天线原理与设计

合集下载

天线工作原理

天线工作原理

天线工作原理天线是无线通信系统中不可或缺的设备,它起到接收和发送无线信号的作用。

本文将详细介绍天线的工作原理及其相关知识。

一、天线的基本概念天线是将电信号转化为电磁波或将电磁波转化为电信号的设备。

它一般由导电材料制成,如金属,并根据特定的原理进行设计和调整。

天线可以分为接收天线和发射天线两种类型。

二、天线的工作原理天线的工作原理基于电磁波的发射和接收。

下面将分别介绍接收天线和发射天线的工作原理。

1. 接收天线的工作原理接收天线通过接收电磁波将其转化为电信号。

当电磁波经过天线时,它会激发天线中的电荷,产生电流。

这个电流会经过连接到天线的电路,从而实现信号的解调和放大。

最终,这个电信号可以被传递到无线接收器,用于进行进一步的处理和解码。

2. 发射天线的工作原理发射天线将电信号转化为电磁波,以便进行无线传输。

当电信号通过连接到天线的电路时,它会产生交变电流。

这个交变电流会导致天线上的电荷也发生交变,从而产生电磁波。

这些电磁波会在空间中传播,并被接收天线接收到。

同样地,接收天线会将电磁波转化为电信号,以进行进一步的处理和解码。

三、天线的优化设计为了提高天线的工作性能,可以进行一些优化设计。

下面列举一些常见的优化设计方法。

1. 天线长度调整:天线的长度对于接收和发射的频率有直接影响。

通过调整天线的长度,可以使其与所传输的频率匹配,从而提高效率。

2. 天线形状设计:天线的形状对于天线的辐射模式有重要影响。

通过设计合适的天线形状,可以实现不同方向的辐射或接收,以满足具体的通信需求。

3. 天线材料选择:天线的材料对于信号的传输和接收也有一定影响。

根据需要选择导电性能好、损耗小的材料,以提高天线的性能。

四、天线在无线通信中的应用天线广泛应用于各种无线通信系统中,包括移动通信、卫星通信、无线局域网等。

下面列举几个常见的应用场景。

1. 移动通信:天线用于手机、基站等设备中,将电信号转化为电磁波进行传输,以实现无线通信。

天线原理与设计—第六章口径天线和喇叭天线

天线原理与设计—第六章口径天线和喇叭天线

天线原理与设计—第六章口径天线和喇叭天线口径天线是一种特殊的天线,其工作原理是通过改变天线口径的大小以实现方向性辐射。

喇叭天线则是一种具有喇叭形状的天线,其主要功能是对电磁波进行聚焦或分散,从而实现天线的增益和波束的调控。

本章将介绍这两种天线的基本原理和设计方法。

6.1口径天线6.1.1口径天线的基本原理口径天线的基本原理是利用天线口径的大小来控制电磁波的发射和接收方向。

根据狄拉克定理,天线辐射的功率密度与天线口径的平方成正比。

因此,通过改变天线口径的大小,可以调整天线的辐射功率和波束的方向性。

一般情况下,口径天线的口径越大,辐射功率越大,波束的方向性越好。

6.1.2口径天线的设计方法口径天线的设计方法主要包括天线口径的确定和辐射模式的设计。

天线口径的确定需要考虑到工作频率、辐射功率和波束方向等参数。

一般情况下,口径天线的口径选取为波长的几倍,以保证天线的辐射效果和方向性。

辐射模式的设计则需要根据具体的应用要求,确定天线的辐射方式和波束的形状。

6.2喇叭天线6.2.1喇叭天线的基本原理喇叭天线是一种特殊形状的天线,其主要功能是将电磁波进行聚焦或分散,从而实现天线的增益和波束的调控。

喇叭天线的基本原理是利用喇叭形状的反射面将电磁波进行反射和聚集。

喇叭天线可以分为抛物面喇叭天线和双曲面喇叭天线。

抛物面喇叭天线主要用于聚焦电磁波,而双曲面喇叭天线主要用于分散电磁波。

6.2.2喇叭天线的设计方法喇叭天线的设计方法主要包括反射面的确定和波束的调控。

反射面的确定需要考虑到工作频率、波束宽度和聚焦距离等参数。

一般情况下,抛物面喇叭天线的反射面采用抛物线形状,双曲面喇叭天线的反射面采用双曲线形状。

波束的调控则需要通过反射面的形状和尺寸来实现,一般情况下,反射面的大小越大,波束的调控能力越好。

综上所述,口径天线和喇叭天线是一种特殊的天线,其工作原理是通过改变天线口径的大小和喇叭形状来实现方向性辐射和波束的调控。

口径天线通过改变天线口径的大小来控制电磁波的发射和接收方向,而喇叭天线则通过喇叭形状的反射面将电磁波进行聚焦或分散。

天线原理与设计—第一章天线参数

天线原理与设计—第一章天线参数

1.2 天线主要的特性参数
圆极化和椭圆极化
对于两个相互垂直的线极化波,当他们幅度相同 相位相差 90°是形成圆极化波,当他们幅度不同 的时候,则形成椭圆极化波。他们根据旋转方向 不同,又分为左旋和右旋。
1.2 天线主要的特性参数
天线的极化
• 当来波的极化方向与接收天线的极化方向不一致 时,接收到的信号都会变小,也就是说,发生极 化损失。 • 当接收天线的极化方向与来波的极化方向完全正 交时,例如用水平极化的接收天线接收垂直极化 的来波,或用右旋圆极化的接收天线接收左旋圆 极化的来波时,天线就完全接收不到来波的能量, 这种情况下极化损失为最大,称极化完全隔离。
辐射近场区的场以辐射场为主,但场随空间角度的分 布会随 R 的变化而变化,场的径向分量也有可能较大。 这一区域的范围一般定义为 (D > )。 当天线的尺寸与波长相比很小时,这一区域可能不存 在。对于聚焦于无穷处的天线,这一区域也称为菲涅 耳(Fresnel)区。 远场区则是我们最关心的区域,我们的测量几乎都必 须在这个区域内进行。
1.1 空间源产生的场
L=lambda/2
L=3*lambda/2
1.1 空间源产生的场
一般根据R的变化可以将空间分为感应近场区、辐射近 场 区 ( 菲 涅 耳 区 Fresnel ) 和 远 场 区 ( 夫 琅 和 费 Fraunhofer)三个区,如图所示。
1.1 空间源产生的场
感应近场区的场主要是感应场,其外边界一般定义 为 ,其中,D为天线的最大尺寸,为 工作波长。如果天线是非常短的偶极天线,其外边界 定义为 。。
1.2 天线主要的特性参数
主瓣宽度
场强从主瓣最大值下降到最大值的0.707倍或功率从 主瓣的功率最大值下降到主瓣功率最大值一半时两 点之间的角度 主瓣宽度通常指方向 图某个截面内的主瓣 宽度。如果天线方向 图不是旋转对称的 , 则各个截面内的主瓣 宽度不等。一般情况 下主要考虑 E 面和 H 面 内的主瓣宽度。

天线原理与设计(王建)2PDF版

天线原理与设计(王建)2PDF版

■电场与磁场分量的比值等于媒质中的波阻抗。 Eθ = η0 Hϕ
(1.11)
■适当建立坐标系,使基本振子轴与z轴重合,则其辐射 场只与θ角有关,与φ角无关。辐射场是旋转对称的。
1.1.3 元天线的辐射方向图
重写式(1.9)中的Eθ分量为
Idz − jβ r Eθ = jη0 e F (θ ) 2λ r
1 1 * * ˆ≠0 Wav = Re[E × H ] = Re[ Eθ Hϕ ]r 2 2
(1.8)
这表明在中场区中有径向方向的向外辐射现象。
●远场区(βr>>1) 该场区中的电磁场分量式(1.4)中只需保留1/r的那一项 即可,其它的项均可忽略不计。则远场区中只有Eθ和Hφ 分量,Er分量忽略不计。因此,基本振子的远区电磁场为
此式条件对口径天线也适用,不论是喇叭天线、反射 面天线还是平面阵列天线等,如果其最大口径尺寸为D, 则其远场区条件应满足
r ≥ 2D / λ
2
(1.26)
以上分析说明,只要观察点处于远场区,则其相位因 子中的R可由式(1.22)表示,而式(1.18)被积函数分母上的 R可用R≈r来近似。这种简化称为远场近似,即 对相位 ⎧ R ≃ r − z ′ cos θ (1.27) ⎨ 对幅度 ⎩R ≃ r 取R≈r-z'cosθ,表示由天线上某源点到远区场点的径向 矢量与由坐标原点到场点的径向矢量平行,如前面图(b) 所示。而r-R≈z´cosθ为两条射线的距离差,称为波程差。
■由定义,yz面为E面 (E面方向图有无穷多个); xz面为H面。 ■与理想点源天线不同,元天线是有方向性的。
1.1.4 元天线的的Rr、D和Se
由元天线的远区辐射场表示式 (1.9)及辐射功率表示式 (0.6),可得基本振子的辐射功率为

天线设计的原理与实现方式

天线设计的原理与实现方式

天线设计的原理与实现方式天线是电磁波收发的关键部件,是无线通信中不可或缺的重要元件,不同的天线设计可以实现不同的工作频率、增益、方向性、天线匹配等性能。

本文将介绍天线设计的原理和实现方式,帮助读者更好地理解天线的工作原理和参数设计。

一、天线设计的基本原理天线是将电磁波转换为电信号或反之的电器(电磁设备),它是无线通信系统中的关键部件之一。

天线设计基本原理包括天线性能指标和天线结构设计两部分。

1、天线性能指标天线的性能指标主要包括工作频率、增益、方向性、天线匹配等。

不同的天线类型和应用场景需要不同的性能指标来实现特定的功能。

(1)工作频率工作频率是指天线在工作中所应用的频率范围,通常为频段或中心频率等。

天线的设计要根据应用环境和所需要的信号频率来确定。

(2)增益增益是指天线辐射的功率与理想点源天线辐射的功率的比值,通常以dB为单位。

天线的增益与其结构形式、工作频率、方向性等有关。

(3)方向性方向性是天线传输能量的方向特性,是指天线辐射模式的立体角分布。

天线的方向性与其结构形式、工作频率、增益等有关。

(4)天线匹配天线匹配是指天线系统整体与其驱动器之间阻抗匹配的关系,使得天线系统的传输和接收线路具有最佳阻抗匹配状态,以提高天线的输出功率和信噪比。

2、天线结构设计天线结构设计是指天线的实现方式,包括天线结构形式、阻抗匹配方式、辐射元件、天线材料等方面。

(1)天线结构形式天线结构形式可以分为线性天线、环形天线、阵列天线、反射天线、补偿天线、微带天线、偏振天线等多种形式,每种天线形式都有其特点,应根据具体要求来选择天线结构形式。

(2)阻抗匹配方式阻抗匹配方式主要有天线冷端阻抗、贴片阻抗、隔离光缆、转换器和偶合电路等多种方法。

(3)辐射元件天线的辐射元件包括天线辐射体、驱动器和辅助元件等。

辐射体和驱动器是天线最基本的组成部分,辅助元件包括反射盘、支撑杆、防射线等。

(4)天线材料天线材料主要包括导体、绝缘材料、衬底材料等。

天线原理与设计

天线原理与设计

天线原理与设计天线是无线通信系统中的重要组成部分,它的设计和原理对于无线通信系统的性能和覆盖范围起着至关重要的作用。

本文将对天线的原理和设计进行详细的介绍,希望能够帮助读者更好地理解和应用天线技术。

首先,天线的原理是基于电磁波的辐射和接收。

在无线通信系统中,发射天线将射频信号转换成电磁波进行传输,而接收天线则将接收到的电磁波转换成射频信号进行解调。

因此,天线的设计需要考虑到频段、增益、方向性、极化等因素,以实现最佳的通信性能。

其次,天线的设计需要根据具体的应用场景和需求来进行。

不同的应用场景需要不同类型的天线,比如室内分布式系统需要采用室内覆盖天线,而室外覆盖系统则需要采用室外定向天线。

此外,天线的设计还需要考虑到信号的覆盖范围、干扰抑制、多径效应等因素,以确保通信系统的稳定性和可靠性。

在天线设计中,还需要考虑到天线的匹配和阻抗匹配问题。

天线的输入阻抗与信号源或接收机的输出阻抗需要匹配,以确保最大的信号传输效率。

因此,天线设计中需要考虑到天线的阻抗特性和匹配网络的设计,以实现最佳的匹配效果。

此外,天线的材料和结构也对其性能产生重要影响。

天线的材料选择和结构设计需要考虑到频段、环境适应性、制造成本等因素,以实现最佳的性能和成本效益。

综上所述,天线的原理和设计涉及到电磁波辐射和接收、应用场景和需求、匹配和阻抗匹配、材料和结构等多个方面。

在实际应用中,需要综合考虑这些因素,进行合理的天线设计,以实现最佳的通信性能和覆盖范围。

希望本文能够对天线的原理和设计有所帮助,也希望读者能够在实际应用中充分理解和应用天线技术,为无线通信系统的性能和覆盖范围提供有效的支持。

天线原理与设计3.1.2 笼形天线

天线原理与设计3.1.2 笼形天线

笼形天线的方向性、尺寸的选择都与双极天线相同。笼形 天线用于移动式电台很不方便,在固定的通信台站应用较多
图 3-1-10 笼形天线结构示意图
笼形天线的等效半径ae可按下式计算:
ae

bn
na b
(3-1-14)
其中,a为单根导线半径; b为笼形半径; n为构成笼的 导线根数。若取a=2 mm,b=1.5 m,n=8,则ae=0.85 m, 上述64 m双极天线的特性阻抗为353.6 Ω。
2l a
1

120
ln
2 22 0.85
1

353.6
Z0A

120

ln
2l a
1

120

ln
44 0.002
1
1079

120

ln
2 22 0.85

1

353.6
为了进一步展宽笼形天线的工作频带,可将笼形天线改 进为分支笼形天线,如图3-1-11(a)所示,其等效电路如图31-11(b)所示,开路线3-5、 4-6与短路线3-7-4(分支)有着符 号相反的输入阻抗,调节短路线的长度,即改变3和4(参见图 3-1-11(a))在笼形上的位置,可以改善天线的阻抗特性,展宽
图 3-1-14 平面片形对称振子
ae
b
n
na b
1.5
8
8 0.002 1.5

0.85m
假设有一64m (即2×10(高)+2×22(长)=64 m)双极天线, 其导线直径为4 mm时,特性阻抗约为1 kΩ,若用增加直径的 办法,使特性阻抗为350 Ω
Z0 A

天线原理与设计(王建)6PDF版

天线原理与设计(王建)6PDF版

(1) 传输线模式
见图(b),由端口a-b或e-f向短路端看去的输入阻抗为
Zt = jZ0 tan(β l / 2)
(4.19)
式中,Z0是双线传输线的特性阻抗。b、e两点等电位, 则a-b两点的输入电流为
(2) 天线模式
U /2 It = Zt
(4.20)
见图(c),由于c、d两点同电位,g、h同
f0
f0
π
RA
(4.12)
由此式可见,对称振子的频带宽度与它的平均特性阻抗
Z'0有关。如果RA不变,那么Z'0愈小带宽就愈宽。由Z'0的
表示
Z0′
= 120[ln(
2l ρe
)
− 1]
(4.13)
可见,减小Z'0的有效途径是增大振子的截面半径。在中、 短波波段,广泛采用架设在地面上一定高度的水平对称
天线原理与设计
教师: 王建 电子工程学院二系
第四章 双极与单极天线
双极天线就是前面提到的对称振子天线,这种天线 从馈电输入端看去有两个臂。所谓单极天线,就是从输 入端看去只有一个臂的天线,如导电平板上的鞭天线, 垂直接地天线等。
4.1 近地水平与垂直半波天线
1、近地水平半波天线
近地水平半波振子天线广泛应用于短波(λ=10~100 米)通信中,其振子臂可由黄铜线、钢包线和多股软铜线 水平拉直构成,中间由高频绝缘子连接两臂,可由双线 传输线馈电,如下图所示。
链接
4.2 对称天线的频带宽度
天线的电气参量大多数都是频率的函数。当工作频 率偏离中心频率(设计频率)时,可能使方向图发生畸变, 增益下降,馈电传输线上驻波增大等。因此,工程上往 往要规定一个频率范围。在此频率范围内,天线的电特 性变化不影响工作,这个频率范围就是工作频带宽度。

天线设计原理

天线设计原理
为 yz 平面,H 面为 xz 平面。就八木天线来说,在最大辐射的 y 轴方向其辐
射电磁波的电场平行于圆柱振子长度方向,则其 E 面为 yz 平面,H 面为 xy 平面。
表 0-1 给出了这两个天线的 E 面和 H 面及其方向图函数表示。
表 0-1 图 0-3 所示的八木天线和角锥喇叭天线的 E 面和 H 面及其方向图函数表示
5
《天线原理与设计》讲稿
王建
(a) 极坐标幅度方向图
(a) 直角坐标幅度方向图
(c) 极坐标分贝方向图
(d) 直角坐标分贝方向图
图 0-2 七元八木天线xy平面(H面,θ=90o)内的二维场强幅度和分贝表示的归一化方向图
天线方向图一般呈花瓣状,称之为波瓣或波束。其中包含最大辐射方向的波
瓣称之为主瓣,其它的称为副瓣或旁瓣,并分为第一副瓣、第二副瓣等,与主瓣
■三维方向图
以图 0-1(a)所示的典型七元八木天线为例,其辐射电场幅度的球坐标三维方 向图和直角坐标三维方向图如图 0-1(b)(c)所示。它们是以天线上某点为中心,远 区某一距离为半径作球面,按球面上各点的电场强度模值与该点所在的方向角 (θ ,ϕ )而绘出的。三维场强方向图直观、形象地描述了天线辐射场在空间各个方 向上的幅度分布及波瓣情况。但是在描述方向图的某些重要特性细节如主瓣宽 度、副瓣电平等方面则显得不方便。因此,工程上大多采用二维方向图来描述天 线的辐射特性。
图数据并绘出方向图。大多线极化天线的远区辐射电磁场一般可表示为如下形式

=
E0
e− jβr r
f (θ ,ϕ )
(0.1)

=
Eθ η0
(0.2)
4
《天线原理与设计》讲稿

天线原理与设计(王建)1PDF版

天线原理与设计(王建)1PDF版
返回
可见,天线方向图是在远区球面上的场强分布。
●归一化方向图
f (θ ,ϕ ) F (θ ,ϕ ) = f (θ m ,ϕ m )
(0.3)
式中,(θm ,φm)为天线最大辐射方向;
f (θm ,φm)为方向图函数的最大值。
由归一化方向图函数绘制出的方向图称为归 一化方向图。由式(0.1)和(0.2)可以看出,天线远 区辐射电场和磁场的方向图函数是相同的,因 此,由方向图函数和归一化方向图函数表示的方 向图统称为天线的辐射场方向图。
为便于分析和研究天线性能出发,天线可以分为如下 几大类:
(1~6)章 (1) 线天线(Wire Antennas) —— ——(1
(8~10章) (2) 口径天线(Aperture Antennas) —— ——(8
(3) 阵列天线(Array Antennas) —(1章部分,5章)
(4) 透镜天线(Lens Antennas) —(10章部分)
六十和七十年代是天线发展的鼎盛时期。这 个时期在天线理论方法方面以及各项技术的应用 方面都在突飞猛进的发展。
(1)在天线理论方法方面
■几何绕射理论 ■平面波谱展开法 ■时域有限差分法 ■天线近场测量理论 ■矩量法 ■有限元法 ■时域积分方程法 ■阵列分析与综合理论
这些理论方法为天线的工程设计奠定了坚实的基础, 随着计算机技术的发展大都形成了计算机仿真的电子自动 化设计软件。
■ HFSS软件 ■ CST软件 ■ FEKO软件
■ IE3D软件 ■ FIDELITY软件
(2)在天线技术应用方面
卫星通信技术发展推动了卫星天线和大型地面站天线 的发展,出现了大型平面阵、卡塞格仑天线及各种反射面 天线馈源。 雷达制导、搜索、跟踪、预警技术的应用推动了单脉 冲雷达天线、相控阵天线,多波束天线的发展。 半导体技术的发展使无线电技术向毫米波、亚毫米波 甚至更高频率发展,对天线提出了小型化、集成化、宽带 化等一系列要求,出现了有源天线、微带天线和印刷天线、 印制板开槽天线、表面波天线、共形阵列天线等。 微带天线和印刷天线由于其具有小型化、低剖面、便 于集成,成本低、天线图案千变万化,所以至今仍在发 展,其方向包括阵列、极化、宽带、高效率、双频和多频 谐振等。

天线原理与设计—第八章抛物面天线

天线原理与设计—第八章抛物面天线

天线原理与设计—第八章抛物面天线抛物面天线是一种常见且重要的天线类型,在无线通信系统和雷达系统中广泛应用。

本章将介绍抛物面天线的基本原理、特性以及设计方法。

一、抛物面天线的基本原理抛物面天线是一种由旋转抛物面形成的反射型天线,其基本原理是通过抛物面的反射特性实现聚焦效果。

抛物面天线由一个抛物线形状的金属面和该金属面的焦点处安装的辐射单元组成。

在抛物面天线中,信号从源天线发射出,然后被抛物面反射并聚焦到抛物面的焦点处。

由于抛物面的几何特征,该焦点处的电磁波能量是得到最大增强的。

因此,抛物面天线能够实现较高的增益和较强的直射波束。

二、抛物面天线的特性1.高增益:由于抛物面天线的反射特性,它能够将信号聚焦在一个小区域中,从而实现高增益的目标。

因此,抛物面天线适用于需要较长传输距离、高信号质量和低干扰的应用场景。

2.窄波束:抛物面天线的波束宽度较窄,可以减少多径信号和干扰信号的影响。

这使得抛物面天线特别适用于长距离的通信和雷达系统中。

3.大带宽:抛物面天线的设计允许较大的带宽范围,可以实现多种频段的通信传输。

4.抗干扰性能强:由于抛物面天线的聚焦特性,它对于来自非焦点方向的信号有较好的滤波作用,可以抑制一些外界噪声和干扰。

三、抛物面天线的设计方法抛物面天线的设计涉及到抛物面形状的确定、抛物面焦点的确定和辐射单元的设计。

首先,需要确定抛物面的形状。

常见的抛物面形状有抛物线和抛物面。

通常情况下,抛物线形状较为常用,因为它能够实现更高的增益、更窄的波束和更大的带宽。

其次,需要确定抛物面焦点的位置。

抛物面的焦点位置决定了天线的聚焦特性和波束方向。

一般情况下,焦点位置应该与辐射单元接近,并满足最佳聚焦效果。

最后,需要设计辐射单元。

辐射单元通常由一个或多个天线元件组成,如微带天线或Horn天线。

辐射单元的设计应考虑到天线的工作频段、功率处理能力和增益要求。

在抛物面天线的实际设计中,还需要考虑到诸如天线重量、制造成本、安装方式等因素。

天线的原理与设计

天线的原理与设计

天线的原理与设计天线是将电能(或者电磁波)转换为电磁场(或者电磁波)的装置,它在通信、雷达、无线电电视广播和无线电导航等领域起着重要作用。

天线设计的目的是通过合适的几何形状和材料选择,使其尽可能高效地辐射和接收电磁波。

天线的原理可以归纳为以下几个主要方面:1. 反射和辐射原理:天线将电能转换为电磁波的关键在于其几何形状。

几何形状不同,天线对电磁波的反射和辐射效果也不同。

一般来说,天线的形状需要与待处理信号的波长相匹配,以确保最佳的能量传输和辐射。

2. 功率匹配原理:设计天线需要考虑到待处理信号的功率,以及天线的能量传输效率。

天线设计需要合理选择天线尺寸、形状和材料,以确保尽可能高的信号接收和发射效率。

3. 波束方向性原理:天线的方向性是指其辐射或接收信号的方向性。

波束方向性天线的设计考虑到天线的几何形状、电流分布、波束宽度等因素,以使其增加信号的强度以及抑制不希望的信号干扰。

4. 阻抗匹配原理:阻抗匹配是天线设计中的关键要素之一。

天线的阻抗与发射或接收设备之间的阻抗必须匹配,以确保最大能量传输和最小信号损失。

通过使用匹配网络或其他技术,可以实现天线和设备之间的阻抗匹配。

天线的设计过程可以基于理论分析、模拟和实验来完成。

具体的设计步骤包括:1. 确定设计需求和参数:根据特定应用的需求,确定所需天线的频率范围、增益、方向性、极化方式等参数。

2. 选择适当的天线类型:根据设计需求,选择适合的天线类型,如喇叭天线、螺旋天线、微带天线等。

3. 进行理论分析和模拟:利用电磁场理论和仿真软件,对天线进行理论分析和模拟,确定天线的几何结构和材料。

4. 进行实验验证:通过制作样品天线并进行实验验证,评估天线的性能和参数是否符合设计要求。

如果需要,进行调整和优化。

5. 优化和改进:根据理论分析、模拟和实验结果,对天线进行优化和改进,以提高天线的性能和效果。

天线设计中需要考虑的其他因素还包括天线的制造成本、安装要求、环境适应性等。

天线原理与设计(王建)7PDF版

天线原理与设计(王建)7PDF版

链接
■对端射阵
F (θ )
=
sin[N β d (1 − cosθ ) / 2] N sin[β d (1 − cosθ ) / 2]
|N >>1 ≈
sin[N β d (1 − cosθ ) / 2] N β d (1 − cosθ ) / 2
式中,θ为阵轴与射线之 间的夹角;α为相邻单元 之间的馈电相位差。
其最大值条件为 ψ |θ =θm = β d cosθm − α = 0
得 α = β d cosθm
可得
ψ = β d (cosθ − cosθm )
最大值为 fmax = N 归一化阵因子为 F (ψ ) = sin(Nψ / 2)
■对扫描阵,θm为最大扫描角。例如, 在侧向两边±30º内 扫描,应取θm=90º-30º=60º,得抑制栅瓣条件为d< 2λ/3 。
2、零点位置θ0n
零点指方向图两个波瓣之间的节点。令F(ψ)=0,可 得方向图的零点位置。除ψ=0外, 方向图零点可由sin(Nψ
/2)=0确定。有
Nψ / 2 = nπ , n = ±1, ±2,...
N sin(ψ / 2)
以上是第一章介绍过的内容。下面对均匀直线阵作 进一步介绍。
1、可见区与非可见区、最大值方向、栅瓣及其抑 制条件
(1) 可见区与非可见区
从数学上看,阵因子F(ψ)是在范围-∞<ψ<∞内的周期 函数, 实际上θ的变化范围为0≤θ≤π, 由ψ=βdcosθ-α 可得对应的实际范围为
设直线阵总长为L=Nd,若L>>λ,则
2λ 2ϕ0 = Nd
■对端射阵(θm=0)
由式(5.14)取n=-1,有
2ϕ0

天线原理与设计-第九章微带天线

天线原理与设计-第九章微带天线

机遇在于随着新材料、新工艺的不断 涌现,为微带天线的发展提供了更多 可能性。
感谢观看
THANKS
04
微带天线优缺点
优点
低剖面
微带天线的高度通常在毫米级,非常适合于 空间受限的应用场景。
多频段工作
通过改变贴片的形状和尺寸,微带天线可以 在多个频段上工作。
易于集成
微带天线可以方便地与微波集成电路集成在 一起,形成统一的微波系统。
易于实现圆极化
微带天线可以方便地实现圆极化,从而扩大 其应用范围。
先进的工艺技术
采用先进的工艺技术,如光刻、刻蚀等,以实现精确的贴片形状和 尺寸。
设计实例
矩形微带天线
设计一个矩形微带天线, 工作在2.4GHz频段,增 益为5dBi,波束宽度为 60度。
圆形微带天线
设计一个圆形微带天线, 工作在5GHz频段,增 益为8dBi,波束宽度为 45度。
多频带微带天线
设计一个多频带微带天 线,覆盖2.4GHz和 5GHz频段,增益为 7dBi,波束宽度为60度。
历史与发展
起源
微带天线由马可尼公司于1970年 代初研制成功,最初用于卫星通
信。
发展历程
随着微波集成电路技术的发展,微 带天线在材料、工艺和理论等方面 不断取得突破,逐渐成为天线领域 的重要分支。
未来展望
随着5G、物联网等技术的发展,微 带天线将面临更多机遇和挑战,未 来将朝着高性能、多功能、小型化、 集成化等方向发展。
极化方式决定了微带天线 信号的极化状态和稳定性。
方向性决定了微带天线信 号传输的方向和范围。
效率决定了微带天线能量 转换的效率和信号传输的 质量。
03
微带天线设计
设计流程

天线原理与设计讲义.ppt

天线原理与设计讲义.ppt

简言之:天线的功能主要有两点: (1)能量转换 (2)定向辐射或接收 无线电通讯线路中的辐射和接收天线示意:
发射系统等效电路:
天线等效电路中最主要的一个参数——辐射电阻Rr。 可以认为天线辐射的电磁波能量全部由Rr吸收。
发射天线空间辐射方向图。
●典型的空间三维方向图
●典型的二维方向图
各种各样的方向图是由各种各样的天线实现的。
■ IE3D软件 ■ FIDELITY软件
(2)在天线技术应用方面
卫星通信技术发展推动了卫星天线和大型地面站天 线的发展,出现了大型平面阵、卡塞格仑天线及各种反 射面天线馈源。
雷达制导、搜索、跟踪、预警技术的应用推动了单 脉冲雷达天线、相控阵天线,多波束天线的发展。
半导体技术的发展使无线电技术向毫米波、亚毫米 波甚至更高频率发展,对天线提出了小型化、集成化、 宽带化等一系列要求,出现了有源天线、微带天线和印 刷天线、印制板开槽天线、表面波天线、共形阵列天线 等。
另外,还有八木天线,对数周期天线、阵列天线。阵 列天线又有直线阵天线、平面阵天线、附在某些载体表 面的共形阵列天线等。
为便于分析和研究天线性能出发,天线可以分为如下 几大类:
(1) 线天线(Wire Antennas) ——(1~6)章
(2) 口径天线(Aperture Antennas) ——(8~10章)
(1)在天线理论方法方面
■几何绕射理论 ■平面波谱展开法 ■时域有限差分法 ■天线近场测量理论
■矩量法 ■有限元法 ■时域积分方程法 ■阵列分析与综合理论
这些理论方法为天线的工程设计奠定了坚实的基础,
随着计算机技术的发展大都形成了计算机仿真的电子自 动化设计软件。
■ HFSS软件 ■ CST软件 ■ FEKO软件

天线的设计原理

天线的设计原理

天线的设计原理天线是无线通信系统中的重要组成部分,它负责将电磁波转化为电信号或者将电信号转化为电磁波,从而实现信号的传输和接收。

在无线通信领域,天线的设计原理主要包括天线的基本原理和设计过程。

天线的基本原理包括辐射原理和阻抗匹配原理。

辐射原理是指当天线处于交流电场激励下,天线会发射出电磁波,实现信号的传输。

天线可以看作是一个振荡器,其特定的几何形状和结构可以使电磁能量以电磁波的形式辐射出去。

辐射的电磁波具有特定的频率、振幅和相位等参数,这些参数决定了天线的性能和传输的信号质量。

阻抗匹配原理是指天线的输入阻抗应与信号源或负载的阻抗相匹配,以获得最大的能量传递效率。

当阻抗不匹配时,信号在天线与信号源或负载之间的传递过程中会发生反射,导致部分能量的损失。

因此,通过调整天线的参数和结构来实现阻抗匹配,可以提高信号的传输效率。

天线的设计过程主要包括几个关键步骤:目标要求分析、天线参数确定、结构选取、辐射特性分析和优化。

在目标要求分析阶段,需要明确设计的目标和要求,包括频率范围、增益、方向性、阻抗匹配等。

通过分析需求,可以确定天线的基本参数和设计指标。

在参数确定阶段,需要根据目标要求和设计指标确定天线的基本参数,如频率、天线类型、极化方式等。

同时,还需要考虑天线的尺寸、重量、制造材料等实际应用条件。

在结构选取阶段,需要选择适合的天线结构,如偶极子天线、螺旋天线、微带天线等。

不同的天线结构具有不同的性能和应用特点,需要根据具体应用场景选择。

在辐射特性分析阶段,需要通过仿真软件或实验测试来评估天线的辐射性能,包括波束宽度、辐射方向性、辐射效率等。

根据辐射特性的分析结果,可以进行参数的调整和优化。

在优化阶段,需要对天线进行参数调整和结构优化,以满足设计要求。

通过迭代优化的过程,不断改进天线的性能和效率。

总体而言,天线的设计原理包括辐射原理和阻抗匹配原理。

设计过程包括目标要求分析、天线参数确定、结构选取、辐射特性分析和优化。

天线设计的基本原理与最佳化方法

天线设计的基本原理与最佳化方法

天线设计的基本原理与最佳化方法天线作为通信领域的重要组件,其设计和优化对通信系统的性能有着重要的影响。

天线的基本原理是通过辐射和捕获电磁波来实现无线通信的过程,而最佳化方法则是通过优化天线设计的各种参数来提高天线的性能。

本文将介绍天线设计的基本原理和最佳化方法。

一、天线设计的基本原理天线的基本原理是利用电流在物体上产生磁场,进而产生电磁波的辐射或收集。

其关键参数包括频率、增益、方向性和阻抗等。

在设计天线时,需要考虑这些参数对天线工作性能的影响。

1.1 频率天线的频率是指天线可以工作的频率范围,通常用工作频率的带宽表示。

对于点频天线,其频率范围很窄,只能在一个频率点上工作。

而对于带宽天线,其频率范围更宽,可以在一定的频段内工作。

1.2 增益天线增益是指天线在某个方向上相对于某一参考天线的辐射功率的增加量,也可理解为天线灵敏度的大小。

天线增益越高,其灵敏度越大,可以在更远的距离上传输信号。

1.3 方向性天线的方向性是指天线在不同方向上的辐射强度不同,通常用指向图表示。

具有较高方向性的天线能够将信号传输到较远的地方,因为其能够将较多的功率投射到所需的方向上。

1.4 阻抗天线的阻抗是指天线本身和连接到天线的输出电路之间的电阻抗匹配情况。

当天线与接收器之间的阻抗匹配良好时,可以获得更高的转移效率。

二、天线设计的最佳化方法2.1 参数化建模天线的设计通常需要考虑多个参数,并进行多次测试。

因此,参数化建模是一种有效的天线设计方法。

参数化建模还可以被应用于优化过程中,以极大地减少手动调整的工作量。

例如,通过将参数化模型与优化算法结合,可以找到最佳的天线结构。

2.2 反射系数优化天线的反射系数是指天线的输入端口处反射信号的大小。

如果反射系数太大,会造成能量的损失和电磁干扰。

因此,通过调整天线的结构和位置,可以优化天线反射系数。

2.3 抗辐射噪声优化天线在接收信号时容易受到周围环境的辐射噪声的干扰,因此,抗辐射噪声优化是提高天线性能的重要方面。

天线原理与设计

天线原理与设计
E面
H 面
H面 E面
表0-1 上图所示的八木天线和角锥喇叭天线的E面和H面 及其方向图函数表示
■ 七元八木天线的H面方向图
返回
(a) 极坐标幅度方向图
(b) 直角坐标幅度方向图
(a) 极坐标分贝方向图
(b) 直角坐标分贝方向图
图中是以八木天线的H面归一化方向图函数
FH(φ)=F(θ,φ)|θ=90 计算并绘制的。
五十年代末人造卫星上天、洲际导弹出现后,人类进入了宇宙空 间时代,航空航天技术的发展对天线的研究又提出了许多新的课题, 这时要求解决天线的高增益、圆极化、宽频带、快速扫描和精密跟踪 等问题。
六十和七十年代是天线发展的鼎盛时期。这个时期在天线理论方法方面以及各 项技术的应用方面都在突飞猛进的发展。
(1)在天线理论方法方面
的函数图形。大多情况下,天线方向图是在远场 区确定的,所以又叫做远场方向图。
天线辐射特性包括辐射场强、辐射功率、相位 和极化。因此,天线方向图又分为:
■场强方向图 ■功率方向图 ■相位方向图 ■极化方向图
●天线方向图形式
二维方向图
三维方向图
极坐标方向图 直角坐标方向图 球坐标方向图 直角坐标方向图
(2)在天线技术应用方面
卫星通信技术发展推动了卫星天线和大型地面站天线 的发展,出现了大型平面阵、卡塞格仑天线及各种反射面 天线馈源。
雷达制导、搜索、跟踪、预警技术的应用推动了单脉 冲雷达天线、相控阵天线,多波束天线的发展。
半导体技术的发展使无线电技术向毫米波、亚毫米波 甚至更高频率发展,对天线提出了小型化、集成化、宽带 化等一系列要求,出现了有源天线、微带天线和印刷天线、 印制板开槽天线、表面波天线、共形阵列天线等。
到了80年代,由于电子计算机和超大规模集 成电路的发展,高功率固态发射机和各波段移相 器等日趋成熟及成本的大幅降低,以及数字波束 形成技术、自适应理论和技术、低副瓣技术以及 智能化理论和技术的不断发展,使得80年代成为 国际上相控阵雷达大发展的年代。先进国家研制 了多种不同用途的战略、战术相控阵雷达。我国 也不例外,到1993年,我国的相控阵雷达不仅在 军用国防及航空航天中得到广泛使用,而且已经 从军用扩展到了民用。

天线的原理与设计

天线的原理与设计

天线的原理与设计天线可以说是现代无线通讯不可或缺的组成部分,从电视、广播到无线通讯、卫星通讯,各种无线通讯设备都需要天线才能传输信号。

那么天线的工作原理是什么?如何设计一款好的天线呢?本文将从理论和实践两个方面阐述天线的原理与设计。

天线的原理天线是一种电子设备,它能将电磁波进行有效放射和接收。

天线的结构一般由导体和绝缘体两部分组成,导体是天线的主体,而绝缘体则用于支撑和隔离导体。

当电磁波经过导体时,电场和磁场会被导体反射、吸收或透过。

导体的形状和大小会对电场和磁场的反射、吸收和透过产生影响,因此导体形状和大小的变化会对天线的性能产生影响。

在理论上,天线的控制方程式为弱形式的麦克斯韦方程式,它描述了电磁波在真空和介质中的传播规律。

麦克斯韦方程式包括电场和磁场的方程式,其中电场方程式描述了电荷和电荷分布产生的电场规律,磁场方程式描述了电流和电流分布产生的磁场规律。

通过这些方程式,我们可以计算天线的电场和磁场分量,从而推导出天线的电磁特性。

天线的设计天线的设计是一个复杂的过程,需要考虑众多的因素,包括频率、辐射模式、天线天线天线输入阻抗等。

不同的应用场景需要不同的天线,因此在设计天线时需要先明确天线的具体使用场景。

一般来说,天线设计的过程可以分为三个步骤:第一步是确定天线类型。

常用的天线类型包括单天线、贴片天线、微带天线和功率天线等。

不同的天线类型适用于不同的场景,选择合适的天线类型可以提高天线传输效率。

第二步是确定天线形状和大小。

天线的形状和大小直接影响天线的传输性能。

在确定天线形状和大小时,一般需要考虑天线频率、传输距离以及功率损耗等因素。

第三步是确定天线输入阻抗。

输入阻抗是天线传输的基础,它的大小和匹配直接影响天线的传输效率。

在设计天线时,一般需要先预估天线输入阻抗,然后通过调整天线长度、形状和结构等参数来匹配输入阻抗。

总结天线是无线通讯的核心部分,其工作原理和设计需要深入掌握。

天线的原理可以通过麦克斯韦方程式来推导,而天线的设计需要考虑众多因素,包括天线类型、天线形状和大小以及天线输入阻抗等。

天线原理与设计

天线原理与设计

天线原理与设计天线是无线通信系统中的重要组成部分,它的设计和原理对于无线通信的性能和覆盖范围起着至关重要的作用。

本文将介绍天线的基本原理和设计方法,帮助读者更好地理解和应用天线技术。

首先,天线的基本原理是什么呢?天线是将电磁波转换为电信号或者将电信号转换为电磁波的装置。

在接收模式下,天线接收到的电磁波会转换成电信号,而在发送模式下,电信号会被天线转换成电磁波进行传输。

因此,天线的设计需要考虑到频率范围、辐射效率、方向性等因素,以确保其在特定的应用场景下能够实现高效的信号传输。

其次,天线的设计方法有哪些呢?天线的设计需要根据具体的应用需求来确定。

一般来说,天线的设计包括结构设计、材料选择、匹配网络设计等方面。

在结构设计方面,需要考虑天线的形状、尺寸、辐射器的布局等因素,以确保天线能够实现所需的辐射特性。

在材料选择方面,需要选择合适的材料来制作天线,以确保天线具有足够的机械强度和耐候性。

在匹配网络设计方面,需要设计合适的匹配网络来确保天线与传输线的匹配,以提高天线的辐射效率。

最后,天线的设计需要注意哪些问题呢?在天线设计过程中,需要注意考虑以下几个问题。

首先,需要考虑天线的频率范围,以确保天线能够在所需的频段内正常工作。

其次,需要考虑天线的辐射效率,以确保天线能够实现高效的信号传输。

此外,还需要考虑天线的方向性,以确保天线能够实现所需的辐射方向。

最后,还需要考虑天线的机械强度和耐候性,以确保天线能够在各种环境条件下正常工作。

综上所述,天线是无线通信系统中的重要组成部分,其设计和原理对于无线通信的性能和覆盖范围起着至关重要的作用。

天线的设计需要考虑频率范围、辐射效率、方向性等因素,以确保其能够在特定的应用场景下实现高效的信号传输。

希望本文能够帮助读者更好地理解和应用天线技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
an
n(n

1)Pn
(cos
)
hn(2) (kr) kr

输入
r
E j


n
an
Pn1
(cos
)
1 kr
d dr

rhn(2)
(kr)


2019/10/20
UESTC
14
朱兰臣模式匹配法之三
• 式中an在目前是未知系数;Pn(cosθ)是n阶勒让德多项式;
ZN IN
输入
En j

an
Pn1 (cos
)
1 kr
d dr
rhn2 (kr)
Hn an Pn1(cos )hn(2) (kr)
表示天线 结构的耦 合网络
I3 Z3
I2
I1
Z2
Z1
2019/10/20
UESTC
19
朱兰臣模式匹配法之八
• 令 kr ,得第n个模式的阻抗为
• 它是一高通滤波器,网络终端电阻元件上吸收的功率就是 场问题中的传输功率。对于一定的(=kr),阶数n愈高,球 波导模式传输就愈困难。
2019/10/20
UESTC
22
朱兰臣模式匹配法之十一
In
C1=a/nc
C2

(2n
a
3)c
Cn
Zn
Vn
L1

a (2n 1)c
L2

a (2n 5)c
与之对偶的磁偶极子(环型结构)的情况,传播的是
TE模,只要用一组bn代替an就可得到类似的结果。
2019/10/20
UESTC
27
哈林登模式匹配法之一
• 1960年,哈林登导出了同时考虑TM和TE模的相应结论。 • 对于电偶极子和环电流元组合天线来说,TE和TM模都存
在,需要同时考虑TE和TM模。应用电矢位和磁矢位
UESTC
8
磁偶极子

pm


2a
3
(1
2 )1
'

VA VS
(1
2 )1
'
对于理想磁芯( ' ),在线圈内无磁场储能,此时
pm

VA VS
2019/10/20
UESTC
9
电偶极子
C

Ka
A
b
Rre

20(k b) 2

20 2
b2
15
朱兰臣模式匹配法之四
• 依据方向系数定义
D( )
2 0
4 E 2
0
E
2 sindd
将 E代入,并借助于勒让德多项式的正交性
0
Pn1 (c os
2
sind

2n(n 1) 2n 1
0
Pn1(cos )Pn1' (cos )sind
d

Xn

2019/10/20
UESTC
26
朱兰臣模式匹配法之十五
• TMn波的总Q值为
Q

n
' 2Wen


n
' an2
n(n 1) 2n 1 Qn


n
' PavQn
N

' Pav
n1

n
'an2
n(n 2n
1) 1
' Pav
n
其中 '表示对奇数n求和。 n
Q PnQnTM TE


An2

1 2n
1Qn
Pn
2
An2

1 2n
1

式中Pn是TMn和TEn模式的发射功率;Qn是相等的TMn
和TEn模式的Q。
QnTM TE

1 2 Qn
2019/10/20
UESTC
29
哈林登模式匹配法之三
• 式中Qn是朱兰臣得出的球 面波模式的Q,无损耗的理 想天线的Q
UESTC
3
集中参数分析法
• 电小天线是弱辐射电感性或电容性元件,最简单的方法是:
– 电感性天线可等效为电阻Rm及电感L的串联电路,Rm表示天线的 辐射电阻。
– 电容性天线可等效为电导Ge和电容C的并联电路,Ge表示天线辐 射电导。
• 集中参数分析法就是用集总参数元件的等效电路来描述天 线并分析其性能的方法。
2019/10/20
UESTC
4
电小天线的等效电路
电容性天线
电感性天线
2019/10/20
UESTC
5
早期天线研究方法
• 上世纪40年代,人们习惯于用等效电路来 分析天线,设计出了各种电小天线,惠勒 归这纳了 这种方法。
• 等效电路方法直观、简便,具有众所熟悉 的优点,但不够严格,难用于一些结构较 为复杂的天线。
P’n(cosθ)是第一类连带勒让德多项式; 是自/由空间特
性阻抗;时间因子为exp(jωt)。在远区,场的纵向分量
趋于0,此时

Er E

E
e jkr kr
an
(1)
n1 2
Pn1
(
c
os
)
n

H
E

2019/10/20
UESTC
2019/10/20
UESTC
6
辐射功率因子
• 谐振回路的Q值不仅与天线的辐射电阻有关, 也和天线回路的损耗电阻有关。
• “辐射功率因子”为电小天线实功率(辐 射功率)和虚功率(无功功率)之比。
– 对于容性天线辐射功率因子为
pe

Ge
C
– 对于感性天线辐射功率因子为
pm

Rm
L
2019/10/20
pe

RreC

20
2
2
b
Ka
A
b

Ka Ab
6

2
3


KaV
6

2
3


V'
9 2
VS
VS

4 3
2
3
其中V=Ab为天线的体积;V’为有效体积;V’=Ka,bV;VS为弧度球的体积。
2019/10/20
UESTC
10
集中参数分析法
(a)
(b)
(c)
(d) 线
(e)宽
(f)多线环

条环
• 扩展频带:降低整个天线系统的Q值。增大与负载之间的 耦合、增大天线尺寸以提高pe来实现。
• 结论是:虽然细导线和粗圆锥体实际尺寸大不相同,但有 效体积相差甚小。这是由于天线的有效体积受长度影响大, 受横向尺寸影响较小所致。
2019/10/20
UESTC
13
朱兰臣模式匹配法之二
• 设在一半径为a的球体内,包含一个沿z轴放置的电偶极子 型天线。根据球面波函数理论,球外的场可用一组球面波
函数表示,此时为TM模式,其场分量可表示为

H an P'n (cos )hn(2) (kr)

n

Er j


2019/10/20
UESTC
11
模式匹配法
• 模式匹配法即借助于位函数求解麦克斯韦方程得出辐射场 的表示式。
• 模式匹配法作为一种波导分析的方法应用到天线中来,在 分析各种双锥天线的辐射特性和输入阻抗特性获得了很好 的效果。
• 模式分析法从数学推导上说是严密的,由此得出的结论至 今仍作为电小天线经典依据。
N
(2n 1)Qn (ka) Q n1
2N 2 4N
2019/10/20
UESTC
30
2019/10/20
传输线模型法
• 天线是由传输线演变而来, 是特殊形式的传输线;
等效为: 辐射电阻与无损耗开路传输 线串联;
• 天线的传输线模型可以获得 较理想的补偿。

0
2019/10/20
UESTC
16
朱兰臣模式匹配法之五
n 1
2
an (1) 2 Pn1(cos )
D( ) n
n
an2
n(n 1) 2n 1
在赤道平面( )
Pn1( ) 0
(n为偶数), 2
Pn1 ( )

n1
(1) 2
n! 2n1 n 1! 2
In
Cn
Zn
Vn
Ln
Rn
a:球半径,c: 光速
Zn

Rn

jX n

Rn

j(Ln

1
C n
)
2019/10/20
UESTC
24
朱兰臣模式匹配法之十三
• 串联电阻Rn当然等于在工作频率上Zn的实部,其虚部可通 过第二类球面汉克尔函数hn(2) 与球面贝赛尔函数(jn)、球面 诺依曼函数(nn)之间的关系推算。得到
P(a)
为了求得储能,朱兰臣给出一个与球面波传输线网络等 效的网络。在这一组网络中的每个端口和一个球面波模 式相对应,可以将空间想像为对每一球面波来说是一球 面波导。
2019/10/20
UESTC
18
朱兰臣模式匹配法之七
根据球面波函数的正交性, 可以求解出贮存在球外部 的总电能或总磁能等于每 个模式能量的总和。对于 电偶极子,磁场仅有 H
相关文档
最新文档