小升初奥数专题精华精编版
小升初奥数题必考100道及答案(完整版)
小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。
求原两位数。
答案:设原两位数个位上的数字为x,则十位上的数字为2x。
原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。
根据题意可得:21x + 12x = 132,33x = 132,x = 4。
所以原两位数为84。
题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。
小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。
50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。
路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。
1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。
题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。
第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。
第二车间人数为0.75x×3/7 = 9/28 x。
0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。
题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。
这桶油有多少千克?答案:设这桶油有x 千克。
小升初奥数知识点汇总完整
小升初奥数知识点汇总完整《小升初奥数知识点汇总完整》一、计算在小升初奥数中,计算可是超级重要的一部分哦!比如说简便运算,这就像是给计算开了个“快捷通道”。
举个例子,计算25×32×125 时,如果我们直接算,那可太麻烦啦。
但如果我们把 32 拆分成4×8,式子就变成了25×4×8×125,然后先算25×4 = 100,8×125 = 1000,再相乘,一下子就得出答案100000 啦。
还有等差数列求和,也很有趣。
比如 1 + 3 + 5 + 7 + …… + 99,这一串数字有规律,首项是 1,末项是 99,公差是 2,项数是50,用公式(首项 + 末项)× 项数÷ 2 就能很快算出结果是 2500 哟。
二、数论数论这块儿有点神秘又好玩。
像整除的特性,就特别有用。
比如说,判断一个数能不能被 3 整除,只要把这个数的各位数字相加,如果和能被 3 整除,那这个数就能被 3 整除。
比如 123,1 + 2 + 3 = 6,6 能被 3 整除,所以 123 也能被 3 整除。
还有质数和合数,质数就像数字世界里的“独行侠”,只有 1 和它本身两个因数,像 2、3、5、7 这些。
合数呢,则是“爱交朋友”,除了 1 和它本身还有别的因数,像 4、6、8、9 等等。
三、图形图形问题能让我们的小脑袋瓜转起来。
比如求三角形的面积,我们知道三角形面积 = 底× 高÷ 2。
如果有一个底是 6 厘米,高是 4 厘米的三角形,那它的面积就是6×4÷2 = 12 平方厘米。
还有立体图形,像正方体、长方体的表面积和体积。
一个棱长为5 厘米的正方体,它的表面积就是5×5×6 = 150 平方厘米,体积就是5×5×5 = 125 立方厘米。
四、应用题应用题就像是生活中的小难题,要用奥数知识来解决。
小升初奥数题大全100道附答案(完整版)
小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。
原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。
所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。
每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。
经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。
这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。
按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。
三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。
六年级小升初奥数题100例附答案(完整版)
六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。
x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。
题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。
所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。
小升初奥数专题精华精编版 (2)
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯小升初奥数专题精髓(一)基础训练1.找规律——重视于数列、图形、速算巧算,要点培育学生的察看、计算、举一反三等基础能力2.算式迷——重视于运用倒推法、凑整法、估值法进行乘除法运算,旨在培育学生的逆向思想能力;3.简单推理——重视于运用等量代换、互相抵消等方法进行简单推理,着力培养学生的逻辑思想和逆向思想能力;4.周期问题——旨在指引学生理解周期问题的含义,并能娴熟运用找规律的方法解决周期问题;5.均匀数问题——重视于培育学生运用求均匀数的方法解决生活中实质问题,并由易到难,指引学生灵巧运用求均匀数的数目关系的能力;6.复原问题——重视于培育学生的逆向思想能力;7.容斥问题——要点指引学生理解容斥问题的含义,初步认识包括与清除原理;8.盈亏问题——重视于培育学生怎样找准问题的要点,并能运用适合的方法解决生活中的实质问题。
(二)深入提升9.速算与巧算10.和倍问题11.差倍问题12.和差问题13.倍数问题专题14.最大最小问题15.置换问题16.包括与清除问题17.尾数和余数18.定义新运算19.分解质因数20.最大条约数、最小公倍数21.年纪问题11 / 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22.简略方程23.乘法原理和加法原理24.数的整除25.位值原理26.最优化问题27.分数比较大小(三)要点指导28.组合平面图形的周长与面积29.立体图形的表面积、体积与容积30.简易计算31.一般应用题32.行程问题33.工程问题34.浓度问题35.运用作图法36.假定法解题37.数学开放题(灵巧课时)22 / 2。
小升初最难的奥数题
小升初最难的奥数题一、题目列举1. 工程问题类有一项工程,甲单独做需要10天完成,乙单独做需要15天完成。
现在甲先做了3天,剩下的工程由甲乙合作完成,问还需要多少天?这题分值可以占20分。
解题思路就是把这项工程的工作量看作单位“1”,甲的工作效率就是1÷10 = 1/10,乙的工作效率是1÷15 = 1/15。
甲先做3天,完成的工作量是1/10×3 = 3/10,剩下的工作量是1 - 3/10 = 7/10。
甲乙合作的工作效率是1/10+1/15 = 1/6,那么剩下工程需要的时间就是7/10÷1/6 = 4.2天。
2. 行程问题类甲乙两车分别从A、B两地同时出发,相向而行。
甲车速度是每小时60千米,乙车速度是每小时40千米,两车相遇后继续前行,甲车到达B地后立即返回,乙车到达A地后也立即返回,第二次相遇时距离A地80千米,求A、B两地的距离。
这题分值可以是20分。
设A、B两地距离为x千米。
第一次相遇时,甲乙两车行驶的时间相同,所以路程比等于速度比,即甲行驶的路程:乙行驶的路程= 60:40 = 3:2,那么第一次相遇时甲行驶了3/5x千米,乙行驶了2/5x千米。
第二次相遇时,甲乙两车一共行驶了3x千米,甲行驶了2x - 80千米,乙行驶了x+80千米,根据时间相同路程比等于速度比,可列出方程(2x - 80):(x + 80)=3:2,解得x = 200千米。
3. 数论问题类一个数除以5余3,除以6余4,除以7余5,这个数最小是多少?这题分值15分。
这个数加上2就能被5、6、7整除。
5、6、7的最小公倍数是5×6×7 = 210,所以这个数最小是210 - 2 = 208。
4. 几何问题类有一个直角三角形,两条直角边分别是6厘米和8厘米,求这个三角形外接圆的半径。
这题分值15分。
直角三角形外接圆的半径等于斜边的一半。
根据勾股定理,斜边的长度是√(6²+8²)=10厘米,所以外接圆半径是5厘米。
小学数学】小升初必考奥数30个知识点大汇总
小学数学】小升初必考奥数30个知识点大汇总1.和差倍问题和差问题和倍问题是常见的数学问题,而差倍问题则是二者的结合。
已知条件可以是几个数的和与差,几个数的和与倍数,或者几个数的差与倍数。
公式适用范围是已知两个数的和、差或倍数关系。
关键问题是求出同一条件下的和与差或和与倍数或差与倍数。
2.年龄问题年龄问题有三个基本特征:两个人的年龄差是不变的,两个人的年龄是同时增加或者同时减少的,两个人的年龄的倍数是发生变化的。
3.归一问题归一问题的基本特点是问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。
关键问题是根据题目中的条件确定并求出单一量。
4.植树问题植树问题有几种基本类型:在直线或者不封闭的曲线上植树,两端都植树,在直线或者不封闭的曲线上植树,两端都不植树,在封闭曲线上植树,只有一端植树。
基本公式是棵数=段数+1,棵距×段数=总长或者棵数=段数-1,棵距×段数=总长或者棵数=段数,棵距×段数=总长。
关键问题是确定所属类型,从而确定棵数与段数的关系。
5.鸡兔同笼问题鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来。
基本思路是假设某种现象存在(甲和乙一样或者乙和甲一样),假设后发生了和题目条件不同的差,找出这个差是多少,每个事物造成的差是固定的,从而找出出现这个差的原因。
基准数法:为了求一组数的平均数,我们可以选择一个基准数,并计算每个数与基准数的差。
将这些差加起来,求出它们的平均数,再将这个平均数加上基准数,就是所求的平均数。
一般来说,我们会选择与所有数比较接近的数或者中间数作为基准数。
具体关系可以参考基本公式②。
抽屉原理:抽屉原理指出,如果将(n+1)个物体放在n个抽屉里,那么至少会有一个抽屉中放有2个或多于2个物体。
例如,将4个物体放在3个抽屉里,就会有至少一个抽屉中放有2个或多于2个物体。
我们可以通过将4分解成三个整数的和来验证这一点。
小升初奥数32个知识点
小升初奥数32个知识点1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差,几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数公式②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题:求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示.关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型:在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差.基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差.6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的.关键问题:确定对象总量和总的组数.7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量.基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量.基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现.周期:我们把连续两次出现所经过的时间叫周期.关键问题:确定循环周期.闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天.①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②.10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体.例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体.抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m]+1个物体:当n不能被m整除时.②k=n/m个物体:当n能被m整除时.理解知识点:[X]表示不超过X的最大整数.例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉.也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算. 12.数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列.基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个. 13.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算.基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算.关键问题:正确理解定义的运算符号的意义.注意事项:①新的运算不一定符合运算规律,特别注意运算顺序.②每个新定义的运算符号只能在本题中使用.14.数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列.基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个. 基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数一1) 公差;数列和公式:sn,=(a1+ an)n2;数列和=(首项+末项)项数2;项数公式:n=(an+ a1)d+1;项数=(末项-首项)公差+1;公差公式:d =(an-a1))(n-1);公差=(末项-首项)(项数-1);关键问题:确定已知量和未知量,确定使用的公式;15.二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200.所以234=200+30+4=2102+310+4.=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7+……+A 3102+A2101+A1100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义.(2)=An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7+……+A322+A22 1+A120注意:An不是0就是1.十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可.②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出16.加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法.关键问题:确定工作的分类方法.基本特征:每一种方法都可完成任务.乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法.关键问题:确定工作的完成步骤.基本特征:每一步只能完成任务的一部分.直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹.直线特点:没有端点,没有长度.线段:直线上任意两点间的距离.这两点叫端点.线段特点:有两个端点,有长度.射线:把直线的一端无限延长.射线特点:只有一个端点;没有长度.①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数17.质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数.合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数.质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数.分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数.通常用短除法分解质因数.任何一个合数分解质因数的结果是唯一的.分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an.求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数.18.约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数.公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.最大公约数的性质:1几个数都除以它们的最大公约数,所得的几个商是互质数.2几个数的最大公约数都是这几个数的约数.3几个数的公约数,都是这几个数的最大公约数的约数.4几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m. 例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1分解质因数法:先分解质因数,然后把相同的因数连乘起来.2短除法:先找公有的约数,然后相乘.3辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数. 公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数.12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数.2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积.求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法19.数的整除一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a 能被b整除或b能整除a,记作b|a.2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除.2. 能被4、25整除:末两位的数字所组成的数能被4、25整除.3. 能被8、125整除:末三位的数字所组成的数能被8、125整除.4. 能被3、9整除:各个数位上数字的和能被3、9整除.5. 能被7整除:①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除.②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除.6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除.②奇数位上的数字和与偶数位数的数字和的差能被11整除.③逐次去掉最后一位数字并减去末位数字后能被11整除.7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除.②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除.三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除.2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除.3. 如果a能被b整除,b又能被c整除,那么a也能被c整除.4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除.20.余数及其应用基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b的余数,q叫做a除以b的不完全商.余数的性质:①余数小于除数.②若a、b除以c的余数相同,则c|a-b或c|b-a.③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数.④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数. 21.余数、同余与周期一、同余的定义:①若两个整数a、b除以m的余数相同,则称a、b对于模m同余.②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m.二、同余的性质:①自身性:a≡a(mod m);②对称性:若a≡b(mod m),则b≡a(mod m);③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m)④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);⑥乘方性:若a≡b(mod m),则an≡bn(modm);⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);三、关于乘方的预备知识:①若A=a×b,则MA=Ma×b=(Ma)b②若B=c+d则MB=Mc+d=Mc×Md四、被3、9、11除后的余数特征:①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p).22.分数与百分数的应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数.分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变. 分数单位:把单位“1”平均分成几份,表示这样一份的数.百分数:表示一个数是另一个数百分之几的数.常用方法:①逆向思维方法:从题目提供条件的反方向(或结果)进行思考.②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系.③转化思维方法:把一类应用题转化成另一类应用题进行解答.最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率.常见的处理方法是确定不同的标准为一倍量.④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果.⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的.有以下三种情况:A、分量发生变化,总量不变.B、总量发生变化,但其中有的分量不变.C、总量和分量都发生变化,但分量之间的差量不变化.⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化.⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理.⑧浓度配比法:一般应用于总量和分量都发生变化的状况.23.分数大小的比较基本方法:①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较.②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较.③基准数法:确定一个标准,使所有的分数都和它进行比较.④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大.⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小.(具体运用见同倍率变化规律)⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较.⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较.⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较.⑨倒数比较法:利用倒数比较大小,然后确定原数的大小.⑩基准数比较法:确定一个基准数,每一个数与基准数比较.24.分数拆分一、将一个分数单位分解成两个分数之和的公式:①=+;②=+(d为自然数);25.完全平方数完全平方数特征:1. 末位数字只能是:0、1、4、5、6、9;反之不成立.2. 除以3余0或余1;反之不成立.3. 除以4余0或余1;反之不成立.4. 约数个数为奇数;反之成立.5. 奇数的平方的十位数字为偶数;反之不成立.6. 奇数平方个位数字是奇数;偶数平方个位数字是偶数.7. 两个相临整数的平方之间不可能再有平方数.平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y226.比和比例比:两个数相除又叫两个数的比.比号前面的数叫比的前项,比号后面的数叫比的后项.比值:比的前项除以后项的商,叫做比值.比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变.比例:表示两个比相等的式子叫做比例.a:b=c:d或比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc.正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比. 反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比. 比例尺:图上距离与实际距离的比叫做比例尺.按比例分配:把几个数按一定比例分成几份,叫按比例分配.27.综合行程基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向.相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式.过桥问题:关键是确定物体所运动的路程,参照以上公式.主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量.28.工程问题基本公式:①工作总量=工作效率×工作时间②工作效率=工作总量÷工作时间③工作时间=工作总量÷工作效率基本思路:①假设工作总量为“1”(和总工作量无关);②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.关键问题:确定工作量、工作时间、工作效率间的两两对应关系.经验简评:合久必分,分久必合.29.逻辑推理基本方法简介:①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的.例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数.②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析.列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断.③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态.例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识.④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件.⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决.30.几何面积基本思路:在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律.常用方法:1. 连辅助线方法2. 利用等底等高的两个三角形面积相等.3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上).4. 利用特殊规律①等腰直角三角形,已知任意一条边都可求出面积.(斜边的平方除以4等于等腰直角三角形的面积)②梯形对角线连线后,两腰部分面积相等.③圆的面积占外接正方形面积的78.5%.31.立体图形长方体8个顶点;6个面;相对的面相等;12条棱;相对的棱相等;S=2(ab+ah+bh) V=abh =Sh正方体8个顶点;6个面;所有面相等;12条棱;所有棱相等;S=6a2 V=a3圆柱体上下两底是平行且相等的圆;侧面展开后是长方形;S=S侧+2S底 S侧=Ch V=Sh圆锥体下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离;S=S侧+S底S侧=rlV=Sh球体圆心到圆周上任意一点的距离是球的半径. S=4r2 V=r332.时钟问题—快慢表问题基本思路:1、按照行程问题中的思维方法解题;2、不同的表当成速度不同的运动物体;3、路程的单位是分格(表一周为60分格);4、时间是标准表所经过的时间;合理利用行程问题中的比例关系;。
小升初奥数知识点汇总精编WORD版
小升初奥数知识点汇总精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】小升初奥数知识点讲解汇总1、年龄问题的三大特征年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。
年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键。
例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍?⑴ 父子年龄的差是多少?54 – 18 = 36(岁)⑵ 几年前父亲年龄比儿子年龄大几倍?7 - 1 = 6⑶ 几年前儿子多少岁?36÷6 = 6(岁)⑷ 几年前父亲年龄是儿子年龄的7倍?18 – 6 = 12 (年)答:12年前父亲的年龄是儿子年龄的7倍。
2、归一问题特点归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。
这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。
有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。
由上所述,解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
3、植树问题总结植树问题基本类型:在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式:棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题:确定所属类型,从而确定棵数与段数的关系4、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
小升初数学必考奥数题100道附答案(完整版)
小升初数学必考奥数题100道附答案(完整版)题目1:有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄乘积是360。
他们中年龄最大的是多少岁?答案:将360 分解因数,360 = 2×2×2×3×3×5 = 3×4×5×6,所以年龄最大的是6 岁。
题目2:计算:1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +…+ 2014 - 2015 - 2016 + 2017 + 2018答案:原式= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +…+ (2013 + 2014 - 2015 - 2016) + 2017 + 2018 = 2017 + 2018 = 4035题目3:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成?答案:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要6 天完成。
题目4:在一个比例中,两个外项互为倒数,其中一个内项是2.5,另一个内项是多少?答案:两个外项互为倒数,乘积为1。
根据比例的性质,两个内项的积也为1,所以另一个内项是1÷2.5 = 0.4题目5:一个数除以8 余5,除以9 余6,这个数最小是多少?答案:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数最小是72 - 3 = 69题目6:一个圆形花坛的周长是25.12 米,在它的周围加宽1 米,加宽后的面积比原来增加了多少平方米?答案:原来花坛的半径为25.12÷3.14÷2 = 4 米,加宽后的半径为5 米。
增加的面积为3.14×(5²- 4²) = 28.26 平方米题目7:一个长方体的棱长总和是120 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少立方厘米?答案:120÷4 = 30 厘米,3 + 2 + 1 = 6,长为15 厘米,宽为10 厘米,高为5 厘米,体积为750 立方厘米题目8:甲乙两车同时从A、B 两地相对开出,4 小时后相遇。
小升初数学-数论-奥数篇-整除专题解析 必考知识点
整除1.被一个数整除2. 被两个数整除3. 被三个数整除4. 整除与生活应用一被一个数整除10÷2=5四种说法:看末几位末一位末两位末三位被2,5整除的数被4,25整除的数被8,125整除的数看各个数位数字之和被3,9整除的数的特征:取隔断三位隔断(求差)两位隔断(求和)一位隔断(求差)被7,11,13整除的数被99整除的数被11整除的数被2 5 4 25 8 125 整除例1.在()里填入适当的数使所组成的数能被2整除使所组成的数能被5整除292()328()()785()96()51. 用5,7,8,0组成一个四位数,使它是2的倍数,这个数是();使它是5的倍数,这个数是()例2. 下列哪些书能被4整除?哪些数能被25整除?12456 2350 37212 7800 5408 653251. 在()里填入适当的数使所组成的数能被4整除65()4 ,1235(),78()4 ,7653()使所组成的数能被25整除2785(),96()5 ,98()5 ,667()例3.在()里填入适当的数使所组成的数能被8整除2210(),427()6 ,23()6使所组成的数能被125整除662(),887()0 ,4525()(),6673()()被3 9 整除例1.下面12个自然数,哪些能被3整除,哪些能被9整除?864 650 432 3675 9064 22125 5748 3108 96311125 2950 72901. 在89 121 135 480 157 483 中,是3的倍数的有()个。
2. 有一个四位数7AA1 是9的倍数,那么A是()3. 1024至少减去()就是3的倍数,1708至少加上()就是5的倍数。
4. 判断:个位上是3,6,9的数都是3的倍数。
()对于两个不相等的自然数,它们的和、差、积中必有一个是3的倍数。
()5. 已知x+2y(其中x y都是正整数)能被9整除,则2(5x-8y-4)被9除的余数为()被7 11 13 整除例1. 下面5个自然数中:128114 94146 64152 6139 4913678哪些能被7整除?哪些能被11整除?哪些能被13整除?1. 小月写了一个两位数59,冬冬写了一个两位数89 ,他们让小白写一个一位数放在59和89之间组成一个五位数59()89,使这个五位数能被7整除,小白写的数字是多少?被99 整除例1.2007a12b2既是9的倍数,又是11的倍数,那么这个数是多少?1. 已知七位数92AB427能被99整除,那么AB=2. 若1A219B7能被99整除,那么两位数A+B=()3. 六位数()2008()能同时被9和11整除。
(完整版)小升初简便运算奥数专题讲解
奥数之简便运算目录:计算专题1 小数分数运算律的运用: 计算专题2 大数认识及运用 计算专题3 分数专题 计算专题4 列项求和 计算专题5 计算综合 计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题: 计算专题8 牢记设字母代入法 计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题 计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单 计算专题13 定义新运算 计算专题14 解方程 计算专题15 等差数列计算专题16 尾数与完全平方数计算专题17 加法原理、乘法原理计算专题18 分数的估算求值计算专题19 简单数论奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。
下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124⨯+⨯例题三:32232537.96555⨯+⨯例题四:36⨯1.09+1.2⨯67.3例题五: 81.5⨯15.8+81.5⨯51.8+67.6⨯18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975⨯0.25+39769.754⨯- 4、 999999×222222+333333×3333345、 45⨯2.08+1.5⨯37.66、1391371137 138138⨯+⨯7、72⨯2.09-1.8⨯73.6 8、 53.5⨯35.3+53.5⨯43.2+78.5⨯46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5⨯+⨯+⨯例题三:199319941199319921994⨯-+⨯例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六: 2010×201120112011-2011×201020102010 【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+⨯⨯-3、99999⨯77776+33333⨯666664、30122-301125、999⨯274+62746、(83619711++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:443745⨯ 27⨯1526例题二:1173158⨯1164179⨯例题三:13274155⨯+⨯例题四:5152566139131813⨯+⨯+⨯例题五:11664120÷2010201020102011÷【综合练习】1、 73⨯74752、200820102009⨯ 3、115776⨯4、131441513445⨯+⨯ 5、13392744⨯+⨯ 6、1451179179⨯+⨯7、238238238239÷ 8、73171131581516152⨯+⨯+⨯计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++⨯⨯⨯⨯例题二:1111.......2446684850++++⨯⨯⨯⨯例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)⨯(11112345+++)-(111112345++++)⨯(111234++)【综合练习】1、1111........1011111212134950++++⨯⨯⨯⨯2、1111112612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++⨯⨯⨯⨯⨯6、22222392781243++++7、 1111111111111111() ()()()89101191011128910111291011+++⨯+++-++++⨯++计算专题5计算综合 【例题精讲】例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111⨯111111111 例题三: 12324671421135261072135⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯例题四:201012010220103111...1111222...2222333...3333=÷个个个例题五: 从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011 个个⋯⋯⨯⋯⋯3、1612886443224201612108654⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ 4、 2201242012222222444444个个⋯⋯⋯⋯ 62012666666个⋯⋯÷5、(1+3+5+7+…+1999)-(2+4+6+8+…+1998)6、⎪⎭⎫ ⎝⎛⨯⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算 熟记规律,常能化难为易。
(完整版)小升初50道经典奥数题及答案详细解析
?
7. 有甲乙两个仓库,每个仓库平均储存粮食 储存粮食多少吨 ?
32.5 吨。甲仓的存粮吨数比乙仓的 4 倍少 5 吨,甲、乙两仓各
8. 甲、乙两队共同修一条长 400 米的公路,甲队从东往西修 乙队每天多修 10 米。甲、乙两队每天共修多少米 ?
4 天,乙队从西往东修 5 天,正好修完,甲队比
9. 学校买来 6 张桌子和 5 把椅子共付 455 元,已知每张桌子比每把椅子贵 少元 ?
12 个纸箱和 4 个木箱。如果 3 个纸箱加 2 个木箱装的鞋同样
18. 某工地运进一批沙子和水泥,运进沙子袋数是水泥的 水泥全部用完,而沙子还剩 120 袋,这批沙子和水泥各多少袋
2 倍。每天用去 30 袋水泥, 40 袋沙子,几天以后, ?
19. 学校里买来了 5 个保温瓶和 10 个茶杯,共用了 90 元钱。每个保温瓶是每个茶杯价钱的 瓶和每个茶杯各多少元 ?
30 元,桌子和椅子的单价各是多
10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行 相遇时快车比慢车多行了 40 千米,甲乙两地相距多少千米 ?
75 千米,慢车每小时行 65 千米,
11. 某玻璃厂托运玻璃 250 箱,合同规定每箱运费 20 元,如果损坏一箱,不但不付运费还要赔偿 后结算时,共付运费 4400 元。托运中损坏了多少箱玻璃 ?
30. 有红、黄、白三种颜色的球,红球和黄球一共有 个。三种球各有多少个 ?
21 个,黄球和白球一共有 20 个,红球和白球一共有 19
31. 在一根粗钢管上接细钢管。如果接 一根细钢管各长多少米 ?
2 根细钢管共长 18 米,如果接 5 根细钢管共长 33 米。一根粗钢管和
32. 水泥厂原计划 12 天完成一项任务,由于每天多生产水泥 生产水泥多少吨 ?
小升初奥数教材(整理版)
第七讲升中总复习专题一---数的认识【整理与反思】我们学过了哪些数?你对这些数以及它们之间的联系有哪些认识?(1)整数、小数相邻计数单位间的进率都是几?(2)结合实例,说说百分数和分数有什么区别和联系。
(3)什么是分数的基本性质?你能用它说明小数的性质吗?分数的基本性质:分子和分母同时扩大或缩小相同的倍数,分数值不变【基础训练】一、填空:1、根据国家统计局统计,2004年我国总人口为129988万人,读作()万人,四舍五入到亿位约是()亿。
2、京福高速公路三明段已顺利通车,累计投资二十九亿四千二百万元,这个数写作(),改写成以“亿元”作单位的数是()亿元。
3、38米表示把()平均分成()份,取其中的()份,也可以表示把()平均分成()份,取其中的()份。
4、分数的单位是18的最大真分数是(),它至少再添上()个这样的分数单位就成了假分数。
5、3.85=()%=()÷()=()()=()()()6、在下面的□里中填上适当的数字,使第一个数最接近368万,第二个数最接近10亿。
368□700≈368万 9□2600000≈10亿7、在直线下面的□里填整数或小数,上面的□里填分数。
二、判断题。
1、因为67比45大,所以67的分数单位比45的分数单位大……()2、630因为分母中有质因数3,所以它不能化成有限小数……()3、4900÷400=49÷4=12……1………………………………………()三、选择题。
1、一个质数的因数有()个,一个合数的因数至少有()个。
A.2 B.3 C.无数2、不改变0.7的值,改写成以千分之一为单位的数是()。
A.0.007 B. 7.00 C.0.7003、水结成冰后体积增加111,那么冰化成水后体积减少()。
A.111B.110C.1124、如果甲数是乙数的45,下面正确的说法是()。
A.乙数是甲数的45B.乙数比甲数多15C.甲数比乙数少14D.乙数比甲数多14四、解决下列的问题:1、汽车站内每隔3分钟发一辆公交车,4分钟发一辆中巴车,1小时共发了几辆汽车?其中有几辆中巴车?2、一块长方形铁皮,长96厘米,宽80厘米,要把它剪成同样大小的正方形且没有剩余,这种正方形的边长是多少?被剪成几块?【能力提升】一、填空:1、一个三位小数,保留两位小数取近似值后是5.60,这个三位小数最小是(),最大是()。
小升初奥数题精选(10篇)
小升初奥数题精选(10篇)1.小升初奥数题精选篇一1、甲、乙两列火车同时从两地相向开出,甲车每小时行50千米,乙车每小时行60千米。
两车相遇时,甲车正好走了300千米,两地相距多少千米?答【分析】相遇时甲走了300千米,所以甲走了300÷50=6时,这6时正好是甲、乙两车的相遇时间,两地的距离(50+60)×6=660千米。
2、甲、乙两列火车同时从相距380千米的两地相向开出,甲车每小时行50千米,乙车每小时行60千米。
乙车比甲车晚出发1小时,乙车出发后,甲、乙两车几小时相遇?解答:乙车晚出发1小时,则乙车出发时甲已经行驶了50×1=50千米,此时甲、乙两车的距离是380-50=330千米,所以乙车出发后,相遇时间为330÷(50+60)=3小时。
2.小升初奥数题精选篇二1、学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。
三个年级段各分得多少本图书?设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本x+2x+3x-120=8406x-120=8406x=840+1206x=960x=960/6x=160高年级段为:160*2=320(本)中年级段为:160*3-120=360(本)答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本。
2、学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。
现在田径组有女生多少人?解:设原来田径队男女生一共x人1/3x+6=4/9(x+6)x=301/3x+6=30*1/3+6=16女生16人3.小升初奥数题精选篇三1、一个两位数除72,余数是12,那么满足要求的所有两位数有几个?分别是多少?解答:由题意知,所求的两位数应是7212=60的约数,还应大于12。
在60的约数中,两位数有10、12、15、20、30、60这六个数,大于12的有:15、20、30、60这四个数。
小升初奥数精讲精练500题
小升初奥数精讲精练500题100题精讲(一)数论------100题数论(1)例题1:(第7题)一个三位数是3的倍数,去掉它的个位数字后,所得的两位数是17的倍数。
这个三位数最大是____。
例题2:(第8题)将被11除余1,被15除余12的自然数按从小到大的顺序排成一列:a1,a2,a3,……,则a1=____;若a m-1<2011<a m,则m=_____。
例题3:(第15题)请选择一个你喜欢的两位数,将它连续写5遍组成一个十位数(如:两位数12连续写5遍成为1212121212),将这个十位数除以这个两位数,所得到的商再除以9,所得的余数是_____。
例题4:(第18题)六年级1班有30多人,个子最高的小明发现,放学站队时无论是2人、还是3人或者4人站成一排,他都只能自己单独站在最后,没有人与他站一排。
则六年级1班共有_____人。
例题5:(第46题)如果现在是上午的10点21分,那么经过2879……9(共20个9)分钟之后的时间是____点____分。
100题精讲(一)数论------ 100题数论(2)例题1:(第49题)一个六位数的末位数字是2,如果将2移到首位,则原数就是新数的3倍。
原数是_____。
例题2:(第53题)有一个两位数,如果用它除以它的个位数字,商9余6;如果用它除以个位数字与十位数字的和,商5余3。
这个两位数是_____。
例题3:(第54题)一串数的前4项分别是2、0、1、0,从第5项开始,每一项都是它前面4项数字和的个位数字,那么该数列中_____(填“会”或“不会”)出现2、0、1、1连续4项。
例题4:(第64题)有三箱螺帽,其中第一个箱子里有303只螺帽,第二个箱子里的螺帽是全部螺帽的15,第三个箱子里的螺帽是全部螺帽的n7(n是自然数)。
则第三个箱子里有螺帽_____只。
例题5:(第74题)由2011个9组成的多位数999……99除以74所得余数是_____。
六年级小升初基础奥数三十讲精品
第一讲 简便运算(一)在小升初的计算中,掌握一些实用的简便方法,可以提高同学们的计算能力,达到速算、巧算的目的。
(1)凑整法:把运算中的某一个数拆为一个整十、整百或整千数加上或减去一位数的和的形式,再运用运算定律,简化计算。
(2)设数法:根据算式中数字的特点,用字母代表数字或算式,可以化繁为简,达到简算的目的。
(3)分组计算:算式中的数有规律的出现,可以先分组,以达到简便计算。
(4)乘积不变的规律,商不变的规律。
用简便方法计算: 【解析】:观察算式,在这里我们要运用加法和减法的定律凑整计算,也就是凑成一个整千、整百或者整十的数,直接进行简便运算。
1、【解析】:原式=123 1.09+12 6.73=12(3.27+6.73)=1210=1202、 【解析】:原式=3387.579+790661.25=790(338.75+661.25)=79010005.21173685.8171431-+-703010030)16831()5.215.8(173681714315.21173685.8171431=-=-++=+-+=-+-3.672.109.136⨯+⨯⨯⨯⨯⨯⨯4166179079213387⨯+⨯⨯⨯⨯⨯沙场点兵典型例题知识宝典=790000计算:(1 + 12 + 13 + 14 )×(12 + 13 + 14 + 15 )-(1+ 12 + 13 + 14 + 15 )×(12 + 13 + 14 )【解析】:观察算式,直接算会很麻烦,这时巧用字母代替算式中的某个算式,即令1 + 12 + 13 + 14 =a , 12 + 13 + 14 =b ,化繁为简,从而达到简算。
设1 + 12 + 13 + 14 =a 12 + 13 + 14 =b原式=a ×(b + 15 )-(a + 15 )× b=ab + 15 a - ab - 15 b=15 (a -b )=151、用简便方法计算:【解析】:设 =a , =b 则原式=(1+a )b-(1+b)a=b-a= 2、用简便方法计算: 【解析】:设 =a , =b 则原式=(1+a)b-(1+b)a=b-a= )201612015120141()201712016120151201411()20171201612015120141()2016120151201411(++⨯++++-+++⨯+++20171)4332)(5443321()544332)(43321(++++-++++54沙场点兵20171201612015120141+++201612015120141++544332++4332+计算:【解析】:首先观察算式,把19.98扩大10倍的同时把199.7缩小10倍,根据积不变的规律,就可以对此类的算式进行简便计算。
小升初常考的奥数题100道附答案(完整版)
小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。
三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。
问:学生有多少人?答案:设原来有x 条船。
6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。
如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。
一共有多少个小朋友?答案:设小朋友有x 个。
x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。
原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。
(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。
7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。
小升初数学奥数题精编版
周长难度系数:☆☆☆☆☆如图,把正方形ABCD的对角线AC任意分成10段,并以每一段为对角线作为正方形.设这10个小正方形的周长之和为P,大正方形的周长为L,则P与L的关系是______(填<,>,=)。
答案:=把每个小正方形的边长分别平移到大正方形的四条边上可知.所有小正方形的周长之和恰等于大正方形的周长。
巧求周长部分题目难度系数:☆☆☆☆☆如图,长方形ABCD中有一个正方形EFGH,且AF=16厘米,HC=13厘米,求长方形ABCD 的周长是多少厘米。
答案:由于正方形各边都相等,则AD=EH=EF,BC= FG=GH,于是长方形ABCD的周长=AF+DG+BF +BC+CG+AD= AF+DG+BE+CH=16+16+13+13=32+26=58.巧求周长和面积可以先把要求周长和面积表示出来,然后把未知的进行转化,通常用到特殊四边形的性质,包含于排除(容斥原理)等重要的方法。
年龄问题题目难度系数:☆☆☆☆甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?答案:如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。
如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。
同样,这时丙的年龄也是乙两倍。
所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。
甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。
【试题】刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。
剩下的书每次搬20本,还要几次才能搬完?答案:(1)12次搬了多少本?15×12=180(本)搬了的与没搬的正好相等要多少次搬完?180÷20=9(次)答:还要9次才能搬完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数专题精华
(一)基础训练
1.找规律——侧重于数列、图形、速算巧算,重点培养学生的观察、计算、举一反三等基础能力
2.算式迷——侧重于运用倒推法、凑整法、估值法进行乘除法运算,旨在培养学生的逆向思维能力;
3.简单推理——侧重于运用等量代换、相互抵消等方法进行简单推理,着力培养学生的逻辑思维和逆向思维能力;
4.周期问题——旨在引导学生理解周期问题的含义,并能熟练运用找规律的方法解决周期问题;
5.平均数问题——侧重于培养学生运用求平均数的方法解决生活中实际问题,并由易到难,引导学生灵活运用求平均数的数量关系的能力;
6.还原问题——侧重于培养学生的逆向思维能力;
7.容斥问题——重点引导学生理解容斥问题的含义,初步了解包含与排除原理;8.盈亏问题——侧重于培养学生如何找准问题的关键,并能运用恰当的方法解决生活中的实际问题。
(二)深化提高
9.速算与巧算
10.和倍问题
11.差倍问题
12.和差问题
13.倍数问题专题
14.最大最小问题
15.置换问题
16.包含与排除问题
17.尾数和余数
18.定义新运算
19.分解质因数
20.最大公约数、最小公倍数
21. 年龄问题
22. 简易方程
23. 乘法原理和加法原理
24. 数的整除
25. 位值原理
26. 最优化问题
27. 分数比较大小
(三)重点辅导
28.组合平面图形的周长与面积29.立体图形的表面积、体积与容积30.简便计算
31.一般应用题
32.行程问题
33. 工程问题
34. 浓度问题
35.运用作图法
36. 假设法解题
37.数学开放题(机动课时)。