2015年秋季新版苏科版八年级数学上学期1.1、全等图形同步练习3
苏科版数学八年级上册1-1 全等图形 同步练习(含解析)-doc
苏科版数学八年级上册1.1全等图形同步练习1.1全等图形基础过关全练知识点1全等图形的概念1.(教材P7变式题)观察图中各组图形,属于全等图形的是()A B C D2.如图所示,在网格图中画出与已知图形全等的图形.知识点2全等图形的性质3.对于两个图形给出下列结论,其中能得到这两个图形全等的结论有()①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长相等且面积相等;④两个图形的形状相同且面积相等.A.1个B.2个C.3个D.4个4.如图是两个全等的五边形,β=115°,d=5,指出它们的对应顶点、对应边、对应角,并说出图中标示的a,b,c,e,α各字母所表示的值.知识点3几何变换与全等图形5.(2022江苏南京建邺期中)在6×6的方格中,将图①中的图形甲平移后的位置如图②所示,则下列选项中,图形甲的平移方法正确的是()图①图②A.先向左平移1格,再向下平移2格B.先向右平移3格,再向下平移2格C.先向右平移1格,再向下平移3格D.先向右平移2格,再向下平移3格知识点4全等分割6.把下列各图分成若干个全等图形,请在原图上用虚线标出来.能力提升全练7.(2022江苏苏州虎丘期中,3,)如图所示,各选项中的两个图形属于全等图形的是()A B C D8.(2021江苏无锡梁溪期中,12,)如图,在方格(每个方格的边长均为1个单位)纸中,图形②可以看作是由图形①经过若干次图形变换(平移、轴对称、旋转)得到的,写出一种由图形①得到图形②的变换过程:.9.(2022江苏无锡滨湖月考,10,)如图,四边形EFGH与四边形ABCD是全等图形,若AD=5,∠B=70°,则EH=,∠F=.10.(2019浙江衢州中考改编,19,)如图,在4×4的方格中,若△ABC的三个顶点都在格点上,则称△ABC为格点三角形.请在图中画一个格点△BEC,使△BEC与△BAC全等,其中点E在格点上.素养探究全练11.[直观想象]我们知道,两个能够互相重合的图形叫做全等图形.(1)如图,请你用四种方法把长和宽分别为5和3的长方形分成四个均不全等的小长方形或正方形,且小长方形或正方形的各边长均为整数;(2)能否将上述3×5的长方形分成五个均不全等的,且各边长均为整数的小长方形或正方形若能,请在图中画出.答案全解全析基础过关全练1.B A中两个图形形状不同;C、D两组图中的两个图形形状相同,但大小不等;B中两个图形形状相同,大小相等,所以是全等图形.故选B.2.解析如图所示.3.A①周长相等的两个图形不一定重合,所以不一定全等;②面积相等的两个图形不一定重合,所以不一定全等;③周长相等且面积相等的两个图形不一定重合,所以不一定全等;④两个图形的形状相同且面积相等,则二者一定能重合,所以两个图形全等.所以只有④正确,故选A.4.解析对应顶点:A和G,E和F,D和J,C和I,B和H.对应边:AB和GH,AE和GF,ED和FJ,CD和IJ,BC和HI.对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F.∵题图中的两个五边形全等,∴a=12,b=10,c=8,e=11,α=90°.5.C6.解析(答案不唯一)如图所示:能力提升全练7.B A.两个图形不能完全重合,不是全等图形,故本选项不符合题意;B.两个图形能够完全重合,是全等图形,故本选项符合题意;C.两个图形不能完全重合,不是全等图形,故本选项不符合题意;D.两个图形不能完全重合,不是全等图形,故本选项不符合题意.故选B. 8.答案将图形①先绕D点顺时针旋转90°,再向下平移3个单位得到图形②(答案不唯一)9.答案5;70°解析∵四边形EFGH与四边形ABCD是全等图形,AD=5,∠B=70°,∴EH=AD=5,∠F=∠B=70°,故答案为5;70°.10.解析如图所示.素养探究全练11.解析(1)所画图形如图①~④所示.(答案不唯一)(2)能,所画图形如图⑤所示.(答案不唯一)图①图②图③图④图⑤。
苏科新版八年级上册数学《第1章 全等三角形》单元测试卷(含解析)
苏科新版八年级上册数学《第1章全等三角形》单元测试卷一.选择题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC ≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E 3.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等4.如图,△ABC≌△DEF,下列结论正确的是()A.AB=DF B.BE=CF C.∠B=∠F D.∠ACB=∠DEF 5.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B 6.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形7.下列条件中,不能判定两个直角三角形全等的是()A.两直角边对应相等B.斜边和一条直角边对应相等C.两锐角对应相等D.一个锐角和斜边对应相等8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1B.2C.3D.49.在一次小制作活动中,艳艳剪了一个燕尾图案(如图所示),她用刻度尺量得AB=AC,BO=CO,为了保证图案的美观,她准备再用量角器量一下∠B和∠C是否相等,小麦走过来说:“不用量了,肯定相等”,小麦的说法利用了判定三角形全等的方法是()A.ASA B.SAS C.AAS D.SSS10.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD二.填空题11.能够的两个图形叫做全等图形.12.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).14.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=度.15.已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=度.16.如图,BC=EF,AC∥DF,请你添加一个适当的条件,使得△ABC≌△DEF,.(只需填一个答案即可)17.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=,△ABC与△APQ全等.18.如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件.(只需写出符合条件一种情况)19.如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.20.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE=CF,若BD=10,BF=3.5,则EF=.三.解答题21.如图所示,△ABC≌△ADE,BC的延长线交DA于F点,交DE于G点,∠ACB=105°,∠CAD=15°,∠B=30°,则∠1的度数为多少度.22.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.23.如图所示,△ABC≌△AEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求△AEC各内角的度数.24.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.25.如图:AC∥EF,AC=EF,AE=BD.求证:△ABC≌△EDF.26.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.27.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与试题解析一.选择题1.解:全等图形是指两个图形的形状和大小都相等,故选:C.2.解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选:B.3.解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.4.解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∠B=∠DEF,∠ACB=∠F,∠A=∠D,∴BE=CF,故选:B.5.解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选:A.6.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.7.解:A、正确.根据SAS即可判断.B、正确.根据HL即可判断.C、错误.两锐角对应相等不能判断两个三角形全等.D.正确.根据AAS即可判断.8.解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,∵在△BCF和△BAE中,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD =S正方形BEDF=4,∴BE==2.故选:B.9.解:在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠B=∠C,故选:D.10.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.二.填空题11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.13.解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中∵,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO(答案不唯一).14.解:在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.故答案为:90.15.解:∵△ABC≌△FED,∴∠F=∠A,∵∠B=45°,∠C=40°,∴∠A=95°,∴∠F=95°,故答案为:95°.16.解:∵AC∥DF,∴∠ACB=∠F,∵BC=EF,∴添加AC=DF或∠A=∠D或∠B=∠DEF即可证明△ABC≌△DEF,故答案为AC=DF或∠A=∠D或∠B=∠DEF.17.解:∵AX⊥AC,∴∠PAQ=90°,∴∠C=∠PAQ=90°,分两种情况:①当AP=BC=5时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=10时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;故答案为:5或10.18.解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.19.解:在△ADC和△ABC中,,∴△ABC≌△ADC(SSS),∴∠D=∠B,∵∠B=130°,∴∠D=130°,故答案为:130.20.解:∵AB∥CD,∴∠B=∠D,∵AE∥CF,∴∠AEB=∠CFD,在△ABE和△CFD中,,∴△ABE≌△CFD,∴BE=DF,∵BD=10,BF=3.5,∴DF=BD﹣BD=6.5,∴BE=6.5,∴EF=BE﹣BF=6.5﹣3.5=3.故答案为3三.解答题21.解:∵△ABC≌△ADE,∴∠D=∠B=30°,∵∠ACB=∠CAD+∠AFC,∴∠AFC=∠ACB﹣∠CAD=90°,∴∠DFG=90°,∴∠AFC=90°,∴∠1=180°﹣∠D﹣∠DFG=180°﹣90°﹣30°=60°.22.证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).23.解:∵△ABC≌△AEC,∴∠B=∠E,∠BAC=∠EAC,∠ACB=∠ACE.∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∠ACB=180°﹣∠B﹣∠ACB=65°,∴∠EAC=65°.故∠E=30°,∠ACE=85°,∠EAC=65°.24.解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.25.证明:∵AC∥EF,∴∠CAB=∠FED,∵AE=BD,∴AE+EB=BD+EB,即AB=ED,又∵AC=EF,∴△ABC≌△EDF.26.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.27.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。
苏科版数学八年级上册 1-3探索三角形全等的条件 同步精练(含答案)-doc
苏科版数学八年级上册 1.3探索三角形全等的条件 同步精练一、单选题1.如图,∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是( )A .AC =ADB .AC =BC C .∠ABC =∠ABD D .∠BAC =∠BAD 2.如图,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是( )A .SSSB .SASC .ASAD .AAS 3.如图,B ,C ,E ,F 四点在一条直线上,下列条件能判定与全等的是ABC A DEF A ( )A .B . AB DE A D BE CF ∠=∠=A ,,AB DE AB DE AC DF ==A ,,C .D . AB DE AC DF BE CF ==A ,,AB DE AC DF A D ∠=∠A A ,,4.如图,,要使.则添加的一个条件不能是( )B C ∠=∠ABE ACD △△≌A .B .C .D . ADC AEB ∠=∠AD AE =AB AC =BE CD =5.如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为M .若∠ABC =30°,∠C =38°,则∠CDE 的度数为( )A .68°B .70°C .71°D .74°6.根据下列已知条件,能作出唯一△ABC 的是( )A .AB =3,BC =4,CA =8B .AB =4,BC =3,∠A =60° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,∠B =30°,∠A =60° 7.如图,点B ,C ,E 在同一直线上,且,,,下列结论AC CE =90B D ∠=∠=︒AC CD ⊥不一定成立的是( )A .B .C .D . 2A ∠=∠90AE ∠+∠=︒BC DE =BCD ACE ∠=∠8.如图所示,是的边上的中线,cm ,cm ,则边的长度可AD ABC ∆BC 5AB =4=AD AC 能是( )A .3cmB .5cmC .14cmD .13cm9.数学课上老师布置了“测量锥形瓶内部底面的内径”的探究任务,善思小组想到了以下方案:如图,用螺丝钉将两根小棒,的中点固定,只要测得,之间的距离,就AD BC O C D 可知道内径的长度.此方案依据的数学定理或基本事实是( ) ABA .边角边B .三角形中位线定理C .边边边D .全等三角形的对应角相等 10.如图,在和中,,,,线段BC 的ABC A ADE A 90ACB ADE ∠=∠=︒AB AE =12∠=∠延长线交DE 于点F ,连接AF .若,,,则线段EF 的长度为14ABF S =A 4=AD 54CF =( )A .4B .C .5D . 9211211.如图,BE 和CE 分别为△ABC 的内角平分线和外角平分线,BE ⊥AC 于点H ,CF 平分∠ACB 交BE 于点F 连接AE .则下列结论:①∠ECF=90°;②AE=CE ;③;④∠BAC=2∠BEC ;⑤∠AEH=∠BCF ,正确的个数为( ) 1902BFC BAC ∠=︒+∠A .2个B .3个C .4个D .5个12.如图,Rt △ACB 中,∠ACB =90°,△ACB 的角平分线AD ,BE 相交于点P ,过P 作PF ⊥AD 交BC 的延长线于点F ,交AC 于点H ,则下列结论:①∠APB =135°; ②AD =PF +PH ;③DH 平分∠CDE ;④S 四边形ABDE =S △ABP ;⑤S △APH =S △ADE ,其中74正确的结论有( )个A .2B .3C .4D .5二、填空题13.如图,E 是的边的中点,过点C 作,过点E 作直线交于ABC A AC CF AB ∥DF AB D ,交于F ,若,则的长为__________.CF 9 6.5AB CF ,==BD14.如图,OP 平分∠MON ,过点P 的直线与OM ,ON 分别相交于点A ,B ,只需添加一个条件即可证辱,这个条件可以是___(写出一个即可).AOP BOP ∆≅∆15.如图,BE 交AC 于点M ,交CF 于点D ,AB 交CF 于点N ,,给出的下列五个结论中正确结论的序号90,,E F B C AE AF ∠=∠=︒∠=∠=为 .①;②;③;④;⑤. 12∠=∠BE CF =CAN BAM ≅A A CD DN =AFN AEM A A ≌16.在△ABC 中,AB =AC ,点D 是△ABC 内一点,点E 是CD 的中点,连接AE ,作EF ⊥AE ,若点F 在BD 的垂直平分线上,∠BAC =α,则∠BFD =_________.(用α含的式子表示)17.如图①,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC 、CD 上的点,且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.某同学做了如下探究,延长FD 到点G ,使DG =BE ,连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应该是______.三、解答题18.如图,线段、相交于点, ,.求证:.AC BD E AE DE =BE CE =B C ∠=∠19.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.20.如图,四边形ABCD 中,BC =CD =2AB ,AB CD ,∠B =90°,E 是BC 的中点,AC //与DE 相交于点F .(1)求证:ABC ≌ECD ;A A (2)判断线段AC 与DE 的位置关系,并说明理由.21.如图,在△ABC 中,∠ABC 、∠ACB 的平分线交于点D ,延长BD 交AC 于E ,G 、F 分别在BD 、BC 上,连接DF 、GF ,其中∠A =2∠BDF ,GD =DE .(1)当∠A =80°时,求∠EDC 的度数;(2)求证:CF =FG +CE参考答案1--10AAAAD CDBAB 11--12DB13.2.514.答案不唯一,如OA =OB15.①;②;③;⑤16.180°﹣α.17.EF =BE +DF ;18.证明:在△AEB 和△DEC 中,AE DE AEB DEC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△AEB ≌△DEC故.B C ∠=∠19.(1)证明:∵BE ⊥AD 于点E ,CF ⊥AD 于点F ,∴∠AEB =∠CFA =90°,∵∠BAC =90°,∴∠B =∠FAC =90°-∠BAE ,在△ABE 和△CAF 中,,AEB CFA B FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF (AAS );(2)解:∵△ABE ≌△CAF ,CF =5,BE =2,∴AF =BE =2,AE = CF =5,∴EF =AE -AF =5-2=3,∴EF 的长为3.20(1)证明:∵E 是BC 的中点,∴BC =2EC ,∵BC =2AB ,∴AB =EC ,∵,//AB CD ∴∠B +∠ECD =180°,∵∠B =90°,∴∠B =∠ECD =90°,在△ABC 和△ECD 中,,AB EC B ECD BC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ECD (SAS );(2)AC ⊥DE .理由如下:∵△ABC ≌△ECD (SAS ),∴∠CED =∠CAB ,∵∠CAB +∠ACB =90°,∴∠CED +∠ACB =90°,∴∠EFC =90°,∴AC ⊥DE .21.(1)解:在△ABC 中,∵∠A =80°,∴,180********ABC ACB A ∠+∠=︒-∠=︒-︒=︒ ∠ABC 、∠ACB 的平分线交于点D ,,11,22DBC ABC DCB ACB ∴∠=∠∠=∠,∠EDC=∠DBC+∠DCB ()111005022DBC DCB ABC ACB ∴∠+∠=∠+∠=⨯︒=︒ EDC ∴∠=;50︒(2)解:在线段上取一点,使,连接,如图所示:CF H CH CE =DH平分,,在和中,,CD ACB ∠DCE DCH ∴∠=∠DCE A DCH A CE CH DCE DCH CD CD =⎧⎪∠=∠⎨⎪=⎩∴,,,,DCE DCH ≅A A ()SAS ,DEC DHC DE DH ∴∠=∠=DE GD = DH DG ∴=为的一个外角,,为的一个外角,DEC ∠ ABE A DEC A ABE ∴∠=∠+∠DHC ∠ BDH A ,平分,,,∠ADHC BDH CBE ∴∠=∠+∠BE ABC ∠ABE CBE ∴∠=∠A BDH ∴∠=∠ =2∠BDF ,在和中,,GDF HDF ∴∠=∠DFG A DFH A DG DH GDF HDF FD FD =⎧⎪∠=∠⎨⎪=⎩∴DFG ≅A ,,,.DFH A ()SAS FG FH ∴=CF FH CH =+ CF FG CE ∴=+。
2015年秋季新版苏科版八年级数学上学期1.3、探索三角形全等的条件同步练习3
A.1个B.2个C.3个D.4个
二、填空题(每题5分,共20分)
第5题第6题第7题 第8题
5.如图,已知 BC=EC,∠BCE=∠ACD,要使能用SAS说明△ABC≌△DE C,
则应 添加的一个条件为______.(只需填一个)
三、解答题(每题15分,共60分)
7、已知,如图,∠1=∠2,∠C=∠D,AD=EC,△ABD≌△EBC吗?
为什么?
8.已知:如图,在△ABC中,BE⊥AD,CF⊥AD,垂足分别为点E、F.
⑴若AD是ΔABC的中线,则BE与CF相等吗?
⑵若BE=CF,则AD是ΔABC的中线吗?为什么?
★9.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?
★ 10如图,已找到图中的全等三角形吗?若能找到请说明理由。
答案
1.C
2.D
3.C
4.D
5. 12
6. AC=DC
7. 65度 30度
8.29cm
9.全等
10.相等是中线
11.相等
12.△ADC≌△BDF
6..如图,MN与PQ相交于点O,MO=OP,QO=ON,∠M=65°,∠Q=30 °,
则∠P=,∠N=.
7.如图,已知AB=AC=12cm,AE=AF=7cm,CE=10cm, △ABF的周长是.
★8.如图:在△ABC中,∠C =90°,AD平分∠BAC,DE⊥AB交AB于E, BC=30,
BD:CD=3:2,则DE=。
家长签字
订正后家长签字
探索三角形全等 的条件
班级: 姓名:学号:得分:
一、选择题(每题5分,共20分)
全等图形 苏科版数学八年级上册培优练习(含答案)
1.1全等图形培优练习一、选择题1、下列说法正确的是()A. 两个长方形是全等图形B. 形状相同的两个三角形全等C. 两个全等图形面积一定相等D. 所有的等边三角形都是全等三角形2、下列四个图形中,与图1中的图形全等的是()A.B.C.D.3、在如图所示的图形中,全等图形有()A.1对B.2对C.3对D.4对4、下列图形是全等图形的是()A.B.C.D.5、在如图所示的四个图形中,属于全等形的是( )A.①和③B.①和④C.②和③D.②和④6、在下列各组图形中,是全等的图形是()A.B.C.D.7、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④8、下图所示的图形分割成两个全等的图形,正确的是()A. B. C. D.9、下列各组图形中不是全等图形的是()A.B.C.D.10、如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.11、百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.612、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )二、填空题13、如图,图中由实线围成的图形与①是全等形的有.(填序号)14、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是. 的正方形网格,则∠1+∠2+∠3+∠4=________.15、如图,是一个3316、下图是由全等的图形组成的,其中AB=5cm,CD=2AB,则AF= .三、解答题17、图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.18、如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)19、如图,把大小为4⨯4的正方形方格图形分割成两个全等图形,如图1,请在下图中沿着虚线画出四中不同的分法,把4⨯4的正方形方格图形分割成两个全等图形.20、如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?21、在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合:(1)三个三角形是全等的直角三角形. (2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.参考答案一、选择题1、下列说法正确的是()A. 两个长方形是全等图形B. 形状相同的两个三角形全等C. 两个全等图形面积一定相等D. 所有的等边三角形都是全等三角形【解析】解:A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形.故答案为:C.2、下列四个图形中,与图1中的图形全等的是()A.B.C.D.【答案】C【分析】直接利用全等形的定义解答即可.【详解】解:只有C选项与图1形状、大小都相同.故答案为C.3、在如图所示的图形中,全等图形有()A.1对B.2对C.3对D.4对【答案】C【分析】能够完全重合的两个图形叫做全等形.【详解】图中全等图形是:笑脸,箭头,五角星.故选C4、下列图形是全等图形的是()A.B.C.D.【答案】B【详解】试题解析:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选B.5、在如图所示的四个图形中,属于全等形的是( )A.①和③B.①和④C.②和③D.②和④【答案】D【分析】全等形要求两图形大小及形状完全相同,观察发现其中两个图形恰巧是可以通过旋转得到的,结合旋转前后的两个图形是全等的,即可确定最终答案.【详解】观察图形,经过旋转,②和④可以完全重合,因此全等的图形是②和④.故选D.6、在下列各组图形中,是全等的图形是()A.B.C.D.【答案】C【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,对各个选项进行判断即可得答案.【详解】解:由全等形的概念可以判断:C中图形的形状和大小完全相同,符合全等形的要求;A、B、D中图形很明显不相同,A中图形的大小不一致,B、D中图形的形状不同.故选:C.7、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④【答案】B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.8、下图所示的图形分割成两个全等的图形,正确的是()A. B. C. D.【解析】解:如图所示:图形分割成两个全等的图形,.故选B.9、下列各组图形中不是全等图形的是()A.B.C.D.【答案】B【分析】根据能够完全重合的两个图形是全等图形对各选项分析即可得解.【详解】解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中两个图形不可能完全重合,∴不是全等形.10、如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.【答案】C【解析】【分析】根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.【详解】解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选:C.11、百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.6【答案】A【分析】根据14=(1+6)×2=(2+5)×2=(3+4)×2,可知能围出不全等的长方形有3个.解:∵长为4、宽为3的长方形,∴周长为2×(3+4)=1414=(1+6)×2=(2+5)×2=(3+4)×2,∴能围出不全等的长方形有3个,故选:A.12、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )【分析】能够完全重合的两个三角形叫做全等三角形,依据全等三角形的性质,即可得到正确结论.【解析】(1)全等图形的形状相同,大小相等,正确;(2)全等三角形的对应边相等,正确;(3)全等图形的周长相等,面积相等,正确;(4)面积相等的两个三角形不一定全等,错误;故选:C.二、填空题13、如图,图中由实线围成的图形与①是全等形的有.(填序号)【分析】根据全等形是可以完全重合的图形进行判定即可.【解答】解:由图可知,图上由实线围成的图形与①是全等形的有②,③,故答案为:②③.14、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是.【分析】根据全等三角形:能够完全重合的两个三角形叫做全等三角形可得①④正确,但是面积相等或周长相等的两个三角形却不一定全等.【解答】解:①全等三角形的对应边相等,说法正确;②面积相等的两个三角形全等,说法错误;③周长相等的两个三角形全等,说法错误;④全等的两个三角形的面积相等,说法正确;故答案为:①④.的正方形网格,则∠1+∠2+∠3+∠4=________.15、如图,是一个33【答案】180°.【分析】仔细分析图中角度,可得出,∠1+∠4=90°,∠2+∠3=90°,进而得出答案.【详解】解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所在的三角形全等,∴∠2+∠3=90°,∴∠1+∠2+∠3十∠4=180°.故答案为:180.16、下图是由全等的图形组成的,其中AB=5cm,CD=2AB,则AF= .【解析】解:,.由全等图形的性质得.故答案为60cm.三、解答题17、图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.【分析】根据能够完全重合的两个图形叫做全等形,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角,可得对应顶点,对应边与对应角,进而可得a,b,c,d,e,α,β各字母所表示的值.【解答】解:对应顶点:A和G,E和F,C和I,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,d=5,e=11,α=90°,β=115°.18、如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)【解析】解:如图所示:19、如图,把大小为4 4的正方形方格图形分割成两个全等图形,如图1,请在下图中沿着虚线画出四中不同的分法,把4 4的正方形方格图形分割成两个全等图形.【解析】解:四种不同的分法:20、如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?【解答】解:如图所示:.21、在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合:(1)三个三角形是全等的直角三角形.(2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.【答案】(1)见解析;(2)见解析.【解析】【分析】先将点C 对折到点E ,将对折后的纸片再沿DE 对折.此题要理解折叠的实质是重合,根据重合可以得到BC =BE ,AD =BD ,∠DBE =∠DAE =30°,∠BDE =∠ADE =60°,∠AED=∠BED =90°. 【详解】(1) 如下图1(2) 如下图2 .。
苏科版八年级数学上册第1章-全等三角形单元练习(有答案)
参考答案
10. 2 或 或 6.
11. 25. 12. 5. 13.添加一个条件:∠BAD=∠ABC, 14. OB=OC. 15. 4. 16. 4. 三.解答题 17.解:设计方案如下:
18.证明:∵∠1=∠2, ∴∠FBD=∠ECA, ∵FB=CE,BD=AC,
9
∴△DBF≌△ACE(SAS). 故答案为:∵∠1=∠2, ∴∠FBD=∠ECA, ∵FB=CE,BD=AC, ∴△DBF≌△ACE(SAS). 19.证明:∵FG=CG, ∴∠ACB=∠DFE, ∵BF=CD,FC=FC, ∴BF+FC=CD+FC, 即 BC=DF, 在△ABC 与△EDF 中
③四边形 ABCD 的面积= AC•BD,其中正确的结论有( )
A.①②
B.①③
C.②③
D.①②③
8.如图,点 C 在∠DAB 的内部,CD⊥AD 于点 D,CB⊥AB 于点 B,CD=CB,那么 Rt△
2
ADC≌Rt△ABC 的理由是( )
A.SAS
B.ASA
C.HL
D.SSS
9.如图,AD 是△ABC 的角平分线,DE⊥AC,垂足为 E,BF∥AC 交 ED 的延长线于点 F,
.
13.如图点 C,D 在 AB 同侧,AD=BC,添加一个条件
就能使△ABD≌△BAC.
14.如图,点 D,E 分别在线段 AB,AC 上,CD 与 BE 相交于 O 点,已知∠B=∠C,请再
添加一个条件,使得△BOD≌△COE,这个条件是
(仅写出一个).
15.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC 于 B,且 DC=EC,若 BE=7,AB
第 1 章 全等三角形
苏科版八年级数学上册1-3探索三角形全等的条件 同步知识点分类练习题(含答案)-doc
苏科版八年级数学上册1.3探索三角形全等的条件同步知识点分类练习题一.三角形的稳定性1.王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根B.1根C.2根D.3根2.如图所示的自行车架设计成三角形,这样做的依据是三角形具有 .3.小龙平时爱观察也喜欢动脑,他看到路边的建筑和电线架等,发现了一个现象:一切需要稳固的物品都是由三角形这个图形构成的,当时他就思考,数学王国中不仅只有三角形,为何偏偏用三角形稳固它们呢?请你用所学的数学知识解释这一现象的依据为 .4.有一个人用四根木条钉了一个四边形的模具,两根木条连接处钉一颗钉子,但他发现这个模具老是走形,为什么?如果他想把这个模具固定,再给一根木条给你,你怎么把它固定下来,画出示意图,并说出理由.二.全等三角形的判定5.根据下列条件,不能画出唯一确定的△ABC的是( )A.AB=3,BC=4,AC=6B.AB=4,∠B=45°,∠A=60°C.AB=4,BC=3,∠A=30°D.∠C=90°,AB=8,AC=46.如图,点D在AB上,点E在AC上,AB=AC,添加一个条件 ,使△ABE≌△ACD(填一个即可).7.如图,AB=AD,∠1=∠2,DA平分∠BDE.求证:△ABC≌△ADE.8.如图,AD,BC相交于点O,∠OAB=∠OBA,∠C=∠D=90°.求证:△AOC≌△BOD.9.如图,在△ABC中,∠ACB=90°,AC=8cm,BC=10cm.点C在直线l上,动点P 从A点出发沿A→C的路径向终点C运动;动点Q从B点出发沿B→C→A路径向终点A运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P和Q作PM⊥直线l于M,QN⊥直线l于N.则点P运动时间为 秒时,△PMC与△QNC全等.10.证明命题“全等三角形的面积相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图, 求证: .请你补全已知和求证,并写出证明过程.11.如图,点B,E,C,F在同一条直线上,AB=DE,BE=CF,∠B=∠DEF.求证:△ABC≌△DEF.12.如图,在矩形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD﹣DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD﹣DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为t秒.(1)在运动过程中当M、N两点相遇时,求t的值.(2)在整个运动过程中,求DM的长.(用含t的代数式表示)(3)当△DEM与△DFN全等时,请直接写出所有满足条件的DN的长.13.如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.14.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP= cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.15.八年级数学社团活动课上,《致远组》同学讨论了这样一道题目:如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明:∠ADC=∠AEB.其中一个同学的解法是这样的:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AEB.这种解法遭到了其他同学的质疑.理由是错在不能用“SSA”说明三角形全等.请你给出正确的解法.三.全等三角形的判定与性质16.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=44°,AB交EF于点D,连接EB.下列结论:①∠FAC=44°;②AF=AC;③∠EFB=44°;④AD=AC,正确的个数为( )A.4个B.3个C.2个D.1个17.如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长可能是( )A.6B.7C.8D.918.如图,AC⊥BC,BD⊥BC,AB=CD,AC=5,则BD的大小为 .19.如图,△ABC和△ADE的顶点交于一点A,已知∠BAD=∠CAE,AB=AD,AC=AE.求证:∠B=∠D.20.已知:如图,在△ABC中,BE、CD分别是AC、AB边上的高,且BE=CD.求证:AB=AC.21.如图,已知△ABC,作射线AP∥BC,E、F分别为BC、AP上的点,且AF=CE.连接EF交AC于点D,连接BD并延长,交AP于点M.(1)求证:△ADF≌△CDE;(2)求证:AM=BC.22.如图,在△ABC中,AC=BC,点D在AB上,点E在BC上,连接CD、DE,AD=BE,∠CDE=∠A.(1)求证:DC=ED;(2)如图2,当∠ACB=90°时,作CH⊥AB于H,请直接写出图2中的所有等腰三角形.(△ABC除外)23.如图,△ABC中,∠ABC=45°,∠ACB=75°,D是BC上一点,且∠ADC=60°,CF⊥AD于F,AE⊥BC于E,AE交CF于G.(1)求证:△AFG≌△CFD;(2)若FD=1,AF=,求线段EG的长.24.如图,在△ABC和△A'B'C'中,∠B=∠B',∠C=∠C',AD平分∠BAC交BC于点D.(1)在△A'B'C'中,作出∠B'A'C'的角平分线A'D'交B'C'于点D';(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A'D',求证:BD=B'D'.25.如图所示,在△ABC中,AD为中线,过C作CE⊥AD于E.(1)如图1,若∠B=30°,∠A=90°,AC=BD,AE=1,求BC的长.(2)如图2,延长DA至F,连接FC.若∠F=∠BAD,求证:AF=2DE.26.在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK =DG+KG.27.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是 ;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.28.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案一.三角形的稳定性1.解:如图所示:要使这个木架不变形,利用三角形的稳定性,他至少还要再钉上1个木条,故选:B.2.解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,故答案为:稳定性.3.解:用三角形稳固它们是因为三角形具有稳定性,故答案为:三角形具有稳定性.4.解:∵多边形ABCD是四边形,四边形具有不稳定性,∴这个模具老是走形,如图所示;在B、D处钉一颗钉子,把BD连接,可以把把它固定下来,理由是三角形具有稳定性.二.全等三角形的判定5.解:A:三边确定,符合全等三角形判定定理SSS,能画出唯一的△ABC,故不符合题意,B:已知两个角及其公共边,符合全等三角形判定定理ASA,能画出唯一的△ABC,故不符合题意,C:已知两边及其中一边的对角,属于“SSA”的情况,不符合全等三角形判定定理,故不能画出唯一的三角形,故本选项符合题意,D:已知一个直角和一条直角边以及斜边长,符合全等三角形判定定理HL,能画出唯一的△ABC,故不符合题意.故选:C.6.解:∵AB=AC,∠BAE=∠CAD,∴当添加AE=AD(或CE=BD)时,可根据“SAS”判断△ABE≌△ACD;当添加∠B=∠C时,可根据“ASA”判断△ABE≌△ACD;当添加∠AEB=∠ADC时,可根据“AAS”判断△ABE≌△ACD.故答案为:AE=AD(或CE=BD或∠AEB=∠ADC).7.证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,∵AB=AD,∴∠ADB=∠B,∵DA平分∠BDE.∴∠ADE=∠ADB,∴∠ADE=∠B,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA).8.证明:∵∠OAB=∠OBA,∴OA=OB,在△AOC和△BOD中,,∴△AOC≌△BOD(AAS).9.解:设运动时间为t秒时,△PMC≌△CNQ,∴斜边CP=CQ,分两种情况:①如图1,点P在AC上,点Q在BC上,∵AP=t,BQ=2t,∴CP=AC﹣AP=8﹣t,CQ=BC﹣BQ=10﹣2t,∵CP=CQ,∴8﹣t=10﹣2t,∴t=2;②如图2,点P、Q都在AC上,此时点P、Q重合,∵CP=AC﹣AP=8﹣t,CQ=2t﹣10,∴8﹣t=2t﹣10,∴t=6;综上所述,点P运动时间为2或6秒时,△PMC与△QNC全等,故答案为:2或6.10.解:如下图作AD⊥BC,作A'D⊥BC',垂足分别为D,D',∵△ABC≌△A'B'C'(已知),∴AB=A'B',BC=B'C'(全等三角形的对应边相等),∠B=∠B(全等三角形的对应角相等),在△ABD和△A'B'D'中,∵,∴ABD≌△A'B'D'(AAS),∴AD=A'D'(全等三角形的对应边相等),∴S△ABC=S△A'B'C'.11.证明:∵BE=CF,∴BE+CE=CF+EC.∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).12.解:(1)根据题意得t+3t=3+5,解得t=2,即t的值为2;(2)当0≤t≤3时,DM=3﹣t;当3<t≤8时,DM=t﹣3;(3)∵ME⊥PQ,NF⊥PQ,∴∠DEM=∠DFN=90°,∵∠MDN=90°,∴∠DME=∠NDF,∴当DM=DN时,△DEM与△DFN全等,当0≤t≤时,3﹣t=5﹣3t,解得t=1,此时DN的长为2;当<t≤3时,3﹣t=3t﹣5,解得t=2,此时DN的长为1,当3<t≤时,3t﹣5=t﹣3,解得t=1,不合题意舍去;<t<8时,3=t﹣3,解得t=6,此时DN的长为3.综上所述,DN的长为1或2或3.13.解:∵AC⊥BD,EF⊥BD,∴∠ACB=∠EFD=90°,∵BF=CD,∴BF+CF=CD+CF,即BC=DF,在△ABC和△EDF中,,∴△ABC≌△EDF(SAS).14.解:(1)当t=3时,点P走过的路程为:2×3=6,∵AB=4,∴点P运动到线段BC上,∴BP=6﹣4=2,故答案为:2;(2)∵矩形ABCD的面积=4×6=24,∴三角形ABP的面积=×24=8,∵AB=4,∴△ABP的高为:8×2÷4=4,如图,当点P在BC上时,BP=4,∴t=(4+4)÷2=4,当点P在AD上时,AP=4,∴t=(4+6+4+2)÷2=8,∴当t=4 s或8 s时,△ABP的面积为长方形面积的三分之一;(3)根据题意,如图,连接CQ,则AB=CD=4,∠A=∠B=∠C=∠D=90o,DQ=5,∴要使一个三角形与△DCQ全等,则另一条直角边必须等于DQ,①当点P运动到P1时,CP1=DQ=5,此时△DCQ≌△CDP1,∴点P的路程为:AB+BP1=4+1=5,∴t=5÷2=2.5,②当点P运动到P2时,BP2=DQ=5,此时△CDQ≌△ABP2,∴点P的路程为:AB+BP2=4+5=9,∴t=9÷2=4.5,③当点P运动到P3时,AP3=DQ=5,此时△CDQ≌△ABP3,∴点P的路程为:AB+BC+CD+DP3=4+6+4+1=15,∴t=15÷2=7.5,④当点P运动到P4时,即P与Q重合时,DP4=DQ=5,此时△CDQ≌△CDP4,∴点P的路程为:AB+BC+CD+DP4=4+6+4+5=19,∴t=19÷2=9.5,综上所述,时间的值可以是:t=2.5,4.5,7.5或9.5,故答案为:2.5或4.5或7.5或9.5.15.证明:因为∠BAC是钝角,故过B、C两点分别作CA、BA的垂线,垂足分别为F,G,在△ABF与△ACG中,∴△ABF≌△ACG(AAS),∴BF=CG,在Rt△BEF和Rt△CDG中,∴Rt△BEF≌Rt△CDG(HL),∴∠ADC=∠AEB.三.全等三角形的判定与性质16.解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正确,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠FAC=44°,故①正确,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=44°,故③正确,无法证明AD=AC,故④错误,综上,①②③正确,故选:B.17.解:在AC上截取AE=AB=5,连接PE,∵AC=9,∴CE=AC﹣AE=9﹣5=4,∵点P是∠BAC平分线AD上的一点,∴∠CAD=∠BAD,在△APE和△APB中,,∴△APE≌△APB(SAS),∴PE=PB=3,∵4﹣3<PC<4+3,解得1<PC<7,∴PC取6,故选:A.18.解:∵AC⊥BC,BD⊥BC,∴∠ABC=∠DBC=90°,在Rt△ACB和Rt△DBC中,,∴Rt△ACB和Rt△DBC(HL),∴BD=AC=5,故答案为:5.19.证明:∵∠BAD=∠CAE,∴∠BAD﹣∠DAC=∠CAE﹣∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴∠B=∠D.20.证明:∵BE⊥AC,CD⊥AB,∴∠AEB=∠ADC=90°,在△AEB和△ADC中,,∴△AEB≌△ADC(AAS),∴AB=AC.21.证明:(1)∵AP∥BC,∴∠AFD=∠CED,∠FAD=∠ECD,在△ADF和△CDE中,,∴△ADF≌△CDE(ASA);(2)由(1)知,△ADF≌△CDE,∠FAD=∠ECD,∴AD=CD,在△ADM和△CDB中,,∴△ADM≌△CDB(ASA),∴AM=BC.22.(1)证明:∵AC=BC,∴∠A=∠B,∵∠CDB=∠A+∠ACD,∴∠CDE+∠BDE=∠A+∠ACD,∵∠CDE=∠A,∴∠BDE=∠ACD,在△ACD和△BDE中,,∴△ACD≌△BDE(AAS),∴DC=ED.(2)解:图2中的所有等腰三角形有△ACH,△BCH,△BCD,△DCE.理由:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CH⊥AB,∴∠ACH=∠BCH=45°,∴△ACH和△BCH都是等腰三角形,由(1)可知△DCE是等腰三角形,∵∠CDE=∠A=45°,∴∠DCE=∠DEC=67.5°,∵∠B=45°,∴∠CDB=67.5°,∴∠DCB=∠CDB,∴△BCD是等腰三角形.23.(1)证明:∵∠ABC=45°,∠ACB=75°,∴∠BAC=60°,∵∠ADC=60°,∴∠ADB=120°,又∵∠BAC=60°,∴∠DAC=45°,又∵CF⊥AD,∴∠AFC=∠CFD=90°,∠ACF=∠DAC=45°,∴AF=CF,∵CF⊥AD,AE⊥BC,∴∠CDF+∠DCF=∠CGE+∠DCF=90°,∴∠CDF=∠CGE,∵∠CGE=∠AGF,∴∠AGF=∠CDF,∵在△AFG和△CFD中,,∴△AFG≌△CFD(AAS);(2)解:在Rt△CFD中,∠CFD=90°,∠FCD=30°,∴CD=2DF=2,∵△AFG≌△CFD,∴FG=DF=1,∴CF=AF=,∴CG=CF﹣FG=﹣1,在Rt△CGE中,∠AEC=90°,∠FCD=30°,∴EG=CG=.24.(1)解:如图所示:(2)证明:∵∠B=∠B',∠C=∠C',∴∠A=∠A',∵AD平分∠BAC,∠B'A'C'的角平分线A'D',∴∠BAD=∠B'A'D',∵AD=A'D',∴△BAD≌△B'A'D'(AAS),∴BD=B'D'.25.解:(1)∵∠BAC=90°,AD为中线,∴BD=CD=AD=BC,∵∠B=30°,∴∠BAD=30°,∴∠DAC=60°,∵CE⊥AD,∴∠ACE=30°,∴AC=2AE=2,在Rt△ABC中,BC=2AC=4;(2)延长ED到G,使DG=DE,则EG=2DE,连接GB,如图:∵AD为中线,∴BD=CD,在△BDG和△CDE中,,∴△BDG≌△CDE(SAS),∴BG=CE,∠G=∠CED=90°=∠CEF,在△ABG和△FCE中,,∴△ABG≌△FCE(AAS),∴AG=EF,∴AG﹣AE=EF﹣AE,即EG=AF,∵EG=2DE,∴AF=2DE.26.证明:(1)在Rt△ACB和Rt△DEB中,,∴Rt△ACB≌Rt△DEB(HL),∴AB=BD,(2)如图:作BM平分∠ABD交AK于点M,∵BM平分∠ABD,KB平分∠AKG,∴∠ABM=∠MBD=45°,∠AKB=∠BKG,∵∠ABF=∠DBG=45°∴∠MBD=∠GBD,在△BMK和△BGK中,,∴△BMK≌△BGK(ASA),∴BM=BG,MK=KG,在△ABM和△DBG中,,∴△ABM≌△DBG(SAS),∴AM=DG,∵AK=AM+MK,∴AK=DG+KG.27.解:(1)DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(3)△DEF是等边三角形,理由如下,∵α=120°,AF平分∠BAC,∴∠BAF=∠CAF=60°,∵AB=AF=AC,∴△ABF和△ACF是等边三角形,∴FA=FC,∠FCA=∠FAB=∠AFC=60°,同(2)理得,△BDA≌△EAC,∴∠BAD=∠ACE,AD=CE,∴∠FAD=∠FCE,∴△FAD≌△FCE(SAS),∴DF=EF,∠DFA=∠EFC,∴∠DFE=∠DFA+∠AFE=∠EFC+∠AFE=∠AFC=60°,∴△DEF是等边三角形.28.解:问题背景:由题意:△ABE≌△ADG,△AEF≌△AGF,∴BE=DG,EF=GF,∴EF=FG=DF+DG=BE+FD.故答案为:EF=BE+FD.探索延伸:EF=BE+FD仍然成立.理由:如图2,延长FD到点G,使DG=BE,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.实际应用:如图3,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.。
苏科版数学八年级上册1-3 探索三角形全等的条件 同步练习(含解析)-doc
苏科版数学八年级上册1.3探索三角形全等的条件同步练习阶段练习:1.3.6运用SAS 、ASA 、AAS 、SSS 判定两个三角形全等(1)一、选择题1、(辽宁营口·八年级期末)如图,AC =DC ,∠BCE =∠DCA ,要使△ABC ≌△DEC ,不能添加下列选项中的()A .∠A =∠D B .BC =ECC .AB =DED .∠B =∠E(2题图)(3题图)(4题图)2、如图,点F ,B ,E ,C 在同一条直线上,点A ,D 在直线BE 的两侧,//AC DF ,CE FB =,添加下列哪个条件后,仍不能判定出ABC DEF ∆≅∆()A .AB DE =B .//AB DEC .AD ∠=∠D .AC DF =3、(2021秋•鼓楼区校级月考)工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与点M 、N 重合,过角尺顶点C 作射线OC ,由此作法便可得△NOC ≌△MOC ,其依据是()A .SSSB .SASC .ASAD .AAS4、(宁夏固原·八年级期末)如图,已知△ABC 三条边、三个角,则甲、乙两个三角形中,与△ABC 全等的图形是()A .甲B .乙C .甲和乙D .都不是5、在ABC 和DEF 中,条件:①AB DE =;②BC EF =;③AC DF =;④A D ∠=∠;⑤B E ∠=∠;⑥C F ∠=∠;则下列各组给出的条件不能保证ABC DEF △≌△的是()A .①②③B .①②⑤C .②⑤⑥D .①③⑤6、(2021秋•北海期末)把等腰直角三角形ABC ,按如图所示立在桌上,顶点A 顶着桌面,若另两个顶点距离桌面5cm 和3cm ,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE 的长为()A .4cmB .6cmC .8cmD .求不出来(6题图)(7题图)(8题图)(9题图)7、如图,△ABC 和△AED 共顶点A ,AD =AC ,∠1=∠2,∠B =∠E .BC 交AD 于M ,DE 交AC 于N ,甲说:“一定有△ABC ≌△AED .”乙说:“△ABM ≌△AEN .”那么()A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对8、如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC ≌△AED 的是()A .BC=ED B .∠BAD=∠EAC C .∠B=∠E D .∠BAC=∠EAD 9、如图,AB =CD ,AB ∥CD ,E ,F 是BD 上两点且BE =DF ,则图中全等的三角形有()A .1对B .2对C .3对D .4对10、如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有()A .①②③B .①③④C .②③D .①②③④(10题图)(11题图)(12题图)(13题图)二、填空题11、(宁夏·吴忠市第四中学八年级期末)如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是_______________(填3种答案)12、(2020秋•梁溪区校级期中)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.13、(全国·八年级)如图,已知AD BC ,根据“SSS ”,还需要一个条件________,可证明ABC BAD ≌△△.14、(宁夏·吴忠市第四中学八年级期末)如图,在△ABC 中,按以下步骤作图:①以点B为圆心,任意长为半轻作弧,分别交AB、BC于点D、E②分别以点D、E为圆心,大于12DE的同样长为半径作弧,两弧交于点F.③作射线B即F交MC于点G.如果AB=8,BC=12.△ABG的面积为16,则△CBG的面积为________.(14题图)(15题图)(16题图)15、(江苏·泰州市海陵学校八年级期末)如图,已知方格纸中是4个相同的小正方形,则12∠+∠的度数为______.16、(全国·八年级)平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为__________17、(上海·青浦区实验中学七年级期末)如图,点B、C、E三点在同一直线上,且AB=AD,AC=AE,BC=DE,若12394∠+∠+∠=︒,则∠3=______°.(17题图)(18题图)18、如图,已知AB=AD,BC=DE,AC=AE,且∠CAD=10°,∠EAB=120°,直线BC与AD、DE分别交于点F、G,则∠DGB的度数为________.三、解答题19、(2022•姑苏区一模)如图,点D在射线AE上,BD=CD,DE平分∠BDC.求证:AB=AC.20、(2020秋•常州期末)已知:如图,AB=AE,AB∥DE,∠ECB+∠D=180°.求证:△ABC≌△EAD.21、(2020春•江阴市期中)如图,AB =AC ,AD =AE ,∠BAC =∠DAE .(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.22、(2021春•宣汉县期末)如图,点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,测得AB =DE ,AB ∥DE ,∠A =∠D .(1)求证:△ABC ≌△DEF ;(2)若BE =10m ,BF =3m ,求FC 的长度.23、(江西上饶·八年级期末)如图,已知五边形ABCDE 的各边都相等,各内角也都相等,点F 、G 分别在边BC 、CD 上,且FC =GD .(1)求证:ΔCDF ≌ΔDEG ;(2)求∠EHF 的大小.24、(江西赣州·八年级期末)如图,,AB AD BC DC ==,点E 在AC 上.(1)求证:AC 平分BAD ∠;(2)求证:BE DE =.25、(全国·八年级阶段练习)如图,在△ABC 与△ABD 中,AC =BD ,且CE =DE ,AE =BE ,AD 与BC 交于点E .(1)求证:△ACE ≌△BDE ;(2)若AC =3,BC =5,求△ACE 的周长.26、(辽宁葫芦岛·八年级期末)如图①,点C 在线段AB 上(点C 不与A ,B 重合),分别以AC ,BC 为边在AB 同侧作等边△ACD 和等边△BCE ,连接AE ,BD 交于点P .(1)观察猜想:①AE 与BD 的数量关系为______;②∠APD 的度数为______;(2)数学思考:如图②,当点C 在线段AB 外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.27、(辽宁葫芦岛·八年级期末)通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,NG l ⊥于点G ,由(1)易知NG =_______,ND 与直线l 交于点P ,求证:NP DP =.阶段练习:1.3.6运用SAS 、ASA 、AAS 、SSS 判定两个三角形全等(1)-苏科版数学八年级上册一、选择题1、(辽宁营口·八年级期末)如图,AC =DC ,∠BCE =∠DCA ,要使△ABC ≌△DEC ,不能添加下列选项中的()A .∠A =∠DB .BC =EC C .AB =DED .∠B =∠E【解析】根据已知条件可得∠+∠=∠+∠BCA ECA DCA ECA ,即BCA ECD ∠=∠,∵AC =DC ,∴已知三角形一角和角的一边,根据全等条件可得:A.∠A =∠D ,可根据ASA 证明,A 正确;B.BC =EC ,可根据SAS 证明,B 正确;C.AB =DE ,不能证明,C 故错误;D.∠B =∠E ,根据AAS 证明,D 正确;故选:C .2、如图,点F ,B ,E ,C 在同一条直线上,点A ,D 在直线BE 的两侧,//AC DF ,CE FB =,添加下列哪个条件后,仍不能判定出ABC DEF ∆≅∆()A .AB DE =B .//AB DEC .AD ∠=∠D .AC DF=【答案】A解:// AC DF ,C F ∠=∠∴,CE FB = ,CE EB FB BE ∴+=+,即CB FE =,∴当添加ABC DEF ∠=∠,即//AB DE 时,可根据“ASA ”判断ABC DEF ∆≅∆;当添加A D ∠=∠时,可根据“AAS ”判断ABC DEF ∆≅∆;当添加AC DF =时,可根据“SAS ”判断ABC DEF ∆≅∆.故选:A .3、(2021秋•鼓楼区校级月考)工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与点M 、N 重合,过角尺顶点C 作射线OC ,由此作法便可得△NOC ≌△MOC ,其依据是()A .SSSB .SASC .ASAD .AAS【解析】∵在△ONC 和△OMC 中,∴△MOC ≌△NOC (SSS ),∴∠BOC =∠AOC ,故选:A .4、(宁夏固原·八年级期末)如图,已知△ABC 三条边、三个角,则甲、乙两个三角形中,与△ABC 全等的图形是()A .甲B .乙C .甲和乙D .都不是解:甲三角形夹b 边的两角分别与已知三角形对应相等,故根据ASA 可判定甲与△ABC 全等;乙三角形50°内角及所对边与△ABC 对应相等且均有70°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和甲,故选:C .5、在ABC 和DEF 中,条件:①AB DE =;②BC EF =;③AC DF =;④A D ∠=∠;⑤B E ∠=∠;⑥C F ∠=∠;则下列各组给出的条件不能保证ABC DEF △≌△的是()A .①②③B .①②⑤C .②⑤⑥D .①③⑤【答案】D解:A 、①②③可以利用“SSS ”证明△ABC ≌△DEF ,故本选项不符合;B 、①②⑤可以利用“SAS ”证明△ABC ≌△DEF ,故本选项不符合;C 、②⑤⑥可以利用“AAS ”证明△ABC ≌△DEF ,故本选项不符合;D 、①③⑤符合“SSA ”,不能证明△ABC ≌△DEF ,故本选项符合.故选:D .6、(2021秋•北海期末)把等腰直角三角形ABC ,按如图所示立在桌上,顶点A 顶着桌面,若另两个顶点距离桌面5cm 和3cm ,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE 的长为()A .4cmB .6cmC .8cmD .求不出来【解析】∵∠CEA =∠ADB =∠CAB =90°,∴∠ECA +∠EAC =∠EAC +∠DAB =∠DAB +∠DBA =90°,∠ECA =∠DAB ,∠EAC =∠DBA ,又AC =AB ,∴△AEC ≌△BAD ,∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE =3+5=8.故选:C .7、如图,△ABC 和△AED 共顶点A ,AD =AC ,∠1=∠2,∠B =∠E .BC 交AD 于M ,DE 交AC 于N ,甲说:“一定有△ABC ≌△AED .”乙说:“△ABM ≌△AEN .”那么()A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对【答案】A【详解】∵∠1=∠2,∴∠1+∠MAC =∠2+∠MAC ,∴∠BAC =∠EAD ,在△BAC 和△EAD 中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAC ≌△EAD ,∴甲说的正确;∵△BAC ≌△EAD (AAS ),∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAM ≌△EAN (ASA ),∴乙说的正确;故选A .8、如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC ≌△AED 的是()A .BC=EDB .∠BAD=∠EAC C .∠B=∠ED .∠BAC=∠EAD【答案】C解:A .∵AB =AE ,AC =AD ,BC =ED ,∴△ABC ≌△AED (SSS ),故A 不符合题意;B .∵∠BAD =∠EAC ,∴∠BAC =∠EAD .∵AB =AE ,∠BAC =∠EAD ,AC =AD ,∴△ABC ≌△AED (SAS ),故B 不符合题意;C .不能判定△ABC ≌△AED ,故C 符合题意.D .∵AB =AE ,∠BAC =∠EAD ,AC =AD ,∴△ABC ≌△AED (SAS ),故D 不符合题意.故选C .9、如图,AB =CD ,AB ∥CD ,E ,F 是BD 上两点且BE =DF ,则图中全等的三角形有()A .1对B .2对C .3对D .4对【答案】C【详解】解:∵AB ∥CD ,∴∠ABE=∠CDF ,在△ABE 和△CDF 中AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ),∴AE=CF ,∵BE=DF ,∴BE+EF=DF+EF ,∴BF=DE ,在△ADE 和△CBF 中AD BC AE CF DE BF =⎧⎪=⎨⎪=⎩∴△ADE ≌△CBF (SSS ),∴AD=BC ,在△ABD 和△CDB 中AB CD BD BD AD BC =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CDB (SSS ),即3对全等三角形,故选:C .10、如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有()A .①②③B .①③④C .②③D .①②③④【答案】D【解析】∵BF ∥AC ,∴∠C=∠CBF ,∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC ,∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②③正确,在△CDE 与△DBF 中,C CBF CD BD EDC BDF ∠∠⎧⎪⎨⎪∠∠⎩===,∴△CDE ≌△DBF ,∴DE=DF ,CE=BF ,故①正确;∵AE=2EC ,∴AC=3EC=3BF ,故④正确.故选D .二、填空题11、(宁夏·吴忠市第四中学八年级期末)如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是_______________(填3种答案)【解析】添加∠A=∠F;要判定△ABC ≌△FDE ,已知AC=FE ,AD=BF ,则AB=CF ,具备了两组边对应相等,故添加夹角∠A=∠F ,利用SAS 可证全等;或添加AC ∥EF 得夹角∠A=∠F ,利用SAS 可证全等;或添加BC=DE ,利用SSS 可证全等.12、(2020秋•梁溪区校级期中)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.【解析】1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故答案为:2.13、(全国·八年级)如图,已知AD BC =,根据“SSS ”,还需要一个条件________,可证明ABC BAD ≌△△.【答案】BD CA =(答案不唯一)【详解】图形中隐含条件AB =BA ,找出第三边BD 和AC 即可;在△ABC 和△BAD 中AD BC CA DB AB BA =⎧⎪=⎨⎪=⎩,∴△ABC ≌△BAD (SSS )14、(宁夏·吴忠市第四中学八年级期末)如图,在△ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半轻作弧,分别交AB 、BC 于点D 、E②分别以点D 、E 为圆心,大于12DE 的同样长为半径作弧,两弧交于点F .③作射线B 即F 交MC 于点G .如果AB =8,BC =12.△ABG 的面积为16,则△CBG 的面积为________.解:如图,过点G 作GM ⊥AB 于点G ,GN ⊥AC 于点N .由作图可知BG 平分∠ABC ,∵GM ⊥BA ,GN ⊥BC ,∴GM =GN ,∵ABG S =12AB ·GM =16,AB =8,∴GM =4,∴GN =GM =4,∴CBG S =12BC ·GN =12×12×4=24,故答案为:24.15、(江苏·泰州市海陵学校八年级期末)如图,已知方格纸中是4个相同的小正方形,则12∠+∠的度数为______.解:如图,根据方格纸的性质,在△ABD 和△CBE 中AB BC B B BD BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBE (SAS ),∴∠1=∠BAD ,∵∠BAD+∠2=90°,∴12∠+∠=90°.故答案为:90°.16、(全国·八年级)平面上有△ACD 与△BCE ,其中AD 与BE 相交于P 点,如图.若AC =BC ,AD =BE ,CD =CE ,∠ACE =55°,∠BCD =155°,则∠BPD 的度数为__________【详解】解:在△ACD 和△BCE 中,AC BC CD CE AD BE =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BCE (SSS ),∴∠A =∠B ,∠BCE =∠ACD ,∴∠BCA =∠ECD ,∵∠ACE =55°,∠BCD =155°,∴∠BCA +∠ECD =100°,∴∠BCA =∠ECD =50°,∵∠ACE =55°,∴∠ACD =105°∴∠A +∠D =75°,∴∠B +∠D =75°,∵∠BCD =155°,∴∠BPD =360°﹣75°﹣155°=130°,17、(上海·青浦区实验中学七年级期末)如图,点B 、C 、E 三点在同一直线上,且AB =AD ,AC =AE ,BC =DE ,若12394∠+∠+∠=︒,则∠3=______°.【答案】47【详解】解:在△ABC 和△ADE 中,AB AD BC DE AC AE =⎧⎪=⎨⎪=⎩,∴ABC ADE △≌△(SSS ),∴∠ABC =∠1,∠BAC =∠2,∴∠3=∠ABC +∠BAC =∠1+∠2,∵12394∠+∠+∠=︒,∴23=94∠︒,∴3=47∠︒.故答案为:47.18、如图,已知AB =AD ,BC =DE ,AC =AE ,且∠CAD =10°,∠EAB =120°,直线BC 与AD 、DE 分别交于点F 、G ,则∠DGB 的度数为________.解:∵AB =AD ,BC =DE ,AC =AE ,∴△ABC ≌△ADE ,∴∠BAC =∠DAE ,∠B =∠D ;∵∠EAB =120°,∴∠DAE +∠CAD +∠BAC =120°,∵∠CAD =10°,∴∠BAC =12(120°-10°)=55°,∴∠BAF =∠BAC +∠CAD =65°,∵∠B =∠D ,∠DFG =∠BFA ,∴∠DGB =∠BAF =65°.三、解答题19、(2022•姑苏区一模)如图,点D 在射线AE 上,BD =CD ,DE 平分∠BDC .求证:AB =AC.【分析】由“SAS”判定△ADC≌△ADB,得出AB=AC即可.【解答】证明:∵DE平分∠BDC,∴∠BDE=∠CDE,∴∠ADB=∠ADC,在△ADC和△ADB中,,∴△ADC≌△ADB(SAS),∴AB=AC.20、(2020秋•常州期末)已知:如图,AB=AE,AB∥DE,∠ECB+∠D=180°.求证:△ABC≌△EAD.【分析】根据全等三角形的判定方法解答即可.【解答】证明:∵AB∥DE,∴∠CAB=∠E,∵∠ECB+∠D=180°,∠ECB+∠ACB=180°,∴∠D=∠ACB,在△ABC与△EAD中,,∴△ABC≌△EAD(AAS).21、(2020春•江阴市期中)如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ABD=∠2=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°.22、(2021春•宣汉县期末)如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【解答】(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 与△DEF 中;∴△ABC ≌△DEF (ASA );(2)∵△ABC ≌△DEF ,∴BC =EF ,∴BF +FC =EC +FC ,∴BF =EC ,∵BE =10m ,BF =3m ,∴FC =10﹣3﹣3=4m .23、(江西上饶·八年级期末)如图,已知五边形ABCDE 的各边都相等,各内角也都相等,点F 、G 分别在边BC 、CD 上,且FC =GD .(1)求证:ΔCDF ≌ΔDEG ;(2)求∠EHF 的大小.(1)证明:在ΔCDF 与ΔDEG 中∵五边形ABCDE 的各边都相等,各内角也都相等,∴CD =DE ,∠FCD =∠GDE又∵FC =GD ;在△CDF 和△DEG 中,FC GD FCD GDE CD DE =⎧⎪∠=∠⎨⎪=⎩,∴ΔCDF ≌ΔDEG (SAS );(2)解:∵ΔCDF ≌ΔDEG ;∴∠FDC =∠GED ∴∠EHF =∠GED +∠HDE =∠FDC +∠HDE =∠CDE =31801085⨯︒=︒24、(江西赣州·八年级期末)如图,,AB AD BC DC ==,点E 在AC 上.(1)求证:AC 平分BAD ∠;(2)求证:BE DE =.解:(1)在ABC ∆与ADC ∆中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩∴()ABC ADC SSS ∆∆≌;∴BAC DAC ∠=∠;即AC平分BAD ∠;(2)由(1)BAE DAE∠=∠在BAE ∆与DAE ∆中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩;∴()BAE DAE SAS ∆∆≌;∴BE DE =25、(全国·八年级阶段练习)如图,在△ABC 与△ABD 中,AC =BD ,且CE =DE ,AE =BE ,AD 与BC 交于点E .(1)求证:△ACE ≌△BDE ;(2)若AC =3,BC =5,求△ACE的周长.【详解】证明:(1)在 ACE 和 BDE 中AC BD CE DE AE BE =⎧⎪=⎨⎪=⎩;∴ ACE ≌ BDE (2)∵AC =3,BC =5,AE =BE∴ ACE 的周长为AC +CE +AE=AC +CE +BE=AC +BC=826、(辽宁葫芦岛·八年级期末)如图①,点C 在线段AB 上(点C 不与A ,B 重合),分别以AC ,BC 为边在AB 同侧作等边△ACD 和等边△BCE ,连接AE ,BD 交于点P .(1)观察猜想:①AE 与BD 的数量关系为______;②∠APD 的度数为______;(2)数学思考:如图②,当点C 在线段AB 外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.【答案】(1)①AE =BD ;②60°;(2)上述结论成立.∠APD =60°,证明见解析(1)解:∵△ACD 和△CBE 都是等边三角形,∴AC =DC ,CE =CB ,∠ACD =∠ECB =60°,∵∠ACE =∠ACD +∠DCE ,∠DCB =∠DCE +∠ECB ,∴∠DCB =∠ACE ,∴△DCB ≌△ACE ,∴AE =BD ,∠BDC =∠CAE ,又∵∠DOP =∠COA ,∴∠APD =∠ACD =60°,故答案是:AE =BD ,60°;(2)上述结论成立,∵△ACD ,△BCE 均为等边三角形,∴DC =AC ,BC =EC ,∠DCA =∠BCE =60°,∴∠DCA +∠ACB =∠ACB +∠BCE ,即∠DCB =∠ACE ,在△DCB 和△ACE 中,DC AC DCB ACE CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△DCB ≌△ACE (SAS ),∴DB =AE ,∠CDB =∠CAE ,如图,设BD 与AC 交于点O ,易知∠DOC =∠AOP (对顶角相等),∴∠CDB +∠DCA =∠CAE +∠DPA ,∴∠DCA =∠DPA =60°,即∠APD =60°.27、(辽宁葫芦岛·八年级期末)通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,NG l ⊥于点G ,由(1)易知NG =_______,ND 与直线l 交于点P ,求证:NP DP =.(1)解:∵(AAS)≌ABC DAE ,∴AC =DE ,BC =AE ,故答案为DE ,AE ;(2)证明:过D 作DE ⊥直线l 于E ,∵90MAN ∠=︒,∴∠CAM +∠NAG =90°,∵BM ⊥l ,∴∠MCA =90°,∴∠M +∠CAM =90°,∴∠M =∠NAG ,∵NG l ⊥,∴∠AGN =90°,在△MCA 和△AGN 中,MCA AGN M GAN MA AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MCA ≌△AGN (AAS ),∴AC =NG ,由(1)知(AAS)≌ABC DAE ,∴AC =DE ,∴NG =DE ,在△NGP 和△DEP 中,90NGP DEP GPN EPD NG DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△NGP ≌△DEP (AAS ),∴NP =DP ,故答案为AC.。
苏科版八年级数学上册1-1 全等图形 同步强化提优训练(含答案)-doc
苏科版八年级数学上册1.1 全等图形同步强化提优训练一.选择题(30分)1. 两个三角形全等是指这两个三角形的()A. 形状、大小和位置都相同B. 形状、大小都相同,与位置没有关系C. 形状相同,与大小和位置没有关系D. 形状、大小和位置都没有关系2、下列各选项中的两个图形属于全等形的是()3、下列图形中与已知图形全等的是()A.B.C.D.4、小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是( )A.1 B.2 C.3 D.45、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为( )A.90° B.105° C.120° D.135°第5题图第6题图第7题图6、在如图所示的图形中,全等图形有( )A. 1对B. 2对C. 3对D. 4对7.如图,△ABC≌△DEF,则此图中相等的线段有( )A.1对 B.2对C.3对 D.4对8.下列四个图形中,属于全等图形的是( )A.③和④ B.②和③ C.①和③ D.①②④第8题图第9题图9.如图,A、E、D三点在同一条直线上,且△BAE≌△ACD.若BE=2.5,CD=1,则DE的长为()A.1.3 B.1.4 C.1.5 D.无法确定10.全等三角形又叫做合同三角形.平面内的合同三角形分为真正合同三角形和镜面合同三角形.假如△ABC和△A′B′C′是全等三角形,且点A与点A′对应,点B与点B′对应,点C与点C′对应.当沿周界A﹣B﹣C﹣A及A′﹣B′﹣C′﹣A′环绕时,若运动方向相同,则称它们是真正合同三角形(如图①);若运动方向相反,则称它们是镜面合同三角形(如图②).两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻转180度.下列各组合同三角形中,属于镜面合同三角形的是( )A. B.C.D.二.填空题(30分)11.如图所示的两个三角形全等,则∠α的度数是________.第11题图第12题图第13题图12.如图,△ABC≌△DEF,则EF的长为__________.13.如图,在△ABC中,D、E分别是AB、BC上的点.若△ADC≌△EDC≌△EDB,则∠BAC 的度数是_______.14.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2= .第14题图第15题图15.与左图所示图形全等的是 .16.如图的图案是由全等的图形拼成的其中.AD=0.5 cm,BC=1 cm,则AF= cm.第16题图第17题图17.如图,等边△ABC的边长为1 cm,D,F分别是AB,AC上的点,将△ADE沿直线DE折叠,点A落在点A'处,且点A'在△ABC外部,则阴影部分图形的周长为 cm.18、如图,在3×3的正方形网格中,∠1+∠2= 度.第18题图第19题图第20题图19、如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2= 45° .20、如图,有6幅条形方格图,每个小方格的边长都是1,那么图中由实线围成的图形属于全等图形的是________(填序号).三。
苏科版八年级数学上册1-2全等三角形同步练习(附答案)-doc
苏科版八年级数学上册1.2全等三角形同步练习一、单选题1.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A .115°B .65°C .40°D .25°2.如图,A ,F ,C ,D 在一条直线上,△ABC ≌△DEF , AF =1,FD =3,则FC 的长是( )A .1B .1.5C .2D .2.53.如图所示,图中的两个三角形全等,则∠α等于( )A .B .C .D .50︒55︒60︒65︒4.如图,和全等,且,对应.若,,ABC A DEF A A D ∠=∠AC DE 6AC =5BC =4AB =,则的长为( ) DFA .4B .5C .6D .无法确定 5.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18cm 2,则EF 边上的高是( )A .6cmB .7cmC .8cmD .9cm6.如图,把△ABC 沿线段DE 折叠,使点B 落在点F 处;若,∠A =70°,AC DE ∥AB =AC ,则∠CEF 的度数为( )A .55°B .60°C .65°D .70°7.罗同学学习了全等三角形后,利用全等三角形绘制出了下面系列图案,第(1)个图案由2个全等三角形组成,第(2)个图案由4个全等三角形组成,第(3)个图案由7个全等三角形组成,第(4)个图案由12个全等三角形组成,则第(6)个图案中全等三角形的个数为( )A .25B .38C .70D .1358.如图,△ABC ≌△ADE ,如果AB =5cm ,BC =7cm ,AC =6cm ,那么DE 的长是( )A .6cmB .5cmC .7cmD .无法确定 9.如图,已知△ABC ≌△CDA ,下列结论:(1)AB=CD ,BC=DA ;(2)∠BAC=∠DCA ,∠ACB=∠CAD ;(3)AB//CD ,BC//DA .其中正确的结论有( ) 个.A .0B .1C .2D .310.如图,,BC 的延长线交DE 于点G ,若,,ABC ADE △≌△24B ∠=︒54CAB ∠=︒,( )16DAC ∠=︒DGB ∠=A .B .C .D .70︒65︒60︒80︒11.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是( )A .AD =BEB .BE ⊥AC C .△CFG 为等边三角形D .FG ∥BC12.如图,已知点B 、C 、D 在同一条直线上,ABC 和CDE 都是等边三角形.BE 交A A AC 于F ,AD 交CE 于G ,AD 交BE 于O 点.则下列结论中不一定正确的是( )A .AD=BEB .CO 平分∠BODC .BE ⊥ACD .FG ∥BC 二、填空题13.如图,已知,若∠BAC =60°,∠ACD =23°,则__________.ABC ADC △≌△D ∠=14.已知,,,,则______.ABC DEF ≅A A 5AB =6BC =4DF =EF =15.如图,中,点D 、点E 分别在边、上,连结、,若ABC A AB BC AE DE ,,且的周长比的周长大6.则ADE BDE A A ≌::2:3:4AC AB BC =ABC A AEC △AEC △的周长为______16.如图,Rt △ABE ≌Rt △ECD ,点B 、E 、C 在同一直线上,则结论:①AE =ED ;②AE ⊥DE ;③BC =AB +CD ;④AB DC .其中成立的是______.(填上序号即可) ∥17.如果△ABC ≌△DEF ,△DEF 周长是30 cm ,DE =9 cm ,EF =13 cm .∠E =∠B ,则AC =__________cm .三、解答题18.如图已知△ABC ≌△DEF ,点B 、E 、C 、F 在同一直线上,∠A =85°,∠B =60°,AB =8,EH =2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.19.如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t s,且t≤5(1)PC=cm(用含t的代数式表示)v(2)如图2,当点P从点B开始运动时,点Q从点C出发,以cm/s的速度沿CD向点D运动,是否存在这样的v值,使得以A﹑B﹑P为顶点的三角形与以P﹑Q﹑C为顶点的三角形v全等?若存在,请求出的值;若不存在,请说明理由.20.如图,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度数.21.如图①,在△ABC中,AB=12cm,BC=20cm,过点C作射线CD∥AB,点M从点B出发,以3cm/s的速度沿BC匀速移动;点N从点C出发,以acm/s的速度沿CD匀速移动.点M、N同时出发,当点M到达点C时,点M、N同时停止移动.连接AM、MN,设移动时间为t(s).(1)点M、N从移动开始到停止,所用时间为s;(2)当△ABM与△MCN全等时,①若点M、N的移动速度相同,求t的值;②若点M、N的移动速度不同,求a的值;(3) 如图②,当点M、N开始移动时,点P同时从点A出发,以2cm/s的速度沿AB向点B匀速移动,到达点B后立刻以原速度沿BA返回.当点M到达点C时,点M、N、P同时停止移动.在移动的过程中,是否存在△PBM与△MCN全等的情形?若存在,求出t的值;若不存在,说明理由.参考答案1--10CCBAA DBCDA 11--12BC13.97°14.615.1216.①②③④17.818.解:(1)在中,,,∴ ABC A 85A ∠=︒60B ∠=︒18035ACB A B ∠=︒-∠-∠=︒∵ABC DEF △≌△∴,8A B D E ==35F ACB ∠=∠=︒∴6DH DE EH =-=故答案为,35︒6(2)∵ABC DEF △≌△∴B DEF ∠=∠∴//AB DE 19.解:(1)∵点P 的速度是2cm /s ,∴t s 后BP =2t cm ,∴PC=BC−BP =(10−2t )cm ,故答案为:(10﹣2t );(2)由题意得:,∠B=∠C =90°,cm CQ vt =∴只存在△ABP ≌△QCP 和△ABP ≌△PCQ 两种情况,当△ABP ≌△PCQ 时,∴AB=PC ,BP=CQ ,∴10−2t =6,2t=vt ,解得,t =2,v =2,当△ABP ≌△QCP 时,∴AB=QC ,BP=CP ,∴2t =10-2t , vt =6,解得,t =2.5,v =2.4,∴综上所述,当v =1或v =2.4时,△ABP 和△PCQ 全等.20.∴∠C=∠D ,∠OBC=∠OAD ,∵∠O=65º,∴∠OBC=180º−65º−∠C=115º−∠C ,在四边形AOBE 中,∠O+∠OBC+∠BEA+∠OAD=360º,∴65º+115º−∠C+135º+115º−∠C=360º,解得∠C=35º.21.(1)点M 的运动时间(秒), 203t =故答案为: 203(2)①∵点M 、N 的移动速度相同,∴CN =BM ,∵CD ∥AB ,∴∠NCM =∠B ,∴当CM =AB 时,△ABM 与△MCN 全等,则有12=20-3t ,解得t =. 83②∵点M 、N 的移动速度不同,∴BM ≠CN ,∴当CN =AB ,CM =BM 时,两个三角形全等,∴运动时间t =, 103∴a =.12181053=(3)若点M 、N 的移动速度不同,则CM =BM 时,两个三角形有可能全等,由(2)②可知此时t = 103若点M 、N 的移动速度相同,则BM =CN ,BP =CM ,∴20-3t =12-2t 或20-3t =2t -12,解得t =8(舍)或 325综上所述,满足条件的t 的值为或103325。
苏科版八年级数学上册 全等图形 同步训练【含答案】
苏科版八年级数学上册全等图形同步训练一、单选题1.在下列各组图形中,是全等的图形是()A.B.C.D.2.一个正方体的展开图有()个全等的正方形.A.2个B.3个C.4个D.6个3.观察如下图所示的各个图形,其中全等图形正确的是().A.②②②B.②②②C.②②②D.②②②4.下列四个选项图中,与题图中的图案完全一致的是()A.B.C.D.5.如图,下面4个正方形的边长都相等,其中阴影部分的面积相等的图形有()A.0个B.2个C.3个D.4个6.下列图形:②两个正方形;②每边长都是1cm的两个四边形;②每边都是2cm的两个三角形;②半径都是1.5cm的两个圆.其中是一对全等图形的是()A.1个B.2个C.3个D.4个7.如图所示的图形全等的是()A.B.C.D.8.全等形是指()A.形状相同的两个图形B.面积相同的两个图形C.两张中国地形图,两个等腰三角形都是全等形D.能够完全重合的两个平面图形9.下列说法正确的是()A.面积相等的两个图形全等B.周长相等的两个图形全等C.形状相同的两个图形全等D.全等图形的形状和大小相同10.下列四个图形中,全等的图形是()A.②和②B.②和②C.②和②D.②和②二、填空题11.由同一张底片冲洗出来的五寸照片和七寸照片_____全等图形(填“是”或“不是”).12.如图,有6个条形方格图,在由实线围成的图形中,全等图形有:(1)与__;(2)与__.13.如图,是一个33⨯的正方形网格,则②1+②2+②3+②4=________.14.如图,②EFG②②NMH ,②EFG 的周长为15cm ,HN=6cm ,EF=4cm ,FH=1cm ,则HG= ______ .15.图中的全等图形共有________ 对.16.如图,四边形ABCD ②四边形A B C D '''',则A ∠的大小是________.三、解答题17.找出图中全等的图形.18.找出七巧板中(如图)全等的图形。
苏科版数学八年级上册 1-1全等图形 课时练(含答案)
苏科版数学八年级上册1.1全等图形课时练1.1全等图形一、选择题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.下列各选项中的两个图形属于全等形的是()A. B.C. D.3.下列选项中,和如图全等的图形是()A. B. C. D.4.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形5.下列说法中,正确的有()①正方形都是全等形;②等边三角形都是全等形;③形状相同的图形是全等形;④能够完全重合的图形是全等形.A.1个B.2个C.3个D.4个6.如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°二、填空题7.如图(1)~(12)中全等的图形是_____和_____;_____和_____;_____和_____;_____和_____;_____和_____;_____和_____;(填图形的序号)8.如图,图中由实线围成的图形与①是全等形的有_____.(填序号)9.如图,四边形ABCD≌四边形A'B'C'D',则∠A的大小是_____.10.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=_____°.11.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a和b,且a >b,求出阴影部分的面积为_____.三、解答题12.试在下列图中,沿正方形的网格线(虚线)把这两个图形分别割成两个全等的图形13.图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.参考答案1、C2、A3、D4、B5、A6、D7、全等图形是(1)和(11);(2)和(10);(3)和(6);(4)和(7);(5)和(8);(9)和(12)8、②③9、95°10、9011、(a-b)212、13、∵两个五边形全等,∴a=12,c=8,b=10,d=5,e=11,α=90°,β=115°。
苏教版八上1.1全等图形练习
苏科版数学八上第1章全等三角形1.1全等图形练习一、选择题1.下列图形是全等图形的是()A. B. C. D.2.下列图形中被虚线分成的两部分不是全等形的是()A. B. C. D.3.下列说法正确的是( )A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形4.如果两个图形全等,那么这两个图形必定是( )A.形状大小均相同B.形状相同,但大小不同C.大小相同,但形状不同D.形状大小均不相同5.如图,已知方格纸中是4个相同的正方形,则∠l+∠2= ( )A.60°B.90°C.100°D.120°(5题图)(6题图)(8题图)6. 6个完全相同的小正方形如图所示,直线l把小正方形a分成两个全等的小长方形,婷婷想在图中再加一个小正方形,使整个图形被直线l分成的两部分全等,这个小正方形可放的位置为①,②,③或④,则符合题意的位置的个数为( )A.1B.2C.3D.47.如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有()A.②③④B.③④⑤C.②④⑤D.②③⑤8.如图,面积为64的正方形ABCD,分成4个全等的长方形和一个面积为4的小正方形,则小长方形的长和宽分别是( )A.32, 2B.16, 1C.8,2D.5,3二、填空题9.如果两个图形全等,那么它们的周长相等(填“一定”或“不一定”).10.如果两个图形全等,那么它们的面积 .11.在如图所示的网格图中,每个小正方形的边长都为1.沿着图中的虚线,可以将该图形分割成2个全等的图形.在所有的分割方案中,最长分割线的长度等于 .(11题图)(12题图)(13题图)(14题图)12.如图,图形的各个顶点都在3×3正方形网格的格点上,则∠l+∠2= .13.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a 和b,且a>b,求出阴影部分的面积为 .14.如图,图中由实线围成的图形与①是全等形的有 (填序号).15.下图是由全等的图形组成的,其中AB=3cm, CD=2AB,则AF= .16.下图中四边形ABCD与四边形A′B′C′D′全等,则∠A= ,B′C′= .三、解答题17.沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形.18.找出七巧板中(如图)全等的图形.。
苏科版八年级上《第1章全等三角形》单元测试(3)含答案解析
《第1章 全等三角形》一、选择题1.如图,OA=OB ,OC=OD ,∠O=50°,∠D=35°,则∠AEC 等于( )A .60°B .50°C .45°D .30°2.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是( )A .POB .PQC .MOD .MQ3.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确4.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个6.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.BE=CD B.BE>CDC.BE<CD D.大小关系不确定7.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE 交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④8.如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个二、填空题9.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.10.如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于.11.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:.12.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)13.如图:在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为16,则DE的长为.14.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE= cm.16.如图,小明为了测量河的宽度,他站在河边的点C,头顶为点D,面向河对岸,压低帽檐使目光正好落在河对岸的岸边点A,然后他姿势不变,在原地方转了180°,正好看见了他所在的岸上的一块石头点B,他测出BC=30m,你能猜出河有多宽吗?说说理由.答:m.17.如图,高速公路上有A、B两点相距25km,C、D为两村庄.已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则AE的长是km.18.已知三角形的两边长分别为5和7,则第三边上的中线长x的取值范围是.三、解答题19.如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.20.已知:AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?21.如图,已知:CD⊥AB于D,BE⊥AC于E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.22.如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.23.如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.24.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.25.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.《第1章全等三角形》参考答案与试题解析一、选择题1.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A.60° B.50° C.45° D.30°【考点】全等三角形的判定与性质;多边形内角与外角.【分析】首先由已知可求得∠OAD的度数,通过三角形全等及四边形的知识求出∠AEB的度数,然后其邻补角就可求出了.【解答】解:∵在△AOD中,∠O=50°,∠D=35°,∴∠OAD=180°﹣50°﹣35°=95°,∵在△AOD与△BOC中,OA=OB,OC=OD,∠O=∠O,∴△AOD≌△BOC,故∠OBC=∠OAD=95°,在四边形OBEA中,∠AEB=360°﹣∠OBC﹣∠OAD﹣∠O,=360°﹣95°﹣95°﹣50°,=120°,又∵∠AEB+∠AEC=180°,∴∠AEC=180°﹣120°=60°.故选:A.【点评】本题考查了全等三角形的判定及性质;解题过程中用到了三角形、四边形的内角和的知识,要根据题目的要求及已知条件的位置综合运用这些知识.2.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是( )A .POB .PQC .MOD .MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN 的长,只需求得其对应边PQ 的长,据此可以得到答案.【解答】解:要想利用△PQO ≌△NMO 求得MN 的长,只需求得线段PQ 的长,故选:B .【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.3.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确【考点】全等三角形的判定.【专题】压轴题.【分析】根据SSS 即可推出△A 1B 1C 1≌△A 2B 2C 2,判断①正确;根据“两角法”推知两个三角形相似,然后结合两个三角形的周长相等推出两三角形全等,即可判断②.【解答】解:∵△A 1B 1C 1,△A 2B 2C 2的周长相等,A 1B 1=A 2B 2,A 1C 1=A 2C 2,∴B 1C 1=B 2C 2,∴△A 1B 1C 1≌△A 2B 2C 2(SSS ),∴①正确;∵∠A 1=∠A 2,∠B 1=∠B 2,∴△A 1B 1C 1∽△A 2B 2C 2∵△A 1B 1C 1,△A 2B 2C 2的周长相等,∴△A 1B 1C 1≌△A 2B 2C 2∴②正确;故选:D .【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,而AAA 和SSA 不能判断两三角形全等.4.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE ,BC=EF ,其两边的夹角是∠B 和∠E ,只要求出∠B=∠E 即可.【解答】解:A 、根据AB=DE ,BC=EF 和∠BCA=∠F 不能推出△ABC ≌△DEF ,故本选项错误;B 、∵在△ABC 和△DEF 中,∴△ABC ≌△DEF (SAS ),故本选项正确;C 、∵BC ∥EF ,∴∠F=∠BCA ,根据AB=DE ,BC=EF 和∠F=∠BCA 不能推出△ABC ≌△DEF ,故本选项错误;D 、根据AB=DE ,BC=EF 和∠A=∠EDF 不能推出△ABC ≌△DEF ,故本选项错误.故选B .【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定.【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.6.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.BE=CD B.BE>CDC.BE<CD D.大小关系不确定【考点】全等三角形的判定与性质;等边三角形的性质.【分析】由全等三角形的判定可证明△BAE≌△DAC,从而得出BE=CD.【解答】解:∵△ABD与△ACE均为正三角形∴BA=DA,AE=AC,∠BAD=∠CAE=60°∴∠BAE=∠DAC∴△BAE≌△DAC∴BE=CD故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE 交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④【考点】全等三角形的判定;等腰三角形的性质.【分析】根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.【解答】解:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE (ASA);③△BDA≌△CEA (ASA);④△BOE≌△COD (AAS或ASA).故选D.【点评】此题考查等腰三角形的性质和全等三角形的判定,难度不大.8.如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等边三角形的性质;平行线分线段成比例.【专题】几何综合题;压轴题.【分析】根据题意,结合图形,对选项一一求证,判定正确选项.【解答】解:(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°,在△BCD和△ACE中∵,∴△BCD≌△ACE∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC,又∵∠ACG=∠BCF=60°,AC=BC∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∠DCE=∠ABC=60°,∴DC∥AB,∴,∵∠ACB=∠DEC=60°,∴DE∥AC,∴ =,∴,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°,∵△ACE≌△BCD,∴∠CDZ=∠CEN,在△CDZ和△CEN中∵,∴△CDZ≌△CEN,∴CZ=CN,∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述,四个结论均正确,故本题选D.【点评】本题综合考查了全等、圆、相似、特殊三角形等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.二、填空题9.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于70°.【考点】全等三角形的判定与性质.【分析】在△BCO中利用外角和定理求得∠DBE的度数,然后证明△ADO≌△BCO,求得∠D的度数,在△BED中利用内角和定理求解.【解答】解:∠DBE=∠O+∠C=60°+25°=85°,∵在△ADO和△BCO,,∴△ADO≌△BCO,∴∠D=∠C=25°,∴∠BED=180°﹣∠D﹣∠DBE=180°﹣25°﹣85°=70°.故答案是:70°.【点评】本题考查全等三角形的判定与性质,以及三角形的外角的性质以及三角形内角和定理,正确证明△ADO≌△BCO是关键.11.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:①②④.【考点】全等三角形的判定与性质.【分析】要得到OP=OP′就要证明两三角形全等,现有的条件为有一对角相等,一条公共边,缺少角,于是答案可得.【解答】解:①OCP=∠OCP′,符合ASA,可得二三角形全等,从而得到OP=OP′;②∠OPC=∠OP′C;符合AAS,可得二三角形全等,从而得到OP=OP′;④PP′⊥OC,符合ASA,可得二三角形全等,从而得到OP=OP′;③中给的条件是边边角,全等三角形判定中没有这个定理.故填①②④.【点评】本题考查了全等三角形的判定与性质;转化为添加条件使三角形全等是正确解答本题的关键.12.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN ≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【考点】全等三角形的判定与性质.【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.13.如图:在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为16,则DE的长为 4 .【考点】全等三角形的判定与性质;三角形的面积.【专题】计算题.【分析】可过点C作CF⊥DE,得出Rt△ADE≌Rt△DCF,得出线段之间的关系,进而将四边形的面积转化为矩形BCFE的面积与2个△CDF的面积,通过线段之间的转化,即可得出结论.【解答】解:过点C作CF⊥DE交DE于F,∵AD=CD,∠ADE=90°﹣∠CDF=∠DCF,∠AED=∠DFC=90°,∴△ADE≌△DCF(AAS),∴DE=CF=BE,又四边形ABCD的面积为16,即S矩形BCFE +2S△CDF=16,即BE•EF+2×CF•DF=16,BE•DE=BE•BE=16,解得DE=4.故此题答案为4.【点评】本题主要考查了全等三角形的判定及性质以及三角形、矩形面积的计算,能够熟练掌握.14.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是 1 .【考点】全等三角形的判定与性质.【专题】几何图形问题.【分析】根据AD⊥BC,CE⊥AB,得出∠ADB=∠AEH=90°,再根据∠BAD=∠BCE,利用AAS得到△HEA ≌△BEC,由全等三角形的对应边相等得到AE=EC,由HC=EC﹣EH代入计算即可.【解答】解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=4,则CH=EC﹣EH=AE﹣EH=4﹣3=1.故答案为:1.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质,解题的关键是找出图中的全等三角形,并进行证明.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE= 3 cm.【考点】全等三角形的判定与性质.【分析】根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC和△FCE全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC﹣CE,代入数据计算即可得解.【解答】解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B(等角的余角相等),在△FCE和△ABC中,,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=3cm.故答案为:3.【点评】本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B是解题的关键.16.如图,小明为了测量河的宽度,他站在河边的点C,头顶为点D,面向河对岸,压低帽檐使目光正好落在河对岸的岸边点A,然后他姿势不变,在原地方转了180°,正好看见了他所在的岸上的一块石头点B,他测出BC=30m,你能猜出河有多宽吗?说说理由.答:30 m.【考点】全等三角形的应用.【专题】应用题.【分析】要转化为数学问题,须仔细读题,找出有用的已知条件,其中∠BDC=∠ADC是不易被发现的.【解答】解:由题意知∠BCD=∠ACD=90°,CD=CD,∠BDC=∠ADC,∴△BCD≌△ACD,∴AC=BC=30m.故答案为:30.【点评】解决本题的关键是条件∠BDC=∠ADC的找出,做题时要认真读题,理解题意,这是正确解题的保证.17.如图,高速公路上有A、B两点相距25km,C、D为两村庄.已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则AE的长是15 km.【考点】全等三角形的应用.【分析】根据题意设出AE的长为x,再由勾股定理列出方程求解即可.【解答】解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15km.所以,E应建在距A点15km处.故答案为:15【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.18.已知三角形的两边长分别为5和7,则第三边上的中线长x的取值范围是1<x<6 .【考点】三角形三边关系;全等三角形的判定与性质.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:如图所示,AB=5,AC=7,设BC=2a,AD=x,延长AD至E,使AD=DE,在△BDE与△CDA中,∵AD=DE,BD=CD,∠ADC=∠BDE,∴△BDE≌△CDA,∴AE=2x,BE=AC=7,在△ABE中,BE﹣AB<AE<AB+BE,即7﹣5<2x<7+5,∴1<x<6.故答案为:1<x<6.【点评】有关三角形的中线问题,通常要倍数延长三角形的中线,把三角形的一边变换到与另一边和中线的两倍组成三角形,再根据三角形三边关系定理列出不等式,然后解不等式即可.三、解答题19.(春•大丰市期末)如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.【考点】作图—应用与设计作图.【专题】网格型.【分析】利用正方形的对称轴和中心结合正方形的面积即可解决问题.【解答】解:如图所示:【点评】本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.20.已知:AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?【考点】全等三角形的判定与性质.【分析】由平行线的性质可得∠A=∠C,已知AD=BC,根据等式的性质得AF=CE,从而可根据SAS判定△DAF≌△BCE,根据全等三角形的对应角相等即可求证.【解答】解:∠B=∠D.原因如下:∵AD∥BC,∴∠A=∠C.∵AE=CF,∴AF=CE.∵AD=BC,∴△DAF≌△BCE.∴∠B=∠D.【点评】此题主要考查学生对全等三角形的判定方法及全等三角形的性质的理解及运用.21.如图,已知:CD⊥AB于D,BE⊥AC于E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先证得△BOD≌△COE,得到:BD=CE,然后证明Rt△AOD≌Rt△AOE,从而证得.【解答】证明:∵OD⊥AB,OE⊥AC∴∠BDO=∠CEO=90°,又∵∠BOD=∠COE,BD=CE,∴△BOD≌△COE∴OD=OE又由已知条件得△AOD和△AOE都是Rt△,且OD=OE,OA=OA,∴Rt△AOD≌Rt△AOE.∴∠DAO=∠EAO,即AO平分∠BAC.【点评】本题主要考查了三角形全等的判定,可以通过全等三角形的对应边相等,对应角相等.22.如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.【考点】全等三角形的判定与性质.【专题】动点型.【分析】要证BE=DE,先证△ADC≌△ABC,再证△ADE≌△ABE即可.【解答】解:相等.证明如下:在△ABC和△ADC中,AB=AD,AC=AC(公共边)BC=DC,∴△ABC≌△ADC(SSS),∴∠DAE=∠BAE,在△ADE和△ABE中,AB=AD,∠DAE=∠BAE,AE=AE,∴△ADE≌△ABE(SAS),∴BE=DE.【点评】本题重点考查了三角形全等的判定定理,利用全等得出结论证明三角形全等是常用的方法.23.如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证△ABF≌△CBF,得出AF=FC,利用等腰三角形的性质可知∠3=∠4,再利用平行线的性质可证出∠4=∠5,等量代换,可得:∠3=∠5.那么AC就是∠DCF的平分线.【解答】证明:∵BF是∠ABC的平分线,∴∠1=∠2,又AB=BC,BF=BF,∴△ABF≌△CBF(SAS),∴FA=FC,∴∠3=∠4,又AF∥DC,∴∠4=∠5,∴∠3=∠5,∴CA是∠DCF的平分线.【点评】本题考查了角平分线的性质、判定,全等三角形的判定和性质;找着并利用△ABF≌△CBF 是正确解答题目的关键.24.(•泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】根据等腰直角三角形的性质利用SAS判定△ABE≌△ACD;因为全等三角形的对应角相等,所以∠ACD=∠ABE=45°,已知∠ACB=45°,所以可得到∠BCD=∠ACB+∠ACD=90°,即DC⊥BE.【解答】(1)解:图2中△ACD≌△ABE.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD.∵在△ABE与△ACD中,∴△ABE≌△ACD(SAS);(2)证明:由(1)△ABE≌△ACD,则∠ACD=∠ABE=45°.又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.【点评】此题主要考查学生对等腰三角形的性质及全等三角形的判定方法的理解及运用.25.(•河北)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.【考点】全等三角形的判定与性质;平移的性质.【专题】探究型.【分析】(1)根据图形就可以猜想出结论.(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;要证明BQ⊥AP,可以证明∠QMA=90°,只要证出∠1=∠2,∠3=∠4,∠1+∠3=90°即可证出.(3)类比(2)的证明就可以得到,结论仍成立.【解答】解:(1)AB=AP;AB⊥AP;(2)BQ=AP;BQ⊥AP.证明:①由已知,得EF=FP,EF⊥FP,∴∠EPF=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.∵在Rt△BCQ和Rt△ACP中,BC=AC,∠BCQ=∠ACP=90°,CQ=CP,∴△BCQ≌△ACP(SAS),∴BQ=AP.②如图,延长BQ交AP于点M.∵Rt△BCQ≌Rt△ACP,∴∠1=∠2.∵在Rt△BCQ中,∠1+∠3=90°,又∠3=∠4,∴∠2+∠4=∠1+∠3=90°.∴∠QMA=90°.∴BQ⊥AP;(3)成立.证明:①如图,∵∠EPF=45°,∴∠CPQ=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.∵在Rt△BCQ和Rt△ACP中,BC=AC,CQ=CP,∠BCQ=∠ACP=90°,∴Rt△BCQ≌Rt△ACP.∴BQ=AP.②如图③,延长QB交AP于点N,则∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.∵在Rt△BCQ中,∠BQC+∠CBQ=90°,又∵∠CBQ=∠PBN,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.【点评】证明两个线段相等可以转化为证明三角形全等的问题.证明垂直的问题可以转化为证明两直线所形成的角是直角来解决.。
苏科版八年级数学上册第1章全等三角形 知识点分类练习题(解析版)-doc
D.3 个
10.如图,△ABC 和△ECD 都是等腰直角三角形,△ABC 的顶点 A 在△ECD 的斜边 DE 上.下 列结论:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD 是直角三 角形.其中正确的有( )
A.1 个
B.2 个
C.3 个
D.4 个
11.如图,用纸板挡住了三角形的一部分,小明根据所学知识很快就画出了一个与原来完全
32.如图,在△ABC 中,∠ABC=60°,AD、CE 分别平分∠BAC、∠ACB,求证:AC= AE+CD.
33.如图所示,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,点 E 是 BC 的中点,EF⊥ AB,垂足为 F,且 AB=DE. (1)求证:△BCD 是等腰直角三角形; (2)若 BD=8 厘米,求 AC 的长.
38.如图,△ABC 中,AB=AC,∠A=∠E=90°,BD 平分∠ABC,CE⊥BD 于点 E.求证: BD=2CE.
六.全等三角形的应用
39.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完
全一样的玻璃,正确的办法是带来第
块去配,其依据是根据定理
(可以
用字母简写)
若 BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③
AD⊥BC;④AC=3BF,其中正确的结论是
.
29.在 Rt△ABC 中,∠ACB=90°,BC=2cm,CD⊥AB,在 AC 上取一点 E,使 EC=2cm,
过点 E 作 EF⊥AC 交 CD 的延长线于点 F.若 AE=3cm,则 EF=
A.4
B.3
C.2
D.1
苏科版数学八年级上册1-2全等三角形 同步练习(含答案)
苏科版数学八年级上册1.2全等三角形同步练习1.2全等三角形一.选择题1.如图,已知△ABC≌△ADE,若∠E=70°,∠D=30°,则∠BAC的度数是()A.80°B.70°C.40°D.30°2.如图,△ABC≌△EDF,AE=20,FC=10,则AF的长是()A.5B.10C.15D.不能确定3.如图,△ABE≌△ACD,∠B=50°,∠AEC=120°,则∠DAC的度数是()A.120°B.70°C.60°D.50°4.如图:若△ABE≌△ACD,且AB=6,AE=2,则EC的长为()A.2B.3C.4D.65.如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2B.1:3C.2:3D.1:46.已知:△ABC≌△DEF,∠ABC=∠DEF,AB=3,EF=5,DF=6,则AC=()A.3B.5C.6D.3或5或6 7.图中的两个三角形全等,则∠1等于()A.45°B.62°C.73°D.135°8.全等三角形是()A.三个角对应相等的三角形B.周长相等的两个三角形C.面积相等的两个三角形D.三边对应相等的两个三角形9.如图,△ABC≌△ADE,∠ABC和∠ADE是对应角,则与∠DAC相等的角是()A.∠ACB B.∠CAE C.∠BAE D.∠BAC10.边长都为整数的△ABC≌△DEF,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为偶数,则DF的取值为()A.3B.4C.5D.3或4或5二.填空题11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=cm.13.如图,点A、D、C、B在同一条直线上,△ADF≌△BCE,DF与CE交于点M,∠B =32°,∠F=28°,则∠DMC的度数为.14.如果△ABC≌△DEF,△DEF周长是30cm,DE=9cm,EF=13cm.∠E=∠B,则AC =cm.15.如图,△ABC≌△ADE,BC的延长线经过点E,交AD于F,∠AED=105°,∠CAD =10°,∠B=50°,则∠EAB=°.三.解答题16.如图所示,△ABC≌△AEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求△AEC各内角的度数.17.如图,△ABC≌△A′B′C′,∠C=25°,BC=6cm,AC=4cm,你能得出△A′B′C′中哪些角的大小、哪些边的长度?18.如图,△ADF≌△CBE,且点E、B、D、F在一条直线上.(1)试判断AD与BC的位置关系(不需要证明).(2)试判断BF与DE的数量关系,并证明你的结论.19.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.参考答案一.选择题1.解:∵△ABC≌△ADE,∴∠C=∠E=70°,∠B=∠D=30°,∴∠BAC=180°﹣70°﹣30°=80°,故选:A.2.解:∵△ABC≌△EDF,DF=BC,AB=ED,∴AC=EF,即AF+FC=CE+FC∴AF=CE∴AF=(AE﹣FC)÷2=(20﹣10)÷2=5.故选:A.3.解:∵∠AEC=120°,∴∠AEB=180°﹣120°=60°,∵△ABE≌△ACD,∴∠ADC=∠AEB=60°,∠C=∠B=50°,∴∠DAC=180°﹣50°﹣60°=70°,故选:B.4.解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=4,故选:C.5.解:在△ABC中,∠A:∠ABC:∠ACB=3:5:10设∠A=3x°,则∠ABC=5x°,∠ACB=10x°3x+5x+10x=180解得x=10则∠A=30°,∠ABC=50°,∠ACB=100°∴∠BCN=180°﹣100°=80°又△MNC≌△ABC∴∠ACB=∠MCN=100°∴∠BCM=∠NCM﹣∠BCN=100°﹣80°=20°∴∠BCM:∠BCN=20°:80°=1:4故选:D.6.解:∵△ABC≌△DEF,∠ABC=∠DEF,∴AC=DF=6,故选:C.7.解:∵两个三角形全等,∴边长为a的对角是对应角,∴∠1=73°,故选:C.8.解:A,两个大小不等的等边三角形三个角均相等,但其不是全等三角形,故不正确;B,周长相等不一定各边对应相等,故不正确;C,面积相等的两个三角形不一定对应边相等,对应角相等,故不正确;D,符合全等三角形的SSS判定方法,故正确;故选:D.9.解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠EAC=∠DAE﹣∠EAC,即∠BAE=∠DAC.故选:C.10.解:∵△ABC≌△DEF,AB=2,BC=4,∴DE=AB=2,BC=EF=4,∴4﹣2<DF<4+2,2<DF<6,∵△DEF的周长为偶数,DE=2,EF=4,故选:B.二.填空题11.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.12.解:∵△ABD≌△ACE,∴AD=AE,AC=AB,又AD=8cm,AB=3cm,∵BE=AE﹣AB=8﹣3=5,∴BE=5cm.故填5.13.解:∵△ADF≌△BCE,∴∠A=∠B=32°,∴∠MDC=∠A+∠F=32°+28°=60°,同理可得:∠MCD=60°,∴∠DMC=180°﹣60°﹣60°=60°,故答案为:60°14.解:DF=30﹣DE﹣EF=8cm.∵△ABC≌△DEF,∠E=∠B,∴AC=DF=8cm,故答案为:815.解:∵△ABC≌△ADE,∠B=50°,∴∠D=∠B=50°,∠EAD=∠CAB,∵∠AED=105°,∴∠EAD=180°﹣∠D﹣∠AED=25°,∴∠CAB=25°,∵∠CAD=10°,∴∠EAB=∠EAD+∠DAC+∠CAB=25°+10°+25°=60°16.解:∵△ABC≌△AEC,∴∠B=∠E,∠BAC=∠EAC,∠ACB=∠ACE.∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∠ACB=180°﹣∠B﹣∠ACB=65°,∴∠EAC=65°.故∠E=30°,∠ACE=85°,∠EAC=65°.17.解:∵△ABC≌△A′B′C′,∴∠C′=∠C=25°,B′C′=BC=6cm,A′C′=4cm,故能得出△A′B′C′中∠C′的大小,边B′C′,A′C′长度.18.解(1)AD∥BC.理由如下:如图,∵△ADF≌△CBE,∴∠ADF=∠CBE,∴∠ADB=∠CBD,∴AD∥BC;(2)BF=DE.理由如下:如图,∵△ADF≌△CBE,∴BE=DF,∴BE+BD=DF+BD,即BF=DE.19.解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.。
初中数学八年级数学上册 1.1 全等图形同步测考试题考试卷及答案 (新版)苏科版
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同 B.形状大小均相同C.大小相同,但形状不同 D.形状大小均不相同试题2:下列叙述中错误的是()A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形试题3:如图,与左边正方形图案属于全等的图案是()A. B. C. D.试题4:在下列各组图形中,是全等的图形是()A. B. C. D.试题5:下列四个图形中用两条线段不能分成四个全等图形的是()A. B. C. D.试题6:能够完全重合的两个图形叫做.试题7:下列图形中全等图形是(填标号).试题8:如图是淮口工业集中发展区中某厂房的平面图,请你指出,其中全等的有组.下列图形不一定能分成两个全等图形的是.(填序号即可)①三角形②正方形③长方形④半圆.试题10:如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与对应;B与对应;C与对应;D与对应.试题11:如图,试沿着虚线把图形分成两个全等图形.试题12:如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.试题1答案:B试题2答案:C试题3答案:试题4答案: C试题5答案: D试题6答案: 全等图形试题7答案: ⑤和⑦试题8答案: 3试题9答案: ①试题10答案: M,N,Q,P 试题11答案: 如图.试题12答案: 设计方案如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.大小相同
下列说法正确的是(
B
长和面积都相等;④两个图形的形状相同,面积也相同.其中能获得
个三角形;④半径都是
C
_________
.
11.试用一条直线将所给的长方形分成
两个全等梯形,并思考:有多少种分法?
12. 将图(1)所示的小“L ”型的纸片拼
成一个大“L ”型的图案,•有多少种不同
的拼图方案?试画出其中最简单的拼图的
方案,此时需要几张小“L ”型的纸片?
13.找出下列图形中的全等图形.
(1) (2) (3) (4) (5) (6)
(7) (8) (9) (10) (11) (12)
14.把一个正方形划分成四个全等的部分,这个问题对于各位同学来说易如反掌,图1 和图2是小明和小彬的分划图,但请他们将正方形分成五个全等的部分时,他们一时感 到为难,你会吗?
15.如图,把这个丁字形分成四个全等的部分,试试看.
【参考答案】
1.C
2. A
3. C
4. A
5. B
(1)
6. 大小,形状
7.(2)-(4),(3)-(6)
8.边长相等
9.完全重合,相同,相等
10.下列分法供参考:
11.有无数种,如
12. 拼图方案有无数种,图(2)所示的是其中最简单的一种,此时需要4张小“L ”型纸片.
13.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形
14.如图所示
15.如图所示
2个
4个。