Abstract Electroencephalogram processing using neural networks

合集下载

基于mMSE、Kurtosis和小波-ICA的EEG去噪说明书

基于mMSE、Kurtosis和小波-ICA的EEG去噪说明书

Denoising EEG using mMSE, Kurtosis andWavelet-ICAGautam KaushalPunjabi University, Patiala (Punjab)Amanpreet SinghPunjab Technical University (PTU),Jalandhar (Punjab)V. K. JainSant Longowal Institute of Engineering and TechnologyLongowal (Punjab)Abstract —Electroencephalogram (EEG) is electrical signal recorded from the scalp which represents the neural activity of human brain. EEG is often contaminated by the ocular artifacts viz. saccades, voluntarily or involuntarily eye movement and eye blink. Various methods have been proposed both in signal processing field as well as in neuroscience for identification and correction of ocular artifacts. Among many methods based on wavelet transform, adaptive filters, independent component analysis have shown promising results in removal of such artifacts. In this paper unsupervised robust and computationally fast algorithm using multi scale sample entropy (mMSE) and Kurtosis is used to automatically identify independent artifactual components and then denoising these components using wavelet decomposition. Results have shown improved reconstructed EEG signals. The proposed algorithm does not need manual identification of artifactual components.Keywords — Electroencephalography (EEG), ocular Artifact (OAs), discrete wavelet transform (DWT), Kurtosis, modified multi-scale sample entropy (mMSE)I. INTRODUCTIONEEG is recording of electrical signal generated due to neural activity in the brain and it is used to diagnose different abnormalities viz. sleep disorders, brain death, coma, tumors, epilepsy, trauma, stroke etc. The signal is recorded either by placing electrodes on scalp or by recording local field potential from prefrontal cortex. A signal generated in the absence of any stimulus is termed as spontaneous EEG whereas signal generated with an external stimulus is known as Event Related Potential (ERP). For a normal person, EEG amplitude ranges from 10100V μ- having following frequency components:()()()()()0.14,48,813,1330, 30.Delta Hz Theta Hz Alpha Hz Beta Hz Gamma above Hz ----The recorded EEG signal is often contaminated by spurious signals from other unwanted sources. This kind of contamination in medical terminology is named as artifact. An erroneous potential difference appears at the electrodes due to presence of these artifacts in the EEG signal. Among these artifacts, most of them are Electro-oculogram (EOG) due to eye blink or eye movement; muscle activity and Electrocardiogram (ECG) due to electrical activity of heart[1]. An optimized way to correct for an EEG contaminated with EOG signal is to first detect the EOG signal and then to clean the corresponding EEG signal instead of cleaning the whole EEG signal. This method is not only computationally efficient but is also cost effective.The EEG data set used in this work is created by BIH Sleep Laboratory. The dataset can be downloaded from Physio-Net ATM [2]. The dataset consists of 7 recorded channels, each having 2500 samples with sampling rate of 250 Hz, and existing MATLAB code [3] is used for FastICA.From the dataset, we took an EEG signal and an EOG signal and then mixed these two signals to form a two channel corrupted EEG signal. This corrupted EEG signal is utilized for the examination of mMSE based algorithm for artifact removal.In this work, Section 1 describes dataset used for this work. Section 2 gives related work for artifacts removal from EEG. Section 3 demonstrates the mMSE based algorithm used for the detection and correction of the EEG signal. Performance measurements and quantitative analysis is given in Section 4. Results, discussion and conclusion are presented in Section 5.II.RELATED WORKIn recent years, research community both in medical science and in engineering has examined the various artifacts present in EEG. Among these artifacts, ocular artifacts are shown to cause a significant deterioration of EEG signal. Several methods to remove ocular artifacts have been proposed from decades.V. Krishnaveni et al. [4] attempted to deal with such artifacts using wavelet based adaptive thresholding algorithm only to the identified OA zones. Adaptive thresholding applied only to OA zones preserves the shape of EEG signal in non artifact zones. The method has been shown to give promising results in removal of ocular artifacts in their method. Power spectral density plots and frequency correlation plots are used, which gives only an estimate in providing an interference relating to relative superiority of algorithm used for removing ocular artifact removal from EEG. In the algorithm, finding of artifact rising and falling edges are complex, locating the OA zones and calculating the edges is lengthy. Further, performance indices based on poweralgorithm. Block diagram of the algorithm is shown in Fig. 1.Fig.1: Block diagram of automatic artifacts removal algorithm usingtools Kurtosis and mMSE).Fig.2: Amplitude vs. sample plot for automatic artifacts removal。

精神分裂症患者的探究性眼动分析及脑电图的研究

精神分裂症患者的探究性眼动分析及脑电图的研究

精神分裂症患者的探究性眼动分析及脑电图的研究摘要】目的:探讨精神分裂症患者探究性眼动分析(EEM)与脑电图(EEG)改变的关系。

方法:对98例精神分裂症患者和96名健康对照组分别进行了EEM和EEG 测定,并将结果加以比较。

结果:患者组中EEM和EEG的异常率分别为84.69%(83/98)和64.29%(63/98),两者异常吻合率为59.18%(58/98)。

患者组EEM测定结果中凝视点(NEF)和反应探索评分(RSS)值显著低于对照组(P<O.O5)。

EEG测定结果中正常脑电图35例,轻度异常脑电图52例,中度异常脑电图11例。

异常率显著高于正常组,差异有显著性 (P<0.O5)。

结论:精神分裂症患者的EEM和EEG 改变具有较高的敏感性和一致性,提示这样的患者存在认知损害的基础。

【关键词】精神分裂症;探究性眼动;脑电图【中图分类号】R749.3 【文献标识码】A 【文章编号】2095-1752(2015)05-0069-02Schizophrenia patients of exploratory eye movement analysis and the research of eeg Liu Xiaoping. The Seventh People's Hospital of Dalian, Liaoning Province, Dalian 116023, China【Abstract】Objective The exploratory eye movement analysis on patients with schizophrenia (EEM) and electroencephalogram (EEG) changes of the relationship. Methods 98 cases of patients with schizophrenia and 96 healthy controls respectively in the EEM and EEG measure, and to compare the results. Results EEM and abnormal rate of EEG in patients group were 84.69% (83/98) and 64.29% (63/98), the abnormal self-agreement was 59.18% (58/98). EEM measurement results in the patient group fixation point (NEF) and response to explore score (RSS) value was significantly lower than control group (P < 0.05). Normal EEG in EEG determination results 35 cases, mildly abnormal EEG 52 cases, moderate abnormal electroencephalogram (EEG) in 11 cases. Abnormal rate is significantly higher than normal group, with significant difference (P < 0.05). Conclusions Schizophrenia patients of EEM and EEG change has higher sensitivity and consistency, existing cognitive impairment of patients with such.【Key words】Schizophrenia; Exploratory eye movement; Electroencephalogram (eeg)据报道,世界上前10种致残或使人失去劳动能力的疾病中有5种是精神疾病[1]。

探讨经颅多普勒与脑电图诊断血管性头痛的价值对比

探讨经颅多普勒与脑电图诊断血管性头痛的价值对比

探讨经颅多普勒与脑电图诊断血管性头痛的价值对比目的对比分析经颅多普勒和脑电图在血管性头痛疾病诊断中的临床运用效果。

方法方便抽取该院2011年3月—2015年3月所接收的64例血管性头痛患者作为研究对象,按随机数字表法分成研究组32例与参照组32例,前者采取经颅多普勒检查,后者予以脑电图检查;比较两组患者的诊断正确率。

结果研究组患者(90.6%)的诊断正确率比参照组患者(34.4%)高,差异有统计学意义(P<0.05)。

结论在血管性头痛的诊断中,经颅多普勒的诊断效果优于脑电图,值得在临床上大力推行与运用。

[Abstract] Objective To compare and analyze the clinical application effect of transcranial Doppler and electroencephalogram in diagnosis of vascular headache diseases. Methods 64 cases of patients with vascular headache admitted in our hospital from March 2011 to March 2015 were selected as the research objects and randomly divided into two groups with 32 cases in each,the research group were examined by transcranial Doppler,the control group were examined by electroencephalogram,and the diagnostic accuracy rates were compared between the two groups. Results The accuracy rate in the research group was higher than that in the control group,(90.6% vs 34.4%),and there was an obvious difference with statistical significance(P<0.05). Conclusion The effect of transcranial Doppler in diagnosis of vascular headache is better than that of electroencephalogram,which is worth great promotion and application in clinic.[Key words] Vascular headache;Transcranial Doppler;Electroencephalogram血管性头痛是临床上一种较为常见的头痛类型,由于其头痛是血管引起的,因而将其叫做血管源性头痛[1]。

基于EEG复杂度的脑疲劳检测研究进展

基于EEG复杂度的脑疲劳检测研究进展

信is 与电ifiChina Computer & Communication算倣语咅2021年第5期基于EEG 复杂度的脑疲劳检测研究进展蔡娇英-李胜民1"赵春临"(1.武警工程大学装备管理与保障学院,陕西西安710000; 2.第一机动总队机动第六支队,河北保定 071000; 3.武警贵州总队参谋部通信大队,贵州贵阳550081 )摘 要:脑疲劳一般是长时间从事高强度的脑力活动造成的,此过程的大脑活动可以用脑电信号(EEG )进行描述. 脑电信号的复杂性特征一直是脑疲劳检测研究的重点。

基于此,笔者重点探讨了基于EEG 复杂度的脑疲劳检测研究进展, 全面梳理了脑疲劳检测方面的相关文献。

研究结果表明,非线性参数指标爛值分析和复杂度分析具有数据要求不高、抗干扰能力强等特点,能够用于检测脑电信号的复杂性.关键词:脑疲劳;EEG;爛;复杂度中图分类号:R318; TN911.7 文献标识码:A 文章编号:1003-9767 (2021) 05-072-03Research Progress of Brain Fatigue Detection Based on EEG ComplexityCAI Jiaoying 1,2, LI Shengmin 1,3, ZHAO Chunlin 1*(1. School of Equipment Management and Support, Armed Police Engineering University, Xi "an Shaanxi 710000, China;2. Mobile Sixth Detachment of the First Mobile Corps, Baoding Hebei 071000, China;3. Communications Brigade of the Armed Police Guizhou Corps Staff, Guiyang Guizhou 550081, China)Abstract: Brain fatigue is generally caused by engaging in high-intensity mental activity for a long time. The brain activity inthis process can be described by electroencephalogram (EEG). The complexity of EEG signals has always been the focus of research on brain fatigue detection. Based on this, the author focuses on the research progress of brain fatigue detection based on EEG complexity,and comprehensively combs the relevant literature on brain fatigue detection. The research results show that entropy analysis and complexity analysis of non-linear parameter indicators have the characteristics of low data requirements and strong anti-interference ability, which can be used to detect the complexity of EEG signals.Keywords : brain fatigue; EEG; entropy; complexity0引言精神疲劳是一个逐渐累积的过程,大多是由精神紧张时 间过长或者长期从事单调乏味的工作造成的,会出现反应迟 钝、失去协调性等症状,有时会造成非常严重的后果因此, 从职业风险防护、职业健康的角度来看,有必要对精神疲劳进行深入研究。

下肢康复机器人及其交互控制方法

下肢康复机器人及其交互控制方法

第40卷第11期自动化学报Vol.40,No.11 2014年11月ACTA AUTOMATICA SINICA November,2014下肢康复机器人及其交互控制方法胡进1侯增广1陈翼雄1张峰1,2王卫群1摘要瘫痪病人的数量与日俱增,其康复训练通常是一个长期的过程.相对于传统的理疗,使用机器人辅助康复训练能够提高效率,降低成本,减少理疗师的人员和体力消耗,因此节省了康复医疗资源,并且可以完成更加多样的主被动训练策略,从而提高了康复效果.根据患者进行康复运动时的身体姿态,下肢康复机器人可分以下4类:坐卧式机器人、直立式机器人、辅助起立式机器人和多体位式机器人,坐卧式又细分为末端式和外骨骼式,直立式进一步划分为悬吊减重(Suspending body weight support,sBWS)式步态训练机器人和独立可穿戴式机器人.由于下肢康复机器人是与运动功能受损的患肢相互作用,为了给患者创造一个安全、舒适、自然的训练环境,机器人和患者之间的交互控制不可或缺.根据获取运动意图时所使用的传感器信号,交互控制可以基本分为两类:1)基于力信号的交互控制;2)基于生物医学信号的交互控制.在基于力信号的交互控制中,力位混合控制和阻抗控制是最为常用的两种方法;而在基于生物医学信号的交互控制中,表面肌电(Surface electromyogram,sEMG)和脑电(Electroencephalogram,EEG)最常被用于运动意图的推断.关键词下肢康复机器人,研究现状,交互控制,生物医学信号,发展趋势引用格式胡进,侯增广,陈翼雄,张峰,王卫群.下肢康复机器人及其交互控制方法.自动化学报,2014,40(11):2377−2390 DOI10.3724/SP.J.1004.2014.02377Lower Limb Rehabilitation Robots and Interactive Control MethodsHU Jin1HOU Zeng-Guang1CHEN Yi-Xiong1ZHANG Feng1,2WANG Wei-Qun1Abstract The number of paralytic sufferers is currently growing huge and the rehabilitation for them is usually a long-time pared to the traditional physiotherapy,rehabilitation with the assistance of robots can reduce the cost and time,and less labor intensity is required.Moreover,various training strategies are provided by robots,so that rehabilitation effect can be improved.Lower limb rehabilitation robots are categorized into horizontal exercisers, vertical locomotors,sit-to-stand aids and multi-orientation hybrids,according to the posture of patient during therapy. Horizontal exercisers are subcategorized into end effectors and exoskeletons,and vertical locomotors are further grouped as suspending body weight support(sBWS)based gait trainers and stand-alone wearables.Interactive control between mechanism and patient is required to create a secure,comfortable and natural training environment for paralytic patients. According to the signals employed to deduce the movement intention of patients,interactive control methods are classified into force-based control and biomedical-signal-based control.Two approaches that are in particular worth mentioning for force-based interactive control are hybrid force-position control and impedance control.Surface electromyogram(sEMG) and electroencephalogram(EEG)are two mostly used signals for biomedical-signal-based control.Key words Lower limb rehabilitation robot,state of the art,interactive control,biomedical signals,future development Citation Hu Jin,Hou Zeng-Guang,Chen Yi-Xiong,Zhang Feng,Wang Wei-Qun.Lower limb rehabilitation robots and interactive control methods.Acta Automatica Sinica,2014,40(11):2377−2390中风和脊髓损伤是导致下肢运动功能障碍的两大主要原因.中风又称脑卒中,是一种急性的脑血管收稿日期2013-07-05录用日期2014-07-18Manuscript received July5,2013;accepted July18,2014国家自然科学基金项目(61225017,61175076),国家国际科技合作专项项目(2011DFG13390)资助Supported by National Natural Science Foundation of China (61225017,61175076)and the International Science&Technol-ogy Cooperation Project of China(2011DFG13390)1.中国科学院自动化研究所复杂系统管理与控制国家重点实验室北京1001902.中国科学院自动化研究所精密感知与控制研究中心北京1001901.State Key Laboratory of Management and Control for Com-plex Systems,Institute of Automation,Chinese Academy of Sci-ences,Beijing1001902.Research Center of Precision Sensing and Control,Institute of Automation,Chinese Academy of Sci-ences,Beijing100190疾病,其发病突然并且难以预测.它能够造成永久性的大脑神经损伤,致残率一直居高不下,幸存的患者常常会遭受后遗症的折磨,偏瘫就是其中最为常见一种.根据卫生部的统计数据显示,2011年,在我国40岁以上的人群中,新发缺血性脑卒中的人数约为133.4万,标化发病率约为230/10万人,并且正在以每年将近9%的速率在上升;截至到2012年底,我国脑卒中标化患病率约为1.82%,40岁以上的罹患人群高达1036万人,其中65岁以下人群约占50%,年轻化趋势严重[1].在幸存的脑卒中患者中,大约有75%的人不同程度地丧失了劳动或生活自理能力,其中40%左右的患者重度致残[2].目前,脑卒中已经成为我国60岁以上人群残疾的第2378自动化学报40卷一位原因[1].脊髓损伤则通常是由严重的脊柱外伤造成,各种意外事故都有可能导致脊髓损伤的发生.和中风一样,脊髓损伤有着很高的致残率,可能导致截瘫、四肢瘫等病症,严重妨碍了患者的日常生活活动.根据2006年的统计数据显示,全世界脊髓损伤的患病率为233∼755/100万,每年的发病率为10.4∼83/100万[3].中国康复研究中心和北京卫生信息中心公布的北京市脊髓损伤发病率调查报告显示,20世纪80年代末北京市脊髓损伤发病率仅为6.8/100万,而2002年则达到了60/100万[4],在14年时间里上升了7.82倍.由于脑血管疾病的高发病率和频繁发生的各种意外事故,中国的瘫痪患者数量与日俱增.根据第二次全国残疾人抽样调查[5]和第六次全国人口普查的数据[6]推算,2013年中国的肢体残疾者数量达到了3700万,占全国人口的2.65%,平均年增长率为6.30%.然而,与庞大的康复医疗需求相矛盾的是,可用的康复医疗资源相对有限.中国现阶段需要康复治疗师约11.47万人,人才缺口达10.09万人,开设康复医学科的综合医院仅有3288家,占全国综合医院总数的24.6%,其中只有一半开设康复病区[7]. 2002年的统计数据显示,只有1.5%的脊髓损伤患者能够接受康复治疗[8].针对瘫痪患者,在经过诸如外科手术等急性期的临床处理后,康复成为主要的一种治疗手段,它能够帮助患肢恢复运动功能,重新学习日常生活活动,从而尽最大可能地帮助患者回归正常生活.这通常都是一个相当长期的持续过程,有时甚至可能贯穿患者一生的时间.在传统的康复治疗手段中,患者的运动训练主要依靠理疗师的手动辅助,一般比较耗时,成本也相对较高;并且由于主动训练难以手动实现,所以患肢的运动基本上都是被动的,训练策略比较单一;此外,在训练过程中,患肢的运动轨迹以及施加在患肢上的力度往往难以保持良好的一致性.而使用康复机器人辅助患者运动训练则可以提高效率、降低成本,并能够实现多种不同的主被动训练策略,同时机器人的运动轨迹和施加在患肢上的力度具备良好的一致性.除了上面提到的不足,传统的训练手段还很消耗患者和理疗师的体力,尤其是下肢的康复运动,因此,患者常常无法获得足够频次和强度的运动训练,每次的训练也都无法持续足够长的时间.康复机器人则可以减轻治疗过程中患者和理疗师体力负担,从而提高了康复训练的频率和持续时间.以常见的减重步行训练为例,在传统的方法中,至少需要三个理疗师才能完成一次步态训练,其中一位负责支撑患者的体重,剩下的两位各负责患者一条下肢的运动.然而,悬吊减重式步态训练机器人能够实现与传统方法几乎相同的康复效果,但却大大地降低了所需的体力付出,整个步态训练过程只需要一个理疗师进行少量的协助和在旁监护即可.显然,步态机器人可以显著地增加患者的练习次数以及每次持续的时间.因此,相对于传统理疗,使用机器人辅助瘫痪患者进行康复显然是一种更加优越的训练方法.本文系统地回顾了下肢康复机器人的发展现状以及机器人和患者之间的交互控制方法.文章后面的几个章节安排如下:在第1节中将下肢康复机器人分为了4类,分别是坐卧式机器人、直立式机器人、辅助起立式机器人和多体位式机器人,文中对每类设备的功能特点和适用范围进行了总结.此外,针对每类下肢康复机器人,选择了目前有代表性的设备,概述了它们的机械结构、训练策略和临床实验,并分析了每款机器人的优缺点.第2节综述了机器人与患者之间的交互控制方法,详细介绍了基于力信号的交互控制以及基于生物医学信号的交互控制.最后一节在总结全文的基础上,讨论了下肢康复机器人未来的发展趋势.1下肢康复机器人目前,关于下肢康复机器人的概念,还没有一个标准通用的叙述.但是根据普遍公认的理解,下肢康复机器人就是能够辅助下肢运动功能受损的瘫痪患者自动或半自动完成康复训练的机电一体化设备.它主要通过对患肢实施运动训练和功能性电刺激的方法,对患者受损的中枢神经形成反馈,刺激损伤神经的再生或者未损伤神经对损伤功能的代偿,以达到神经康复的目的.在过去十几年的时间里,由于医疗市场的广泛需求,以及机器人技术的快速发展,大量的研究机构和公司开始对下肢康复机器人进行开发研究,其中的一些研究成果已经成功地产品化.根据患者在康复训练中的身体姿态,下肢康复机器人大致分为以下4大类:坐卧式机器人、直立式机器人、辅助起立式机器人和多体位式机器人.1.1坐卧式机器人坐卧式下肢康复机器人最大的优势在于,在运动训练过程中,患者处于坐立、斜躺或平躺的姿态,无需下肢为身体提供支撑,因此它适用于运动功能完全丧失的瘫痪患者.但是对于已经能够部分自主控制下肢肌肉收缩的患者而言,坐卧的身体姿势不利于患肢步行功能的恢复.根据机构与患肢之间相互作用方式,坐卧式下肢康复机器人可以进一步细分为末端式和外骨骼式.1.1.1末端式机器人末端式机器人通常采用一对脚踏板与患者的双足相接触,除此之外机构和患者之间再无其他的相11期胡进等:下肢康复机器人及其交互控制方法2379互作用点.这类机器人成本较低,易于操作使用,但只能实现相对简单的训练策略和末端运动轨迹,属于下肢康复机器人中的低端设备,多用于缓解瘫痪带来的关节僵硬、肌肉萎缩等并发症,康复效果非常有限.电动踏车是目前最常使用的一种末端式下肢康复机器人,结构简单,单自由度驱动.在运动训练过程中,患者的双足放置于脚踏板上,进行固定轨迹的圆周运动,完成循环往复的踏车训练.目前有很多家公司都生产了相类似的踏车设备,如北京宝达华的PT-2-AXG 型自动康复机[9]、美国Restorative Therapies 的RT300Leg [10]和德国RECK-Technik GmbH &Co.KG 的MOTOmed [11]等.后两种设备不仅可以完成踏车训练,而且还集成了功能性电刺激(Functional electrical stimulation,FES),实现了运动与FES 相结合的康复策略.除了常见的踏车之外,一些研究机构还开发了其他不同形式的多自由度末端式机器人.哈尔滨工程大学研制了一款平躺式的下肢康复设备,它采用并联式的机械结构[12−13],共包含三个自由度,一个滑动关节实现两条腿循环往复的协调联动,两个旋转自由度用于调整运动训练过程中踝关节的角度.相较于踏车设备,该机器人在脚踏板处增加了两个独立驱动的旋转关节,实现了对踝关节角度的控制,但是下肢末端(脚踝处)的运动轨迹依然是固定的,并且目前只具备被动的康复训练策略.Lambda 是由瑞士洛桑联邦理工学院(Ecole Polytechnique F´e d´e rale de Lausanne)机器人系统实验室开发的末端式下肢康复机器人(图1),它采用形如λ的并联机械结构,左右两侧对称,每侧均为三自由度,包括两个平移关节和一个旋转关节[14].Lambda 是目前末端式下肢康复机器人中自由度最多的设备,能够实现下肢髋膝踝关节在矢状面内的运动,末端轨迹可以在机器人的工作空间内自由规划,但是目前该设备还只能完成被动的运动训练,尚不具备主动康复训练的功能.图1Lambda [14]Fig.1Lambda [14]1.1.2外骨骼式机器人外骨骼式下肢康复机器人的执行机构一般由两条机械腿组成,其结构类似于人体下肢,各个关节也与下肢的某些运动自由度一一对应.在训练过程中,下肢沿着机械腿并列进行安放固定,除了脚踏板与双足相接触外,在腿部也可能存在多处肢体与机构之间的交互点.外骨骼式下肢康复机器人既可以方便地实现单关节的运动,也能够完成多关节协调的训练,运动轨迹在工作空间内自由可编程,并具备多种主被动康复训练策略.Physiotherabot 是由土耳其耶尔德兹技术大学(Yıldız Technical University)机械电子工程学院开发的外骨骼式下肢康复机器人[15],它由一张躺椅和两条三自由度的机械腿组成,能够完成下肢髋关节的展收和髋膝关节的屈伸.在进行运动训练时,下肢有三个部位固定在机械腿上,分别是足部、踝关节上部以及膝关节上部,其中后两处安装了力传感器,用以检测两者之间交互作用.Physiotherabot 可以实现多种主被动训练策略,还能模拟传统的理疗师手动康复训练,并以健康人和患者为被试对象进行了实验[15−17].此外,开发者还提出了结合表面肌电信号的康复训练策略和评价方法[18],但尚未给出进一步的仿真、实验和临床研究结果.MotionMaker 是由瑞士洛桑联邦理工学院(Ecole Polytechnique F´e d´e rale de Lausanne)机器人系统实验室开发的坐卧式外骨骼下肢康复机器人(图2),并由瑞士公司Swortec 产品化后推向市场.它由一张倾斜度可调的躺椅和两条三自由度的机械腿组成,可以完成下肢髋膝踝关节的屈伸运动[19].在训练过程中,患者仅有足部与脚踏板相接触,以模拟自然情况下地面与双足的相互作用.该设备最大的特点是集成了闭环控制的FES 设备,能够实现运动训练与FES 相结合的康复策略.MotionMaker 的首次临床实验有5名脊髓损伤患者参与[20],包括4名非完全损伤患者和一名完全损伤患者,全部顺图2MotionMaker [21]Fig.2MotionMaker [21]2380自动化学报40卷利完成了压腿运动与FES相结合的康复训练.1.2直立式机器人患者在使用直立式下肢康复机器人进行康复运动时采用站立的姿态,相对于坐卧式训练,这更加贴近于日常生活中下肢的活动方式,有利于激发患者自主地为身体提供支撑,对于恢复患肢的步行功能有很大的帮助.然而,这种方式只适用于轻度损伤患者,对于下肢运动功能完全丧失的病人,直立式训练不仅康复效果甚微,而且可能会对患肢造成二次损伤.根据体重支撑方式的不同,直立式机器人进一步划分为悬吊减重式步态训练机器人和独立可穿戴式机器人.1.2.1悬吊减重式步态训练机器人步态训练对于下肢运动功能障碍是非常重要且有效的康复运动手段,传统BWSTT使用悬吊机构和挽具支撑患者的部分体重,将其直立于跑步机上,理疗师手动操控患者的下肢配合跑步机的运动节奏完成步行训练[22],该过程费时费力.相较而言,悬吊减重式步态训练机器人可以大幅降低理疗师的人员需求和体力消耗,同时确保与传统手段相当的康复效果.所谓悬吊减重,就是通过穿戴于患者腰胸部的挽具,以及连接挽具和头顶上方支架的绳索,以提拉躯干的方式实现体重支撑,保持患者的直立姿态.至于步态训练,则主要由特定的介质与患者的双足相互作用,完成下肢的交替运动,作用介质主要分为三种,分别是脚踏板、跑步机和地面.Gait Trainer GT I是由德国柏林自由大学(Freie Universit¨a t Berlin)研制的悬吊减重式步态康复机器人(图3),并由柏林康复设备公司Reha-Stim完成了产品化.该设备集成了FES系统,它根据下肢的运动状态循环有序刺激下肢肌肉,辅助患者完成步态训练[23].但由于其采用脚踏板与患者的双足进行交互,下肢得到的力觉反馈较弱,与自然行走的感觉相差较大.此外,该机器人的步态训练策略主要强调重复连续的被动运动,而忽略了患者主动参与的重要性.Gait Trainer GT I属于较早期的下肢康复设备,世界范围内有较多关于它的临床研究实验[24−28],其结果显示,该系统的康复效果至少与传统的BWSTT步态训练方式相等同,但却显著降低了理疗师的体力消耗,节省了康复医疗资源.Lokomat是由瑞士苏黎世大学医学院(Bal-grist University Hospital)、Hocoma公司、苏黎世联邦理工学院(Eidgen¨o ssische Technische Hochschule Z¨u rich)以及德国Woodway公司联合开发的步态训练机器人(图4),最终由Hocoma公司进行商业化.它主要由三个部分组成,包括一对步态矫形器、跑步机和悬吊减重系统[29],其中每条步态矫形器包含两个独立驱动的旋转自由度,对应于髋膝关节的屈伸运动,通过矫形器和跑步机的同步配合,实现下肢的步态训练.Lokomat使用跑步机与患者的双足进行交互,相比脚踏板的作用方式,下肢可以得到更接近于自然行走的体验.此外,步态矫形器的设计考虑到了下肢的个体差异,可以针对不同的患者进行结构调整,优化了运动过程中二者之间的配合.作为同类产品中的先驱,Lokomat实现了多种主被动训练策略,满足了不同患者的康复需求,同时它也是在临床实验研究中应用最为广泛的步态训练机器人[30−35].图3Gait Trainer GT I[36]Fig.3Gait Trainer GT I[36]图4Lokomat[37]Fig.4Lokomat[37]ReoAmbulator是美国的康复医疗公司HealthSouth开发的步态训练机器人,由Motorika 公司将其商业化,其在美国市场上的产品名称是AutoAmbulator.它的结构与Lokomat类似,由一对下肢矫形器、跑步机和悬吊减重系统三部分组成[38],通过下肢矫形器和跑步机的同步运动,辅助患者完成自然协调的步态康复训练.该设备同样采用跑步机与患者的双足相互作用,因此下肢在步态训11期胡进等:下肢康复机器人及其交互控制方法2381练中获得的力觉反馈较为真实自然.针对中风偏瘫患者的临床实验研究结果显示[39],ReoAmbulator 能实现省时省力、安全有效的步态康复训练.LokoHelp 是由德国Lokohelp 公司进行开发并生产的步态训练机器人[40],由腿部矫形器装置、跑步机和悬吊减重系统三部分组成.它除了能够实现基本的步态康复训练,还可以协助患者完成上下坡练习.此外,该设备采用了高度模块化的设计方法,易于组装、拆卸和调整,以实现不同坡度的运动训练.关于LokoHelp 的临床实验研究证明[40−41],该机器人系统的康复效果与传统的步态训练方法几乎相同,但却显著降低了所需的人力资源以及参与者的体力消耗.WalkTrainer 是由瑞士洛桑联邦理工学院(Ecole Polytechnique F´e d´e rale de Lausanne)机器人系统实验室研究开发的步态训练机器人(图5),与MotionMaker 同为一项名为Cyberthosis 康复工程的一部分,并同样由瑞士Swortec 公司进行了商业化.它主要由5个模块组成,包括可全方位移动的支架平台、盆骨矫形器、悬吊减重系统、腿部矫形器以及可实时控制的FES 系统[42−44].在使用Walk-Trainer 在进行步态训练时,患者的足部直接与地面相作用,相比于脚踏板和跑步机,这种方式提供给下肢的力觉反馈最接近于真实自然的步行.此外,步态训练中还结合了FES,刺激下肢肌肉规律有序地收缩,使其参与康复运动.该机器人系统的首次临床实验研究已经完成[43−44],有6名截瘫患者参与了为期三个月的步态训练,下肢运动功能得到了有效的康复.图5WalkTrainer [45]Fig.5WalkTrainer [45]KineAssist 是由美国埃文斯顿的Kinea Design 公司生产的步态训练机器人,它主要包含两个部分,可全方位移动的基座支架以及为患者提供体重支撑的悬吊减重系统.与WalkTrainer 类似,该设备同样通过地面与下肢足部进行交互[46−47],可以提供患者一个自然的行走体验.此外,KineAssist 具备7种工作模式,每种模式辅助患者完成一项特定的步态或平衡训练.在文献[48−49]中,若干名健康人和中风患者参与了KineAssist 的临床实验研究,分别评价了该系统的运动性能以及它对被试者地面行走速度的影响.1.2.2独立可穿戴式机器人在所有的下肢康复设备中,独立可穿戴式机器人最为灵活.它通过帮助患者完成日常生活活动来实现下肢的康复训练,例如直立行走、上下楼梯和上下坡等,这样既可以方便患者的日常生活,又能达到康复训练的目的.这类机器人具备与人腿结构相类似的机械矫形器,穿戴于患者下肢,同时完成体重支撑和康复训练,有时需要使用手杖来保持活动过程中患者的平衡.ReWalk 是美国Argo Medical Technologies 公司开发生产的可穿戴式下肢康复机器人(图6),可以为脊髓损伤患者提供运动训练[50].它由一套轻便的支撑骨架、可充电电池、传感器阵列以及安放在背包中的一套电脑控制系统组成,所谓支撑骨架是指左右两条对称的二自由度下肢矫形器,两个旋转关节分别对应髋膝的屈伸运动.该机器人使用倾角传感器检测患者上身所处的姿态,以此来推断下肢的运动状态,从而辅助患者完成步行和上下楼梯等日常生活活动.临床实验研究证明[51−52],ReWalk 是一款安全稳定的康复设备,可以协助瘫痪患者实现图6ReWalk [53]Fig.6ReWalk [53]2382自动化学报40卷高效率的步行活动.Hybrid Assistive Limb(HAL)是日本筑波大学(University of Tsukuba)研制的可穿戴式下肢康复机器人,并由日本公司Cyberdyne生产销售.该设备最初的设计目的是辅助下肢运动功能障碍患者完成直立行走、起立、坐下以及上下楼梯等日常生活活动[54].目前它已经发展到了第5代产品,一款全身式可穿戴机器人,可同时辅助上下肢的运动[55],其应用范围也从单纯的康复训练延伸到肢体力量及功能的加强拓展[56].此外,针对偏瘫和儿童患者, HAL分别有单腿和小尺寸版本的产品.针对偏瘫患者的临床实验研究结果显示[57],HAL能为被试者提供体重支撑,并能辅助其完成日常的步行运动.1.3辅助起立式机器人如其名称所示,辅助起立式下肢康复机器人主要是在患者起立或坐下的运动过程中提供支撑并保持平衡,训练下肢由坐到站或者由站到坐的运动功能.然而,单纯的起立训练对于下肢运动功能康复的意义并不大,因此关于该类设备的开发研究比较少.比较常见的情况是,辅助起立式机器人同时具备带驱动的可移动机械平台,在患者完成起立运动后,可以实现简单的地面行走训练.日本高知工科大学(Kochi University of Tech-nology)开发了一款单纯的辅助起立式下肢康复设备[58],它采用了一种双绳索机构,通过提拉患者躯干的方式,帮助其自然地完成坐到站的运动过程.机构中的前后两根绳索由两个独立的直流伺服电机进行驱动,分别控制训练过程中患者的位姿以及机构对患者的提拉力度.该系统能够根据力和运动传感器信号,识别出患者的主动运动意图,从而为其提供必要的支撑,相对集中地训练起立过程中最为薄弱的环节,以达到更好的康复效果.为了验证该训练系统的有效性,选择了4名正常的志愿者进行了实验,对比了有、无设备辅助两种情况下的起立训练,结果显示该机器人能够帮助被试者以安全、舒适、自然的姿态轻松地完成起立运动,有效地提高了关节的运动能力.MONIMAD是由法国的巴黎第六大学(Uni-versit´e Pierre et Marie Curie)研究开发的辅助起立式下肢康复机器人[59−60],主要由一对单自由度的机械扶手和可移动的基座平台两部分组成.它不仅可以辅助下肢运动功能障碍患者完成起立运动,而且还能够实现缓慢的地面步行训练.但是该设备仅使用一对扶手作为体重支撑机构,参加训练的患者必须要有足够的上下肢力量来维持身体的平衡,因此MONIMAD适用范围相当有限.在文献[61]中,若干名健康人和10名多发性硬化症患者使用MONIMAD顺利完成了起立运动训练.1.4多体位式机器人多体位式下肢康复机器人可以为患者提供不同体位的运动训练,典型地,以融合了坐卧式和直立式特点的机器人设备为例,在训练过程中,根据具体的需要,患者既可以采用坐姿、斜躺或平躺的姿态,也可以处于站立的状态.因此,该类设备的适用范围广泛,即能为下肢力量薄弱的患者提供训练,又能辅助轻度损伤的病人完成康复运动,进而可以针对不同患者制定出全面的渐进式训练策略.Flexbot是上海璟和技创机器人有限公司开发生产的一款多体位式下肢康复系统(图7),主要由一张床、一对二自由度的机械下肢以及一套显示系统三部分组成[62].它集合了坐卧式和直立式机器人的功能特点,可以帮助患者实现从身体姿态平躺到站立的康复运动训练.因此该设备的适用范围广泛,不同程度的下肢运动功能障碍患者,以及处于不同康复阶段的瘫痪病人都可以使用.开发者据此提出了一个4阶段的渐近式康复训练步骤,不同的患者可以根据自己的情况选择合适的康复阶段进行运动训练.此外,该系统还将康复训练与虚拟现实相结合,为患者提供了更加真实的运动感受,激发了他们参与训练的积极性.图7Flexbot[62]Fig.7Flexbot[62]2交互控制方法机器人和患者之间的交互控制是下肢康复机器人研究中非常重要的一个方面,由于下肢康复机器人是与运动功能受损的患肢相互作用,而病人是具备自主运动意识的对象,因此机器人和患者之间的交互控制不可或缺.首先,交互控制会为患者创造一个安全、舒适、自然并且具备主动柔顺性的训练环境,避免患肢由于痉挛、颤抖等异常的肌肉活动而与机器人产生对抗,保护其不会受到二次损伤.其次,交互控制会从传感器信号中获取患者的主动运动意图,鼓励患者积极参与到运动中来,实现所谓的主动训练,从而提高康复的效果.根据获取主动运动意图。

美国《化学文摘》中常用词缩写

美国《化学文摘》中常用词缩写

美国《化学文摘》中常用词缩写A ampere安(培)Angstrom unit(s)埃(长度单位,10-10米)abs.absolute绝对的abs.EtOH absolute alcohol无水乙醇abstr.abstract文摘Ac acetyl(CH3CO,not CH3COO)乙酰基a c alternating current交流电(流)Ac.H.acetaldehyde 乙醛AcOH acetic acid乙酸Ac2O acetic anhydride乙酸酐AcOEt ethyl acetate乙酸乙酯AcONa乙酸钠add additive 附加物addn addition加成,添加addnl additional添加的alc.alcohol,alcoholic醇aliph.aliphatic 脂族的Al.Hg.Aluminum amalgam铝汞齐alk.alkaline(not alkali)碱性的alky alkalinity(alhys.for alkalinities is not approved)碱度,碱性am amyl(not ammonium)戊基amorph amorphous无定形的amp ampere(s)安(培)amt.amount(as a noun)数量anal.analysis分析anhyd.anhydrous无水的AO atomic orbital原子轨(道)函数app.apparatus仪器,装置approx approximate(as an adjective),approximately近似的,大概的approxn approximation近似法,概算aq.aqueous水的,含水的arom.aromatic芳族的as.asymmetric不对称的assoc.associate(s)缔合assocd associated缔合的assocn association缔合at.atomic(not atom)原子的atm atmosphere(s),atmospheric大气压=1.01325×105帕ATP adenosine triphosphatae三磷酸腺苷酶at.wt.atomic weight原子量av.average(except as a verb)平均b.(followed by a figure denoting temperature)boils at,boiling at(similarlyb13,at1.3mm,pressure)沸腾(后面的数字表示温度,同样b13表示在13毫米压力下沸腾)bbl barrel桶[液体量度单位=163.5升(英国),=119升(美国)] BCC.body-centred cubic立方体心BeV or GeV billion electronvolts10亿电子伏,吉电子伏,109电子伏BOD biochemical oxygen demand生化需氧量μB Bohr magneton玻尔磁子[物]b.p.boiling point沸点Btu British thermal unit(s)英热单位=1055.06焦Bu butyl(normal)丁基bu.bushel蒲式耳=36.368升(英)=35.238升(美)Bz benzoyl(not benzyl)苯甲酰BzH benzaldehyde苯(甲)醛BzOH benzoic acid苯甲酸C concentration浓度Cal.calorie(s)千卡,大卡=4186.8焦cal.卡=4.1868焦calc.calculate计算calcd calculated计算的calcg calculating计算calcn calculation计算CC cubic centimeter(s)立方厘米CD circurlar dichroism圆二色性(物)c.d.current density电流密度cf.参见compare比较cubic feet per minute立方英尺/分钟(1立方英尺=2.831685×10-2米3) chem.chemical(as an adjective)(not chemistry nor chemically)化学的Ci curie居里(放射单位)=3.7×1010贝可clin.clinical(ly)临床的cm centimeter(s)厘米CoA coenzyme A辅酶AC.O.D.chemical oxygen demand化学需氧量coeff.coefficient系数col.colour,coloration颜色com.commercial工业的,商业的,商品的comb.combustion燃烧compb.compound化合物,复合物compn.composition组成,成分conc.concentrate(as a verb)提浓,浓缩concd.concentrated浓的concg.concentrating浓缩(的)concn.concentration浓度cond conductivity导电率,传导性const.constant常数,常量contg containing包含,含有cor corrected校正的,改正的,正确的cp.constant pressure恒压C.P.Chemically pure化学纯的crit.critical临界的cryst.crystalline(not crystallize)结晶crystd crystallized使结晶crystg crystallizing结晶crystn crystallization结晶,结晶化cu.m.cubic meter(s)立方米Cv constant volume恒容d density密度(d13 相对于水在4℃时的比重;d2020相对于水在20℃时的比重) D Debye unit德拜单位,电偶极矩单位d.dextrorotatory右旋(不译)dl-外消旋(不译)d.c.direct current直流电decomp.decompose(s)分解decompd decomposed分解的decompg decomposing分解decompn decomposition分解degrdn degradation降解deriv.derivative衍生物,导数(数)det.determine 测定detd determined 测定的detg determining测定detn determination 测定diam.diameter直径dil.dilute稀释,冲淡dild diluted稀释的diltg diluting稀释diln dilution稀释diss.dissolves,dissolved溶解dissoc dissociate(s)离解dissocd.dissociated 离解的dissocn dissociation 离解dist.distil.distillation 蒸馏distd distilled蒸馏的distg distilling 蒸馏distn distillation蒸馏dl分升dm.decimeter(s)分米DMF dimetbylformamide二甲基甲酰胺DNase deoxyribonuclease脱氧核糖核酸酶d.p.degree of polymerization聚合度dpm disintegrations per minute分解量/分钟DTA differential thermal analysis 差热分析E.D.effective dose有效剂量EEG electroencephalogram脑电流描记术e.g.for example例如elec electric,electrical(not electrically)电的e.m.f.electromoctive force电动势e.m.u.electromagnetic unit电磁单位en.ethylenediamine(used in formulas only)乙二胺equil equilibrium(s)平衡equiv.equivalent当量,克当量esp.especially 特别,格外est.estimate(as a verb)估计estd estimated估计的estg estimating估计estn estimation估计Et ethyl乙基Et2O ethyl ether乙醚ηviscosity粘度eV electron volt(s)电子伏[特]evac.evacuated抽空的evap.evaporate蒸发evapd evaporated 蒸发的evapg evaporating蒸发evapn evaporation蒸发examd examined检验过的,试验过的examg examining检验,试验examn examination检验,试验expt.experiment(as a noun)实验exptl experimental实验的ext.extract提取物,萃,提取extd extracted提取的extg extracting提取extn extraction 提取F farad法[拉](电容)fcc face centered cubic面心立方体fermn fermentation发酵f.p.freezing point冰点,凝固点FSH follicle-stimulating hormone促卵泡激素ft.foot,feet 英尺=0.3048米ft-lb foot-pound 英尺磅=0.3048米×0.453592千克g.gram(s)克gal gallon加仑=4.546092升(英)=3.78543升(美) geol.geological地质的gr.grain(weight unit)谷(1谷=1/7000磅=0.64799克)h hour小时H henry亨[利]ha.hectare(s)公顷=6.451600×10-4米2homo-均匀-,单相h hour小时hyd.hydrolysis,hydrolysed水解Hz hertz(cycles/sec)赫[兹],周/秒ID infective dose无效剂量in.inch(es)英寸=0.0254米inorg.incrganic无机的insol.insoluble不溶的IR infrared红外线irradn irradiation照射iso-Bu,isobutyl异丁基iso-Pr,isopropyl异丙基IU国际单位J joule焦[耳](能量单位)K kelvin开[尔文],绝对温度Kcal.kilocalorie(s)千卡=418.6焦kg kilogram(s)千克kV kilovolt(s)千伏kV-amp.kilovolt-ampere(s)千伏安kW.kilowatt(s)千瓦kWh kilowatthour 千瓦小时=3.6×106焦l.liter(s)升boratory实验室lb pound(s)磅=0.453592千克LCAO linear combination of atomic orbitals原子轨道的线性组合LD Lethal dose致死剂量LH Luteinizing hormone促黄体发生激素liq.liquid液体,液态Lm lumen流明(光通量单位)LX lux勒[克斯](照度单位)m.meter(s);also(followed by a figure denoting temperature)米,熔融(注明温度时) M.mega-(106)兆M molar(as applied to concn.)摩尔m.melts at,melting at熔融m molal摩尔的ma milliampere(s)毫安manuf.manufacture制造manufd manufactured制造的manufg.manufacturing制造math.mathematical数学的max maximum(s)最大值,最大的Me methyl(MeOH,methanol)甲基mech.mechanical机械的metab.metabolism新陈代谢m.e.v million electron volts兆电子伏mg milligram(s)毫克mi mile英里=1609.344米min minimun[also minute(s)]最小值,最小的min minute分钟misc miscellaneous其它mixt.mixture混合物ml milliliter(s)毫升mm millimeter(s)毫米nm millimicron(s)纳米MO molecular orbital分子轨道函数mol molecule,molecular分子,分子的mol.wt.molecular weight分子量m.p.melting point熔点mph miles per hour英里(=1609.344米)/小时μmicron(s)微米mV millivolt(s)毫伏N newton牛[顿](力的单位)N normal(as applied to concn.)当量(浓度) neg.negative(as an adjective)阴性的,负的no number号,数obsd observed观察,观测anic有机的oxidn oxidation氧化oz.ounce盎司(常衡=28.349523克) P.d.potential difference势差,电位差Pet.Et.petroleum ether石油醚Ph.phenyl苯基phys.physical物理的physiol.physiological生理学的p.m.post meridiem午后polymd polymerized聚合polymg polymerizing聚合ploymn polymerization聚合pos.positive(as an adjective)阳性的,正的powd.powdered粉末的,粉状的p.p.b.(ppb)parts per billion亿万分之(几) p.p.m.(ppm)parts per million百万分之(几) ppt.precipitate沉淀,沉淀物pptd.precipitated沉淀出的pptg.precipitating沉淀pptn precipitation沉淀Pr propyl (normal)丙基prac.practically实际上prep.prepare制备press.pressure压力prepd prepared制备的prepg preparing制备prepn preparation制备psi pounds per square inch磅/英寸2[=0.453592千克/(6.45100×10-4米2)] psia pounds per square inch alsolute磅/英寸2(绝对压力)pt pint品脱(=0.5682615升)purifn purification精制py pyridine(used only in formulas)吡啶qt.quality质量qual.qualitative(not qualitatively)定性的quant.quantitative(not quantitatively)定量的γ希文,消旋(不译)red.reduce,还原red reduction还原,减小ref.reference 参考文献rem roentgen equivalent man人体伦琴当量,雷姆rep roentgen equivalent physical物理伦琴当量repr.reproduction再生产,再生res.resolution分辨,分解,离析resp.respectively分别地rpm revolution per minute每分钟转数RNase ribonuclease核糖核酸酶sapon.saponification皂化sapond saponified皂化过的sapong saponifying皂化sat.saturate使饱和satd.saturated饱和的satg saturating饱和的satn.saturation饱和,饱和度sec second(s)秒,仲,第二的sep.separate分离sepd separated分离出的sepg separating分离的sepn separation分离sol.soluble可溶的soln solution溶液soly solubility(solys.for solubilities is not approved)可溶性,溶解度sp.gr.specific gravity比重sp.ht.specific heat比热sp.vol.specific volume比容std. standard标准suppl. supplement补篇sym. symmetrical对称的tech. technical技术的temp. temperature温度tert. Tertiary叔(指CH3…C(CH3)2—型烃基) thermodyn. Thermodynamics热力学titrn titration滴定unsym. unsymmetrical偏,不对称U. V. ultraviolet紫外线V volt(s)伏[特]vac.vacuun真空vapor vaporization汽化vol.volume (not volatile)体积vs versus对W.watt(s)瓦[特]wt.weight重量wk week星期。

脑电生物反馈治疗对精神分裂症患者的影响

脑电生物反馈治疗对精神分裂症患者的影响

第28卷 第11期 中国现代医学杂志Vol. 28 No.11 2018年4月 China Journal of Modern Medicine Apr. 2018 DOI: 10.3969/j.issn.1005-8982.2018.011.022文章编号: 1005-8982(2018)011-0112-05脑电生物反馈治疗对精神分裂症患者的影响申变红,陶云海,王永平,朱春燕,应通,张智雯(浙江省杭州市第七人民医院 精神科,浙江 杭州 310013)摘要:目的 探讨脑电生物反馈治疗联合认知功能训练对精神分裂症患者认知功能的影响。

方法 前瞻性收集该院收治的精神分裂症患者92例,随机分为观察组和对照组,每组46例。

两组给予认知功能训练,观察组在该基础上给予脑电生物反馈治疗。

比较治疗前后两组患者认知功能的变化。

结果 治疗前两组患者β波、θ波、SMR比较,差异无统计学意义(P >0.05);治疗后观察组β波和SMR波升高(P <0.05),θ波降低(P <0.05)。

治疗前两组患者定步调听觉连续加法测验评分比较,差异无统计学意义(P >0.05);治疗后观察组定步调听觉连续加法测验评分高于对照组(P <0.05)。

治疗前两组患者持续错误数和完成分类数比较,差异无统计学意义(P >0.05);治疗后观察组持续错误数降低(P <0.05),完成分类数增加(P <0.05)。

治疗前两组患者白介素-6(IL-6)、肿瘤坏死因子α(TNF-α)水平比较,差异无统计学意义(P >0.05);治疗后观察组IL-6、TNF-α水平低于对照组(P <0.05)。

结论 脑电生物反馈治疗联合认知功能训练可改善精神分裂症患者的认知功能。

关键词: 脑电生物反馈治疗;认知功能;精神分裂症中图分类号: R749.3 文献标识码: AEffect of EEG biofeedback therapy on patients with schizophrenia Bian-hong Shen, Yun-hai Tao, Yong-ping Wang, Chun-yan Zhu, Tong Ying, Zhi-wen Zhang (Department of Psychiatry, Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang 310013, China) Abstract: Objective To investigate the effect of electroencephalogram (EEG) biofeedback therapy combined with cognitive function training on the cognitive function of the patients with schizophrenia.Methods From January2016 to June 2017, 92 schizophrenic patients were randomly divided into an observation group and a control groupwith 46 cases in each group. Cognitive function training was given to both groups, while EEG biofeedback therapywas given to the observation group on the basis. The cognitive function of the two groups of patients before andafter treatment was compared.Results There was no significant difference in β wave, θ wave or SMR wave beforetreatment between the two groups (P > 0.05). However, β wave and SMR wave increased (P < 0.05), while θ wavedecreased after treatment in the observation group when compared with the control group (P < 0.05). There was nostatistical difference between the two groups before treatment in the score of the constant step auditory continuousaddition test (P > 0.05). After treatment, the score of the constant step auditory continuous addition test was higherin the observation group when compared with the control group (P < 0.05). There was no significant difference inthe number of continuous errors or the completed classification number between the two groups before treatment(P > 0.05). After treatment, the number of continuous errors decreased (P < 0.05), and the completed classificationnumber increased (P < 0.05) in the observation group. There was no significant difference in IL-6 or TNF-α between收稿日期:2017-07-12第11期精神分裂症患者存在认知功能的损害,表现为接受外界信息后,无法有效转化为正常的心理活动,包括记忆、语言、视空间及理解判断等多个方面功能受损[1-3]。

新生儿低血糖导致的脑损伤的风险因素及影像学特征分析

新生儿低血糖导致的脑损伤的风险因素及影像学特征分析

罕少疾病杂志 2023年6月 第30卷 第 6 期 总第167期【第一作者】尚小姣,女,主治医师,主要研究方向:新生儿低血糖。

E-mail:****************·论著·新生儿低血糖导致的脑损伤的风险因素及影像学特征分析尚小姣1,* 贾耀丽21.叶县人民医院NICU (河南 平顶山 467200)2.平顶山市第一人民医院新生儿重症监护病房 (河南 平顶山 467200)【摘要】目的 探讨新生儿低血糖导致的脑损伤的风险因素及影像学特征。

方法 选取2020年8月至2021年7月我院收治的154例低血糖新生儿进行回顾性分析,均采用磁共振成像(MRI)评估脑损伤情况,并进行单因素分析与Logistic多因素回归分析。

结果 154例低血糖新生儿中发生脑损伤27例(17.53%),与未发生组比较,发生组早产、围产期缺氧、喂养困难、惊厥、脑电图(EEG)异常、母亲合并妊娠糖尿病、低血糖持续时间>24h、脑红蛋白(NGB)水平≥150mg/L、神经元特异性烯醇化酶(NSE)水平≥50μg/L的患儿占比均更高(P <0.05);Logistic多因素分析结果显示,胎龄(OR=1.902)、围产期缺氧(OR=1.781)、喂养困难(OR=2.395)、惊厥(OR=12.366)、EEG异常(OR=15.251)、母亲合并妊娠糖尿病(OR=8.793)、低血糖持续时间(OR=8.156)、NGB水平(OR=2.935)、NSE水平(OR=2.411)是影响低血糖脑损伤发生的独立危险因素(P <0.05);27例低血糖脑损伤患儿均存在顶枕部头皮层受累,磁共振扩散加权成像(DWI)均表现为高信号,14例(51.85%)患儿经T 1加权像(T 1WI)、矢状面T 2加权像(T 2WI)均正常信号,2例(7.41%)T 1WI正常信号、T 2WI高信号,2例(7.41%)T 1WI低信号、T 2WI正常信号,9例(33.33%)T 1WI低信号、T 2WI高信号。

基于TGAM 模块和脑电波对音响音量的控制

基于TGAM 模块和脑电波对音响音量的控制

基于TGAM 模块和脑电波对音响音量的控制作者:肖迪章文韬来源:《电脑知识与技术》2015年第09期摘要:脑电波信号现今已被研究作为一个生物信号输入用于人机交互。

它可以用来开发用于提升注意力的游戏,也可以被应用在残疾人治疗上。

TGAM模块利用一个干式电极就可以从人脑中检测到微弱的脑电信号。

该文对TGAM模块的研究和实验,控制专注度和放松度等数值。

基于MDT开发包进行软件开发,研究脑电波信号的统一性与特殊性,将TGAM模块应用于播放器,通过应用程序接口,建立通讯,进行数据分析处理,实现了比较好的调控效果。

关键词:脑电波信号;TGAM模块;专注度;放松度;音响音量中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2015)09-0249-03Abstract: Electroencephalogram(EEG) signal now has been studied as a biological signal input for human-computer interaction. It can be used for games of lifting the attention, can also be used in the treatment of the disabled. TGAM module uses a dry-type electrode to detect the weak EEG signal from human brain. This paper studies the TGAM module, controlling the degree of focus and relaxation degree values. Software development bases on MDT-based, researching the unity and particularity of brainwave signals. Apply the TGAM module on the player, through the application interface, establishing communication, carrying out data analysis and process, to achieve better control effect.Key words: Electroencephalogram(EEG) Signal; TGAM Module; Focus and Relaxation degree; the Sound Volume1概述我们的大脑无时无刻不在产生脑电波。

典型克雅氏病2例并文献回顾

典型克雅氏病2例并文献回顾

㊃论著㊃通信作者:王惠娟,E m a i l :h j w a n gd o r @163.c o m 典型克雅氏病2例并文献回顾乔 琦,王惠娟,张丽苗,岳 赞,王炳雷,边 鑫(河北医科大学第二医院神经内科,河北石家庄050000) 摘 要:目的 探讨克雅氏病(C r e u t z f e l d t -J a c o bd i s e a s e ,C J D )的发病机制,病因分型,临床表现,脑脊液的特点,核磁共振成像表现,脑电图改变及诊断标准㊂方法 对本院收治的2例C J D 患者的临床资料进行分析㊂结果 C J D 临床特征为进行性痴呆㊁共济失调㊁肌阵挛㊂脑电图的周期性尖-慢复合波,核磁共振皮层异常高信号(缎带征)以及脑脊液中的14-3-3蛋白均支持该病的诊断㊂结论 C J D 在脑电图㊁核磁共振及脑脊液中具有典型的特征㊂尤其是核磁共振的弥散成像,作为一种无创的检测手段具有较高的敏感度和特异度㊂关键词:脊髓疾病;痴呆;磁共振成像;脑电描记术;脑脊液中图分类号:R 744 文献标志码:A 文章编号:1004-583X (2017)04-0331-05d o i :10.3969/j.i s s n .1004-583X.2017.04.014C r e u t z f e l d t -J a c o bd i s e a s e --t w o c a s e s a n d l i t e r a t u r e r e v i e wQ i a oQ i ,W a n g H u i j u a n ,Z h a n g L i m i a o ,Y u eZ a n ,W a n g B i n gl e i ,B i a nX i n D e p a r t m e n t o f N e u r o l o g y ,t h eS e c o n d H o s p i t a l o f H e b e iM e d i c a lU n i v e r s i t y ,S h i j i a z h u a n g 050000,C h i n a C o r r e s p o n d i n g a u t h o r :W a n g H u i j u a n ,E m a i l :h j w a n gd o r @163.c o m A B S T R A C T :O b je c t i v e T o e x p l o r e t h e p a t h o g e n e s i s ,e t i o l o g i c a l s u b t y p e ,c l i n i c a lm a n if e s t a t i o n ,c e r e b r o s p i n a l f l u i d (C S F )c h a r a c t e r s ,m ag n e t i cr e s o n a n c e i m a g i n g (M R I )f i n d i n g s ,e l e c t r o e n c e ph a l o g r a m (E E G )c h a n g e sa n ddi a gn o s i s c r i t e r i a o fC r e u t z f e l d t -J a c o bd i s e a s e (C J D ).M e t h o d s A n a l y s i sw a sm a d e i n t h e c l i n i c a l d a t ao f t w oC J D p a t i e n t s f r o m t h eh o s p i t a l .R e s u l t s C J D s h o w e dt h ec l i n i c a l m a n i f e s t a t i o n p r e d o m i n a n t l y o f p r o gr e s s i v e d e m e n t i a ,a t a x i aa n d m y o c l o n u s .O c c u r r e n c e o f p e r i o d i cs h a r p w a v ec o m p l e x e s (P S W C s )i nE E G ,h y p e r i n t e n s es i g n a l c h a n g e s i nc o r t i c a l r e g i o n s (c o r t i c a l r i b b o n i n g )i n M R I ,a n d p r o t e i n14-3-3i nC F Ss u b s t a n t i a t e a l l s u p p o r t e d t h ed i a gn o s i s .C o n c l u s i o n C J Dh a st y p i c a lc h a r a c t e r so fE E G ,M R Ia n d C F S .S p e c i a l l y ,d i f f u s i o n w e i g h t e di m a g i n g m a y b ean o n -i n v a s i v e s c r e e n i n g t o o lw i t hh i g h e r s e n s i t i v i t y a n d s p e c i f i c i t y.K E Y W O R D S :s p i n a l c o r dd i s e a s e ;d e m e n t i a ;m a g n e t i c r e s o n a n c e i m a g i n g ;e l e c t r o e n c e p h a l o g r a p h y ;c e r e b r o s pi n a l f l u i d克雅氏病(C r e u t z f e l d t -J a c o bd i s e a s e ,C J D )又称皮质-纹状体-脊髓变性㊁亚急性海绵状脑病等,是由朊蛋白感染所致的一种进展性㊁致死性中枢神经系统变性病㊂该病较为罕见,每年发病率约为百万分之一[1],但进展迅速且致死率高,因而早期诊断十分重要㊂现报道我院收治的2例C J D 患者的临床资料并进行文献回顾㊂1 临床资料1.1 例1 患者,女,67岁,回族,退休教师㊂主因头晕㊁进行性记忆力下降㊁行走不稳1月余于2016年8月5日入院㊂患者于2016年7月3日出现头晕,后逐渐出现记忆力下降㊁行走不稳,7月14日就诊于当地医院行头颅磁共振成像(M R I ):左侧基底节多发腔隙性缺血灶,诊断为缺血性脑血管病,给予抗血小板㊁改善循环㊁营养神经等治疗,于住院期间出现失眠㊁情绪低落㊁不愿与人交流㊁反应迟钝㊁词不达意㊁注意力不集中等症状,7月26日患者出院㊂后逐渐出现行走困难,智力及记忆力明显下降(不会算数㊁不认识周边亲人),双手不自主动作增多,以右侧为著,生活不能自理,8月5日就诊于我院㊂既往高血压㊁冠心病病史㊂入院查体:一般生命体征平稳,心肺腹查体未见明显异常㊂神经系统查体:神清,语利,反应迟钝,记忆力㊁定向力差,双手不自主运动,四肢肌力V -级,四肢肌张力稍高,右侧共济运动检查欠稳准,余查体未见明显异常㊂入院后完善血常规㊁尿常规㊁便常规㊁生化全项㊁凝血常规㊁甲状腺功能5项㊁女性肿瘤全项㊁自身抗体㊁全腹+盆腔C T 平扫均未见明显异常㊂2016年8月7日行头颅DW I (图1a ):颅内未见明显弥散受限信号㊂2016年8月8日行腰椎穿刺术,脑脊液常规㊁生化㊁细胞学均未见明显异常,自身免疫性脑炎相关抗体均为阴性㊂2016年8月10日行视频脑电图(图2)检查示:重度异常,在以左侧前头部为主导联可见大量高幅2~4H z 棘㊃133㊃‘临床荟萃“ 2017年4月5日第32卷第4期 C l i n i c a l F o c u s ,A pr i l 5,2017,V o l 32,N o .4Copyright ©博看网. All Rights Reserved.慢㊁尖慢㊁三相波呈间隔0.8~1秒类周期样长程发放㊂2016年8月11日患者精神异常(无明显原因打人),后逐渐出现面部表情减少,言语不能,吞咽困难,双上肢屈曲,肌张力明显增高,双手偶有不自主抖动,不能行走,大小便失禁,情绪紧张,易受惊吓等症状㊂2016年8月19日复查头颅DW I (图1b ,1c)示:左侧尾状核头部及左侧扣带回后部可见稍高信号㊂2016年8月21日患者嗜睡,叫醒后与外界无交流,眼球不追物,对疼痛刺激无反应㊂2016年8月24日再次行腰椎穿刺术,并送脑脊液至中国疾病预防控制中心病毒病预防控制所朊病毒病室,检测结果为:14-3-3蛋白阳性,P R N P 基因序列分析未出现突变,129位氨基酸多态性为M /M 型,219氨基酸多态性为E /E ㊂2016年8月27日患者自动出院㊂随访2个月后死亡㊂图1 头颅D W I 序列a .2016-08-07头颅D W I 序列未见明显弥散受限信号;b .2016-08-19头颅D W I 序列可见左侧尾状核头部;c .左侧扣带回后部稍高信号图2 E E G 以左侧前头部为主导联可见大量高幅2~4H z 棘慢㊁尖慢㊁三相波呈间隔0.8~1秒类周期样长程发放1.2 例2 患者,女,49岁,汉族,农民㊂主因记忆力下降伴行走不稳1月余,意识不清14天于2015年12月10日入院㊂患者于2015年10月下旬逐渐出现记忆力下降㊁行走不稳,伴阵发性双手感觉异常,伴被害妄想,伴失眠㊁头矒㊁耳鸣,2015年11月26日出现意识不清,偶有大喊大叫,就诊于当地医院,行头颅M R I 示双侧尾状核及双侧额顶叶异常信号,诊断为脑器质性精神障碍,并转入我院㊂既往体健㊂查体:一般生命体征平稳,心肺腹查体未见明显异常㊂神经系统查体:意识模糊,双上肢可见不自主运动,四肢肌张力增高,双侧巴氏征阴性,余查体欠合作㊂入院后完善血常规㊁尿常规㊁便常规㊁凝血常规㊁生化全项㊁自身抗体㊁术前4项㊁甲状腺功能游离5项均未见明显异常㊂女性肿瘤全项示:神经元特异性烯醇化酶63.64μg /L ,铁蛋白246.90μg/L ㊂风湿4项:C -反应蛋白20m g /L ㊂血沉77mm /1h ㊂2015年12月14日行视频脑电图检查(图3):重度异常,癫痫样异常放电 全部导联可见大量高至极高幅2~5H z 慢波㊁棘慢㊁尖慢复合波;在以前头部为著导联可见高幅2~5H z 三相波㊁三相尖波呈间隔0.8~1秒周期性长程或持续性发放㊂2015年12月15日复查头颅M R I (图4):双侧尾状核及额顶枕皮层散在带状弥散受限高信号㊂2015年12月16日行腰椎穿刺术,并送脑脊液至中国疾病预防控制中心病毒病预防控制所朊病毒病室,检测结果为:常规㊁生化㊁细胞学未见明显异常,14-3-3蛋白阳性,I g G 寡克隆区带弱阳性,P R N P 基因序列分析未出现突变,129位氨基酸多态性为M /M 型,219氨基酸多态性为E/E ㊂2015年12月19日患者自动出院㊂随访3个月后死亡㊂㊃233㊃‘临床荟萃“ 2017年4月5日第32卷第4期 C l i n i c a l F o c u s ,A pr i l 5,2017,V o l 32,N o .4Copyright ©博看网. All Rights Reserved.图3 头颅D W I序列双侧尾状核及额顶枕皮层散在带状弥散受限高信号图4 E E G 全部导联可见大量高至极高幅2~5H z 慢波㊁棘慢㊁尖慢复合波;在以前头部为著导联可见高幅2~5H z 三相波㊁三相尖波呈间隔0.8~1秒周期性长程或持续性发放2 讨 论朊蛋白病(p r i o nd i s e a s e s )又称可传播性海绵状脑病(t r a n s i m i s s i b l es p o n g i f o r m e n c e p h a l o pa t h i e s ,T S E s),是一类感染人类和动物的致死性的神经退行性疾病[2]㊂而C J D 是目前已明确的人类朊蛋白病中最常见的类型㊂由C r e u t z f e l d t 和J a k o b 在1920~1921年首次报道而得名[3]㊂该病好发于50~70岁人群,男女均可发病,感染后潜伏期为4~30年,C J D 患者病死率高达100%,绝大多数发病1年内死亡,平均存活时间为6个月[4]㊂本院收治的2例患者存活时间分别为3月及4个月,符合现有文献报道㊂细胞表面正常朊蛋白(P r P C )是由人类20号染色体上朊蛋白基因(P R N P )所编码,由253个氨基酸组成,可以被蛋白酶K (P K )完全水解[5]㊂自身基因突变㊁翻译错误㊁感染外源性朊病毒均可导致正常朊蛋白(P r P C )错误折叠形成一种不能被P K 完全水解的异常朊蛋白(P r P S c ),大量P r P S c 沉积形成斑块,致使神经元死亡和星形胶质细胞增生,摧毁中枢神经系统,形成海绵状脑病[6]㊂C J D 主要分为4种类型[7]:①散发型C J D (s p o r a d i cC J D ,s C J D ):最常见,占C J D 总发病人数的85%~90%,一般认为与P r P 基因突变及P r P C自发转变为P r P S c 有关;②家族性遗传型C J D(f a m i l i a rC J D ,f C J D ):占C J D 的5%~15%,由P r P基因突变所致;③医源性C J D (i t r o g e n i cC J D ,i C J D ):占C J D 的1%左右,由医疗行为引起的感染所致;④变异型C J D (v a r i a n tC J D ,v C J D ):由于食用罹患牛海绵状脑病(B S E )的动物所致㊂P r P 基因第129号密码子上存在基因多态性,可编码甲硫氨酸(M )/缬氨酸(V )㊂此外,P r P S c 可被P K 水解形成分子质量为21000的片段(1型)和19000的片段(2型)㊂因此,P a r c h i 等[8]依据基因多态性位点和蛋白水解片段不同又将s C J D 分为MM 1㊁MM 2㊁MV 1㊁MV 2㊁V V 1以及V V 26个亚型㊂而研究显示129位纯合子比杂合子更易患s C J D [9-10],219位等位基因纯合子对C J D可能是一种保护[11-12]㊂本院收治的2例患者P R N P基因序列分析未出现突变,均为s C J D ,129位氨基酸多态性均为M /M 型,219均为E /E ,型符合我国汉族人群129㊁219位等位基因分布特点㊂C J D 的临床表现多种多样,常见的有快速进展性痴呆㊁视觉障碍㊁肌阵挛㊁锥体或锥体外系症状㊁行为异常,其中痴呆㊁共济失调㊁肌阵挛是C J D 最常见的3个症状[13]㊂此外,约有33%的患者在出现痴呆前数周至数月可有疲劳㊁头痛㊁睡眠紊乱㊁眩晕㊁体重下降㊁疼痛㊁抑郁㊁行为改变等前驱症状[14]㊂大多数晚期表现为无动性缄默㊂上述2例患者主要症状均为进行性痴呆,例1首发症状为头晕,例2首发症状为记忆力下降㊂㊃333㊃‘临床荟萃“ 2017年4月5日第32卷第4期 C l i n i c a l F o c u s ,A pr i l 5,2017,V o l 32,N o .4Copyright ©博看网. All Rights Reserved.C J D的辅助检查主要包括脑电图㊁头颅M R I㊁脑脊液生物标记检测等,但该病诊断的金标准仍是组织病理学检查㊂①国外研究显示E E G诊断C J D的特异度91%,敏感度64%[15]㊂s C J D典型的E E G改变为周期性尖-慢复合波(p e r i o d i cs h a r p w a v e c o m p l e x e s,P S W C s)㊂其E E G的异常随病情进展而变化:早期可见基本节律的慢化;中期表现为弥漫性对称或不对称或局灶性的慢波,额部间隙性节律性三相波,间隙性节律性δ波,典型的P S W C s;后期P S W C s可消失,代之以低平脑电活动或α样波[16]㊂但P S W C s往往在s C J D病程的中晚期(发病3.7个月后)才出现[17],对早期诊断不敏感;且部分患者始终不出现P S W C s,其阳性率与P R N P基因的多态性有关,主要见于s C J D的MM1和MV1中[18],在其他亚型及v C J D中很少出现㊂②研究表明,头颅MR I,尤其是DW I对C J D早期具有很高的敏感度(92.3%)和特异度(93.8%)[19]㊂DW I高信号最早出现在起病后3周,早于E E G的P S W C s㊁C S F的14-3-3蛋白检测阳性[20],甚至比痴呆㊁肌阵挛症状出现更早㊁更敏感[19]㊂DW I表现为沿皮层条带样分布的异常高信号( 花边征 ),和(或)基底节区(尾状核㊁壳核㊁丘脑枕)高信号㊂疾病初期异常高信号可能为单侧性,后可发展至双侧,而疾病终末期异常信号可能减少甚至消失㊂张家堂等[21]通过比较2例患者先后2次头颅DW I结果,推测这种异常信号最先㊁最容易表现在皮层区域,而后表现在基底节区,而基底节区的异常信号持续时间最长㊂此外,DW I可帮助鉴别v C J D及s C J D,前者异常信号多见于尾状核,而后者多见于丘脑部位( 曲棍球杆征 )[22]㊂本院收治的2例患者中,例1为左侧尾状核高信号,例2为双侧尾状核高信号及皮层 花边征 ,均支持s C J D的诊断㊂③脑脊液生物标记检测中最常见的为14-3-3蛋白,其敏感度及特异度分别为95%和28%[23]㊂该蛋白为快速神经细胞破坏的生物标志物,并无朊蛋白疾病相关特异性,阿尔茨海默病㊁大面积脑梗死㊁脑膜脑炎等神经损伤性疾病也可引起脑脊液14-3-3蛋白升高[24]㊂此外,还有实时振动诱导转化(r e a l-t i m e q u a k i n g i n d u c e dc o n v e r s i o n,R T-Q U I C)技术以及P r P基因筛查等检测手段,但侵入性脑组织活检仍为目前唯一一种能够确诊的方法,其典型的三联征为海绵状空泡变性㊁神经元缺失和星形胶质细胞增生[25]㊂1998年WHO公布了C J D的诊断标准:①在2年内发生的进行性痴呆;②肌阵挛㊁视觉或小脑体征㊁锥体系或锥体外系体征㊁无动性缄默;③E E G有周期性同步性放电或C S F中14-3-3蛋白阳性;④常规检查㊂具备以上3项可诊断为很可能C J D;仅具备①㊁②两项诊断为可能C J D;脑组织活检可确诊㊂然而,随着医疗技术的发展,这一标准的局限性逐渐体现出来㊂2009年欧洲C J D-M R I协会在WHO的基础上增加了影像学标准:DW I或F L A I R上基底节区异常高信号或者皮质区至少2处异常髙信号考虑C J D[26]㊂2015年M a n i x等[17]在此基础上拟订了新的诊断标准:纳入了基因亚型分析的结果,并且将C J D的确诊标准拓展为标准的神经病理学技术和(或)免疫组织化学诊断,和(或)构象依赖性免疫测定方法(C D I)确诊P r P阳性,和(或)脑脊液或鼻拭子R T-Q u I C检测阳性㊂该标准对许多表现不典型的患者同样适用,也避免因活检可能带来的危险㊂尽管对C J D的了解逐步深入,但目前该病仍无有效的治疗方法,临床多为对症及支持治疗㊂有学者提出阻止P r P C转化为P r P S c将成为治疗的靶点[27]㊂参考文献:[1] L a d o g a n aA,P u o p o l o M,C r o e sE A,e ta l.M o r t a l i t y f r o mC r e u t z f e l d t–J a k o bd i s e a s ea n dr e l a t e dd i s o r d e r s i nE u r o p e,A u s t r a l i a,a n dC a n a d a[J].N e u r o l o g y,2005,64(9):1586-1591.[2] P r u s i n e r S B.P r i o n s[J].P r o c N a t lA c a dS c iU S A,1998,95(23):13363-13383.[3] F i n k e n s t a e d t M,S z u d r a A,Z e r rI,e ta l.M Ri m a g i n g o fC r e u t z f e l d t-J a k o bd i s e a s e[J].R a d i o l o g y,1996,199(3):793-798.[4] P a l sP,V a n E v e r b r o e c k B,S c i o tR,e ta l.A r e t r o s p e c t i v es t u d y o f C r e u t z f e l d t-J a k o b d i s e a s ei n B e l g i u m[J].E u r JE p i d e m i o l,1999,15(6):517-519.[5] L i a oY C,L e b oR V,C l a w s o nG A,e t a l.H u m a n p r i o n p r o t e i nc D N A:m o l e c u l a r c l o n i n g,c h r o m o s o m a l m a p p i n g,a n db i o l o g ic a l i m p l i c a t i o n s[J].S c i e n c e,1986,233(4761):364-367.[6] B r o w nK,M a s t r i a n n i J A.T h e p r i o nd i s e a s e s[J].JG e r i a t rP s y c h i a t r y N e u r o l,2010,23(4):277-298.[7]丁曼,卢祖能.C r e u t z f e l d t-J a k o b病非侵入性诊断方法研究新进展[J].中国神经免疫学和神经病学杂志,2016,23(4):283-286.[8] P a r c h i P,G i e s eA,C a p e l l a r i S,e t a l.C l a s s i f i c a t i o n o f s p o r a d i cC r e u t z f e l d t-J a k o bd i s e a s eb a s e do n m o l e c u l a ra n d p h e n o t y p i ca n a l y s i s o f300s ub j ec t s[J].A n n N e u r o l,1999,46(2):224-233.[9] H o u X S,G a o C,Z h a n g B Y,e t a l.C h a r a c t e r i s t i c s o fp o l y m o r p h i s mo f129t ha m i n oa c i d i nP R N Pa m o n g H a na n dU i g h u rC h i n e s e[J].C h i nJE x p e r i m e nC l i n V i r o l,2002,16(2):105-108.[10] C h e nC,W a n g J C,S h i Q,e t a l.A n a l y s e s o f t h e s u r v i v a l t i m ea n d t h ei n f l u e n c i n g f a c t o r s o fc h i n e s e p a t i e n t s w i t h p r i o n㊃433㊃‘临床荟萃“2017年4月5日第32卷第4期 C l i n i c a l F o c u s,A p r i l5,2017,V o l32,N o.4Copyright©博看网. All Rights Reserved.d i se a s e s b a s e do n t h e s u r v e i l l a n c e d a t af r o m2008–2011[J].P L o SO n e,2013,8(5):e62553.[11]S h i b u y aS,H i g u c h iJ,S h i n RW,e ta l.P r o t e c t i v e p r i o np r o t e i n p o l y m o r p h i s m s a g a i n s t s p o r a d i c C r e u t z f e l d t-J a k o bd i se a s e[J].L a n c e t,1998,351(9100):419.[12] K o b a y a s h iA,T e r u y aK,M a t s u u r aY,e t a l.T h e i n f l u e n c e o fP R N P p o l y m o r p h i s m so nh u m a n p r i o nd i s e a s es u s c e p t i b i l i t y:a nu p d a t e[J].A c t aN e u r o p a t h o l,2015,130(2):159-170.[13] K n i g h tR S,W i l lR G.P r i o nd i s e a s e s[J].JN e u r o lN e u r o s u r gP s y c h i a t r y,2004,75(S u p p l1):i36-42.[14] R a b i n o v i c iG D,W a n g P N,L e v i nJ,e ta l.F i r s t s y m p t o mi ns p o r a d i cC r e u t z f e l d t-J a k o bd i s e a s e[J].N e u r o l o g y,2006,66(2):286-287.[15]S t e i n h o f f B J,Z e r rI,G l a t t i n g M,e ta l.D i a g n o s t i cv a l u eo fp e r i o d i c c o m p l e x e si n C r e u t z f e l d t-J a k o b d i s e a s e[J].A n nN e u r o l,2004,56(5):702-708.[16] A s a iY,S h i m o d a M,S a s a k iK,e ta l.A l p h a-l i k ea c t i v i t y i nt e r m i n a l s t a g eo fC r e u t z f e l d t-J a k o bd i s e a s e[J].A c t a N e u r o l S c a n d,2001,104(2):118-122.[17] M a n i x M,K a l a k o t iP,H e n r y M,e ta l.C r e u t z f e l d t-J a k o bd i se a s e:u p d a t e dd i a g n o s t i c c r i t e r i a,t r e a t m e n t a l g o r i t h m,a n dt h e u t i l i t y o f b r a i nb i o p s y[J].N e u r o s u r g F o c u s,2015,39(5): E2.[18] Z e r r I,S c h u l z-S c h a e f f e r W J,G i e s eA,e t a l.C u r r e n t c l i n i c a ld i a g n o s i s i n C re u t zf e l d t-J a k o b d i s e a s e:i d e n t i f i c a t i o n o fu n c o mm o nv a r i a n t s[J].A n nN e u r o l,2000,48(3):323-329.[19]S h i g aY,M i y a z a w aK,S a t oS,e t a l.D i f f u s i o n-w e i g h t e dM R Ia b n o r m a l i t i e s a s a ne a r l y d i a g n o s t i cm a r k e r f o rC r e u t z f e l d t–J a k o bd i s e a s e[J].N e u r o l o g y,2004,63(3):443-449.[20] M u r a t a T,S h i g a Y,H i g a n o S,e t a l.C o n s p i c u i t y a n de v o l u t i o nof l e s i o n s i n C r e u t z f e l d t-J a k o bd i s e a s ea td i f f u s i o n-w e i g h t e d i m a g i n g[J].A J N R A mJN e u r o r a d i o l,2002,23(7): 1164-1172.[21]张家堂,蒲传强,贾渭泉,等.C r e u t z f e l d t J a k o b病磁共振弥散加权像与临床表现及脑电图一致性的研究[J].中华神经医学杂志,2006,5(2):188-191.[22] M a c f a r l a n eR G,W r o eS J,C o l l i n g eJ,e ta l.N e u r o i m a g i n gf i n d i ng si nh u m a n p ri o n d i s e a s e[J].J N e u r o l N e u r o s u r gP s y c h i a t r y,2007,78(7):664-670.[23] H a m l i nC,P u o t iG,B e r r i S,e t a l.Ac o m p a r i s o no f t a ua n d14-3-3p r o t e i n i n t h e d i a g n o s i s o f C r e u t z f e l d t-J a k o b d i s e a s e[J].N e u r o l o g y,2012,79(6):547-552.[24] G e s c h w i n d M D.P r i o n d i s e a s e s[J].C o n t i n u u m(M i n n e a pM i n n),2015,21(6N e u r o i n f e c t i o u sD i s e a s e):1612-1638. [25]S a n c h e z-J u a nP,G r e e n A,L a d o g a n a A,e ta l.C S Ft e s t s i nt h ed i f f e r e n t i a ld i a g n o s i s o f C r e u t z f e l d t-J a k o b d i s e a s e[J].N e u r o l o g y,2006,67(4):637-643.[26] Z e r r I,K a l l e n b e r g K,S u mm e r sD M,e ta l.U p d a t e dc l i n i c a ld i a g n o s t i c c r i te r i af o rs p o r a d i cC r e u t z f e l d t-J a k o bd i s e a s e[J].B r a i n,2009,132(10):2659-2668.[27] M a r a n d iY,F a r a h i N,S a d e g h i A,e ta l.P r i o n d i s e a s e s-c u r r e n t t h e o r i e sa nd p o te n t i a l t h e r a p i e s:ab r i e fr e v i e w[J].F o l i aN e u r o p a t h o l,2012,50(1):46-49.收稿日期:2016-11-08编辑:﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏武峪峰(上接第330页)[12]苏柱泉,魏晓群,钟长镐,等.良性气管狭窄158例病因及介入治疗疗效分析[J].中华结核和呼吸杂志,2013,36(9):651-654.[13]S t a u f f e r J L,O l s o n D E,P e t t y T L.C o m p l i c a t i o n s a n dc o n s e q u e n c e so fe nd o t r a c he a l i n t u b a t i o na n dt r a c h e o t o m y.Ap r o s p e c t i v e s t u d y o f150c r i t i c a l l y i l l a d u l t p a t i e n t s[J].A mJM e d,1981,70(1):65-76.[14] Z i a sN,C h r o n e o u A,T a b b a MK,e ta l.P o s tt r a c h e o s t o m ya n d p o s t i n t ub a t i o nt r ac h e a l s t e n o s i s:r e p o r to f31c a s e sa n dr e v i e wo f t h e l i t e r a t u r e[J].B M CP u l m M e d,2008,8:18.[15] H e a dJ M.T r a c h e o s t o m y i nt h e m a n a g e m e n to fr e s p i r a t o r yp r o b l e m s[J].NE n g l JM e d,1961,264:587-591. [16] M e a d e J W.T r a c h e o t o m y--i t s c o m p l i c a t i o n s a n d t h e i rm a n a g e m e n t.As t u d y o f212c a s e s[J].NE n g l JM e d,1961, 265:519-523.[17]陈愉,伍惠仪,李时悦.局部注射曲安奈德结合常规介入方法治疗难治性良性中央气道狭窄疗效及安全性的初步探讨[J].中华结核和呼吸杂志,2012,35(6):415-418.[18]李冬妹,王洪武.中央型气道良性狭窄的狭窄类型分析及气管镜介入治疗[J].国际呼吸杂志,2013,33(22):1700-1703.[19] T e n d u l k a rR D,F l e m i n g P A,R e d d y C A,e t a l.H i g h-d o s e-r a t ee n d o b r o n c h i a l b r a c h y t h e r a p yf o rr e c u r r e n ta i r w a y o b s t r u c t i o nf r o m h y p e r p l a s t i cg r a n u l a t i o nt i s s u e[J].I n tJR a d i a t O n c o lB i o l P h y s,2008,70(3):701-706.[20]S i m p s o nC B,J a m e sJ C.T h ee f f i c a c y o fm i t o m y c i n-Ci nt h et r e a t m e n t o fl a r y n g o t r a c h e a l s t e n o s i s[J].L a r y n g o s c o p e, 2006,116(10):1923-1925.[21] B j o r l i n g G,J o h a n s s o nD,B e r g s t r o mL,e t a l.T o l e r a b i l i t y a n dp e r f o r m a n c e o fB I Pe n d o t r a c h e a l t u b e sw i t hn o b l em e t a l a l l o yc o a t i n g--ar a nd o m i ze d c l i n i c a l e v a l u a t i o n s t u d y[J].B M CA n e s t h e s i o l,2015,15:174.[22]张丽,杨文航,肖盟,等.2010年度卫生部全国细菌耐药监测网报告:I C U来源细菌耐药性监测[J].中华医院感染学杂志, 2012,22(1):34-38.[23] P a l m e rL B,S m a l d o n e G C.R e d u c t i o no fb a c t e r i a lr e s i s t a n c ew i t h i n h a l e da n t i b i o t i c s i nt h ei n t e n s i v ec a r eu n i t[J].A m JR e s p i rC r i tC a r eM e d,2014,189(10):1225-1233.收稿日期:2016-11-30编辑:王秋红㊃533㊃‘临床荟萃“2017年4月5日第32卷第4期 C l i n i c a l F o c u s,A p r i l5,2017,V o l32,N o.4Copyright©博看网. All Rights Reserved.。

脑机融合控制中脑电伪迹处理方法

脑机融合控制中脑电伪迹处理方法
适应的沉浸式交互和融合⑶.目前,这种BCIC/BMIC已成为国际前沿研究热点,研究旨在变革传统的人机 交互和融合方式,提高人类的生活质量.这类BCIC/BMIC系统的典型控制信号源Electroencephalo­ gram, EEG),其在头皮采集,每个电极的记录值是大量神经元电活动的综合结果⑷.尽管该采集方法无 创、设备便携,价格不昂贵,其时间分辨率高适合实时控制,然而EEG信号信噪比低、空间分辨率低、含有 强的伪迹(如眼动伪迹、肌动伪迹、电极移动和线路噪声等),这给BCIC/BMIC中脑电信号的处理带来了巨 大的挑战⑸.
作者简介:熊馨(1984 -),女,博士,讲师.主要研究方向:脑机接口及其应用.E-maU:xiongxin840826@ 163. com 通信作者:伏云发(1969 -),博士,教授.主要研究方向:脑信息处理与脑机交互融合控制.E -maU:£y£@ ynu. edu. cn
第3期
熊 馨,杨秋红,周建华,等:脑机融合控制中脑电伪迹处理方法
中图分类号:TP391 文献标志码:A
文章编号:1007 -855X(2021)03 -0056 - 15
Removing Artifacts from EEG for Brain - Machine Integration Control
XIONG Xin1, YANG Qiuhong1, ZHOU Jianhua1, XU Baolei2, LI Yongcheng2, YIN Xuxian2, FU Yunfa1
1脑电中存在的伪迹
脑电信号是一种非线性非平稳性的中枢神经电生理信号,具有丰富的节律活动(其常用的频带范围为 0 ~30 Hz,gamma波则高于30 Hz),并且其瞬变响应中也含有丰富的波形信息(如幅值、潜伏期和相位等事 件相关电位(Event - related potentials, ERPs)信息),它们隐含着一定的神经科学含义,可表征大脑功能的 动态变化.

聚苯胺膜在还原过程中的电性质变化与气敏性能之间的关系

聚苯胺膜在还原过程中的电性质变化与气敏性能之间的关系

华中科技大学博士学位论文摘要研究聚苯胺膜氧化还原过程中电性质变化是共轭导电聚合物材料领域的一个基础性课题。

然而,由于这一过程的复杂性,尽管国内外学者提出了许多理论模型试图圆满解释这一现象,虽然得出了一些定性结论,却始终无法进行定量描述。

本论文采用改进的双阶跃方法研究聚苯胺膜在还原过程中的电性质变化。

研究发现,主体膜电容与电阻随还原时间延长和/或还原电位负移而变化,并且在还原阶段计时电流曲线中出现了肩峰,这表明聚苯胺膜为两阶段还原过程。

在吸收输渗理论模型与电化学激励构型松弛理论模型优点的基础上,提出一种改进的异相模型,并运用该理论模型较满意地解释了上述实验结果。

这种新模型克服了上述两种模型可能遇到的困难,不仅能定量解释聚苯胺膜在还原过程中的电性质变化,还能合理描述聚苯胺膜还原过程中膜内两相分离的产生与发展及其对膜电性质的影响。

利用改进的双阶跃方法研究了在乙腈溶液中,聚苯胺还原过程中膜电阻与注入膜内还原电量之间的相互关系,并探讨了不同掺杂剂对该过程的影响。

膜电阻与还原电量间关系表现为S-型曲线。

基于本论文提出的异相模型中建立的数学模型,可以求得聚合物电还原过程的临界还原电量Q c,Q c的物理意义为聚苯胺膜内形成连续的部分还原相所需要的最小还原消耗电量。

实验结果表明,掺杂阴离子对Q c值的大小有很大的影响,用十二烷基苯磺酸掺杂的聚苯胺膜相对用高氯酸掺杂的聚苯胺膜具有更小的Q c;当膜内注入的还原电量大于Q c时,导电聚苯胺膜电阻将显著增加。

因此,Q c越小表示聚苯胺膜对还原(或脱杂)越灵敏,这预示着十二烷基苯磺酸掺杂的聚苯胺膜对碱性或还原性气体有更良好的敏感能力。

使用概念传感器,我们证实了十二烷基苯磺酸掺杂的聚苯胺膜传感器相对高氯酸掺杂的聚苯胺膜对低浓度氨气的响应更高。

最后,我们采用一种动电位扫描来调整聚苯胺的链结构,并在乙腈溶液中观察到一种独特的循环伏安行为。

当电位扫描在一较窄的电位窗口内(对应于乙腈溶液中的聚苯胺在完全还原态与中间氧化态间转换的第一对氧化还原峰),在循环伏安图中,表示聚苯胺由完全还原态转变为中间氧化态的阳极峰发生了分裂。

脑电图采集技术现状及临床采集基本技能

脑电图采集技术现状及临床采集基本技能

引言脑电图(Electroencephalography ,EEG )是通过医用电极记录下来的脑细胞群的自发性、节律性电活动[1-2]。

通常提到的EEG 是指头皮EEG ,实际上是头皮电位差与时间之间的关系图。

EEG 是评价脑功能状态的一个敏感指标,现已广泛应用于中枢神经系统疾病及精神性疾病的诊断,也用于心理学和认知科学等领域的研究[3]。

尽管高分辨率的解剖和功能成像技术发展日新月异,但在癫痫的诊断和治疗中EEG 始终是其他无创检查无法替代的重要检查工具[4]。

与各种影像学检查相比,EEG 更加抽象晦涩,不易理解和掌握[5]。

EEG 仪是放大并记录脑电信号的仪器,输入阻抗、共模抑制比、带宽、采样率等都是放大器的关键指标,目前关于脑电设备的研究相对较少,而脑电设备采集和使用对科研和临床应用上又至关重要,本文旨在介绍脑电采集技术的国内外现状,并帮助零基础的脑电人员初步掌握这门技术。

1 脑电采集技术的国内外现状当前,应用于临床监测的视频EEG 仪品牌繁多,就科研领域而言,国外的脑电采集系统主要包括美国EGI 公司、NeuroScan 公司和德国Brain Products 公司,以上三个品牌的EEG 仪采集精度都相对较高[6-7],因此广泛应用在认知科学研究领域。

就临床监测而言,国内大型三甲医院比较常用的EEG 设备以进口品牌为主,常见的放大器品牌包括日本Nihon Kohden 、美国Nicolet 、意大利Micromed 等,目前也有很多国内公司生产EEG 仪,其中以北京云深科技、北京新拓、上海海神、成都智能、南京伟思等为代表,但国产EEG 放大器的综合性能还是略低于国外的品牌。

脑电图采集技术现状及临床采集基本技能周晓霞1,遇涛1,张鑫2,张国君1,杜薇1,李勇杰11. 首都医科大学宣武医院 功能神经外科,北京市功能神经外科研究所,北京 100053;2. 中国科学院自动化研究所 脑网络组研究中心,北京 100190[摘 要] 脑电图(Electroencephalogram ,EEG )信号采集设备是放大和记录脑电信号的仪器。

心脑电图机使用中常见干扰及排除对策

心脑电图机使用中常见干扰及排除对策

维修工程205①西安交通大学第一附属医院国有资产管理办公室 陕西 西安 710061作者简介:王惟,男,(1985- ),本科学历,主管技师,从医疗设备维护维修、固定资产管理等工作。

[文章编号] 1672-8270(2020)12-0205-03 [中图分类号] R197.39 [文献标识码] BCommon interference and elimination countermeasures in the application of ECG-EEG/WANG Wei, ZHANG Yong, ZHOU Hang-xu//China Medical Equipment,2020,17(12):205-207.[Abstract] Electrocardiogram-electroencephalogram (ECG-EEG) can objectively and completely record the potential difference that generated on the body surface by the heart or brain activity, and provide basis for the diagnosis of clinical diseases. And the changes that didn’t come from the heart or brain activity in ECG-EEG were called as “false difference” (Interference), and the quality of wave figuration of ECG-EEG could directly affect the judgment of doctors on the body mass parameters of patients. Therefore, the analysis of signal source that interfered the usage of ECG-EEG from two aspects included the intra and external of machine and the summary of the countermeasures that eliminated interference have positive significance in increasing the accuracy of the diagnosis of clinical disease and promoting the application of ECG-EEG in clinical work.[Key words] Electrocardiogram-electroencephalogram (ECG-EEG); Interference; Elimination measure[First-author’s address] The State-owned Assets Management Office, First Affiliated Hospital of Xi'an Jiaotong University, State-owned Assets Management Office, Xi'an 710061, China.[摘要] 心脑电图机(ECG-EEG)可客观完整地记录心脏或大脑活动时所产生在身体表面的电位差,为临床疾病诊断提供依据,而临床将并非由心脏或大脑活动而引发心脑电图上的改变称之为“伪差”(即干扰),心脑电图波形的质量直接影响医生对患者体质参数等的判断。

癫痫患者血清HMGB1、TLR4_及IL-1β水平的变化及其对病情严重程度的评估价值

癫痫患者血清HMGB1、TLR4_及IL-1β水平的变化及其对病情严重程度的评估价值

癫痫患者血清HMGB1、TLR4及IL-1β水平的变化及其对病情严重程度的评估价值李芳1,贾晶晶2,蒋建华31.武警陕西省总队医院检验科,陕西西安710054;2.陕西省第二人民医院检验科,陕西西安710068;3.陕西省森工医院神经内科,陕西西安710300【摘要】目的观察癫痫患者血清高迁移率族蛋白B1(HMGB1)、Toll 样受体4(TLR4)及白介素1β(IL -1β)水平的变化,并探讨其对患者病情严重程度的评估价值。

方法选取2019年6月至2022年6月武警陕西省总队医院收治的108例癫痫患者作为研究组,另选取同期健康体检无重大疾病的40例人群作为对照组,比较两组受检者的血清HMGB1、TLR4及IL -1β水平。

根据脑电图检查评估研究组患者的病情严重程度,将研究组患者进一步分为轻度组、中度组和重度组,比较不同病情程度患者的血清HMGB1、TLR4及IL -1β水平,并采用受试者工作特征曲线(ROC)分析血清HMGB1、TLR4联合IL -1β评估癫痫患者病情严重程度的临床价值。

结果研究组患者的血清HMGB1、TLR4及IL -1β水平分别为(8.86±1.47)ng/L 、(4.57±1.25)ng/L 、(3.69±1.04)ng/L ,明显高于对照组的(1.09±0.44)ng/L 、(0.82±0.31)ng/L 、(0.51±0.17)ng/L ,差异均有统计学意义(P <0.05);重度组患者的血清HMGB1、TLR4及IL -1β水平最高,中度组次之,轻度组最低,其中重度组水平明显高于轻度组,差异有统计学意义(P <0.05),但轻度组和中度组比较差异无统计学意义(P >0.05);经ROC 分析结果显示,血清HMGB1评估重度癫痫患者的最佳截断值为9.560ng/L ,TLR4为4.725ng/L ,IL -1β为4.025ng/L ,3项指标联合评估重度癫痫患者的AUC 及敏感度均高于单一指标诊断(P <0.05)。

脑电图结果和脑干听觉诱发电位与急性脑干梗死患者吞咽功能障碍的关系探讨

脑电图结果和脑干听觉诱发电位与急性脑干梗死患者吞咽功能障碍的关系探讨

脑电图结果和脑干听觉诱发电位与急性脑干梗死患者吞咽功能障碍的关系探讨林红① 【摘要】 目的:探讨急性脑干梗死患者吞咽功能障碍与脑电图结果和脑干听觉诱发电位之间的关系。

方法:将2021年1月—2023年4月在厦门市仙岳医院接受治疗的80例急性脑干梗死患者纳入为观察组,并选取同期健康体检者80例纳入为对照组,纳入的160例研究对象均接受脑电图及脑干听觉诱发电位检查。

分析两组脑干听觉诱发电位、脑电图检查异常率并进行组间比较;比较不同脑干听觉诱发电位表现的脑梗死患者吞咽困难及预后情况;比较不同脑电图表现的脑梗死患者吞咽困难及预后情况;比较不同预后情况的脑梗死患者脑干听觉诱发电位检查Ⅰ波、Ⅲ波、Ⅴ波、Ⅰ-Ⅲ波、Ⅲ-Ⅴ波。

结果:观察组脑电图和脑干听觉诱发电位异常率均高于对照组(P<0.05)。

与脑干听觉诱发电位异常患者比较,正常患者改良Rankin量表问卷(mRS)预后良好、吞咽困难情况较轻(P<0.05);与脑电图异常患者比较,正常患者吞咽困难情况较轻(P<0.05)。

脑干听觉诱发电位检查预后良好患者Ⅰ波、Ⅲ波、Ⅴ波、Ⅰ-Ⅲ波、Ⅲ-Ⅴ波均低于预后不良患者(P<0.05)。

结论:脑电图和脑干听觉诱发电位检查异常患者的预后情况较差,吞咽功能障碍情况较为严重。

【关键词】 急性脑干梗死 脑电图 脑干听觉诱发电位 吞咽功能障碍 Exploration of the Relationship between Electroencephalography Results and Brainstem Auditory Evoked Potential and Swallowing Dysfunction in Patients with Acute Brainstem Infarction/LIN Hong. // Medical Innovation of China, 2024, 21(09): 134-138 [Abstract] Objective: To explore the relationship between swallowing dysfunction, electroencephalography results and brainstem auditory evoked potentials in patients with acute brainstem infarction. Method: From January 2021 to April 2023, 80 patients with acute brainstem infarction who were treated in Xiamen Xianyue Hospital were included as the observation group, and 80 cases of healthy physical examination during the same period were included as the control group, and 160 included subjects underwent electroencephalography and brainstem auditory evoked potential examination. The abnormal rate of brainstem auditory evoked potential and electroencephalography were analyzed and compared between the two groups; dysphagia and prognosis of patients with cerebral infarction with different brainstem auditory evoked potentials were compared; dysphagia and prognosis in patients with cerebral infarction with different electroencephalography findings were compared; Ⅰ wave, Ⅲ wave, Ⅴ wave, Ⅰ-Ⅲ wave, and Ⅲ-Ⅴ wave of cerebral infarction patients with different prognosis by brainstem auditory evoked potentials examination were compared. Result: The abnormal rate of Electroencephalography and brainstem auditory evoked potential in the observation group were higher than those in the control group (P<0.05). Compared with patients with abnormal brainstem auditory evoked potentials, the modified Rankin scale questionnaire (mRS) were better prognosis and milder swallowing difficulties in normal patients (P<0.05). Compared with patients with abnormal electroencephalogram, swallowing difficulties were milder in normal patients (P<0.05). Ⅰ wave, Ⅲ wave, Ⅴ wave, Ⅰ-Ⅲ wave and Ⅲ-Ⅴ wave in patients with good prognosis brainstem auditory evoked potential examination were lower than those in patients with poor prognosis (P<0.05). Conclusion: The prognosis of patients with abnormal electroencephalography and brainstem auditory evoked potential is poor, and swallowing dysfunction is serious. [Key words] Acute brainstem infarction Electroencephalography Brainstem auditory evoked potential Swallowing dysfunction①厦门市仙岳医院(厦门医学院附属仙岳医院;福建省精神医学中心;福建省精神疾病临床医学研究中心)脑功能检测室 福建 厦门 361000通信作者:林红- 134 - 急性脑干梗死吞咽功能障碍是一种非常危险的疾病,如果不及时治疗可能会带来生命危险。

脑电波及其采集方法

脑电波及其采集方法

数字信号处理论文题目:脑电波及其采集方法学院:信息科学与技术学院专业:电子信息科学与技术姓名:彭娟学号:03292014年11月4日脑电波及其采集方法彭娟成都理工大学,成都,610059摘要:脑电图(electroencephalogram, EEG)是通过电极记录下来的脑细胞群的自发性、节律性电活动,它包含了大量的生理与病理信息,是神经系统机能检查方法之一。

脑电图反映了大脑组织的电活动及大脑的各种功能状态,其基本特征包括振幅、周期、相位等。

工频干扰是脑电信号的主要干扰,传统的50hz工频干扰虽然有一定的作用,但存在耗费高和通用性差等缺点,50hz 陷波器可以解决这个问题。

关键词:脑电波;脑电信号分类;50Hz陷波器中图分类号:Brain waves and its acquisition methodPeng JuanChengdu university of technology,Chengdu,610059Abstract: EEG (electroencephalogram, EEG) was recorded by electrode group of spontaneity, rhythmic electrical activity of brain cells, it contains a large number of physiological and pathological information, is one of the nervous system function test method. Electroencephalogram (eeg) to reflect the electrical activity of brain tissue and the functions of brain state, its basic features include amplitude, phase and cycle, etc. Power frequency interference is the main point of brain electric signal interference, traditional 50 hz power frequency interference, although have certain effect, but the high cost and poor generality, 50 hz trap can solve this problem.Key words: Brain waves. Eeg classification; 50 hz trap脑电波介绍脑电图(electroencephalogram, EEG)是通过电极记录下来的脑细胞群的自发性、节律性电活动,它包含了大量的生理与病理信息,是神经系统机能检查方法之一。

脑电双频指数麻醉深度监测系统的工作原理及常见故障处理

脑电双频指数麻醉深度监测系统的工作原理及常见故障处理

维修工程192 ZHONGGUO YIXUEZHUANGBEI①首都医科大学附属北京同仁医院医学工程处 北京 100176*通信作者:*************作者简介:王志伟,女,(1985- ),本科学历,助理工程师,从事医院医疗设备维修保养工作。

[文章编号] 1672-8270(2023)09-0192-03 [中图分类号] R197.39 [文献标识码] BWorking principle and common troubleshooting of bispectral index anesthesia depth monitoring of electroencephalogram/WANG Zhi-wei, YANG Xiao-yu, ZHANG En-ping//China Medical Equipment,2023,20(9):192-194.[Abstract] The structural composition and working principle of bispectral index (BIS) anesthesia depth monitoring system were analyzed, the structure and functional characteristics of sensor electrode, signal collector, processing host and display were described respectively. Through the cause analysis and troubleshooting of typical faults such as signal detection, interference noise, calibration processing, etc., a troubleshooting method with standardized fault identification, comprehensive troubleshooting content, and accurate detection of circuit components was formed to improve the quality of monitoring the depth of anesthesia in clinical surgical patients.[Key words] Bispectral index (BIS); Electroencephalogram (EEG); Depth of anesthesia; Electrode patch; Signal processing[First-author’s address] Department of Medical Engineering, Beijing T ongren Hospital, Capital Medical University, Beijing 100176, China.[摘要] 分析脑电双频指数(BIS)麻醉深度监测系统的结构组成和工作原理,分别阐述传感器电极、信号采集器、处理主机和显示器的结构和功能特点,通过信号检测、干扰噪声、校准处理等典型故障的原因分析和排查处理,形成故障识别规范、排查内容全面、电路部件检测准确的故障处理方法,以提高临床手术患者麻醉深度的监测质量。

病毒性脑炎的预后影响因素

病毒性脑炎的预后影响因素

病毒性脑炎的预后影响因素摘要】目的:研究病毒性脑炎的预后危险因素。

方法:回顾性分析132例病毒性脑炎的临床资料,对其预后行单因素相关分析,将得出的有相关性的单因素代入二分类多变量logistic回归模型进行多因素分析。

结果:年龄、精神症状、脑脊液压力增高、脑脊液白细胞数增多、脑电图中重度异常、CT异常6个因素与预后有相关性,经多因素logistic回归分析则仅年龄、精神症状、脑电图中重度异常为病毒性脑炎预后的相关危险因素。

【关键词】病毒性脑炎预后危险因素【中图分类号】R742 【文献标识码】A 【文章编号】1672-5085(2013)51-0016-03prognostic risk factors of viral encephalitis【Abstract】 Objective: This study was undertaken to learn prognostic risk factors of viral encephalitis. Methods: clinical data of 132 patients with encephalitis were analyzed retrospectively. First we study single factor of relevant analysis , then make the relevance of single factor into Binary multivariate logistic regression model for multivariate analysis. Results: single factor study of viral encephalitis found that age, psychiatric symptoms, increased cerebrospinal fluid pressure, cerebrospinal fluid white blood cell count, severe abnormal electroencephalogram, CT abnormalities six factors were relevant with prognosis. by multivariate logistic regression analysis there only age, psychiatric symptoms, severe abnormal electroencephalogram were prognostic risk factors of viral encephalitis.【Key words】 viral encephalitis prognostic risk1 资料与方法1.1 研究对象选取大连医科大学附属第一医院及丹东市中心医院2009年至2013年间于神经内科住院,诊断为中枢神经系统感染的临床病例资料132例。

基于脑电小波指数的人工智能给药系统的临床应用=何士凤,朱泽飞,张婉月,杨贯宇,郑红雨,孙振涛

基于脑电小波指数的人工智能给药系统的临床应用=何士凤,朱泽飞,张婉月,杨贯宇,郑红雨,孙振涛

应用研究基于脑电小波指数的人工智能给药系统的临床应用何士凤,朱泽飞,张婉月,杨贯宇,郑红雨,孙振涛△摘要:目的评估基于脑电小波指数的人工智能给药系统在临床中应用的可行性和安全性。

方法入选择期行腹腔镜结直肠癌根治术患者52例,以随机数字表法分为人工智能给药组(IT组)和手动调节组(CT组)。

IT组在麻醉诱导和维持阶段均由人工智能给药系统基于脑电小波指数自动调节瑞芬太尼和丙泊酚输注速率。

CT组在麻醉诱导和维持阶段均采用恒速泵来手动调节瑞芬太尼和丙泊酚输注速率。

2组均设定目标镇静指数(WLi)、镇痛指数(PTi)为40~60。

记录患者术中瑞芬太尼和丙泊酚用药剂量、干预调节的次数;记录患者诱导前(T0)、诱导后(T1)、手术开始即刻(T2)、手术开始后1h(T3)、手术结束时(T4)的心率(HR)、平均动脉压(MAP)、血压差(ΔP);记录术中给予血管活性药物的剂量、麻醉结束后拔管时间、术后麻醉恢复室(PACU)停留时间、不同血压水平持续时间占总手术时长的百分比、术中不良事件和术后7d内的并发症。

结果与CT组相比,IT组术中丙泊酚的用量及干预调节次数明显降低(P<0.05);IT组术中低血压总占比及血管活性药物使用剂量明显低于CT组(P<0.05);2组术中不良事件发生率及术后7d内并发症发生率差异无统计学意义(P>0.05)。

结论基于脑电小波指数的人工智能给药系统可以减少术中丙泊酚的用量,降低术中低血压的发生率,减轻麻醉医师的工作负担,且不增加并发症的发生率,可安全用于腹腔镜结直肠癌根治术的患者。

关键词:人工智能;深度镇静;镇痛;低血压;手术后并发症;脑电小波指数中图分类号:R614文献标志码:A DOI:10.11958/20211775Clinical application of automated titration guided by EEG wavelet indexHE Shifeng,ZHU Zefei,ZHANG Wanyue,YANG Guanyu,ZHENG Hongyu,SUN Zhentao△Department of Anesthesiology,Pain and Perioperative Medicine,the First Affiliated Hospital of Zhengzhou University,Zhengzhou450052,China△Corresponding Author E-mail:*****************Abstract:Objective To evaluate the feasibility and safety of automated administration guided by electroencephalogram(EEG)wavelet index in clinical application.Methods A total of52patients underwent laparoscopic colorectal cancer surgery were selected and divided into the artificial intelligence administration group(IT group)and the manual adjustment group(CT group)by random number table.In the IT group,the infusion rates of remifentanil and propofol were automatically adjusted by automated administration based on EEG wavelet index during anesthesia induction and maintenance.In the CT group,constant speed pumps were used to manually adjust the infusion rates of remifentanil and propofol during induction and maintenance of anesthesia.The target sedation index(WLi)and pain threshold index(PTi) were set at40-60in the both groups.Intraoperative doses of remifentanil and propofol and manual adjustment were recorded.Mean arterial pressure(MAP),blood pressure difference(ΔP)and heart rate(HR)were recorded before induction (T0),after induction(T1),immediately after surgery(T2),1h after surgery(T3)and at the end of surgery(T4).The intraoperative dose of vasoactive drugs,extubation time after anesthesia,the duration of postoperative anesthesia recovery room(PACU),the percentage of different blood pressure levels in the total operative duration and intraoperative adverse events and complications within7days after surgery were recorded.Results Compared with the CT group,the amount of intraoperative propofol and manual adjustment was significantly decreased in the IT group(P<0.05).There were no significant differences in the incidence of intraoperative adverse events and complications within7days after operation between the two groups(P>0.05).Conclusion The automated administration guided by EEG wavelet index can reduce the amount of intraoperative propofol,reduce the incidence of intraoperative hypotension and reduce the workload of 基金项目:河南省医学教育研究项目(Wjlx2019017);河南省医学科技攻关计划项目(2018010006);河南省卫生系统出国研修项目计划(2016021)作者单位:郑州大学第一附属医院麻醉与围术期医学部(邮编450052)作者简介:何士凤(1994),女,硕士在读,主要从事肺保护与人工智能大数据分析方面研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Electroencephalogram processing using neural networksClaude Robert a,b,*,Jean-Franc ¸ois Gaudy b ,Aime´Limoge a aLaboratoire d’E´lectrophysiologie,Universite ´Paris 5-Rene ´Descartes,1rue Maurice Arnoux,92120Montrouge,France bLaboratoire d’Anatomie Fonctionnelle,Universite´Paris 5-Rene ´Descartes,1rue Maurice Arnoux,92120Montrouge,France Accepted 23January 2002AbstractThe electroencephalogram (EEG),a highly complex signal,is one of the most common sources of information used to study brain functionand neurological disorders.More than 100current neural network applications dedicated to EEG processing are presented.Works are categorized according to their objective (sleep analysis,monitoring anesthesia depth,brain-computer interface,EEG artifact detection,EEG source-based localization,etc.).Each application involves a specific approach (long-term analysis or short-term EEG segment analysis,real-time or time delayed processing,single or multiple EEG-channel analysis,etc.),for which neural networks were generally successful.The promising performances observed are demonstrative of the efficiency and efficacy of systems developed.This review can aid researchers,clinicians and implementors to understand up-to-date interest in neural network tools for EEG processing.The extended bibliography provides a database to assist in possible new concepts and idea development.q 2002Elsevier Science Ireland Ltd.All rights reserved.Keywords :Electroencephalogram;Neural network;Review1.IntroductionSince the pioneer work of Berger (1929),the electroen-cephalogram (EEG)has become a proven source of infor-mation for clinicians and researchers.Early on,EEG analysis was restricted to visual inspection of EEG records.The development of electrical devices combined with the Fast Fourier Transform algorithm,oriented EEG analysis in terms of spectral components.During the 1970s,the intro-duction of micro-computer technology in medicine and biology revolutionized approaches to EEG processing.New methods of signal and data analysis as well as increas-ing powers of computing,provide improved tools to record and analyze the EEG.Among new computing tools,neural networks have been successfully employed to process EEG signals in order to study brain mechanisms by using multi-ple approaches.This paper presents a spectrum of neural network applications in EEG processing.An extended bibliography is included.2.Artificial neural networksArtificial neural networks (ANNs)are computational tools utilizing a combination of many elementary processing units (cell).Each unit is connected to a number of network units toprocess information by transfer function.The relationship between the input and the output determine network beha-vior.Contrary to conventional computing methods,ANNs are ‘trained’to produce desired the input-output relationship.During the training (learning)phase,examples of data are presented to the network and,using a learning algorithm,the parameters are tuned to adjust network behavior.According to available knowledge of the problem,and the objective of the operator,the learning procedure employed can be either ‘supervised’,‘unsupervised’,or both.The supervised learn-ing procedure is performed with pairs of known input-output patterns while unsupervised learning consists of presenting training examples to the network input and the network orga-nizes itself progressively to reach maximal separation between the naturally occurring classes of examples.The principal applications of ANNs have been in the area of pattern recognition.The pattern is turned into a feature vector used as ANN input,and the output is interpreted as identify-ing the input to be a member of one of a number of classes of possible inputs.An important quality of neural networks (referred to as generalization)is that when they are correctly trained,neural networks can appropriately process data that have not been used for training.The most popular neural networks used are multilayer perceptrons which are generally supervised-trained with the error back-propagation algorithm (Rumelhart et al.,1986).One major property of these networks is their ability to find non-linear surfaces separating the underlayingClinical Neurophysiology 113(2002)694–701CLINPH 2001553*Corresponding author.Tel.:133-1-5807-6798;fax:133-1-5807-6899.E-mail address:claude.robert@odontologie.univ-paris5.fr (C.Robert).patterns which is generally considered as an improvement on conventional methods.Radial basis function(RBF)network is a particular class of multilayer networks(Poggio and Girosi,1989)in which learning occurs usually in two stages,learning in the hidden layer(usually by an unsupervised bottom-up self-organizing method such as k-means clustering)followed by the output layer(a top-down supervised method such as least squares estimation).RBF networks present two important advan-tages:finding the input to output map using local approx-imators,and rapid learning requiring fewer examples.An other popular class of networks is the self-organizing map,or Kohonen-network(Kohonen,1988).A Kohonen network consists of two fully connected-unit layers.The output layer is generally ordered in a low-dimensional framework(a one-dimensional array or a two-dimensional matrix)of units.The objective is to build a map where units of an area are activated when inputs with similar character-istics are presented.Among the other popular networks are adaptive reso-nance theory(ART)networks and their derivates(ART1, ART2,fuzzy ART,etc.)(Carpenter and Grossberg,1992) and Hopfield models(Hopfield,1982).One quality of neural networks is that they can be consid-ered as non-linear statistical method.Nevertheless,a large amount of data are required to overcome the existing non-linearities in the data structure.As this condition is not always fulfilled in electroencephalography,it restricts the applications of neural networks in many cases.Further developments and details concerning neural networks theory and implementation are available in the literature(Kohonen,1988;Freeman and Skapura,1991; Hertz et al.,1991;Zurada,1992),and in medicine and biol-ogy reviews(Miller et al.,1992;Algaver et al.,1994;Sabba-tini,1996).3.EEG-artifact processingDetection and rejection of artifacts in the EEG is a diffi-cult and unpleasant task for which few neural network systems have been developed(Sadasivan and Dutt,1994; Wu et al.,1994a;Clochon et al.,1992;Durka et al.,1996; Riddington et al.,1996;Herrmann,1997;Saastamoinen et al.,1998;Bogacz et al.,1999;Vasko et al.,2000).The main result is the heterogeneous accuracies of the systems devel-oped.The treatment of EEG artifacts will probably become a primordial problem with increasing automation of signal processing.Though this unavoidable task cumulates diffi-culties,early positive results are encouraging signs for future applications.4.EEG data compressionA need for EEG compression is justified by the need for high accuracy measurements,long-term measurements,transmission of data in telemedicine or the lack of special equipment for storing voluminous datafiles.Nevertheless, the complexity of the EEG waveforms is the reason for few attempts at EEG compression.Preliminary studies invol-ving neural networks have been performed(Bargiotti et al.,1993;Battiti et al.,1995;Krajca et al.,1997).When high compression rates(from50to80%)were obtained (Battiti et al.,1995),further investigation was necessary to confirm the plausibility of neural network EEG compres-sion.5.EEG-based source localizationOne method useful in understanding brain dynamics and clinical diagnosis of brain abnormalities is EEG based source localization which involves localization of intracra-nial sources using EEGs by means of optimization techni-ques such as iterative methods.Once a neural network is trained,it no longer requires iterations,and is able to capture non-linear dynamics of the source localization problem, while maintaining the noise robustness essential to EEG analysis.The error position in source localization was less than5%for all investigations(Abeyratne et al.,1991,2001; Yuasa et al.,1998;Zhang et al.,1998;Van Hoey et al., 2000;Sun and Sclabassi,2000;Tun et al.,2000).While iterative methods(Levenberg-Marquardt algorithm)some-time provide better results than neural networks in the noise free situation,neural network methods perform better at low signal to noise ratios which is more realistic(Tun et al., 2000).Work is expected to continue in this promisingfield.6.Basic EEG processing(systems tested on healthy subjects,not patients)This paragraph includes applications in which investiga-tors focused on extracting information from EEG records without testing the system on patients.Some of the various ANN-based systems developed were aimed at detecting specific graphoelements:K-complex waves(Bankman et al.,1992),identification of EEG spikes or sleep spindles (Bankman et al.,1992;Reddy and Korrai,1992;Huuponen et al.,2000),or recognition of topographic patterns of EEG spectra(Emiliani and Frietman,1994;Joutsiniemi et al., 1995).Performances(correct recognition)of these systems varied from69(Emiliani and Frietman,1994)to89% (Bankman et al.,1992;Joutsiniemi et al.,1995)with a low rate(,8%)of false positive(Bankman et al.,1992; Huuponen et al.,2000).In another approach,the develop-ment of ANN-based tools to analyze evoked potentials was the challenge.When investigations were performed on simulated data(Uncini et al.,1990;Dumitras et al.,1994), most of the ANN-based systems were developed using data from evoked potentials recorded on healthy subjects.Some were concerned with visual evoked potential analysis(Van der Kouwe and Cilliers,1995;Fung et al.,1996;Laskaris etC.Robert et al./Clinical Neurophysiology113(2002)694–701695al.,1997;Fung et al.,1999;Leistritz et al.,1999a;Hoffmann et al.,2001),others were designed to analyze auditory evoked potentials(Bruha and Madhavan,1989;Bruha et al.,1990;Fung et al.,1999)or study somatosensory evoked potentials(Liberati,1991).Other systems were developed to analysis EEG records during cognitive processes on healthy subjects(Flexer et al.,1995;Lange et al.,2000). Though the performances of these systems are inhomo-geneous both intrinsically and in their presentation,a global positive appreciation emerges.Most of these systems need further investigation before operational applicability can be integrated in a clinical setting.7.Sleep studiesAmong the different parameters employed in sleep studies to establish hypnograms,the information carried by the EEG is of prime importance in determining the state of vigilance of the subject under consideration.The tedious and time consuming task required to build hypno-grams has generated development of new tools for clinicians and researchers.As the construction of hypnograms consists in associating thousands of epochs,to an appropriate state of vigilance,investigators have naturally made use of neural networks to enable correct processing of new data(general-ization).These systems studied sleep either in cat(Mamelak et al.,1991),rat(Robert et al.,1996)or human(Principe and Tome,1989;Pfurtscheller et al.,1992a;Roberts and Taras-senko,1992;Schaltenbrand et al.,1993;Gro¨zinger et al., 1995;Pardey et al.,1996;Sykacek et al.,1997;Baumgart-Schmitt et al.,1997;Stewart et al.,1999).Performance of these systems was inversely proportioned to the number of classes discriminated:the system trained to discriminate3 states in the rat(wake,slow wave sleep and paradoxical sleep)presented high global accuracy(.95%)(Robert et al.,1996)while global accuracy ranging from61to80% was observed in the system to discriminate7classes(wake, movement,sleep stage1,sleep stage2,sleep stage3/4, paradoxical sleep and artifacts)in babies(Pfurtscheller et al.,1992a).Though they do not provide optimal results, these systems have been successfully used in the clinical environment(Roberts and Tarassenko,1995;Gro¨zinger et al.,1995;Schaltenbrand et al.,1996)and in experimental conditions(Mamelak et al.,1991;Robert et al.,1999). These various applications demonstrate pertinency of neural networks in developing sleep staging systems.Readers interested in these applications are invited to read a synthetic publication(Robert et al.,1998).8.Monitoring depth of anesthesia or patients under sedation in the intensive care unitMonitoring patients in intensive care units or patients under anesthesia is anotherfield in which the EEG can provide clinical information of the state of the central nervous system.Recently,several EEG processing neural network-based systems have been proposed for monitoring anesthesia depth(Shuter et al.,1994;Krkic et al.,1996; Sharma and Roy,1997;Nayak and Roy,1998;Huang et al.,1999;Muthuswamy and Roy,1999;Zhang and Roy, 1999;Allen and Smith,2001;Zhang et al.,2001).Most of these investigations were performed at the Albany Medical College(NY,USA)on dogs under propofol(Huang et al., 1999;Zhang and Roy,2001),isoflurane(Nayak and Roy, 1998;Muthuswamy and Roy,1999;Zhang and Roy,1999) or halothane(Sharma and Roy,1997)anesthesia.Other investigations involving neural network-based systems were performed on humans(Allen and Smith,2001; Zhang et al.,2001).High degrees of performance(about 90%accuracy)characterize most of these studies(Krkic et al.,1996;Sharma and Roy,1997;Nayak and Roy, 1998;Huang et al.,1999;Muthuswamy and Roy,1999; Zhang and Roy,1999;Zhang et al.,2001).Other ANN-systems were developed to monitor sedation level of ICU critically ill patients(Veselis et al.,1991)or to detect EEG burst-suppression in patients under sedation(Leistritz et al., 1999b).Promising results encourage further investigation.9.Monitoring alterness and vigilanceAnother important application of EEG processing is the study of the time course of alterness and vigilance of opera-tors who perform monotonous but attention demanding tasks(air traffic controllers,lorry drivers,etc.).The objec-tive is to avoid potential accidents generated by decreased vigilance or cognitive impairment associated with intoxica-tion or fatigue using a real-time system which can continu-ously monitor vigilance,thereby preventing accidents caused by attention deficit.Using EEG recordings,several investigators developed neural network-based systems to assess the vigilance level of the subject under record(Belenky et al.,1994;Gulati et al.,1995;Koska et al.,1996;Makeig et al.,1996;Jouny, 1997;Jung et al.,1997;Kohlmorgen et al.,1997;Roberts et al.,2000).Most of these investigations are objective-oriented:assessment of alterness in the sleep-deprived subject(Belenky et al.,1994)or air-traffic controllers (Gulati et al.,1995),study of vigilance levels of subjects with chronic occupational chemical stress(Tuulik et al., 1997),detecting transition between different vigilance states (Jouny,1997;Kohlmorgen et al.,1997),or states of transi-ent cognitive impairments induced by mild acute intoxica-tion or fatigue(Gevins and Smith,1999).While some studies were performed on only one subject(Gulati et al., 1995;Kohlmorgen et al.,1997),optimistic conclusions encourage continued study.10.EpilepsyAnother domain of ANN-based system testing is theC.Robert et al./Clinical Neurophysiology113(2002)694–701 696study of epileptic phenomenon in the EEG to provide clin-ical information diagnosing,monitoring and managing related neurological disorders.The objective of many inves-tigators was to develop a system capable of detecting(Elo et al.,1992;Gabor et al.,1996;Pradhan et al.,1996;Webber et al.,1996;Varsta et al.,1997;Gabor,1998;Walczack and Nowack,2001)or predicting(Petrosian et al.,2000)seizure in the EEG.Other system goals were to detect epileptiform transient waveforms such as spikes and sharp waves typi-cally observed between seizures(Eberhart et al.,1989; Ozdamar et al.,1991;Gabor and Seyal,1992;Webber et al.,1994;Kalayaci and Ozdamar,1995;Jando et al.,1993; Park et al.,1998;Tarassenko et al.,1998;James et al.,1999; Kobayashi et al.,1999;Ko and Chung,2000).Among these investigations,some must be considered preliminary as EEG records used were from only a small number of patients(,10)(Elo et al.,1992;Pradhan et al.,1996;Varsta et al.,1997;Tarassenko et al.,1998;Kobayashi et al.,1999; Petrosian et al.,2000).Others were performed on a larger database(.20patients)(Ozdamar et al.,1992;Jando et al., 1993;Gabor et al.,1996;Webber et al.,1996;James et al., 1999;Ko and Chung,2000;Walczack and Nowack,2001) and were included in a continuum process of investigation (Ozdamar et al.1991,1992;Kalayaci and Ozdamar,1995; Ozdamar and Kalayaci,1998),(Webber et al.,1994,1996). Though the following facts:(i)numerous systems include simultaneous EEG-multichannel analysis(Ozdamar et al., 1991;Gabor et al.,1996;Park et al.,1998;James et al., 1999;Kobayashi et al.,1999);(ii)difficulties are often enhanced by the presence in the EEG of artifacts induced by eye blinking,movement activity or electrode displace-ment;and(iii)each group followed a personal strategy guided by their objective and their neural network tools approach;most of the ANN-based systems performed with a high level of accuracy(Ozdamar et al.,1991;Webber et al.,1996;Gabor,1998;Park et al.,1998;Tarassenko et al.,1998;Ko and Chung,2000).Positive results of the preliminary and prolonged studies should stimulate ANN research in epilepsy.11.Brain computer interfaceBrain computer interface(BCI),a new form of commu-nication using only EEG signals generated from different mental tasks without any other information source,has emerged.Its objective is to construct a system enabling severely physically disabled patients to communicate with their surroundings.Several groups focused their activity on this challenge using neural networks.Subjects are asked to performed mental tasks and the EEG is recorded during each task session and the neural network-based systems try to classify the EEG records into the correct mental task class.For10years,the G.Pfurtscheller’s group at the Department of Medical Informatics of Graz University of Technology in Austria has pursued BCI system research.One approach was to estimate the possibility of predicting the side of hand movements using EEG records prior to voluntary right or left hand movements(Pfurtscheller et al.,1992b;Masic and Pfurtscheller,1993;Peltoranta and Pfurtscheller,1994;Masic et al.,1996).In some studies (Pfurtscheller et al.,1992b;Masic and Pfurtscheller,1993; Flotzinger et al.,1994;Masic et al.,1996)classification rates were not very high(from51to83%).However classi-fication accuracies as high as85–90%were achieved in other studies(Peltoranta and Pfurtscheller,1994;Peters et al.,2001).In another approach,neural network-based systems were trained to classify movement intention of left and right indexfinger or the foot(Peters et al.1998) using EEG autoregressive model parameters.Correct recog-nition was achieved in83%of testing data.Other labora-tories have had promising results in building BCI systems utilizing neural networks(Anderson et al.,1995;Fukuda et al.,1995;Hiraiwa et al.,1997;Millan et al.,1998;Penny and Roberts,1999;Babiloni et al.,2000)with promising results.The future for neural network-based BCI systems is most promising.12.Other clinical applications12.1.Various clinical applications involving ANN-based systems are presentedANN-based systems were used to analysis continuous EEG to detect brain dysmaturity in newborns(Holthausen et al.,2000)and in children(Moreno et al.1995),while another study(on newborns)demonstrated the efficiency of neural networks in detecting hearing impairment through auditory evoked potential records(Sanchez et al.,1995). Using auditory event related potentials,some investigators were able to detect attention deficit hyperactivity disorder in children with a high classification rate(Dickhaus and Hein-rich,1997;Heinrich et al.,1999;Heinrich et al.,2001). Carried out on more than100patients,the analysis of visual evoked potential by ANN-based systems has been successful for discriminating between migraine,tension-type headache patients and normals(De Tommaso et al., 1997,1999),and for classification of neuroophtalmological disorders(Swiercz et al.,1997).Use of ANNs to classify head-injured(Gupta et al.1995),multiple sclerosis(Wu et al.1993,1994b),schizophrenic(Magdolen et al.,1996; Papadourakis et al.,1996;Sveinsson et al.,1997),or demen-ted(Anderer et al.,1994;Riquelme et al.,1996)patients from controls were also positive.Several groups have successfully built ANN-based systems for the discrimina-tion of other neurological disorders such as Huntington disease(Papadourakis et al.,1996;Jervis et al.,1999), Parkinson disease(Jervis et al.,1999),or Alzheimer disease (Polikar et al.,1997;Hibino et al.,2000;Petrosian et al., 2001)from normals.ANN Tools were also employed to discriminate depressed subjects from normals(MagdolenC.Robert et al./Clinical Neurophysiology113(2002)694–701697et al.,1996;Mitra et al.,1996)and to classify alcoholics (Klo¨ppel,1994).Only few attempts were performed in thefield of phar-macoelectroencephalography(Gevins et al.,1988;Echauz and Vachtsevanos,1994).These applications are representative of the potential and efficiency of neural networks for EEG data analysis in various clinical environments.13.ConclusionThis review demonstrates the importance that neural network studies have taken in medicine and biology invol-ving EEG signal processing.Positive results obtained in most applications presented show relevance for processing electroencephalograms.Of studies presented,some are no longer in use,others are pilot or preliminary studies with promising results,others are included in clinical projects in which neural networks are an essential component.Added to the development of neural network technology,these observations are encouraging for future‘EEG/neural networks’.AcknowledgementsThe authors wish to thank Robert M.Johnson(‘Bob l’Apache’)for his appreciable help with the English version of this article.ReferencesAbeyratne UR,Kinouchi Y,Oki H,Okada J,Shichijo F,Matsumoto K.Artificial neural networks for source localization in the human brain.Brain Topogr1991;4(1):3–21.Abeyratne UR,Zhang G,Saratchandran P.EEG source localization:a comparative study of classical and neural network methods.Int J Neural Syst2001;11(4):349–360.Algaver T,Smith TJ,Vijai F.The use of artificial neural networks in biomedical technologies:an introduction.Biomed Instrum Technol 1994;28:315–322.Allen R,Smith D.Neuro-fuzzy closed-loop control of depth of anaesthesia.Artif Intell Med2001;21:185–191.Anderer P,Saletu B,Kloppel B,Semlitsch HV,Werner H.Discrimination between demented patients and normals based on topographic EEG slow wave activity:comparison between z statistics,discriminant analysis and artificial neural network classifiers.Electroenceph clin Neurophysiol1994;91:108–117.Anderson CW,Devulapalli S,Stolz EA.EEG signal classification with different signal representations.In:Giros F,Makhoul J,Manalakos E, Wilson E,editors.Neural networks for signal processing V,Piscataway NJ:IEEE Service Center,1995.pp.475–483.Babiloni F,Carducci F,Cerutti S,Liberati D,Rossini PM,Urbano A, Babiloni parison between human and artificial neural network detection of Laplacian-derived electroencephalographic activity related to unilateral voluntary put Biomed Res2000;33:59–74.Bankman IN,Sigilliti VG,Wise RA,Smith PL.Feature-based detection of the K-complex wave in the human electroencephalogram using neural networks.IEEE Trans Biomed Eng1992;39(12):1305–1310.Bargiotti S,Bartolini F,Cappellini V,Mecocci A.EEG signal compression based on ADPCM and neural network predictors.Proc14th Colloque sur le Traitement du Signal et des Images,September13–16,Juan-les-pins,1993.pp.1287–1290.Battiti,Sartori A,Tecchiolli G,Tonella P,Zorat A.Neural compression:an integrated application to EEG signals.Proc Int Workshop on Applica-tions of Neural Networks to Telecommunications,Stockholm,1995.pp.210–217.Baumgart-Schmitt R,Hermann WM,Eilers R,Bes F.On the use of neural network techniques to analyze sleep EEG data.First communication: application of evolutionary and genetic algorithms to reduce the feature space and to develop classification rules.Neuropsychobiol 1997;36:194–210.Belenky G,Sing HC,Thomas ML,Shaham Y,Balwinski S,Redmond DP, Balkin TJ.Discrimination of rested from sleep-deprived EEG in awake normal humans by artificial neural network.Proc IEEE Int Conf Neural Networks,IEEE Piscataway,NJ,1994.pp.3521–3524.Berger H.Uber das elektrenkephalogramm des menschen.Arch Psychiatr NervKrankh1929;87:527–570.Bogacz R,Markowska-Kaczma U,Kozik A.Blinking artefact recognition in EEG signal using artificial neural network.Proc4th Conf Neural Network&Applications,Poland:Zakopane,1999.p.6.Bruha I,Madhavan bined syntax–neural net method for pattern recognition of evoked potentials.In:Janicki R,Koczkodaj WW, put and Information,North-Holland:Elsevier Science Publishers BV,1989.pp.361–369.Bruha I,Madhavan GP,Chong e of multilayer perceptron for recognition of evoked potentials.Int J Pattern Recog Artif Intell 1990;4(4):705–716.Carpenter GA,Grossberg S.A self-organizing neural network for super-vised learning,recognition,and prediction.IEEE Commun Mag1992 Sep;30:38–49.Clochon P,Perchey G,Couque C,Rebeyrolle H,Bloyet D,Etevenon P.Automatized classification by neural networks of EEG signals with artefact rejection.Proc14th Ann Int Conf IEEE Eng Med&Biol Soc,Lyon,France:Satellite Symosium on Neuroscience and Technol-ogy,1992.pp.51–55.De Tommaso M,Sciruicchio V,Bellotti R,Castellano M,Tota P,Guido M, Sasanelli G,Puca FM.Discrimination between migraine patients and normal subjects based on steady state visual evoked potentials:discri-minant analysis and artificial neural network classifier.Funct Neurol 1997;12(6):333–338.De Tommaso M,Sciruicchio V,Bellotti R,Guido M,Sasanelli G,Specchio LM,Puca F.Photic driving response in primary headache:diagnostic value testes by discriminant analysis and neural network classifiers.Ital J Neurol Sci1999;20:23–28.Dickhaus H,Heinrich H.EP parametrization and classification using wave-let networks–theoretical concept and medical application.Stud Health Technol Inf1997;43:541–545.Dumitras A,Murgan AT,Lazarescu V.A quantitative study of evoked potential estimation using feed forward neural network.In:Vlontzos J,Hwang J-N,Wilson E,editors.Proc of the1994IEEE Workshop on Neural Networks for Signal Processing Ermioni,Greece,Sept1994.pp.606–615.Durka P,Kiezyk R,Blinowska K.Neural networks and wavelet analysis in EEG artefact recognition.II Konferencja Siec Neuronowe CH Zasto-sowania szczyrk301V4V,1996.pp.6.Available at:http://brain.fuw.e-du.pi/~durka/pd_paper.html.Eberhart RC,Dobbins RW,Webber WRS.Casenet:a neural network tool for EEG waveform classification.Proc IEEE Symp Comput Based Med Sys,Minneapolis,MN,June25–27,1989.pp.60–68.Echauz J,Vachtsevanos G.Neural network detection of antiepileptic drugs from single EEG trace.Proc Electro94Int Conf Boston MA,May10–12, 1994.pp.346–351.Available at:/23783.html Elo P,Saarinen J,Varri A,Nieminen H,Kaski K.Classification of epileptic EEG by using self-organizing maps.In:Aleksander I,Taylor J,editors.Artificial neural networks2,Elsevier,1992.pp.1147–1150.C.Robert et al./Clinical Neurophysiology113(2002)694–701 698Emiliani GMM,Frietman EEE.Automatic classification of EEGs with neural networks.J Microelectron Syst Integr1994;1(1):41–62. Flexer A,Rappelsberger P,Dorffner G.Processing of EEG coherence maps with topologically correct feature maps.In:Eiselt M et al.,editors.‘Quantitative and topological EEG and EMG analysis’universitaets-verlag Jena,1995.pp.397–406.Flotzinger D,Pfurtscheller G,Neuper C,Berger J,Mohl W.Classification of non-averaged EEG data by learning vector quantization and the influence of signal preprocessing.Med Biol Eng Comput 1994;32:571–576.Freeman A,Skapura DM.Neural networks.Algorithms.Applications and programming techniques,Reading,MA:Addison-Wesley,1991. Fukuda O,Tsuji T,Kaneko M.Pattern classification of EEG signals using a log-linearized gaussian mixture neural network.Proc IEEE Int Conf Neural Networks,Perth Western Australia,27Nov–1Dec,1995.pp.2479–2484.Fung KSM,Chan FMY,Lam FK,Liu JG,Poon PWF.Visual evoked potential enhancement by artificial neural networkfilter.Biomed Mater Eng1996;6:1–13.Fung KSM,Chan FHY,Lam FK,Poon PWF.A tracing evoked potential estimator.Med Biol Eng Comput1999;37:218–227.Gabor AJ.Seizure detection using a self-organizing neural network:vali-dation and comparison with other detection strategies.Electroenceph clin Neurophysiol1998;107:27–32.Gabor AJ,Seyal M.Automated interictal EEG spike detection using arti-ficial neural networks.Electroenceph clin Neurophysiol1992;83:271–280.Gabor AJ,Leach RR,Dowla FU.Automated seizure detection using a self-organizing neural network.Electroenceph clin Neurophysiol1996;99: 257–266.Gevins AS,Smith ME.Detecting transient cognitive impairment with EEG pattern recognition methods.Aviat Space Environ Med1999;70(10): 1018–1024.Gevins AS,Stone RK,Ragsdale SD.Differentiating the effects of three benzodiazepines on non-REM sleep EEG spectra.Neuropsychobiology 1988;19:108–115.Gro¨zinger M,Ro¨schke J,Klo¨ppel B.Automatic recognition of rapid eye movement(REM)sleep by artificial neural networks.J Sleep Res 1995;4:86–91.Gulati,A,Jacobs D,Silan MN,Pope AT.Classification and prediction of electroencephalographic data with hybrid neural networks to analyze human-automation related-effects.Proc7th Int Conf Artif Intel& Expert Sys Appl November,1995.pp.449–454.Gupta L,Molfese D,Tammana R.An artificial neural network approach to ERP classification.Brain Cogn1995;27:311–330.Heinrich H,Dickhaus H,Rothenberger A,Heinrich V,Moll GH.Single-sweep analysis of event-related potentials by wavelet networks–meth-odological basis and clinical application.IEEE Trans Biomed Eng 1999;46(7):867–879.Heinrich H,Moll GH,Dickhaus H,Kolev V,Yordanova J,Rothenberger A.Time-on-task analysis using wavelet networks in an event-related potential study on attention-deficit hyperactivity disorders.Clin Neuro-physiol2001;112:1280–1287.Herrmann C.Symbolical reasoning about numerical data:a hybrid approach.Appl Intell1997;7:339–354.Hertz J,Kroch A,Palmer RG.Introduction to the theory of neural compu-tation,New York,Singapore,Milan,Paris:Addison&Wesley Publish-ing Company,1991.Hibino S,Hanai T,Nagata E,Matsubara M,Fukagawa K,Shirataki T, Honda H,Kobayashi T.An assessment system of dementia of Alzhei-mer type using artificial neural networks.In:Malmgren H,Borga M, Niklasson L,editors.Artificial neural networks in medicine and biol-ogy.Proc ANNIMAB-1Conference,Goteborg,Sweden13–16May 2000,Springer-Verlag2000.pp.180–185.Hiraiwa A,Uchida N,Shimohara K,Sonehara N.Neural network recogni-tion of electro-encephalogram patterns preceding voluntary movement.Electron Commun Jpn1997;80(7Part3):65–73.Hoffmann K,Leistritz L,Feucht M,Benninger F,Reiter D,Witte H.Iden-tification of the stimulated hemiretina in primary school children and adults based on left and right hemifield pattern reversal visual evoked potentials–a comparative study.Clin Neurophysiol2001;112:359–368.Holthausen K,Breidbach O,Scheidt B,Frenzel J.Brain dysmaturity index for automatic detection of high-risk infants.Pediatr Neurol2000;22: 187–191.Hopfield JJ.Neural systems and physical systems with emergent selective computational abilities.Proc Natl Acad Sci USA1982;79:2554–2558. Huang JW,Lu YY,Nayak A,Roy RJ.Depth of anesthesia estimation and control.IEEE Trans Biomed Eng1999;46(1):71–81.Huuponen E,Varri A,Himanen SL,Hasan J,Lehtokangas M,Saarinen J.Autoassociative MLP in sleep spindle detection.J Med Syst2000;24(3):183–193.James CJ,Jones RD,Bones PJ,Carroll GJ.Detection of epileptiform discharges in the EEG by a hybrid system comprising mimetic,self-organized artificial neural network,and fuzzy logic stages.Clin Neuro-physiol1999;110:2049–2063.Jando G,Siegel RM,Horvath Z,Buzsaki G.Pattern recognition of the electroencephalogram by artificial neural networks.Electroenceph clin Neurophysiol1993;86:100–109.Jervis BW,Garcia T,Giahnakis EP.Probabilistic simplified fuzzy ARTMAP(PSFAM).IEE Proc Sci Meas Technol1999;146(4):165–169.Jouny C.Electrophysiologie des e´tats de vigilance chez l’homme,France: Ph.D.Dissertation,University of Strasbourg,1997.p.201. Joutsiniemi SL,Kaski S,Larsen TA.Self-organizing map in recognition of topographic patterns of EEG spectra.IEEE Trans Biomed Eng 1995;42(11):1062–1068.Jung TP,Makeig S,Stensmo M,Sejnowski T.Estimating alterness from EEG power spectrum.IEEE Trans Biomed Eng1997;44(1):60–69. Kalayaci T,Ozdamar O.Wavelet preprocessing for automated neural network detection of EEG spikes.IEEE Eng Med Biol1995;Mar/ Apr:160–166.Klo¨ppel B.Classification by neural networks of evoked potentials.Neurop-sychobiol1994;29:47–52.Ko CW,Chung HW.Automatic spike detection via artificial neural network using raw EEG data:effects of data preparation and implica-tions in the limitations of online recognition.Clin Neurophysiol 2000;111:477–481.Kobayashi K,James CJ,Nakahori T,Akiyama T,Gotman J.Isolation of epileptiform discharges from unaveraged EEG by independent compo-nent analysis.Clin Neurophysiol1999;110:1755–1763. Kohlmorgen J,Muller KR,Rittweger J,Pawelzik K.Analysis of wake/ sleep EEG with competing experts.In:Gerstner W,Germond A,Hasler M,Nicoud JD,editors.Proc Int Conf Art Neural,LNCS1327,Berlin: Springer,1997.pp.1077–1082.Kohonen T.Self-organization and associative memory,Springer-Series in Information Sciences,8.Berlin:Springer-Verlag,1988.Koska M,Rosipal R,Konig A,Trejo LJ.Estimation of human signal detection performance from event-related potentials using feed-forward neural network model.Selected papers of2nd European IEEE Work-shop CMP’96,Boston:Birkhauser,1996.p.10.Krajca V,Principe JC,Petranek S.The dimensionality reduction and recon-struction of the multichannel EEG signals by self organized principal components analysis.In:Prochazka A,Uhlir J,Sovka P,editors.Signal analysis and prediction I,Eurasip,Prague:ICT Press,1997.pp.406–408.Krkic C,Roberts SJ,Rezek I,Jordan C.EEG-based assessment of anaes-thetic depth using neural networks.Proc IEE Colloquium Artif Intell Methods Biosignal Anal Apr1996;100:10/1–10/6.Lange D,Siegelmann HT,Pratt H,Inbar GF.Overcoming selective ensem-ble averaging:unsupervised identification of event-related brain poten-tials.IEEE Trans Biomed Eng2000;47(6):822–826.Laskaris N,Fotopoulos S,Papathanasopoulos P,Bezerianos A.Robust moving averages with Hopfield neural network implementation forC.Robert et al./Clinical Neurophysiology113(2002)694–701699。

相关文档
最新文档