院校之一,享誉欧洲。
下属4个学院,分别为设计学院、美术学院、麦金托什建筑学院及创新学院。
英国艺术生留学院校
英国艺术生留学院校如今申请国外留学的同学越来越多,其英国是艺术留学大国,深得不少艺术生的青睐,由于英国院校众多,使得很多同学对于英国院校并不少很了解。
下面让我们看一下英国艺术生留学院校有哪些,希望对你有帮助。
英国艺术生留学院校推荐1.皇家艺术学院Royal College of Art申请难度:4.8;优势专业:工业设计、交互设计、摄影;院校地址:英国伦敦肯辛顿戈尔皇家艺术学院坐落在伦敦,皇家艺术学院的课程讲授者均为国际知名艺术家,从业者和理论家。
皇家艺术学院已拥有国家最先进的设施和优秀的研究资源,并且有促进优秀创意和智慧的环境。
皇家艺术学院欢迎来自世界各地的学生,皇家艺术学院拥有全球性伙伴关系,加强领导艺术和设计,文化和教育机构的广泛的联系,并且在业务方面,在国内和国际寻求合作伙伴。
英国皇家艺术学院Royal College of Art不仅是创意的源泉,且极具特色。
她是全球艺术家和设计师最为集中的社会团体之一,每年吸引了无数来自世界各地的众多颇具才华的学生。
许多从英国皇家艺术学院Royal College of Art毕业的学生已经对我们的日常生活产生了显著的影响,我们所穿的服装,参观的展览,驾驶的汽车以及购买的日用品,都有他们的设计作品。
其毕业生在诸多创作性行业中成为领军人物。
2.中央圣马丁艺术与设计学院Central Saint Martins College of Art and Design申请难度:4.7;优势专业:服装设计、配饰设计、室内设计、平面设计、插画;院校地址:英国伦敦伦敦国王十字格拉纳里广场一号格拉纳里大楼位于伦敦市中心的中央圣马丁艺术与设计学院 ( Central Saint Martins College ofArt and Design) 是英国著名的艺术与设计学院之一,属于伦敦艺术大学的一部分,也是世界四大时装设计学院之一。
中央圣马丁艺术与设计学院成立于1989年,由2个学校合并而成:中央艺术与设计学校(始建于1896年,英国皇家女子艺术学院1908年并入)和圣马丁艺术学校(始建于1854年)。
各国提供的博士后基金名称及其国别
此处为各国提供的博士后基金名称及其国别,用google搜索名字就会看到官网,供各位有申请打算的虫友参考。
Post-Doctoral FellowshipsAAACR Research Fellowships (American Association for Cancer Research)Academy Professorships Programme (Royal Netherlands Academy of Arts and Sciences) Academy Research Fellow (Academy of Finland)ALSA Post-Doctoral Fellowship Program (Amyotrophic Lateral Sclerosis Association)ARC Federation Fellowships (Australian Research Council)ARC Professorial Fellowship (APF) (Australian Research Council)Arctic Institute of North America (AINA) Fellows ProgramArgonne National Laboratory Named Postdoctoral Fellowship ProgramASM Fellowships (American Society for Microbiology)Australian Postdoctoral Research Fellowship (Australian Research Council)Australian Research Fellowship/Queen Elizabeth II Fellowship (Australian Research Council) Austrian Science Fund (FWF) Erwin Schrödinger FellowshipsAustrian Science Fund (FWF) Lise Meitner ProgramBBBSRC David Phillips Fellowships (Biotechnology and Biological Sciences Research Council, UK)BBSRC International Fellowships (Biotechnology and Biological Sciences Research Council, UK) BBSRC Professorial Fellowships (Biotechnology and Biological Sciences Research Council, UK) Bluma Tischler Postdoctoral Fellowship (The University of British Columbia)British Academy Research Funding (UK)British Council Funding Programmes (UK)British Federation Crosby Hall Fellowship (International Federation of University Women)CCanadian Blood Services Postdoctoral Fellowship ProgramCanadian Diabetes Association ScholarshipsCancer Research Institute (CRI) Postdoctoral FellowshipsCassen Post-Doctoral Fellowship Award (Education and Research Foundation for the Society of Nuclear Medicine)The CERN Fellowship Program (European Organization for Nuclear Research (CERN)CFUW/A Vibert Douglas International Fellowship (International Federation of University Women) Chandra Postdoctoral Fellowship Program (the Chandra X-Ray Observatory, USA)CMS Postdoctoral Program (Lawrence Livermore National Laboratories, USA)CNR Consiglio Nazionale delle Ricerche (Italy)CNRS Centre National de la recherche scientifique (France)CoreGRID Fellowship Programme (European Union)CRM-ISM Postdoctoral Fellowships (Centre de recherches mathematiques, Canada)CSIRO Sir Frederick McMaster Fellowship (Commonwealth Scientific & Industrial Research Organization, Australia)CTCMS Resident Scholar and Postdoctoral Programs (The National Institute of Standards and Technology's, USA)Curie Institute Postdoctoral Fellowships (Curie Institute Research Division, France)DDAAD Visiting Professorships Programme (German Academic Exchange Service, Germany) Daland Fellowships in Clinical Investigation (American Philosophical Society, USA)Damon Runyon Cancer Research Foundation Fellowship Award (USA)DFG Deutsche Forschungsgemeinschaft (Germany)DISCCRS Symposia (Dissertations initiative for the advancement of Climate-Change Research, USA)EEllen Gleditsch Stipendiefond (International Federation of University Women, Norway)EMBO Long Term Fellowships (European Molecular Biology Organization)EMBO Short-Term Fellowship (European Molecular Biology Organization)EPSRC Fellowships (Engineering and Physical Sciences Research Council, UK)ERCIM Fellowship Program (European Research Consortium for Informatics and Mathematics) ESA Postdoctoral External Fellowship Program (European Space Agency)Brochure )ESRF Postdoctoral Fellowships (European Synchrotron Radiation Facility)FFellowship Awards of the JCC Fund (Jane Coffin Childs Memorial Fund for Medical Research, USA)Fernand Braudel Senior Fellowships (European University Institute, Italy)Fields Institute Postdoctoral Fellowships (Fields Institute, Canada)Fight for Sight Postdoctoral Fellowship (Fight for Sight, USA)Firestone Fellowship (Harvard-Smithsonian Center for Astrophysics, USA)FOM Postdoctoral Fellowships (Foundation for Fundamental Research on Matter, The Netherlands)Fondation Erna Hamburger (Switzerland)GThe Grass Fellowships in Neuroscience (USA)HHarold C. Graboske, Jr. Postdoctoral Fellowship (Lawrence Livermore National Laboratories, USA)Harvard-Smithsonian Center for Astrophysics Postdoctoral Fellowships (Harvard-Smithsonian Center for Astrophysiscs, USA)Heart Rhythm Society Full-Year Research Fellowships (USA)Hebrew University Lady Davis Postdoctoral Fellowship (Hebrew Unversity of Israel)Hebrew University Visiting Professors Fellowship (Hebrew Unversity of Israel)Helmholtz - DAAD Fellowships (German Academic Exchange Service, Germany)High Altitude Observatory Scientific Visitor and Postdoctoral Fellowship Appointment (National Centre for Atmospheric Research, USA)Hong Kong University of Science and Technology ScholarshipsHosei International Fund (HIF) Foreign Scholars Fellowship (Hosei University International Center, Japan)Hugh Kelly Fellowship (Rhodes University, South Africa)Human Frontier Science Program (HFSP) Fellowships (Human Frontier Science Program) Humboldt Research Fellowships (Alexander von Humboldt Foundation, Germany)Hunt Postdoctoral Fellowships (Wenner-Gren Foundation, USA)Huntington's Disease Society of America Research Fellowships (USA)IIARC Expertise Transfer Fellowship (International Agency for Research on Cancer, part of the World Health Organization WHO)IARC Visiting Scientist Award (International Agency for Research on Cancer, part of the World Health Organization WHO)IAS-STS Fellows and Visiting Scholars (Institute for Advanced Studies on Science, Technology and Society, Austria)Ida Smedley Maclean International Fellowship (International Federation of University Women) IFUW Study and Action Program Fellowship (International Federation of University Women) INFN Postdoctoral Fellowships for Non-Italian Citizens (Italy National Institute of Nuclear Physics, Italy)INRIA Postdoctoral Fellowships (French National Institute for Research in Computer Science and Control, France)International Centre for Young Scientists (ICYS) Postdoctoral Fellowship (National Institute for Materials Science, Tsukuba, Japan)ITC Postdoctoral Fellowship (Harvard-Smithsonian Center for Astrophysics, USA)Izaak Walton Killam Memorial Postdoctoral Fellowships (Killam Trusts, Canada)JJDRF Advanced Postdoctoral Fellowship (Juvenile Diabetes Research Foundation International,USA)JDRF Postdoctoral Fellowship (Juvenile Diabetes Research Foundation International, USA)Jean Monnet Fellowships (European University Institute, Italy)Jennings Randolph Program for International Peace Senior Fellowships (United States Institute of Peace, USA)John J. Wasmuth Postdoctoral Fellowships (Hereditary Disease Foundation, USA)JSPS Invitation Fellowship Programs for Research in Japan: Long-Term Program (Japan Society for the Promotion of Science, Japan)JSPS Invitation Fellowship Programs for Research in Japan: Short-Term Program (Japan Society for the Promotion of Science, Japan)JSPS Postdoctoral Fellowship for Foreign Researchers (Japan Society for the Promotion of Science, Japan)JSPS Postdoctoral Fellowship Program (Short-term) for North American and European Researchers (Japan Society for the Promotion of Science, Japan)JSPS Summer Program (Japan Society for the Promotion of Science, Japan)KKOSEF Brain Pool (Korea Science and Engineering Foundation, South Korea)LLAM Established Investigator Awards (Lymphangioleiomyomatosis Foundation, USA)LAM Foundation Fellowship Awards (Lymphangioleiomyomatosis Foundation, USA)Li Laboratory Postdoctoral Positions (Canada)Library Resident Research Fellowship (American Philosophical Society, USA)LLS Career Development Program (Leukemia & Lymphoma Society, USA)LSRF Postdoctoral Research Fellow (Life Sciences Research Foundation, USA)MMarconi International Fellowship (Guglielmo Marconi International Fellowship Foundation, USA) Marilyn Gentry Fellowship Program in Nutrition and Cancer (American Institute for Cancer Research, USA)Max Planck Society Postdoctoral Fellowships (The Max Planck Society, Germany)Max Weber Fellowships (European University Institute, Italy)Milton Wexler Postdoctoral Fellowships (Hereditary Disease Foundation, USA)Monbusho Sholarships (Japan)MRC Fellowships (Medical Research Council, UK)Myositis Association Research Fellowships (The Myositis Association, USA)NNational MS Society Postdoctoral Fellowships (National Multiple Sclerosis Society, USA)National Natural Science Foundation of ChinaNational Niemann-Pick Disease Foundation Postdoctoral Fellowships (USA)National Research Foundation Foreign Research Fellowships (South Africa)NATO CCMS Study Visits (North Atlantic Treaty Organization)NATO Manfred Wörner Essay (North Atlantic Treaty Organization)NCAR Postdoctoral Fellowship (National Centre for Atmospheric Research, USA)NEDO Fellowships (New Energy and Industrial Technology Development Organization, Japan) NERC Advanced Research Fellowship (Natural Environment Research Council of UK)NERC Postdoctoral Fellowships (Natural Environment Research Council of UK)NHRI-Taiwan Postdoctoral Fellowship Award (National Health Research Institutes - Taiwan)NIH Visiting Program (National Institute of Health, USA)NORD/Roscoe Brady Lysosomal Storage Diseases Fellowship Program (National Organization for Rare Disorders, USA)NPL Fellowship Scheme: Advanced Research Fellowship (National Physical Laboratory, UK) NPL Fellowship Scheme: Senior Research Fellowship (National Physical Laboratory, UK)NRC Research Associateships Program (National Research Council of Canada)NRF Keynote Speakers from Abroad (National Research Foundation, South Africa)OONS Foundation Research Fellowship (Oncology Nursing Society, USA)Oronzio de Nora Industrial Electrochemistry Fellowship (The Electrochemical Society Inc., USA)PParkinson's Disease Foundation Postdoctoral Fellowships (USA)Pickwick Postdoctoral Research Fellowships (National Sleep Foundation, USA)Post-doctoral Fellowships in Astronomy and Astrophysics (Inter-University Center for Astronomy and Astrophysics, India)PPARC Advanced Fellowships (Particle Physics and Astronomy Research Council, UK) PPARC Postdoctoral Fellowships (Particle Physics and Astronomy Research Council, UK)RRadcliffe Institute Fellowship Program (USA)Research Associateship Programs (National Research Council of the National Academies, USA) Research Council of Norway Personal Visiting Researcher Grant Rhodes University Postdoctoral Fellowships (South Africa)Robert Schuman Grants (Fondation Robert Schuman)Roger Batzel Postdoctoral Fellowship (Lawrence Livermore National Laboratories, USA)Royal Society Research Professorships (UK)Rudi Lemberg Travelling Fellowship (Australian Academy of Science)SSavoy Foundation Post-doctoral and Clinical Research Fellowships (Canada)School of Theoretical Physics Fellowships (Dublin Institute for Advanced Studies, Ireland) Science Foundation Ireland E.T.S. Walton Visitor Award (Ireland)Science Foundation Ireland Fellow Award (Ireland)Selby Travelling Fellowship (Australian Academy of Science)Sloan Research Fellowships (Alfred P. Sloan Foundation, USA)Smithsonian Astrophysical Observatory Clay Fellowship (USA)Society in Science: The Branco Weiss Fellowship (ETHZ)South African Fellowship (International Federation of University Women)Stanley Postdoctoral Research Fellowship (Stanley Medical Research Institute, USA)Sturge-Weber Foundation Young Investigator Awards (USA)Swiss National Science Foundation Fellowships (Switzerland)TThe Royal Society Fellowships (UK)TSA Postdoctoral Fellowships (The Tourette Syndrome Association, Inc., USA)UUCL Scholarships and Funding (UK)UFAW Hume Animal Welfare Research Fellowship (Universities Federation for Animal Welfare, UK)UICC American Cancer Society International Fellowships For Beginning Investigators (ACSBI) (The International Union Against Cancer, Switzerland)UICC International Cancer Technology Transfer Fellowships (ICRETT) (The International Union Against Cancer, Switzerland)UICC Raisa Gorbachev Memorial fellowships (The International Union Against Cancer, Switzerland)UICC Yamagiwa-Yoshida Memorial International Cancer Study Grants (The International Union Against Cancer, Switzerland)UNESCO - L'OREAL FellowshipsUniversity of Colorado Postdoctoral Visiting Fellowships and Visiting Scientist/Sabbatical Fellowships (The Cooperative Institute for Research in Environmental Sciences at University of Colorado at Boulder, USA)UW A Postdoctoral Research Fellowships (University of Western Australia)WWeizmann Institute of Science Postdoctoral Fellowships (Feinberg Graduate School, Israel) WHOI Postdoctoral Scholar Fellowship Program (Woods Hole Oceanographic Institution, USA) Wolf Foundation Grants and ScholarshipsZonta International Fellowships, Scholarships and Awards (Advancing the Status of Women Worldwide)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Constructive Algebra and Systems TheoryB.Hanzon and M.Hazewinkel(Editors)Royal Netherlands Academy of Arts and Sciences,2006Computer algebra and geometry–some interactionsFranz Winkler1RISC-Linz,Johannes Kepler Universität LinzE-mail:Franz.Winkler@jku.at(F.Winkler)A BSTRACTAlgebraic curves and surfaces have been studied intensively in algebraic geometry for centuries.Thus, there exists a huge amount of theoretical knowledge about these geometric objects.Recently,algebraic curves and surfaces play an important and ever increasing rôle in computer aided geometric design, computer vision,computer aided manufacturing,coding theory,and cryptography,just to name a few application areas.Consequently,theoretical results need to be adapted to practical needs.We need efficient algorithms for generating,representing,manipulating,analyzing,rendering algebraic curves and surfaces.Exact computer algebraic methods can be employed effectively for dealing with these geometric problems.1.I N T R O D U C T I O NAlgebraic curves and surfaces have been studied intensively in algebraic geometry for centuries.Thus,there exists a huge amount of theoretical knowledge about these geometric objects.Recently,algebraic curves and surfaces play an important and ever increasing rôle in computer aided geometric design,computer vision, computer aided manufacturing,coding theory,and cryptography,just to name a few application areas.Consequently,theoretical results need to be adapted to practical needs.We need efficient algorithms for generating,representing,manipulating, analyzing,rendering algebraic curves and surfaces.Exact computer algebraic methods can be employed effectively for dealing with these geometric problems. So,for instance,we need to be able to factor over algebraically closedfields for 1The author wants to acknowledge support from the Austrian Fonds zur Förderung der wissenschaft-lichen Forschung under the project SFB F013/1304.128F .Winklerdetermining whether a curve or surface is irreducible,we need to solve systems of algebraic equations for analyzing the singular locus of such objects,and we need to control algebraic extensions in computing rational parametrizations.We describe some of the algorithms for computations with algebraic curves and surfaces which have been developed in the last few years.One interesting subproblem is the rational parametrization of curves and surfaces.Determining whether a curve or surface has a rational parametrization,and if so,computing such a parametrization,is a non-trivial task.But in the last few years there has been quite some progress in this area.Implicit representations (by defining polynomial)and parametric representations (by rational parametrization)both have their particular advantages and disadvan-tages.Given an implicit representation of a curve and a point in the plane,it is easy to check whether the point is on the curve.But it is hard to generate “good”points on the curve,i.e.for instance points with rational coordinates if the defining field is Q .This is easy for a curve given parametrically.So it is highly desirable to have efficient algorithms for changing from implicit to parametric representation,and vice versa.We have described such parametrization algorithms for curves in [19,20].So,for instance,the cardioid curve and also its offset curve are both rational curves;compare Fig.1(a).Recently,in [12],we have developed a completely algebraic algorithm for parametrizing pipe and canal surfaces,such as the pipe around Viviani’s temple,see Fig.1(b).Sometimes algebraic curves and surfaces need to be visualized.Numerical approximation algorithms tend to have problems finding all the isolated components of these objects and also tracing them through singularities.On the other hand,symbolic algebraic algorithms might spend a lot of computation time on non-critical parts of these objects.We describe a hybrid symbolic-numerical algorithm for visualizing algebraic curves.–2–1012y –1.2–1–0.8–0.6–0.4–0.20.20.40.60.81 1.2 1.4 1.6 1.82x (a)(b)Figure 1.(a)Cardioid curve and offset;(b)Viviani pipe surface.Computer algebra and geometry–some interactions129 In the last section we mention some open problems in computational alge-braic geometry.These open problems concern the“best”integer coefficients of a parametrization,optimal parametrization of surfaces,determining rational points on elliptic curves,decomposition of rational functions over the reals,and symbolic-numerical plotting of surfaces.For a general background on computer algebra and on symbolic algebraic algorithms for algebraic curves and surfaces we refer to[25]and[11].2.P A R A M E T R I Z A T I O N O F A L G E B R A I C C U R V E SOne interesting problem in computational algebraic geometry is the rational para-metrization of curves and surfaces.Consider an affine plane algebraic curve C in A2(K)defined by the bivariate polynomial f(x,y)∈K[x,y](here we denote by K the algebraic closure of the groundfield K).I.e.C=(a,b)|(a,b)∈A2(K)and f(a,b)=0.Of course,we could also view this curve in the projective plane P2(K),defined by F(x,y,z),the homogenization of f(x,y).A pair of rational functions(x(t),y(t))∈K(t)2is a rational parametrization of the curve C,if and only if f(x(t),y(t))=0and x(t),y(t)are not both constant.Only irreducible curves,i.e.curves whose defining polynomial is ab-solutely irreducible,can have a rational parametrization.Almost any rational transformation of a rational parametrization is again a rational parametrization, so such parametrizations are not unique.An algebraic curve having a rational parametrization is called a rational curve.A rational parametrization is called proper iff the corresponding rational map from K to C is invertible,i.e.iff the affine line and the curve C are birationally equivalent.By Lüroth’s theorem,every rational curve has a proper parametrization.Implicit representations(by defining polynomial)and parametric representations (by rational parametrization)both have their particular advantages and disadvan-tages.Given an implicit representation of a curve and a point in the plane,it is easy to check whether the point is on the curve.But it is hard to generate“good”points on the curve,i.e.for instance points with rational coordinates if the defining field is Q.On the other hand,generating good points is easy for a curve given parametrically,but deciding whether a point is on the curve requires the solution of a system of algebraic equations.So it is highly desirable to have efficient algorithms for changing from implicit to parametric representation,and vice versa. Example2.1.The curve defined in the affine or projective plane over C by the defining equation f(x,y)=y2−x3−x2=0is rationally parametrizable,andactually a parametrization is x(t)=t2−1,y(t)=t(t2−1).On the other hand,the elliptic curve defined by f(x,y)=y2−x3+x=0does not have a rational parametrization.130F.WinklerThe tacnode curve defined by f(x,y)=2x4−3x2y+y4−2y3+y2=0has the parametrizationx(t)=t3−6t2+9t−22t,y(t)=t2−4t+42t.The criterion for parametrizability of a curve is its genus.Only curves of genus0, i.e.curves having as many singularities as their degree permits,have a rational parametrization.A symbolic algebraic algorithm for rational parametrization of curves of genus 0has been developed in[18–20].Let us demonstrate the algorithm on a simple example.Example2.2.Let C be the curve in the complex plane defined byf(x,y)=x2+4y+y22−16x2+y2=0.The curve C has the following rational parametrization:x(t)=−32·−1024i+128t−144it2−22t3+it4 2304−3072it−736t2−192it3+9t4,y(t)=−40·1024−256it−80t2+16it3+t4 2304−3072it−736t.C has infinitely many real points.But generating any one of these real points from the above parametrization is not obvious.Does this real curve C also have a parametrization over R?Indeed it does,let’s see how we can get one.In the projective plane over C,C has3double points,namely(0:0:1)and (1:±i:0).Let H be the linear system of conics passing through all these double points. H is called the system of adjoint curves of degree2.The system H has dimension2and is defined byh(x,y,z,s,t)=x2+sxz+y2+tyz=0.I.e.for any particular values of s and t we get a conic in H.3elements of this linear system define a birational transformationT=h(x,y,z,0,1):h(x,y,z,1,0):h(x,y,z,1,1)=x2+y2+yz:x2+xz+y2:x2+xz+y2+yzwhich transforms C to the conic D defined by15x2+7y2+6xy−38x−14y+23=0.For a conic defined over Q we can decide whether it has a point over Q or R.In particular,we determine the point(1,8/7)on D,which,by T−1,corresponds toComputer algebra and geometry–some interactions131the regular point P=(0,−8)on C.Now,by restricting H to conics through P and intersecting H with C(for details see[19]),we get the parametrizationx(t)=−1024t3256t4+32t2+1,y(t)=−2048t4+128t2256t4+32t2+1over the reals.An alternative parametrization approach can be found in[23].In any case,computing such a parametrization essentially requires the solution of two major problems:(1)a full analysis of singularities and determination of genus and adjoint curves(either by successive blow-ups,or by Puiseux expansion)and(2)the determination of a regular point on the curve.The fastest known method for(1)has been presented in[22].If f(x,y)∈Q[x,y] is the defining polynomial for the curve under consideration,then the problem can be solved in time O(d5),where d is the degree of f.Let us discuss the treatment of problem(2).We can control the quality of the resulting parametrization by controlling thefield over which we choose this regular point.Thus,finding a regular curve point over a minimalfield extension on a curve of genus0is one of the central problems in rational parametrization.The treatment of this problem goes back to[7].Its importance for the parametrization problem has been described in[8].A rationally parametrizable curve always has infinitely many regular points over the algebraic closure K of the groundfield K.Every one of these regular points is contained in an algebraic extensionfield of K of certainfinite degree.The coordinates of the regular point determine directly the algebraic extension degree over K which is required for determining a parametrization based on this regular point.So the central issue is tofind a regular point on the curve C of as low an algebraic extension degree as possible.Example2.3.Let us once more consider the tacnode curve C of Example2.1, defined byf(x,y)=2x4−3x2y+y4−2y3+y2=0.According to the approach described in Example2.2we need a regular point on the curve.We might determine such a point by intersecting C with a line.Such intersecting lines are shown in Fig.2.Suppose we select the line L1defined by l1(x,y)=y+1.The4intersection points have the form P=(α,−1),whereαis a root of the irreducible polynomial 2α4+3α2+4=ing such a point leads to the parametrization(x(t),y(t))= (n1(t)/d(t),n2(t)/d(t)),where132F .Winkler –1–0.8–0.6–0.4–0.20.20.40.60.811.21.41.61.82y –2–112x Figure 2.Determining points on the tacnode curve.n 1(t)=−α4 36t 4+ 60α+72α3 t 3− 18+108α2 t 2+ 103α+42α3t−20−24α2 ,n 2(t)=−9t 4− 3α+18α3 t 3+ 2α2−33 t 2− 2α+12α3 t −4,d(t)=9t 4+24αt 3− 16α2+60 t 2− 20α+24α3 t +6+12α2.This parametrization of C has complex coefficients of algebraic degree 4over Q .Now suppose we select the line L 2defined by l 2(x,y)=y −1.L 2intersects C in the double point (0,1)and in the 2intersection points having the form P =(β:1),where βis a root of the irreducible polynomial 2β2−3=ing such a point leads to the parametrization (x(t),y(t))=(n 1(t)/d(t),n 2(t)/d(t)),wheren 1(t)=2βt 4+9t 3−27t −18β,n 2(t)=2t 4+12βt 3+39t 2+36βt +18,d(t)=11t 4+24βt 3+12t 2+18.This parametrization of C has real coefficients of algebraic degree 2over Q .Next we select the line L 3defined by l 3(x,y)=y −1792025687968x =0.L3intersectsC in the double point (0,0)and in 2other rational points,one of which has the coordinates P = 12328881116501772841609267,32113536006251772841609267.Using this point P leads to the parametrization (x(t),y(t))=(n 1(t)/d(t),n 2(t)/d(t)),wheren 1(t)=−11095993004850t 4−12890994573912t 3+4296998191304t+1232888111650,Computer algebra and geometry–some interactions133 n2(t)=28902182405625t4+67155391392600t3+58277689547446t2 +22385130464200t+3211353600625,d(t)=15955574483403t4+44963405382900t3+54017766921682t2 +29782459134100t+6069839800571.This parametrization of C has rational coefficients,but they are huge.Finally we select the line L4defined by l4(x,y)=x−1.L4intersects C in2 complex points and2real points,one of which has the coordinates P=(1,2).Using this point P leads to the parametrization(x(t),y(t))=(n1(t)/d(t),n2(t)/d(t)), wheren1(t)=2t4+7t3−21t−18,n2(t)=4t4+28t3+73t2+84t+36,d(t)=9t4+40t3+64t2+48t+18.This parametrization of C has small rational coefficients.In[19]we present an algorithm for determining the lowest algebraic extension degree[Q(α):Q]of afield Q(α)which admits a rational parametrization of a curve defined over Q.In fact,this algorithm also determines a parametrization over this optimal extensionfield.In[20]we describe a decision procedure for determining whether an algebraic curve with defining polynomial in Q[x,y]has a parametrization over the real numbers R.Once we are able to parametrize algebraic curves over the optimal extension field,we can also determine Diophantine solutions of the corresponding polynomial equations.We do not go into details here,but refer the reader to[15].3.P A R A M E T R I Z A T I O N O F A L G E B R A I C S U R F A C E SThe problem of rational parametrization can also be solved for algebraic surfaces. Also in this case,the analysis of singularities plays an essential rôle.Many different authors have been involved in the solution of this problem,we just mention[9] and[24].Based on the algorithmic solution of the singularity problem,Schicho has developed a general algorithm for determining the rational parametrizability of an algebraic surface,and,in the positive case,for actually computing such a parametrization.See[16].But whereas for the case of curves we know exactly the degrees of the rational functions and also the degree of the algebraic extension which might appear in the parametrization,these bounds are not known for surfaces, in general.General parametrization algorithms for surfaces require considerable computa-tion time.So it is natural to try to develop algorithms specifically taylored for classes of surfaces of practical importance.Such a class is,for instance,the one of pipe and canal surfaces.A canal surface S,generated by a parametrized space curve C=(m1(t),m2(t),m3(t))in R3,is the envelope of the set of spheres with rational radius function r(t)centered at C.The curve C is called the spine curve134F.Winklerof S.In a pipe surface r(t)is constant.This concept generalizes the classical offsets (for constant r(t))of plane curves.Pipe surfaces have numerous applications,such as shape reconstruction or robotic path planning.Canal surfaces with variable radius arise in the context of computer aided geometric design mainly as transition surfaces between pipes.Whereas for curves it is crucial to determine a regular point with real coordinates, in the situation of pipe and canal surfaces we determine a rational curve with real coefficients on the surface,in the same parameter as the spine curve.Once we have determined such a rational curve on the canal surface S,we can rotate this curve around the spine curve and in such a way compute a parametrization of S.So,for instance,Viviani’s temple is defined as the intersection of a sphere of radius2a and a circular cylinder of radius a:x2+y2+z2=4a2,(x−a)2+y2=a2,see Fig.1(b).The pipe around Viviani’s temple can be rationally parametrized.In[14]it is shown that canal surfaces with rational spine curve and rational radius function are in general rational.To be precise,they admit rational parametrizations of their real components.Recently we have developed a completely symbolic algebraic algorithm for computing rational parametrizations of pipe and canal surfaces over Q,see[12].4.I M P L I C I T I Z A T I O N O F C U R V E S A N D S U R F A C E SThe inverse problem to the problem of parametrization consists in starting from a (rational)parametrization and determining the implicit algebraic equation of the curve or surface.This is basically an elimination problem.Let us demonstrate the procedure for curves.We write the parametric representation of the curve C,x(t)=p(t)/r(t),y(t)=q(t)/r(t),ash1(t,x)=x·r(t)−p(t)=0,h2(t,y)=y·r(t)−q(t)=0.The implicit equation of the curve must be the generator of the idealI=h1(t,x),h2(t,y)∩K[x,y].We can use any method in elimination theory,such as resultants of Gröbner bases, for determining this generator.For instance,resultant th1(t,x),h2(t,y)will yield the polynomial defining the curve pare[25]and[21]for details. In[21]we introduce the notion of the tracing index of a rational parametrization,Computer algebra and geometry–some interactions135 i.e.the number of times a(possibly non-proper)parametrization“winds around, or traces,an algebraic curve”.When we compute the resultant of h1and h2as above for an non-proper parametrization,then this tracing index will show up in the exponent of the generating polynomial.Example4.1.Let us do this for the cardioid curve of Fig.1(a).We start from the parametrizationx(t)=256t4−16t2256t4+32t2+1,y(t)=−128t3256t4+32t2+1.So we have to eliminate the variable t from the equationsh1(t,x)=x·256t4+32t2+1−256t4+16t2,h2(t,y)=y·256t4+32t2+1+128t3.As the polynomial defining the cardioid curve we getresultant th1(t,x),h2(t,y)=17179869184·4y4−y2+8x2y2−4xy2+4x4−4x3.Similarly we could determine this defining polynomial by a Gröbner basis compu-tation.5.F U R T H E R T O P I C S I N C O M P U T A T I O N A L A L G E B R A I C G E O M E T R YWe have only described a few subproblems in computational algebraic geometry. For the algorithmic treatment of problems in computer aided geometric design,such as blending and offsetting,we refer the reader to[10].A thorough analysis of the offset curves,in particular their genus,is given in[2].If we need to decide problems on algebraic geometric objects involving not only equations but also inequalities, then the appropriate method is Collins’algorithm for cylindrical algebraic decom-position,see[3].Further areas of investigation are desingularization of surfaces, determining rational points on elliptic curves,and fast algorithms for visualization of curves and surfaces.In general,it will be more and more important to bridge the gap between symbolic and numerical algorithms,combining the best features of both worlds.6.O P E N P R O B L E M SInteger coefficients in curve parametrizationAs we have seen in Section2,the quality of a rational parametrization of an algebraic curve crucially depends on the quality of a regular point which we can determine on this curve.For instance,starting from a defining polynomial f(x,y) of C over the rational numbers Q,we know that we will need an algebraic extension of degree2,at most,for expressing such a point.But if we can actuallyfind a136F.Winklerregular point with coordinates in Q,and therefore a parametrization with rational coefficients,the question is still how tofind a parametrization with“smallest”rational coefficients.To our knowledge,this problem is unsolved.Optimality of surface parametrizationFor rational algebraic surfaces no algorithm is known,in general,forfinding a parametrization with lowest possible degree of rational functions.The best we can currently do is to compute a parametrization having at most twice the optimal degree,see[17].Also the problem of determining the smallest algebraicfield extension for expressing a rational parametrization of a rational algebraic surface is wide open. In general,we cannot decide whether there is a parametrization over the givenfield of definition.We also do not know whether a bound for the degree of the necessary extension exists.Decomposition of rational functions over RIn the algorithm for rationally parametrizing pipe and canal surfaces,[12],the problem isfinally reduced tofinding a representation of a rational function as a sum of two squares.This is a special case of Hilbert’s17th problem.Over the real algebraic numbers there exists a simple algorithm for solving this problem.Over R the problem is still open.Determining rational points on elliptic curvesFor curves of genus0we can decide the existence of rational points.If a curve of genus0over afield of characteristic0has one rational point then it must have infinitely many.In fact,we can determine these rational points.If the genus is greater or equal2,then there are onlyfinitely many rational points on the curve C. This was conjectured by Mordell and proved by Faltings[5].For curves of genus 1,i.e.so-called elliptic curves,all possibilities can arise:no,finitely many,and infinitely many rational points.Elliptic curves play an important rôle in many areas of mathematics,and recently also in cryptography.Determining all,or at least one, rational point on an elliptic curve is an open problem.For a short introduction see[4].Symbolic–numerical plotting of surfacesWhen we work with curves and surfaces,we do not only construct,transform,and analyze them,but sometimes we also want to visualize them on the screen.These geometrical objects might be quite complicated,having several real components, perhaps isolated singularities,and complicated branch points.There are basically two approaches to the problem of plotting such curves or surfaces:numerical plotting and algebraic plotting.Whereas numerical plotting routines work well for simple objects and require relatively little computation time,they quickly become unreliable for more complicated objects:missing small components,getting the picture wrong around singularities.On the other hand, algebraic plotting routines can overcome these problems,but are notoriously slow.Computer algebra and geometry–some interactions137 Recently we have developed a hybrid symbolic–numerical routine in the program system CASA,[6],for reliable but relatively fast visualization of plane algebraic curves[13].These methods need to be understood better and extended to surfaces. R EFERENCES[1]Abhyankar S.S.,Bajaj C.L.–Automatic parametrization of rational curves and surfaces III:Algebraic plane curves,Comput.Aided Geom.Design5(1988)309–321.[2]Arrondo E.,Sendra J.,Sendra J.R.–Genus formula for generalized offset curves,J.Pure Appl.Algebra136(3)(1999)199–209.[3]Caviness B.F.,Johnson J.R.–Quantifier Elimination and Cylindrical Algebraic Decomposition,Springer,1998.[4]Drmota M.–Sieben Millenniums-Probleme.I,Internat.Math.Nachrichten184(2000)29–36.[5]Faltings G.–Endlichkeitssätze für abelsche Varietätenüber Zahlenkörpern,Invent.Math.73(1983)549–576.[6]Hemmecke R.,Hillgarter E.,Winkler F.–CASA,in:Grabmeier J.,Kaltofen E.,Weispfen-ning V.(Eds.),Handbook of Computer Algebra:Foundations,Applications,Systems, Springer-Verlag,2003,pp.356–359.[7]Hilbert D.,Hurwitz A.–Über die Diophantischen Gleichungen vom Geschlecht Null,ActaMath.14(1890)217–224.[8]Hillgarter E.,Winkler F.–Points on algebraic curves and the parametrization problem,in:Wang D.(Ed.),Automated Deduction in Geometry,in:Lecture Notes in Artificial Intelligence, vol.1360,Springer-Verlag,Berlin,1998,pp.189–207.[9]Hironaka H.–Resolution of singularities of an algebraic variety over afield of characteristic0,Ann.Math.79(1964)109–326.[10]Hoffmann C.M.–Geometric&Solid Modeling,Morgan Kaufmann Publ.,1989.[11]Hoffmann C.M.,Sendra J.R.,Winkler F.–Parametric algebraic curves and applications,J.Symbolic Comput.23(2&3)(1997)(special issue).[12]Landsmann G.,Schicho J.,Winkler F.,Hillgarter E.–Symbolic parametrization of pipeand canal surfaces,in:Traverso C.(Ed.),Proc.Internat.Symposium on Symbolic and Algebraic Computation(ISSAC’2000)(St.Andrews,Scotland,Aug.2002),ACM Press,2000, pp.202–208.[13]Mittermaier C.,Schreiner W.,Winkler F.–A parallel symbolic-numerical approach to algebraiccurve plotting,in:Ganzha V.G.,Mayr E.W.,V orozhtsov E.V.(Eds.),Computer Algebra in Scientific Computing,Proc.of CASC’2000,Springer-Verlag,Berlin,2000,pp.301–314. [14]Peternell M.,Pottmann H.–Computing rational parametrizations of canal surfaces,J.SymbolicComput.23(2&3)(1997)255–266.[15]Poulakis D.,V oskos E.–On the practical solution of genus zero diophantine equations,J.SymbolicComput.30(5)(2000)573–582.[16]Schicho J.–Rational parametrization of surfaces,J.Symbolic Comput.26(1)(1998)1–30.[17]Schicho J.–A degree bound for the parametrization of a rational surface,J.Pure Appl.Algebra145(1999)91–105.[18]Sendra J.R.,Winkler F.–Symbolic parametrization of curves,J.Symbolic Comput.12(6)(1991)607–631.[19]Sendra J.R.,Winkler F.–Parametrization of algebraic curves over optimalfield extensions,J.Symbolic Comput.23(2&3)(1997)191–207.[20]Sendra J.R.,Winkler F.–Algorithms for rational real algebraic curves,rm.39(1–2)(1999)211–228.[21]Sendra J.R.,Winkler,F.–Tracing index of rational parametrizations,RISC-Linz Report Series01-01,J.Kepler Univ.,Linz,Austria,2001.[22]Stadelmeyer,P.–On the Computational Complexity of Resolving Curve Singularities and RelatedProblems,Ph.D.thesis,RISC-Linz,J.Kepler Univ.,Linz,Austria,Techn.Rep.RISC00-31, 2000.138F.Winkler[23]van Hoeij M.–Computing Parametrizations of Rational Algebraic Curves,in:von zur Gathen J.,Giesbrecht M.(Eds.),Proc.ISSAC’94,ACM Press,1994,pp.187–190.[24]Villamayor O.–Introduction to the algorithm of resolution,in:Lopez A.Campillo,et al.(Eds.),Algebraic Geometry and Singularities(La Rabida1991),Birkhäuser,1991,pp.123–154. [25]Winkler F.–Polynomial Algorithms in Computer Algebra,Springer-Verlag,New Y ork,1996.。