试验一讲解withpureC

合集下载

有机化学实验工业乙醇的蒸馏流程图

有机化学实验工业乙醇的蒸馏流程图

有机化学实验工业乙醇的蒸馏流程图英文回答:Industrial Ethanol Distillation Process Flowchart.Industrial ethanol is a versatile solvent that is used in a wide range of applications, including as a fuel, a feedstock for the chemical industry, and a beverage. Ethanol is typically produced by the fermentation of sugars derived from corn, sugarcane, or other biomass sources. The resulting fermented broth contains ethanol, water, and other impurities. To obtain pure ethanol, the fermented broth must be distilled.The industrial ethanol distillation process consists of the following steps:1. Pre-treatment: The fermented broth is first pre-treated to remove solids and other impurities. This can be done by filtration, centrifugation, or other methods.2. Distillation: The pre-treated broth is thendistilled in a distillation column. The distillation column is a vertical vessel that is divided into a number of plates or trays. As the broth flows down the column, it comes into contact with a stream of warm ethanol vapor rising from the bottom of the column. The ethanol vapor condenses on the plates and flows back down the column. The water and other impurities in the broth remain in a liquid phase and are collected at the bottom of the column.3. Rectification: The ethanol vapor that condenses on the plates is not pure ethanol. It contains some water and other impurities. To obtain pure ethanol, the condensed vapor is rectified in a second distillation column. The rectification column is similar to the distillation column, but it has more plates and a higher reflux ratio. Thereflux ratio is the ratio of condensed vapor that is returned to the column to the amount of product that is taken off. The higher the reflux ratio, the purer the product will be.4. Dehydration: The rectified ethanol still contains a small amount of water. To remove the water, the rectified ethanol is dehydrated using a molecular sieve. A molecular sieve is a material that selectively adsorbs water molecules. The dehydrated ethanol is then cooled and stored.The industrial ethanol distillation process is a complex and energy-intensive process. However, it is an essential process for the production of pure ethanol.中文回答:工业乙醇蒸馏流程图。

初中生英语作文介绍一次科学实验的过程

初中生英语作文介绍一次科学实验的过程

初中生英语作文介绍一次科学实验的过程Title: A Scientific ExperimentYesterday, our class conducted a fascinating scientific experiment.It was an exciting experience that not only increased our knowledge but also developed our practical skills.The experiment was about the properties of acids and bases.Our teacher, Mr.Wang, explained the importance of understanding the pH scale and how different substances can be categorized as acidic, basic, or neutral.He also emphasized the importance of safety precautions, such as wearing goggles and gloves, to protect ourselves from any potential hazards.The experiment began with Mr.Wang dividing us into groups of three.Each group was given a set of materials, including clear solution, pH paper, and various chemicals such as vinegar, baking soda, and ammonia.Our first task was to mix a small amount of each chemical with the clear solution and observe any changes.As we carefully added the vinegar, we noticed that the solution turned cloudy.When we added baking soda, it fizzed and produced bubbles.On the other hand, ammonia caused the solution to become sticky.ext, we used pH paper to test the acidity or alkalinity of the solutions.We dipped the pH paper into each solution and observed thecolor change.According to the color chart provided, we determined the pH level of each solution.We found that vinegar was acidic, while baking soda was basic.Ammonia, however, was neutral.Throughout the experiment, we recorded our observations and discussed the possible reasons behind the changes we witnessed.We learned that acids and bases react with each other to form salts and water, a process known as neutralization.In conclusion, the experiment was a great success.We not only learned about the properties of acids and bases but also experienced the joy of discovery.It was a rewarding experience that enhanced our understanding of science and its applications in everyday life.。

实验报告常用英文

实验报告常用英文

Title: Synthesis of Ethyl Acetate from Ethanol and Acetic Acid Introduction:The objective of this experiment was to synthesize ethyl acetate, an important solvent and intermediate in the chemical industry, through the esterification reaction of ethanol and acetic acid. Ethyl acetate is widely used in the production of paints, varnishes, adhesives, and perfumes. The reaction involves the condensation of acetic acid with ethanol in the presence of a catalyst, typically sulfuric acid, to form ethyl acetate and water. The yield of the reaction can be affected by various factors such as the ratio of reactants, temperature, andcatalyst concentration.Materials and Methods:Materials:- Ethanol (99% purity)- Acetic acid (glacial)- Sulfuric acid (98% purity)- Sodium bicarbonate (for neutralization)- Distilled water- Chloroform (for extraction)- Sodium chloride (for drying)- Sodium sulfate (for drying)- Anhydrous calcium chloride (for drying)- Ice bath- Round-bottom flask (100 mL)- Condenser- Balance- Erlenmeyer flask (250 mL)- Stirring rod- Pipettes (10 mL and 25 mL)- Heating mantle- Buchner funnel- Filter paper- Crucible- Melting point apparatus- Safety equipment (goggles, gloves, lab coat)Methods:1. Preparation of Reactants:- Measure 25 mL of ethanol and 25 mL of acetic acid using a 25 mL pipette and transfer them to a 100 mL round-bottom flask.- Add 1 mL of concentrated sulfuric acid to the flask and mix thoroughly to ensure uniform distribution of the catalyst.2. Reaction:- Place the flask on a heating mantle and heat the mixture to a temperature of 50-60°C.- Maintain the temperature for 30 minutes, stirring the mixture occasionally.3. Cooling and Extraction:- Remove the flask from the heating mantle and cool it to room temperature.- Add 25 mL of distilled water to the flask and stir to dissolve the ethyl acetate.- Add 10 mL of chloroform to the mixture and shake vigorously to extract the ethyl acetate.- Allow the layers to separate and collect the chloroform layer containing the ethyl acetate.4. Drying and Purification:- Transfer the chloroform layer to a 250 mL Erlenmeyer flask.- Add a small amount of sodium chloride to the flask and shake to dissolve any remaining water.- Add anhydrous calcium chloride to the flask and shake to remove any remaining water.- Filter the mixture using a Buchner funnel and filter paper.5. Recrystallization:- Transfer the filtered ethyl acetate to a crucible and allow it to crystallize overnight at room temperature.- Collect the crystals using a spatula and allow them to dry in a desiccator.6. Analysis:- Determine the melting point of the ethyl acetate using a melting point apparatus.- Compare the observed melting point with literature values to confirm the identity of the product.Results and Discussion:The reaction was successful, and the ethyl acetate was synthesized with a yield of 70%. The melting point of the synthesized ethyl acetate was determined to be 77-79°C, which is consistent with the literature value of 77-79°C.The yield of the reaction was affected by several factors. The concentration of the reactants was optimized by using a 1:1 molar ratio of ethanol to acetic acid. The temperature of the reaction was maintained at 50-60°C to ensure efficient esterification. The use of sulfuric acid as a catalyst facilitated the reaction by providing a proton source for the nucleophilic acyl substitution.The purification process involved extraction, drying, and recrystallization to obtain a pure product. The extraction step helped to remove any impurities that may have been present in the original reaction mixture. The drying process using anhydrous calcium chloride ensured that the ethyl acetate was free from water, which could affect its melting point and purity. The recrystallization step furtherpurified the ethyl acetate by allowing it to crystallize from a solvent, thereby removing any remaining impurities.Conclusion:In conclusion, the synthesis of ethyl acetate from ethanol and acetic acid was successfully achieved through the esterification reaction. The yield of the reaction was optimized by controlling the reaction conditions and purification process. The product was characterized byits melting point, which was consistent with the literature value. This experiment provides a practical approach to the synthesis of ethyl acetate and demonstrates the importance of reaction conditions and purification techniques in achieving a high-quality product.References:- Smith, A. J., & Jones, B. C. (2005). Organic Chemistry. New York: Wiley.- Brown, T. A., & Hagerman, P. (2008). Organic Chemistry. Boston: Pearson.- Wang, M., & Zhang, L. (2010). Synthesis of Ethyl Acetate from Ethanol and Acetic Acid. Journal of Organic Chemistry, 75(3), 890-895.。

中和实验方法

中和实验方法

RSV 特异性中和抗体滴度检测一、实验原理:抗体与相应的病毒粒子特异地结合,使后者失去对易感动物或细胞的致病力。

(该试验方法以测定抗病毒血清的中和价,将待检血清2 倍递增稀释,加等量已知毒价的病毒液。

)二、实验分类:1. 固定血清--稀释病毒中和试验2. 固定病毒—稀释血清中和试验3. 简单定性中和试验4. 空斑减少法三、实验步骤:1. 提前设定56 C水浴锅,将分装好的待测血清于56 C灭活(降低补体对实验结果的影响)30min 。

2. 将加过双抗的培养基DMEM/F-12 (用于Hep-2 细胞;Vero 细胞常用DMEM培养基)和BI血清进行37C预热30min,与此同时灭好实验台(该准备3599细胞培养板灭过菌枪头以及15ml和50ml摇菌管)为后续实验做准备。

3•实验台灭菌30min,灭好台子后进行实验,首先取1.5mlEP管,用DMEM/F-12培养基8倍稀释待测血清(每管中加培养基210卩」再加相应的血清30^)1,拆开96孔培养板后在盖子进行设计(实验设计参考图1),最后向每孔中加入75卩的培养基,按照实验设计加入相应的稀释血清75门用排枪以两倍梯度稀释血清。

(注意:最终到256倍时吸出的多余的75卩血清并弃掉。

)4•实验孔以及阳性对照孔分别每孔加入25卩1(注意:加毒时应从血清低浓度到高浓度)的104TCID50病毒混匀,4C孵育2 h。

5. 在实验剩余半小时左右进行消化细胞,镜检细胞汇合度为90%左右即可用,弃掉培养液后,用2-3 ml 无血清培养吹洗几遍细胞(意图为去除死细胞或活性不好的细胞),加入 2 ml 胰酶后开始计时,将细胞培养板置于37C的CO2无菌培养箱培养消化2-3min,在镜检细胞间有间隙或细胞收缩为单个状态为好,加入等体积的无血清培养基终止,小心吸掉液体,加入有血清的培养基2-3ml 轻轻地吹下皿底部的细胞,轻微用枪吹吸几次使其成为均匀的单细胞悬液后转移到新的15ml 离心管中等待细胞计数。

巨磁阻效应及其应用实验报告

巨磁阻效应及其应用实验报告

巨磁阻效应及其应用实验报告篇一:巨磁阻效应实验报告数据数据处理实验一线圈电流由零开始变化测得输出电压V和磁场B的关系如下图示由上图可以看出2mT以下部分传感器的输出电压和磁场变化情况接近线性变化,其灵敏度K= 相关系数为由RB/R0=/ 计算出不同磁感应强度下的RB/R0值,绘制RB/R0-B关系图如下可以看出RB/R0的值随磁场B增大而逐渐减小,在2mT以后趋于饱和,RB/R0的饱和值约为。

则该传感器的电阻相对变化率/R0的最大值约为=-=-10% 实验二测量时,巨磁阻传感器工作电压V+为,线圈电流为。

利用实验所得数据作V输出—COSθ关系图如下示:从图中可以看出在COSθ=附近有一个瑕点外,具有较良好的线性关系V=θ,相关系数为,即传感器的输出电压与传感器敏感轴—磁场间夹角θ成余弦关系。

问题思考1.如何避免地磁场影响,并解释原因。

本次实验中亥姆霍兹线圈产生磁场来验证材料在有无磁场的情况下电阻的变化,必然会受到地磁场的影响,故我们在实验过程中每次旋转角度后,应重新调零,减小每次旋转角度地磁场对实验误差的积累。

篇二:巨磁电阻效应及其应用研究性实验报告北京航空航天大学基础物理实验巨磁电阻效应及其应用研究性实验报告摘要本报告研究了巨磁电阻效应及其应用。

报告详细的阐述了该实验的实验背景、实验原理、实验仪器及实验内容。

数据处理部分,报告将原始数据绘制成表格,并将用Matlab绘制成图像,能够较清晰的表示出物理量之间的关系。

另外,本报告对巨磁电阻的应用进行了大量的探究,列举了一些巨磁电阻于当今时代的应用,阐述了巨磁电阻的应用前景。

关键字巨磁电阻、传感器、磁感应强度、电压、电流目录摘要................................................................. . (1)关键字................................................................. (1)一、实验背景................................................................. (5)二、实验原理................................................................. (5)三、实验仪器................................................................. (7)1、实验仪主机................................................................. .. (7)2、基本特性组件模块................................................................. .. (8)3、电流测量组件................................................................. . (9)4、角位移测量组件................................................................. (9)5、磁读写组件................................................................. .. (9)四、实验内容................................................................. (10)1、GMR模拟传感器的磁电转换特性测量 (10)2、GMR磁阻特性测量............................................................... .. (11)3、GMR开关(数字)传感器的磁电转换特性曲线测量 (12)4、用GMR模拟传感器测量电流............................................................135、GMR梯度传感器的特性及应用 (14)6、磁记录与读出................................................................. .. (15)五、数据处理................................................................. . (15)1、GMR模拟传感器的磁电转换特性测量 (15)2、GMR磁阻特性测 (17)3、GMR开关(数字)传感器的磁电转换特性曲线测量 (18)4、用GMR模拟传感器测量电流............................................................195、GMR梯度传感器的特性及应用 (20)6、磁记录与读出................................................................. .. (21)六、实验思考................................................................. . (22)1、推导公式????????=????????????????? ................. . (22)2、实验感想................................................................. . (23)七、GMR传感器在有关领域的应用231、基于GMR传感器阵列的生物检测 (23)2、将GMR用于导航及高速公路的车辆监控系统 (24)3、GMR磁敏传感器在磁性介质的探测和磁性油墨鉴伪点钞机中的应用............................................................. .................................................................25八、实验总结................................................................. . (25)图 1 多层膜GMR结构图............................................................... . (6)图 2 某种GMR材料的磁阻特性............................................................... . (6)图 3 自旋阀SV-GMR结构图............................................................... (7)图4巨磁阻实验仪操作面板................................................................. .. (8)图 5 基本特性组件................................................................. .. (8)图 6 电流测量组件................................................................. .. (9)图7 角位移测量组件................................................................. . (9)图8 磁读写组件................................................................. (9)图9 GMR模拟传感器结构图............................................................... .. (10)图10 GMR模拟传感器的磁电转换特性........................................................10图11模拟传感器磁电转换特性实验原理图...................................................11图12磁阻特性测量原理图................................................................. .. (11)图13 GMR开关传感器............................................................... (12)图14 GMR开关传感器磁电转换特性............................................................12图15模拟传感器测量电流实验原理图...........................................................13图16 GMR梯度传感器结构图............................................................... (14)图17 用GMR梯度传感器检测齿轮位移......................................................14图18 磁电转换特性曲线................................................................. .. (16)图19 磁阻特性曲线................................................................. . (18)图20 GMR开关传感器磁电转换特性曲线....................................................19图21 输出电压与待测电流的关系曲线..........................................................20图22 用GMR梯度传感器检测齿轮位移的电压和转角关系图..................21图23 电路连接图................................................................. .. (22)图24 直接标记法................................................................. .. (23)图25 两部标记法................................................................. (24)表格 1 电流随磁感应强度变化表................................................................. (15)表格 2 磁阻随磁感应强度变化表................................................................. (17)表格 3 电平随励磁电流变化表................................................................. . (18)表格 4 输出电压随待测电流变化关系表........................................................19表格 5 电压和齿轮转角间的关系................................................................. (21)表格 6 二进制数的写入与读出................................................................. . (22)篇三:巨磁电阻效应及其应用数据处理五、实验数据及处理模拟传感器的磁电转换特性测量实验数据及由公式B = μ0nI算得的(n=24000匝/m)磁感应强度如下表所示:以B为横坐标,输出电压U为纵坐标,作图得:误差分析:(1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负以内,反应在图像上就是最低处的输出都在y轴上,实际上应当是分别分布在y轴左右两侧的;(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响;(3)使用Excel表格处理数据的过程中可能会有精度损失;2. GMR的磁阻特性曲线的测量根据实验数据由公式B = μ0nI算得的磁感应强度,由R=U/I算得的电阻如下表所示:(磁阻两端电压U=4V)作图如下:误差分析:(1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负以内,反应在图像上就是最高处的输出都在y 轴上,实际上应当是分别分布在y轴左右两侧的;(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响;(3)使用Excel表格处理数据的过程中可能会有精度损失;。

五水硫酸铜的制备实验流程

五水硫酸铜的制备实验流程

五水硫酸铜的制备实验流程The preparation of copper(II) sulfate pentahydrate, also known as "五水硫酸铜" in Chinese, involves a series of steps that must be carefully executed to yield the desired product. This experimental process is an essential part of many chemistry curricula and provides valuable insight into the principles of chemical reactions, stoichiometry, and laboratory techniques.五水硫酸铜的制备实验流程涉及一系列必须小心执行的步骤,才能产生所需的产品。

这个实验过程是许多化学课程的重要组成部分,可以提供有关化学反应、化学计量和实验技术原理的宝贵见解。

First and foremost, the experiment calls for the use of copper oxide, also known as black copper oxide, which is readily available in chemical supply stores. The copper oxide is then mixed with concentrated sulfuric acid in a conical flask, and the reaction is heated gently over a Bunsen burner. During this process, the sulfuric acid acts as the reactant, while the copper oxide serves as the limiting reagent. As the reaction progresses, the mixture changescolor from black to brown as the copper oxide reacts with the sulfuric acid to form copper sulfate solution.首先,实验需要使用氧化铜,也称为黑氧化铜,这在化学供应商店很容易获得。

碧云天 BeyoPure

碧云天 BeyoPure

BeyoPure™ YPD Broth (premixed powder)产品编号产品名称包装ST961-5LBeyoPure™ YPD Broth (premixed powder)10×500ml产品简介:碧云天生产的BeyoPure™ YPD Broth (premixed powder),即BeyoPure™ YPD培养基(预混粉末),即酵母膏蛋白胨葡萄糖培养基(Yeast Extract Peptone Dextrose Medium)预混粉末,简称YPD或YEPD预混粉末,也称酵母浸出粉蛋白胨葡萄糖培养基预混粉末,是一种由高纯度高质量的酵母提取物(Yeast extract)、和大豆蛋白胨(Peptone)和葡萄糖(Dextrose)均匀混合而成的用于酵母培养的完全培养基预混粉末。

本产品使用时无需称量,每瓶或每两瓶本产品直接加入500ml或1L超纯水、去离子水或蒸馏水,无须溶解,直接121ºC高压灭菌15分钟,就可以制备成YPD液体培养基,可用于后续酵母等的培养。

每瓶本产品中含有高纯度高质量的酵母膏5g、大豆蛋白胨10g 和葡萄糖10g,具体可以参考下表。

Reagent Amount (g/bottle for 500ml)Yeast extract 5Peptone10 Dextrose (D-glucose)10 YPD培养基属于非选择性酵母培养基(Non-selective isolation medium),非常适合酿酒酵母属、毕赤酵母属、接合酵母属、假丝酵母属的培养,常用于分子克隆、蛋白质表达或菌株培养等实验。

本YPD培养基支持大多数异养微生物的生长,培养基中的蛋白胨提供氮营养, 酵母提取物提供含氮营养物质以及维生素B等,葡萄糖为酵母的生长提供碳水化合物和能量来源。

由于培养基组成简单,一般被用作酵母常规培养的基础培养基。

一个包装的本产品,共可以配制5L YPD液体培养基。

果胶酶澄清果汁的实验

果胶酶澄清果汁的实验
其次是细节问题,实验中我们每个细节都很小心,我们组是做时间因素的,对于时间的把握我们严格计时,尽量减少实验误差。
最后,实验结果分析时,本着科学的严谨性,严格按照实验要求,利用统计软件得出结果。
个人收获:
知识与技能方面:掌握了果胶酶对果汁澄清原理以及方法,提高了实践能力,加强了实验仪器的使用;
过程与方法:整个过程中,教会了我合作学习的重要性,启示我探究更多生活中相关的科学道理,要学以致用,知道了果胶酶对果汁澄清效果的各种因素,我们可以做更多的研究,如如何将我们的结果应用到实际果汁澄清的制作中等。
于50℃时,澄清果汁中的果胶物质呈阳性反应,说明果
胶物质未被分解彻底;在35到50℃范围内,果胶物质呈
阴性反应,说明在此温度范围内果胶物质己被分解完
全。
由于酶是蛋白质,只有在酶的有效温度范围内,酶才会进行催化作用。在酶的最适温度条件下,酶催化反应的速率达到最大。当温度过高时,酶的活性会受到抑制,甚至引起变性而丧失其活性。表中可溶性固形物含量增加的原因可能是随着温度的升高,酶活力降低,热凝澄清作用占卞导地位,原来果汁中
整个过程中教会了我合作学习的重要性启示我探究更多生活中相关的科学道理要学以致用知道了果胶酶对果汁澄清效果的各种因素我们可以做更多的研究如如何将我们的结果应用到实际果汁澄清的制作中等
果胶酶澄清果汁的实验
学号姓名
学院专业、班级
实验课程名称果胶酶澄清果汁的实验
教师及职称
开课学期至学年学期
填报时间年月日
一、实验设计方案
情感取向方面:我们需要了解他人,才能合作得很好,这需要我们平时的交流;学会探索、思考问题更多的需要我们的耐心。
教师评语及评分:
签名:年月日
Ⅱ:三支试管于45℃水浴锅中保温10min。

一篇介绍实验的作文英语

一篇介绍实验的作文英语

一篇介绍实验的作文英语Introduction:The essence of science lies in its ability to unravel the mysteries of the universe through systematic inquiry and experimentation. An experiment is a controlled procedure that is undertaken to validate a hypothesis, explore a phenomenon, or determine the efficacy of a proposed solution. In this essay, we will delve into the intricacies of conducting a scientific experiment, from formulating a hypothesis to analyzing the results.Step 1: Formulating a HypothesisThe journey of an experiment begins with a question, which is then refined into a testable hypothesis. A hypothesis is an educated guess that predicts the outcome of an experiment. It is crucial that the hypothesis is clear, concise, and falsifiable, meaning it can be proven false through experimentation.Step 2: Designing the ExperimentOnce the hypothesis is established, the next step is to design the experiment. This involves selecting the variables that will be manipulated, measured, and controlled. The independent variable is the one that the experimenter alters, while the dependent variable is the outcome that is expected to change as a result. Control variables are those that are kept constant to ensure the integrity of the results.Step 3: Gathering Materials and Setting UpThe experiment requires a list of materials and equipment, which must be meticulously gathered and prepared. Setting up the experiment involves arranging the materials in a systematic manner and ensuring that all safety precautions are in place.Step 4: Conducting the ExperimentWith everything in place, the experiment can be conducted. This step involves manipulating the independent variable and observing the effects on the dependent variable. It is essential to perform the experiment multiple times to ensure the results are consistent and reliable.Step 5: Collecting and Recording DataThroughout the experiment, data must be collected and recorded accurately. This data forms the basis for the analysis and is critical in determining whether the hypothesis is supported or refuted.Step 6: Analyzing the ResultsAfter the experiment is concluded, the data is analyzed to draw conclusions. This involves comparing the observed results with the predictions made by the hypothesis. Statistical methods may be employed to determine the significance of the findings.Step 7: Drawing ConclusionsBased on the analysis, conclusions are drawn regarding the validity of the hypothesis. If the results align with the predictions, the hypothesis is supported. If not, thehypothesis may be revised or rejected, leading to a new cycle of inquiry.Step 8: Reporting and Sharing FindingsThe final step in the process is to report the findings. This involves writing a detailed report or research paper that outlines the experiment's methodology, results, and conclusions. Sharing these findings with the scientific community contributes to the collective knowledge and may spark further investigation.Conclusion:The process of conducting a scientific experiment is a rigorous and methodical endeavor that forms the backbone of scientific discovery. It is through such meticulous procedures that we continue to expand the frontiers of knowledge and understanding in every field of science.。

初中生英语作文介绍一次科学实验的经过和结果

初中生英语作文介绍一次科学实验的经过和结果

川芎嗪联合来氟米特对胶原诱导关节炎大鼠血小板活化和炎症反应的影响白菁安;边艳琴;牛旭艳;樊丹平;吕诚;姜淼;赵宁【期刊名称】《中国中医基础医学杂志》【年(卷),期】2017(023)007【摘要】目的:探讨川芎嗪联合来氟米特对胶原诱导关节炎大鼠血小板活化和炎症反应的影响.方法:将50只SD大鼠随机取10只作为正常组,其余制备大鼠关节炎模型,将成模大鼠分为模型组(CIA组)、川芎嗪组(TMP组)、来氟米特组(LEF组)、川芎嗪联合来氟米特组(T+L组),各药物干预组分别给予相应药物,计算关节炎指数并观察关节病理变化,检测血清CRP及PDGF-BB水平,血浆GMP-140及VCAM-1水平.结果:与正常组比较,CIA组大鼠关节滑膜出现明显细胞增生、炎细胞浸润、血管翳形成浸入软骨,CRP及PDGF-BB水平、GMP-140及VCAM-1水平均显著上升;与CIA组比较,各药物干预组大鼠关节病理变化中滑膜增生、炎性细胞浸润、血管翳和骨破坏形成均有改善,大鼠关节炎指数均减小,双后肢关节红肿程度评分均降低,CRP、PDGF-BB蛋白水平、GMP-140水平及VCAM-1水平均降低,其中联合用药组效果优于TMP组和LEF组.结论:川芎嗪联合来氟米特能够显著抑制胶原诱导关节炎大鼠的血小板活化和炎症反应,对于RA患者具有潜在的应用价值.【总页数】4页(P953-956)【作者】白菁安;边艳琴;牛旭艳;樊丹平;吕诚;姜淼;赵宁【作者单位】中国中医科学院中医临床基础医学研究所,北京 100700;上海中医药大学附属曙光医院,上海 201203;中国中医科学院中医临床基础医学研究所,北京100700;中国中医科学院中医临床基础医学研究所,北京 100700;中国中医科学院中医临床基础医学研究所,北京 100700;中国中医科学院中医临床基础医学研究所,北京 100700;中国中医科学院中医临床基础医学研究所,北京 100700【正文语种】中文【中图分类】R285.5【相关文献】1.大鼠胶原诱导关节炎应用来氟米特的时间治疗学研究 [J], 李凤霞;徐萍;叶青;曹小燕;郑建国;张育红;付坤2.异绿原酸A抑制NLRP3炎性复合体/NF-κB活化减轻胶原诱导型关节炎大鼠炎症反应 [J], 刘杨; 段学清; 严福林; 潘春; 吴继春; 曹峰; 梁江3.川芎嗪对胶原诱导型关节炎大鼠细胞外调节蛋白激酶通路的影响 [J], 梁锦峰;刘文华;鄢宏;邓少杰4.苦参碱对角叉菜胶诱导的关节炎大鼠炎症反应及血小板中精氨酸酶和腺苷核苷酸水解酶活性的影响 [J], 孟京红;严力军;李敏;乐晓丹;尹伟平5.活血通络中药联合来氟米特对胶原诱导型大鼠滑膜HIF-1α、VEGF的影响 [J], 王艺苑;张荒生因版权原因,仅展示原文概要,查看原文内容请购买。

制作小实验的过程作文英语

制作小实验的过程作文英语

制作小实验的过程作文英语题目,The Process of Conducting a Small Experiment。

Experimentation is a fundamental aspect of scientific inquiry, allowing researchers to test hypotheses and uncover new knowledge. In this essay, I will outline the process of conducting a small experiment, highlighting each step from hypothesis formulation to data analysis. This comprehensive guide will serve as a roadmap for anyone interested in scientific experimentation.1. Formulating the Hypothesis。

Every experiment begins with a question or problem that needs to be investigated. The first step is to formulate a hypothesis, which is a testable statement that predicts the outcome of the experiment. For example, if the question is whether plants grow better with sunlight or artificial light, the hypothesis could be: "Plants exposed to sunlight will grow taller than those exposed to artificial light."2. Designing the Experiment。

芹菜染色实验结论英语作文

芹菜染色实验结论英语作文

芹菜染色实验结论英语作文English:In the celery dyeing experiment, we observed that celery stalks placed in different colored water solutions changed color over time. The celery absorbed the colored water through its xylem vessels, demonstrating the process of capillary action. We noted that the intensity of color change varied depending on the concentration of the dye solution and the duration of exposure. This experiment illustrates the principle of osmosis, as water and dissolved substances moved across the semi-permeable membrane of the celery cells to reach equilibrium with the external environment. Moreover, the experiment highlights the role of plants in environmental monitoring and remediation, as they can absorb and accumulate pollutants from their surroundings. By understanding the mechanisms involved in this process, we can develop strategies to utilize plants for eco-friendly solutions in pollution control and wastewater treatment.Translated content:在芹菜染色实验中,我们观察到放置在不同颜色水溶液中的芹菜茎随着时间的推移而改变颜色。

科学小实验过程作文英文

科学小实验过程作文英文

科学小实验过程作文英文下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copyexcerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!I. The Baking Soda and Vinegar Volcano。

化学实验教案:新目标英语九年级上Unit6教案

化学实验教案:新目标英语九年级上Unit6教案

化学实验教案:新目标英语九年级上Unit6教案。

一、教学特点新目标英语九年级上Unit 6教案以 "How do you make a banana milk shake?" 为主题,分为三个语篇:Part A、Part B和Part C。

Part A主要介绍了食物、饮料和制作方法的词汇,让学生了解不同种类的食物和饮料,掌握专业术语;Part B详细描述了制作香蕉奶昔的步骤和所需原料,让学生掌握简单实用的烹饪技能;Part C则引导学生进行口头作文,改编香蕉奶昔的制作过程,较好地轮廓了口头表达和写作技巧。

这一教案的特点主要体现在以下几个方面:(1)语篇设计合理、意义鲜明教案紧密围绕"banana milk shake"这一共同话题,对话文朗朗上口,清晰明了,让学生更加容易理解和掌握,可以切实提高学生的英语口语和写作能力。

(2)实用性强、知识新颖食物、饮料的相关知识是日常生活中必不可少的一部分,一方面,学习这一主题可以让学生更好地掌握和运用生活中的英语词汇,同时,通过学习制作香蕉奶昔的步骤,也可以帮助学生了解原料的组成和化学反应的过程。

(3)强调技能训练和注意事项教案注重实用技能的训练,可以让学生更好地掌握烹饪知识和技巧,同时讲述制作过程中应该注意的事项,有助于培养学生的实验技能和注意力。

二、教学目标通过本教案的学习和实验操作,学生可以达到以下目标:(1)掌握关于食品和饮料制作的词汇和用法;(2)学会使用简单的英语口语表达烹饪过程;(3)了解制作香蕉奶昔的步骤和所需原料,并能够适当发挥想象力改编成自己独特的口味;(4)培养实验技能和注意力,提高实验操作的正确性;(5)进一步增强科学素养和学科综合能力。

三、教学内容Part A:Words and expressions本部分主要是介绍有关食品和饮料的词汇和表达方法,通过填空、听音练习,让学生掌握基本的单词和语法结构。

我的实验课英语作文

我的实验课英语作文

探索科学奥秘:我的实验课之旅In the world of science, experiments are the gateway to discovery and understanding. My journey in the experimental classroom has been an exciting and enlightening experience, one that has taught me not only the principles of science but also the value of curiosity and hands-on exploration.My experimental class began with a simple yet intriguing demonstration. Our teacher, with a sparkle in her eye, introduced us to the concept of the chemical reaction. She mixed two clear liquids in a beaker, and in a matter of seconds, the contents turned a vibrant shade of blue. This color change, although看似微不足道,was a powerful testament to the transformative power of chemistry.As the term progressed, we delved deeper into the mysteries of science. We conducted experiments on plant growth, observing how different conditions affected the rate and direction of growth. We explored the principles of electricity and magnetism, building our own simple motors and generators.Each experiment was a puzzle to be solved, and the sense of accomplishment we felt when we figured out the solution was immense.The most challenging experiment, however, was the one that dealt with the laws of motion. We were introduced to Newton's laws and then asked to design an experiment that would demonstrate these principles. Our group brainstormed ideas, experimented with different setups, and finally succeeded in creating a demonstration that clearly illustrated the laws of inertia, acceleration, and action-reaction. The process was fraught with challenges, but the sense of achievement we felt when our experiment worked perfectly was unparalleled.Throughout this experimental journey, I learned that science is not just about theories and formulas; it is about curiosity, exploration, and discovery. I realized that every experiment, no matter how small or seemingly insignificant, has the potential to unlock new knowledge and understanding.Moreover, the experimental classroom taught me theimportance of teamwork and collaboration. In most experiments, we worked in groups, sharing ideas, discussing challenges, and learning from each other's mistakes. This collaborative approach not only helped us solve problems but also fostered a sense of camaraderie and mutual respect among us.In conclusion, my experimental class has been a transformative experience. It has not only enhanced my understanding of science but has also instilled in me a sense of curiosity and wonder that drives me to explore and discover new things. I am grateful for this opportunity to delve into the mysteries of science and am excited about what the future holds for me in this journey of continuous learning and discovery.**探索科学奥秘:我的实验课之旅**在科学的世界里,实验是发现和理解的门户。

实验的过程的英语作文

实验的过程的英语作文

实验的过程的英语作文Title: The Process of an Experiment。

Conducting an experiment is a fundamental aspect of scientific inquiry, allowing researchers to test hypotheses, explore phenomena, and advance knowledge in various fields. In this essay, I will outline the general process of conducting an experiment, from hypothesis formation to data analysis, without revealing specific details about the prompt.1. Formulating a Hypothesis。

The first step in any scientific experiment is to formulate a clear and testable hypothesis. This hypothesisis a tentative explanation for a phenomenon or a prediction about the outcome of an experiment. It serves as the foundation for the entire experimental process.2. Designing the Experiment。

Once the hypothesis is established, the next step is to design the experiment. This involves determining the variables to be measured and controlled, selecting appropriate materials and equipment, and designing procedures for data collection. A well-designed experiment ensures that the results will be reliable and meaningful.3. Obtaining Materials and Equipment。

氮气吸附实验

氮气吸附实验

关于氮气等温吸脱附计算比表面积、孔径分布的若干说明 目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。

本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习探讨提高。

由于内容是自己的总结和认识,应该会有部分错误,希望大家一起能给予建议、批评和指导,好做进一步完善。

★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。

经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer‐Emmet‐Teller)只是对N2‐Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下得到单层吸附量数据Vm后算出比表面积而已。

◆六类吸附等温线类型但绝大多数可以归纳成如下图六类吸附等温线,分别为Ⅰ型、Ⅱ型、Ⅲ型、Ⅳ型、Ⅴ型、Ⅵ型吸附等温线。

图中纵坐标表示吸附量,横坐标为相对压力P/P0,P0表示气体在吸附温度时的饱和蒸汽压,P表示吸附平衡时气相的压力。

各种吸附等温线对应着吸附时气体在固体表面上的排列形式,固体的孔、表面积、孔径分布以及孔容积等有关信息。

几乎每本类似参考书都会提到,前五种是BDDT(Brunauer‐Deming‐Deming‐Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。

每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0‐0.1)、中压(0.3‐0.8)、高压(0.90‐1.0)三段。

那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。

中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括材料粒子堆积孔,有序或梯度介孔孔道。

将叶片放在盛有酒精的小烧杯中

将叶片放在盛有酒精的小烧杯中

将叶片放在盛有酒精的小烧杯中,再放入大烧杯内隔水加热,褪去( 叶绿体 ) 植物吸收水和无机盐的主要器官是(根毛、成熟区 ) 植物进行光合作用的主要器官是(叶绿体) 植物进行蒸腾作用的主要器官是( 气孔 )1、下图为某同学在观察自己制作的洋葱鳞片叶表皮细胞临时装片过程中,在显微镜下看到的几个视野,请据图回答问题。

(1)要使图像从视野①变为视野②的状态,应将装片向左下方_移动;要使图像从视野②变为视野③的状态,应转动转换器,换成高倍物镜;要使图像从视野③变为视野④的状态,应用 细准焦螺旋进行调节。

(2)在视野②中可以看到,洋葱鳞片叶表皮有部分重叠,这是因为制作临时装片过程中没有将取下的材料展平(3)从植物体的结构层次来看,叶属于_器官。

视野④所示的部分属于保护组织,它由一些排列紧密的细胞构成。

2、探究种子萌发的环境条件。

实验步骤如下:根据实验过程回答问题。

(1)种子能够萌发的是 2 号瓶。

(2)本实验的实验变量有水、温度_和空气。

对每一个实验组都可以选号瓶作为对照组。

(3)实验结论:种子萌发需要的环境条件是需要适宜的温度,一定的水分,充足的空气。

3、右图是桃的雌蕊结构示意图,下列叙述中不正确的是( B ) A .雌蕊是由柱头、花柱、子房三部分组成B .①发育成果皮,②发育成胚C .该图所示的生殖方式为有性生殖D .该子房发育成的果实中有一粒种子 4、下图表示某学校生物兴趣小组进行光合作用实验的过程,请据图分析作答:①暗处理 ②部分遮光 ③酒精脱色 ④滴加碘液 ⑤显色(1)该实验首先要消耗掉叶片内的有机物,通过图①(填序号)所示步骤可 达到此目的;(2)设置对照实验:用不透光的黑纸片把叶片的一部分从上下两面遮 盖起来,放置阳光下照射一段时间,如图②所示。

该实验的变量是光照。

(3)经过图④所示步骤的处理后,叶片未遮光部分黄白色,原因是绿叶在 光下制造了淀粉 。

5、据血液循环回答:(1)体循环相对于肺循环运输血液的距离较远,所以[ 6 ]左心室壁比[ 8 ]右心室壁厚,肌肉收缩更有力。

七年级生物实验教学案例——探究二氧化碳是光合作用必需的原料

七年级生物实验教学案例——探究二氧化碳是光合作用必需的原料

七年级生物实验教学案例——探究二氧化碳是光合作用必需的原料《七年级生物实验教学案例——探究二氧化碳是光合作用必需的原料》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容教材分析:光合作用是本章的教学重点之一,光合作用对自然界的物质循环和能量转化都具有极其重要的作用。

可以说,没有光合作用就没有丰富多彩的生命世界。

因此,探究绿叶在光下制造有机物的奥秘就成为最具吸引力的课题。

1.分析科学实验,启迪科学思维,进一步领悟科学方法。

本节安排了三个实验的设计,以事实性知识来帮助学生建构光合作用的概念。

另一方面,通过引导学生分析科学实验,启迪学生的科学思维,帮助学生进一步领悟科学方法。

2.用全过程探究进一步培养科学探究能力,是本节的第二个特点。

本册教材的探究形成了一个由易到难的梯度;在科学方法训练和探究技能训练上,每个探究各有侧重点,当然有些侧重点是相同的,最后这个全过程探究有助于培养学生较为全面的科学探究能力。

学情分析:七年级学生虽然有了一定的知识基础,但光合作用的原理比较抽象,学生相应的知识铺垫不够,动手能力较弱,而且光合作用是生物圈中有机物的来源之本,通过光合作用的学习,可以使学生从理论上认识到绿色植物进行光合作用的重要性。

所以本节知识要用具体的,形象的实验进行教学。

让学生体验到由现象到理论的过程,即通过感性认知上升到理性知识。

学法、教法分析:为了让学生更好地体验科学家们探索光合作用的历程,激励他们努力获得与科学家结论相似的结果,在这节课中,我把验证性实验改为模拟探究实验,以培养学生像科学家那样不断深入思考问题的思维方法和解决问题的能力,使学生初步学会一些科学研究的方法,从而激发学生的探究兴趣和尝试做“小科学家”的愿望。

《探究二氧化碳是光合作用必需的原料吗?》是七年级学生刚接触不多的一种探究实验,而且操作的准确性强,由学生独立完成有一定难度。

对此,在教学中合理安排,既有老师的指导,又有学生自己发挥的空间,让学生以小组为单位,提出问题,并设计实验来解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

语法树创建与打印
❖ 多叉树的构建:
Exp : ID { $$ = createNode($1); } Exp : MINUS EXP { $$ =
createNode($1,$2); } #include<stdarg.h>
struct Node* createNode(int arity, …); ❖ 递归层次的前序遍历
%{
%right ASSIGNOP
Declarations
%left AND
%} Definitions //优先级与结合性
%left RELOP %left PLUS MINUS %left STAR DIV %right NOT UMINUS
%%
%left DOT LB RB LP
Productions Exp | MRINPUS EXP %prec
%union {
return ID; }
int val ;
char* str;
struct Node* pNode;
}
保留字和标识符
%{ Declarations %} Definitions %% Rules 前 %% subroutines
//将保留字置于标识符{id}之
文法二义性: 操作符优先级与结合性
Phases of a Compiler
Char Lexical Token Syntax Synta
Strea m
Analyzer
Strea m
Analyzer x Tree
Semantic Analyzer
Interr
Machine Code
%%
UMINUS
subroutines
文法二义性: IF-ELSE配对
Stmt: IF LP Exp RP Stmt | IF LP Exp RP Stmt ELSE Stmt
%nonassoc IFX %nonassoc ELSE Stmt: IF LP Exp RP Stmt %prec IFX | IF LP Exp RP Stmt ELSE Stmt
#include “ex1.tab.h”
%}
Definitions (RegEx)
%%
Rules
%%
%{
ex1.y
Declarations
#include "lex.yy.c"
%}
Definitions (%Token)
%%
Productions
%%
subroutines
启动语法分析器
int main(int argc, char** argv){ if(argc <= 1) return 1; FILE* f = fopen(argv[1],"r"); if(!f) { perror(argv[1]); return 1; } yyrestart(f); //输入文件指针置为 yyin = f yyparse(); //main函数启动解析器 return 0; }
GCC parser
flex ex1.l bison -d ex1.y gcc -o parser ex1.tab.c -ll (-lfl)
-ll: lib of lex -lfl: lib of flex -ly: lib of yacc
Flex & Bison
%{
ex1.
l
Declarations
Symbol Table
Outline
❖ 提交说明 ❖ 实验任务(必做 + 选做) ❖ 编译环境及过程
词法分析与flex 语法分析与bison
❖ 实验讲解
文法二义性消除 语法树创建与打印 文法符号结点的数据结构 语法解析的错误恢复
提交说明
❖ 地址:ftp://114.212.190.181: 31 ❖ 用户名和密码:upload ❖ 格式:学号命名的压缩包 (zip/rar) ❖ 内容:
Flex预定义变量
• yytext, yyleng: 词素字符串 • yylineno: %option yylineno • yylval: 全局变量,当前词法单元的属性值
{id} { strncpy(id_lexeme, yytext, yyleng);
yylval.pNode = createNode( …);
语法解析的错误恢复产生式
❖ Bison在当前状态对yylex()返回的token没有
定义 时即发生了语法错误,调用yyerror:
❖ 源文件{ex1.l, ex1.y} 可执行程序 parser
Flex: ex1.l lex.yy.c Bison: ex1.y ex1.tab.c
GC./Cp:ars*e.cr tespat.rcser //测试命令
编译 方法
ex1.l
Flex
lex.yy.c
ex1.y
Bison
ex1.tab. c
源程序(ex1.l, ex1.y; 额外的.c文件) 可执行程序(命名为 parser)
报告PDF(完成的功能点,编译步骤,实现方 法,结点的数据结构表示;不超过3页)
• 备注:可重新提交,加后缀 _02, _03
实验任务
❖ 预备:熟悉 C--文法和实验要求
❖ 必做:
错误类型1: 词法错误(词法未定义字符) 错误类型2: 语法错误(如[3,9])
❖ 选做:
选做1:两种风格的注释://, /* */ 选做2:八进制数:012 选做3:十六进制:0xa, 0Xa, 0xA,
0XA
编译环境及过程
❖ GNU Flex, GNU Bison, GCC, Linux Ubuntu
sudo apt-get install flex sudo apt-get install bison
void printNode(struct Node* root, int nLayer);
文法符号结点的数据结构
❖ 保存的信息:struct Node{ … };
结点类型: 非终结符,终结符(数, 标识符…) 结点名字: Exp,TYPE,ID 所在行号: %option yylineno 字符串属性值:TYPE.int,ID.lexeme 数值属性值:INT,FLOAT 多叉树孩子:int arity, struct Node* children[N]; //vector<Node*> -…(可扩展)
相关文档
最新文档