ASTM D 257-2007

合集下载

ASTMD257

ASTMD257

ASTMD257概述ASTMD257是由美国材料和试验协会(ASTM)制定的一项标准,用于测试电绝缘材料的体积电阻率。

体积电阻率是一个重要的电气性能指标,它表示了材料在电场作用下的导电性能。

ASTMD257标准规定了测试方法和评估电绝缘材料体积电阻率的标准计算方法,广泛应用于电子、电气工业中。

测试方法ASTMD257标准定义了两种方法来测试电绝缘材料的体积电阻率,分别是方法A和方法B。

下面将详细介绍这两种方法的测试步骤。

方法A方法A是ASTMD257标准中推荐的主要测试方法,适用于大部分常见的电绝缘材料。

测试过程如下:1.准备试样:根据材料的特性和形状,选择合适的尺寸和形状的试样。

确保试样表面平整、无气孔和污染物。

2.测量试样尺寸:使用精确的测量工具,测量试样的长度、宽度和厚度。

尺寸测量精度对测试结果影响很大,因此需要严格控制。

3.准备电极:在试样的两端制作电极,可以使用导电涂料、金属箔等导电材料。

4.连接电极:将电极与试样固定连接,确保电极与试样之间的接触良好,并尽量减小接触电阻。

5.测量电阻:使用电阻计测量试样的电阻值。

在测试过程中,可以根据需要改变电场的大小和方向,以获得更准确的测试结果。

方法B方法B是ASTMD257标准中备用的测试方法,适用于某些特殊的电绝缘材料。

测试过程如下:1.准备试样:准备与方法A相同的试样。

2.准备电极:使用导电涂料、金属箔等导电材料,在试样两端制作电极。

3.连接电极:将电极与试样固定连接,确保接触良好。

4.测量体积电阻率:使用专用的体积电阻率测试仪器,测量试样的体积电阻率。

该仪器可以通过应用不同电场强度和时间来模拟实际工作条件下的电场效应。

结果评价根据ASTMD257标准规定,测试结果将以体积电阻率(单位:Ω·cm)的形式进行报告。

报告中应包括测试方法、测试条件、试样尺寸、测量数据和计算结果。

同时,还需要对测量结果进行评价和比较。

常见的评价方法包括:•与标准值对比:将测量结果与标准值进行比较,判断材料的导电性能是否达到要求。

ASTM D 790-2007(弯曲)

ASTM D 790-2007(弯曲)

Designation:D790–07Standard Test Methods forFlexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials1This standard is issued under thefixed designation D790;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope*1.1These test methods cover the determination offlexural properties of unreinforced and reinforced plastics,including high-modulus composites and electrical insulating materials in the form of rectangular bars molded directly or cut from sheets, plates,or molded shapes.These test methods are generally applicable to both rigid and semirigid materials.However,flexural strength cannot be determined for those materials that do not break or that do not fail in the outer surface of the test specimen within the5.0%strain limit of these test methods. These test methods utilize a three-point loading system applied to a simply supported beam.A four-point loading system method can be found in Test Method D6272.1.1.1Procedure A,designed principally for materials that break at comparatively small deflections.1.1.2Procedure B,designed particularly for those materials that undergo large deflections during testing.1.1.3Procedure A shall be used for measurement offlexural properties,particularlyflexural modulus,unless the material specification states otherwise.Procedure B may be used for measurement offlexural strength only.Tangent modulus data obtained by Procedure A tends to exhibit lower standard deviations than comparable data obtained by means of Proce-dure B.1.2Comparative tests may be run in accordance with either procedure,provided that the procedure is found satisfactory for the material being tested.1.3The values stated in SI units are to be regarded as the standard.The values provided in brackets are for information only.1.4This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.N OTE1—These test methods are not technically equivalent to ISO178.2.Referenced Documents2.1ASTM Standards:2D618Practice for Conditioning Plastics for TestingD638Test Method for Tensile Properties of PlasticsD883Terminology Relating to PlasticsD4000Classification System for Specifying Plastic Mate-rialsD4101Specification for Polypropylene Injection and Ex-trusion MaterialsD5947Test Methods for Physical Dimensions of Solid Plastics SpecimensD6272Test Method for Flexural Properties of Unrein-forced and Reinforced Plastics and Electrical Insulating Materials by Four-Point BendingE4Practices for Force Verification of Testing Machines E691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method2.2ISO Standard:3ISO178Plastics—Determination of Flexural Properties of Rigid Plastics3.Terminology3.1Definitions—Definitions of terms applying to these test methods appear in Terminology D883and Annex A1of Test Method D638.4.Summary of Test Method4.1A bar of rectangular cross section rests on two supports and is loaded by means of a loading nose midway between the supports.A support span-to-depth ratio of16:1shall be used unless there is reason to suspect that a larger span-to-depth ratio may be required,as may be the case for certain laminated materials(see Section7and Note7for guidance).1These test methods are under the jurisdiction of ASTM Committee D20on Plastics and are the direct responsibility of Subcommittee D20.10on Mechanical Properties.Current edition approved Sept.1,2007.Published October2007.Originally approved st previous edition approved in2003as D790–03.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036,.*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.4.2The specimen is deflected until rupture occurs in the outer surface of the test specimen or until a maximum strain (see 12.7)of5.0%is reached,whichever occurs first.4.3Procedure A employs a strain rate of 0.01mm/mm/min [0.01in./in./min]and is the preferred procedure for this test method,while Procedure B employs a strain rate of 0.10mm/mm/min [0.10in./in./min].5.Significance and Use5.1Flexural properties as determined by these test methods are especially useful for quality control and specification purposes.5.2Materials that do not fail by the maximum strain allowed under these test methods (3-point bend)may be more suited to a 4-point bend test.The basic difference between the two test methods is in the location of the maximum bending moment and maximum axial fiber stresses.The maximum axial fiber stresses occur on a line under the loading nose in 3-point bending and over the area between the loading noses in 4-point bending.5.3Flexural properties may vary with specimen depth,temperature,atmospheric conditions,and the difference in rate of straining as specified in Procedures A and B (see also Note 7).5.4Before proceeding with these test methods,reference should be made to the ASTM specification of the material being tested.Any test specimen preparation,conditioning,dimensions,or testing parameters,or combination thereof,covered in the ASTM material specification shall take prece-dence over those mentioned in these test methods.Table 1in Classification System D 4000lists the ASTM material speci-fications that currently exist for plastics.6.Apparatus6.1Testing Machine —A properly calibrated testing ma-chine that can be operated at constant rates of crosshead motion over the range indicated,and in which the error in the load measuring system shall not exceed 61%of the maximum load expected to be measured.It shall be equipped with a deflection measuring device.The stiffness of the testing machine shall be such that the total elastic deformation of the system does not exceed 1%of the total deflection of the test specimen duringtesting,or appropriate corrections shall be made.The load indicating mechanism shall be essentially free from inertial lag at the crosshead rate used.The accuracy of the testing machine shall be verified in accordance with Practices E 4.6.2Loading Noses and Supports —The loading nose and supports shall have cylindrical surfaces.The default radii of the loading nose and supports shall be 5.060.1mm [0.19760.004in.]unless otherwise specified in an ASTM material specification or as agreed upon between the interested parties.When the use of an ASTM material specification,or an agreed upon modification,results in a change to the radii of the loading nose and supports,the results shall be clearly identified as being obtained from a modified version of this test method and shall include the specification (when available)from which the modification was specified,for example,Test Method D 790in accordance with Specification D 4101.6.2.1Other Radii for Loading Noses and Supports —When other than default loading noses and supports are used,in order to avoid excessive indentation,or failure due to stress concen-tration directly under the loading nose,they must comply with the following requirements:they shall have a minimum radius of 3.2mm [1⁄8in.]for all specimens.For specimens 3.2mm or greater in depth,the radius of the supports may be up to 1.6times the specimen depth.They shall be this large if significant indentation or compressive failure occurs.The arc of the loading nose in contact with the specimen shall be sufficiently large to prevent contact of the specimen with the sides of the nose.The maximum radius of the loading nose shall be no more than four times the specimen depth.6.3Micrometers —Suitable micrometers for measuring the width and thickness of the test specimen to an incremental discrimination of at least 0.025mm [0.001in.]should be used.All width and thickness measurements of rigid and semirigid plastics may be measured with a hand micrometer with ratchet.A suitable instrument for measuring the thickness of nonrigid test specimens shall have:a contact measuring pressure of 2562.5kPa [3.660.36psi],a movable circular contact foot 6.3560.025mm [0.25060.001in.]in diameter and a lower fixed anvil large enough to extend beyond the contact foot in all directions and being parallel to the contact foot within 0.005mm [0.002in.]over the entire foot area.Flatness of foot and anvil shall conform to the portion of the Calibration section of Test Methods D 5947.7.Test Specimens7.1The specimens may be cut from sheets,plates,or molded shapes,or may be molded to the desired finished dimensions.The actual dimensions used in Section 4.2,Cal-culation,shall be measured in accordance with Test Methods D 5947.N OTE 2—Any necessary polishing of specimens shall be done only in the lengthwise direction of the specimen.7.2Sheet Materials (Except Laminated Thermosetting Ma-terials and Certain Materials Used for Electrical Insulation,Including Vulcanized Fiber and Glass Bonded Mica):7.2.1Materials 1.6mm [1⁄16in.]or Greater in Thickness —For flatwise tests,the depth of the specimen shall be the thickness of the material.For edgewise tests,the width of theTABLE 1Flexural StrengthMaterial Mean,103psiValues Expressed in Units of %of 103psi V r A V R B r C R D ABS9.99 1.59 6.05 4.4417.2DAP thermoset 14.3 6.58 6.5818.618.6Cast acrylic 16.3 1.6711.3 4.7332.0GR polyester19.5 1.43 2.14 4.05 6.08GR polycarbonate 21.0 5.16 6.0514.617.1SMC26.04.767.1913.520.4AV r =within-laboratory coefficient of variation for the indicated material.It is obtained by first pooling the within-laboratory standard deviations of the test results from all of the participating laboratories:Sr =[[(s 1)2+(s 2)2...+(s n )2]/n]1/2then V r =(S r divided by the overall average for the material)3100.BV r =between-laboratory reproducibility,expressed as the coefficient of varia-tion:S R ={S r 2+S L 2}1/2where S L is the standard deviation of laboratory means.Then:V R =(S R divided by the overall average for the material)3100.Cr =within-laboratory critical interval between two test results =2.83V r .DR =between-laboratory critical interval between two test results =2.83V R.specimen shall be the thickness of the sheet,and the depth shall not exceed the width(see Notes3and4).For all tests,the support span shall be16(tolerance61)times the depth of the beam.Specimen width shall not exceed one fourth of the support span for specimens greater than3.2mm[1⁄8in.]in depth.Specimens3.2mm or less in depth shall be12.7mm[1⁄2 in.]in width.The specimen shall be long enough to allow for overhanging on each end of at least10%of the support span, but in no case less than6.4mm[1⁄4in.]on each end.Overhang shall be sufficient to prevent the specimen from slipping through the supports.N OTE3—Whenever possible,the original surface of the sheet shall be unaltered.However,where testing machine limitations make it impossible to follow the above criterion on the unaltered sheet,one or both surfaces shall be machined to provide the desired dimensions,and the location of the specimens with reference to the total depth shall be noted.The value obtained on specimens with machined surfaces may differ from those obtained on specimens with original surfaces.Consequently,any specifi-cations forflexural properties on thicker sheets must state whether the original surfaces are to be retained or not.When only one surface was machined,it must be stated whether the machined surface was on the tension or compression side of the beam.N OTE4—Edgewise tests are not applicable for sheets that are so thin that specimens meeting these requirements cannot be cut.If specimen depth exceeds the width,buckling may occur.7.2.2Materials Less than1.6mm[1⁄16in.]in Thickness—The specimen shall be50.8mm[2in.]long by12.7mm[1⁄2in.] wide,testedflatwise on a25.4-mm[1-in.]support span.N OTE5—Use of the formulas for simple beams cited in these test methods for calculating results presumes that beam width is small in comparison with the support span.Therefore,the formulas do not apply rigorously to these dimensions.N OTE6—Where machine sensitivity is such that specimens of these dimensions cannot be measured,wider specimens or shorter support spans,or both,may be used,provided the support span-to-depth ratio is at least14to1.All dimensions must be stated in the report(see also Note5).7.3Laminated Thermosetting Materials and Sheet and Plate Materials Used for Electrical Insulation,Including Vulcanized Fiber and Glass-Bonded Mica—For paper-base and fabric-base grades over25.4mm[1in.]in nominal thickness,the specimens shall be machined on both surfaces to a depth of25.4mm.For glass-base and nylon-base grades, specimens over12.7mm[1⁄2in.]in nominal depth shall be machined on both surfaces to a depth of12.7mm.The support span-to-depth ratio shall be chosen such that failures occur in the outerfibers of the specimens,due only to the bending moment(see Note7).Therefore,a ratio larger than16:1may be necessary(32:1or40:1are recommended).When laminated materials exhibit low compressive strength perpendicular to the laminations,they shall be loaded with a large radius loading nose(up to four times the specimen depth to prevent premature damage to the outerfibers.7.4Molding Materials(Thermoplastics and Thermosets)—The recommended specimen for molding materials is127by 12.7by3.2mm[5by1⁄2by1⁄8in.]testedflatwise on a support span,resulting in a support span-to-depth ratio of16(tolerance 61).Thicker specimens should be avoided if they exhibit significant shrink marks or bubbles when molded.7.5High-Strength Reinforced Composites,Including Highly Orthotropic Laminates—The span-to-depth ratio shall be cho-sen such that failure occurs in the outerfibers of the specimens and is due only to the bending moment(see Note7).A span-to-depth ratio larger than16:1may be necessary(32:1or 40:1are recommended).For some highly anisotropic compos-ites,shear deformation can significantly influence modulus measurements,even at span-to-depth ratios as high as40:1. Hence,for these materials,an increase in the span-to-depth ratio to60:1is recommended to eliminate shear effects when modulus data are required,it should also be noted that the flexural modulus of highly anisotropic laminates is a strong function of ply-stacking sequence and will not necessarily correlate with tensile modulus,which is not stacking-sequence dependent.N OTE7—As a general rule,support span-to-depth ratios of16:1are satisfactory when the ratio of the tensile strength to shear strength is less than8to1,but the support span-to-depth ratio must be increased for composite laminates having relatively low shear strength in the plane of the laminate and relatively high tensile strength parallel to the support span.8.Number of Test Specimens8.1Test at leastfive specimens for each sample in the case of isotropic materials or molded specimens.8.2For each sample of anisotropic material in sheet form, test at leastfive specimens for each of the following conditions. Recommended conditions areflatwise and edgewise tests on specimens cut in lengthwise and crosswise directions of the sheet.For the purposes of this test,“lengthwise”designates the principal axis of anisotropy and shall be interpreted to mean the direction of the sheet known to be stronger inflexure.“Cross-wise”indicates the sheet direction known to be the weaker in flexure and shall be at90°to the lengthwise direction.9.Conditioning9.1Conditioning—Condition the test specimens at236 2°C[73.463.6°F]and5065%relative humidity for not less than40h prior to test in accordance with Procedure A of Practice D618unless otherwise specified by contract or the relevant ASTM material specification.Reference pre-test con-ditioning,to settle disagreements,shall apply tolerances of 61°C[1.8°F]and62%relative humidity.9.2Test Conditions—Conduct the tests at2362°C[73.46 3.6°F]and5065%relative humidity unless otherwise specified by contract or the relevant ASTM material specifica-tion.Reference testing conditions,to settle disagreements, shall apply tolerances of61°C[1.8°F]and62%relative humidity.10.Procedure10.1Procedure A:10.1.1Use an untested specimen for each measurement. Measure the width and depth of the specimen to the nearest 0.03mm[0.001in.]at the center of the support span.For specimens less than2.54mm[0.100in.]in depth,measure the depth to the nearest0.003mm[0.0005in.].These measure-ments shall be made in accordance with Test Methods D5947.10.1.2Determine the support span to be used as described in Section7and set the support span to within1%of the determinedvalue.10.1.3Forflexuralfixtures that have continuously adjust-able spans,measure the span accurately to the nearest0.1mm [0.004in.]for spans less than63mm[2.5in.]and to the nearest 0.3mm[0.012in.]for spans greater than or equal to63mm [2.5in.].Use the actual measured span for all calculations.For flexuralfixtures that havefixed machined span positions,verify the span distance the same as for adjustable spans at each machined position.This distance becomes the span for that position and is used for calculations applicable to all subse-quent tests conducted at that position.See Annex A2for information on the determination of and setting of the span.10.1.4Calculate the rate of crosshead motion as follows and set the machine for the rate of crosshead motion as calculated by Eq1:R5ZL2/6d(1) where:R=rate of crosshead motion,mm[in.]/min,L=support span,mm[in.],d=depth of beam,mm[in.],andZ=rate of straining of the outerfiber,mm/mm/min[in./ in./min].Z shall be equal to0.01.In no case shall the actual crosshead rate differ from that calculated using Eq1,by more than610%.10.1.5Align the loading nose and supports so that the axes of the cylindrical surfaces are parallel and the loading nose is midway between the supports.The parallelism of the apparatus may be checked by means of a plate with parallel grooves into which the loading nose and supports willfit when properly aligned(see A2.3).Center the specimen on the supports,with the long axis of the specimen perpendicular to the loading nose and supports.10.1.6Apply the load to the specimen at the specified crosshead rate,and take simultaneous load-deflection data. Measure deflection either by a gage under the specimen in contact with it at the center of the support span,the gage being mounted stationary relative to the specimen supports,or by measurement of the motion of the loading nose relative to the supports.Load-deflection curves may be plotted to determine theflexural strength,chord or secant modulus or the tangent modulus of elasticity,and the total work as measured by the area under the load-deflection curve.Perform the necessary toe compensation(see Annex A1)to correct for seating and indentation of the specimen and deflections in the machine.10.1.7Terminate the test when the maximum strain in the outer surface of the test specimen has reached0.05mm/mm [in./in.]or at break if break occurs prior to reaching the maximum strain(Notes8and9).The deflection at which this strain will occur may be calculated by letting r equal0.05 mm/mm[in./in.]in Eq2:D5rL2/6d(2) where:D=midspan deflection,mm[in.],r=strain,mm/mm[in./in.],L=support span,mm[in.],andd=depth of beam,mm[in.].N OTE8—For some materials that do not yield or break within the5% strain limit when tested by Procedure A,the increased strain rate allowed by Procedure B(see10.2)may induce the specimen to yield or break,or both,within the required5%strain limit.N OTE9—Beyond5%strain,this test method is not applicable.Some other mechanical property might be more relevant to characterize mate-rials that neither yield nor break by either Procedure A or Procedure B within the5%strain limit(for example,Test Method D638may be considered).10.2Procedure B:10.2.1Use an untested specimen for each measurement.10.2.2Test conditions shall be identical to those described in10.1,except that the rate of straining of the outer surface of the test specimen shall be0.10mm/mm[in./in.]/min.10.2.3If no break has occurred in the specimen by the time the maximum strain in the outer surface of the test specimen has reached0.05mm/mm[in./in.],discontinue the test(see Note9).11.Retests11.1Values for properties at rupture shall not be calculated for any specimen that breaks at some obvious,fortuitousflaw, unless suchflaws constitute a variable being studied.Retests shall be made for any specimen on which values are not calculated.12.Calculation12.1Toe compensation shall be made in accordance with Annex A1unless it can be shown that the toe region of the curve is not due to the take-up of slack,seating of the specimen,or other artifact,but rather is an authentic material response.12.2Flexural Stress(s f)—When a homogeneous elastic material is tested inflexure as a simple beam supported at two points and loaded at the midpoint,the maximum stress in the outer surface of the test specimen occurs at the midpoint.This stress may be calculated for any point on the load-deflection curve by means of the following equation(see Notes10-12):s f53PL/2bd2(3) where:s=stress in the outerfibers at midpoint,MPa[psi],P=load at a given point on the load-deflection curve,N [lbf],L=support span,mm[in.],b=width of beam tested,mm[in.],andd=depth of beam tested,mm[in.].N OTE10—Eq3applies strictly to materials for which stress is linearly proportional to strain up to the point of rupture and for which the strains are small.Since this is not always the case,a slight error will be introduced if Eq3is used to calculate stress for materials that are not true Hookean materials.The equation is valid for obtaining comparison data and for specification purposes,but only up to a maximumfiber strainof5%in the outer surface of the test specimen for specimens tested by the procedures described herein.N OTE11—When testing highly orthotropic laminates,the maximum stress may not always occur in the outer surface of the test specimen.4 Laminated beam theory must be applied to determine the maximum tensile stress at failure.If Eq3is used to calculate stress,it will yield an apparent strength based on homogeneous beam theory.This apparent strength is highly dependent on the ply-stacking sequence of highly orthotropic laminates.N OTE12—The preceding calculation is not valid if the specimen slips excessively between the supports.12.3Flexural Stress for Beams Tested at Large Support Spans(s f)—If support span-to-depth ratios greater than16to 1are used such that deflections in excess of10%of the support span occur,the stress in the outer surface of the specimen for a simple beam can be reasonably approximated with the following equation(see Note13):s f5~3PL/2bd2!@116~D/L!224~d/L!~D/L!#(4) where:s f,P,L,b,and d are the same as for Eq3,andD=deflection of the centerline of the specimen at the middle of the support span,mm[in.].N OTE13—When large support span-to-depth ratios are used,significant end forces are developed at the support noses which will affect the moment in a simple supported beam.Eq4includes additional terms that are an approximate correction factor for the influence of these end forces in large support span-to-depth ratio beams where relatively large deflec-tions exist.12.4Flexural Strength(s fM)—Maximumflexural stress sustained by the test specimen(see Note11)during a bendingtest.It is calculated according to Eq3or Eq4.Some materials that do not break at strains of up to5%may give a load deflection curve that shows a point at which the load does not increase with an increase in strain,that is,a yield point(Fig.1, Curve B),Y.Theflexural strength may be calculated for these materials by letting P(in Eq3or Eq4)equal this point,Y.12.5Flexural Offset Yield Strength—Offset yield strength is the stress at which the stress-strain curve deviates by a given strain(offset)from the tangent to the initial straight line portion of the stress-strain curve.The value of the offset must be given whenever this property is calculated.N OTE14—This value may differ fromflexural strength defined in12.4. Both methods of calculation are described in the annex to Test Method D638.12.6Flexural Stress at Break(s fB)—Flexural stress at break of the test specimen during a bending test.It is calculated according to Eq3or Eq4.Some materials may give a load deflection curve that shows a break point,B,without a yield point(Fig.1,Curve a)in which case s fB=s fM.Other materials may give a yield deflection curve with both a yield and a break point,B(Fig.1,Curve b).Theflexural stress at break may be calculated for these materials by letting P(in Eq 3or Eq4)equal this point,B.12.7Stress at a Given Strain—The stress in the outer surface of a test specimen at a given strain may be calculated in accordance with Eq3or Eq4by letting P equal the load read from the load-deflection curve at the deflection corresponding to the desired strain(for highly orthotropic laminates,see Note11).12.8Flexural Strain,e f—Nominal fractional change in the length of an element of the outer surface of the test specimen at midspan,where the maximum strain occurs.It may be calculated for any deflection using Eq5:e f56Dd/L2(5) where:e f=strain in the outer surface,mm/mm[in./in.],D=maximum deflection of the center of the beam,mm [in.],L=support span,mm[in.],andd=depth,mm[in.].12.9Modulus of Elasticity:12.9.1Tangent Modulus of Elasticity—The tangent modu-lus of elasticity,often called the“modulus of elasticity,”is the ratio,within the elastic limit,of stress to corresponding strain. It is calculated by drawing a tangent to the steepest initial straight-line portion of the load-deflection curve and using Eq 6(for highly anisotropic composites,see Note15).E B5L3m/4bd3(6)4For a discussion of these effects,see Zweben,C.,Smith,W.S.,and Wardle,M. W.,“Test Methods for Fiber Tensile Strength,Composite Flexural Modulus and Properties of Fabric-Reinforced Laminates,“Composite Materials:Testing and Design(Fifth Conference),ASTM STP674,1979,pp.228–262.N OTE—Curve a:Specimen that breaks before yielding.Curve b:Specimen that yields and then breaks before the5%strain limit.Curve c:Specimen that neither yields nor breaks before the5%strain limit.FIG.1Typical Curves of Flexural Stress(ßf)Versus FlexuralStrain(ef)where:E B =modulus of elasticity in bending,MPa [psi],L =support span,mm [in.],b =width of beam tested,mm [in.],d =depth of beam tested,mm [in.],andm =slope of the tangent to the initial straight-line portion of the load-deflection curve,N/mm [lbf/in.]of deflec-tion.N OTE 15—Shear deflections can seriously reduce the apparent modulusof highly anisotropic composites when they are tested at low span-to-depth ratios.4For this reason,a span-to-depth ratio of 60to 1is recommended for flexural modulus determinations on these composites.Flexural strength should be determined on a separate set of replicate specimens at a lower span-to-depth ratio that induces tensile failure in the outer fibers of the beam along its lower face.Since the flexural modulus of highly anisotropic laminates is a critical function of ply-stacking sequence,it will not necessarily correlate with tensile modulus,which is not stacking-sequence dependent.12.9.2Secant Modulus —The secant modulus is the ratio of stress to corresponding strain at any selected point on the stress-strain curve,that is,the slope of the straight line that joins the origin and a selected point on the actual stress-strain curve.It shall be expressed in megapascals [pounds per square inch].The selected point is chosen at a prespecified stress or strain in accordance with the appropriate material specification or by customer contract.It is calculated in accordance with Eq 6by letting m equal the slope of the secant to the load-deflection curve.The chosen stress or strain point used for the determination of the secant shall be reported.12.9.3Chord Modulus (E f )—The chord modulus may be calculated from two discrete points on the load deflection curve.The selected points are to be chosen at two prespecified stress or strain points in accordance with the appropriate material specification or by customer contract.The chosen stress or strain points used for the determination of the chord modulus shall be reported.Calculate the chord modulus,E f using the following equation:E f 5~s f 22s f 1!/~e f 22e f 1!(7)where:s f 2and s f 1are the flexural stresses,calculated from Eq 3or Eq 4and measured at the predefined points on the loaddeflection curve,and e f 2ande f 1are the flexural strain values,calculated from Eq 5and measured at the predetermined points on the load deflection curve.12.10Arithmetic Mean —For each series of tests,the arithmetic mean of all values obtained shall be calculated to three significant figures and reported as the “average value”for the particular property in question.12.11Standard Deviation —The standard deviation (esti-mated)shall be calculated as follows and be reported to two significant figures:s 5=~(X 22nX¯2!/~n 21!(8)where:s =estimated standard deviation,X =value of single observation,n =number of observations,andX ¯=arithmetic mean of the set of observations.13.Report13.1Report the following information:13.1.1Complete identification of the material tested,includ-ing type,source,manufacturer’s code number,form,principal dimensions,and previous history (for laminated materials,ply-stacking sequence shall be reported),13.1.2Direction of cutting and loading specimens,when appropriate,13.1.3Conditioning procedure,13.1.4Depth and width of specimen,13.1.5Procedure used (A or B),13.1.6Support span length,13.1.7Support span-to-depth ratio if different than 16:1,13.1.8Radius of supports and loading noses,if different than 5mm.When support and/or loading nose radii other than 5mm are used,the results shall be identified as being generated by a modified version of this test method and the referring specification referenced as to the geometry used.13.1.9Rate of crosshead motion,13.1.10Flexural strain at any given stress,average value and standard deviation,13.1.11If a specimen is rejected,reason(s)for rejection,13.1.12Tangent,secant,or chord modulus in bending,average value,standard deviation,and the strain level(s)used if secant or chord modulus,13.1.13Flexural strength (if desired),average value,and standard deviation,13.1.14Stress at any given strain up to and including 5%(if desired),with strain used,average value,and standard devia-tion,13.1.15Flexural stress at break (if desired),average value,and standard deviation,13.1.16Type of behavior,whether yielding or rupture,or both,or other observations,occurring within the 5%strain limit,and13.1.17Date of specific version of test used.TABLE 2Flexural ModulusMaterial Mean,103psiValues Expressed in units of %of 103psi V r A V R B r C R D ABS338 4.797.6913.621.8DAP thermoset 485 2.897.188.1520.4Cast acrylic 81013.716.138.845.4GR polyester816 3.49 4.209.9111.9GR polycarbonate 1790 5.52 5.5215.615.6SMC195010.913.830.839.1AV r =within-laboratory coefficient of variation for the indicated material.It is obtained by first pooling the within-laboratory standard deviations of the test results from all of the participating laboratories:Sr =[[(s 1)2+(s 2)2...+(s n )2]/n ]1/2then V r =(S r divided by the overall average for the material)3100.BV r =between-laboratory reproducibility,expressed as the coefficient of varia-tion:S R ={S r 2+S L 2}1/2where S L is the standard deviation of laboratory means.Then:V R =(S R divided by the overall average for the material)3100.Cr =within-laboratory critical interval between two test results =2.83V r .DR =between-laboratory critical interval between two test results =2.83V R.。

ASTM美国试验与材料协会标准(纺织)

ASTM美国试验与材料协会标准(纺织)

ASTM美國試驗與材料協會標準(紡織部分)標準代號標準名稱ASTM D1059-2001基於短長度樣品的紗線支數試驗方法ASTM D1060-1996為測定淨毛纖維百分率從成包原毛中心取樣的標準操作規程ASTM D1113a-1990洗淨羊毛中植物性物質和其它鹼性不溶雜質的標準測試方法ASTM D1117-2001無紡織物評價的標準指南ASTM D1230-1994服裝紡織品的易燃性的標準測試方法ASTM D1230-1994服裝紡織品的易燃性的標準測試方法ASTM D123-2002與紡織品相關的標準術語ASTM D1234-1985含脂羊毛的手扯長度的取樣和試驗方法ASTM D1244-1998紗線結構的名稱與符號ASTM D1282-1996用氣流阻力表示羊毛毛條,生條和洗淨羊毛的平均纖維直經的標準測試方法ASTM D1283-1985羊毛堿溶性的測試方法ASTM D1294a-19951英寸(25.4毫米)長度的羊毛纖維束拉伸強度和斷裂強度的標準試驗方法ASTM D1334-1996原毛毛含量的標準試驗方法.商業尺度ASTM D1422-1999退撚加撚法測定單細紗撚數的標準試驗方法ASTM D1423-2002直接計數法測定紗線撚數的標準試驗方法ASTM D1424-1996埃爾曼多夫落錘儀測定機織物抗撕裂的標準試驗方法ASTM D1425-1996用電容測試設備測定紗線條幹不勻度的標準試驗方法ASTM D1440-1996棉纖維長度和長度分佈的標準試驗方法(列陣法)ASTM D1441-2000試驗用棉纖維取樣的標準操作規程ASTM D1442-2000棉纖維成熟度的標準試驗方法(燒鹼膨脹與偏振光法)ASTM D1445-1995棉纖維的斷裂強度和延伸率的標準試驗方法(扁纖維束法)ASTM D1447-2000用纖維照影機測量法測定棉纖維的長度和長度均勻度的標準試驗方法ASTM D1448-1997棉纖維的馬克隆尼讀數的標準試驗方法ASTM D1464-1990棉花染色差異性的標準試驗方法ASTM D1518-1985紡織材料的熱傳導的標準試驗方法ASTM D1571-1995石棉布的標準規範ASTM D1575-1990洗淨羊毛及生條中羊毛纖維長度的測試方法ASTM D1576-1990用爐烘乾法測定羊毛內水分的試驗方法ASTM D1578-1993絞紗形式下紗線的斷裂強度的試驗方法ASTM D1684-1996顏色分級用棉分級室的照明的標準操作規程ASTM D1770-1994羊毛條中毛結,植物性物質與有色纖維含量標準測試方法ASTM D1776-1998試驗用調濕織物ASTM D1777-1996測量紡織材料的厚度的標準試驗方法ASTM D1909-1996紡織纖維商品回潮率標準表ASTM D1913-2000服裝革抗濕性的標準試驗方法(噴霧法)ASTM D1987-1995土工織物或泥土/土工織物的生物阻塞的標準試驗方法ASTM D204-2002縫紉線的標準試驗方法ASTM D2052-2001拉鍊耐乾洗色牢度的測試方法ASTM D2052-2001拉鍊耐乾洗色牢度的測試方法ASTM D2053-1999拉鍊耐光照色牢度的試驗方法ASTM D2053-1999拉鍊耐光照色牢度的試驗方法ASTM D2062-1987拉鍊可用性的試驗方法ASTM D2062-1987拉鍊可用性的試驗方法ASTM D2118-1996羊毛及其製品中標準水份含量的確定ASTM D2130-1990顯微投影法測定羊毛和其它動物纖維直徑的標準試驗方法ASTM D2165-1994羊毛及類似動物纖維的水萃取物pH值的標準測試方法ASTM D2252-1996各類阿爾帕卡毛細度的標準規範ASTM D2257-1998紡織材料中可萃取物的試驗方法ASTM D2258-1999試驗用紗線的抽樣ASTM D2259-2002紗線收縮性的標準試驗方法ASTM D2260-2002各種支數標定制中測得的對等紗線支數表和換算標準係數表ASTM D2261-1996切口(單幅撕裂)法(恒速拉伸試驗機)測定紡織物撕裂強度的標準試驗方法ASTM D2402-2001紡織纖維保水性的標準試驗方法(離心機法)ASTM D2462-1990用甲苯蒸餾法測定羊毛中水分的試驗方法ASTM D2475-2001毛氈標準規範ASTM D2494-2002紗線或人造纖維或纖維束貨包的商業品質的標準試驗方法ASTM D2495-2001用烘乾法測定棉花中水分的標準試驗方法ASTM D2497-2001人造有機長絲單紗標準公差ASTM D2497-2001人造有機長絲單紗標準公差ASTM D2524-1995毛纖維抗斷裂強度的試驗方法.平列纖維束法.1/8英寸(3.2毫米)規範長度的標準試驗方法ASTM D2525-1990測定羊毛水分的取樣的標準操作規程ASTM D2589-1988石棉纖維的麥克涅特濕法分類的標準試驗方法ASTM D2590-1998溫石棉取樣的試驗方法ASTM D2594a-1999低彈針織物彈性的標準試驗方法ASTM D2612-1999靜態試驗條件下紗條和毛條中纖維粘附力的標準試驗方法ASTM D2644-2002毛織品系統的細紗標準公差ASTM D2645-1995棉紗或毛紗系統中的細紗的標準公差ASTM D2646-1996背襯織物的標準試驗方法ASTM D2692-1998輪胎簾布織物、輪胎簾布、輪胎簾線及紗線氣體芯吸效應的試驗方法ASTM D2720-1994商業用各種洗淨羊毛、毛條及短毛的商業公定重量和產量計算的標準實施規程ASTM D2724-1987粘結的、熔合的和疊層衣用織物的標準試驗方法ASTM D2752-1988石棉纖維透氣性的測試方法ASTM D276a-2000識別紡織品中纖維的標準試驗方法ASTM D2812-1995棉花中含雜量的試驗方法ASTM D2816-1995開士米毛線中粗毛節含量的標準試驗方法ASTM D2817-1991開士米毛線中最大粗毛節含量的測定ASTM D2859-2002精製紡織地板覆蓋物著火特性的標準試驗方法ASTM D2904-1997產生正常分佈資料的紡織試驗法的實驗室間試驗的標準實施規程ASTM D2905-1997紡織品樣品的數值表的標準實施規程ASTM D2906-1997織物精密度和偏差表的標準實施規程ASTM D2947-1988石棉纖維篩選分析的試驗方法ASTM D2968-1995用顯微投影法測定羊毛和其它動物纖維中的有髓纖維和死毛纖維的標準試驗方法ASTM D2985-1992石棉顏色的試驗方法ASTM D2987-1988石棉纖維水分含量的標準測試方法ASTM D3025-2001校正棉花標準用標準棉花纖維試驗結果ASTM D3106-2001彈性紗永久變型的標準試驗方法ASTM D3108-2001紗與固體材料磨擦係數的標準試驗方法ASTM D3135-1987粘合的、熔凝纖維的及疊層衣料的性能ASTM D3136-2000服裝、紡織品、傢俱織物和皮革製品用保養說明標籤的標準術語ASTM D3136-2000服裝、紡織品、傢俱織物和皮革製品用保養說明標籤的標準術語ASTM D3181-1995在紡織品上進行磨損試驗的標準指南ASTM D3217-2001線圈或打結的人造紡織纖維斷裂強度標準試驗方法ASTM D3217-2001a線圈或打結的人造紡織纖維斷裂強度標準試驗方法ASTM D3218-2001聚烯烴單絲標準規範ASTM D3333-2001試驗用人造短纖維、次等化學纖維或亞麻短纖維的取樣標準實施規程ASTM D3333-2001試驗用人造短纖維、次等化學纖維或亞麻短纖維的取樣標準實施規程ASTM D3374-1999乙烯塗覆的玻璃絲標準規範ASTM D3412-2001紗與紗之間摩擦係數的標準試驗方法ASTM D3511-2002用刷型起球試驗器測定紡織物纖維的抗起球性及其有關的表面變化的標準試驗方法ASTM D3512-2002用隨機轉筒起球試驗器測定紡織物表面的抗起球性及其它有關表面變化的試驗方法ASTM D3513-1996人造短纖維中超長纖維含量的標準試驗方法ASTM D3513-1996人造短纖維中超長纖維含量的標準試驗方法ASTM D3514-2002用彈性護墊試驗器測定紡織物表面的抗起球性及其它有關表面變化的試驗方法ASTM D3562-1999機織耐乾洗外套織物的標準性能規範ASTM D3655-2002男子及婦女用梳條編織外衣和夾克織物的標準性能規範ASTM D3656-1997塗乙烯的玻璃纖維紗編的防蟲罩及排氣孔遮布ASTM D3657-1988拉鍊尺寸ASTM D3691-2002機織帶狀針織家用窗簾和帶皺折編織物的標準性能規範ASTM D3692-1989標籤標明衣物及家用裝飾物用拉鍊的選擇規定ASTM D3692-1989標籤標明衣物及家用裝飾物用拉鍊的選擇規定ASTM D3773-1990紡織品長度的試驗方法ASTM D3774-1996紡織品寬度的標準試驗方法ASTM D3775-2002機織物經緯密度的標準測試方法ASTM D3776-1996紡織品單位面積(重量)品質的標準試驗方法ASTM D3777-1997紡織品記錄規範ASTM D3779a-2002婦女及女孩用機織雨衣與適合各種用途的防水上膠織物的標準性能規範ASTM D3780a-2002男人及男孩用機織套裝織物及機織運動夾克、運動褲及褲子織物的標準性能規範ASTM D3781-2002男人及男孩用針織雨衣和適合各種用途防水上膠織物的標準性能規範ASTM D3781-2002男人及男孩用針織雨衣和適合各種用途防水上膠織物的標準性能規範ASTM D3782-2002男人及男孩用針織套裝織物和針織運動夾克、運動褲及褲子織物的標準性能規範ASTM D3782-2002男人及男孩用針織套裝織物和針織運動夾克、運動褲及褲子織物的標準性能規範ASTM D3782-2002男人及男孩用針織套裝織物和針織運動夾克、運動褲及褲子織物的標準性能規範ASTM D3783a-2002男人及男孩衣服用機織平紋襯裡織物的標準性能規範ASTM D3784a-2002男人及男孩用機織浴衣及睡衣織物的標準性能規範ASTM D3785-2002機織領帶及圍巾織物的標準性能規範ASTM D3787-2001針織品破裂強度測試方法.恒速橫向移動球式破裂試驗ASTM D3787-2001針織品破裂強度測試方法.恒速橫向移動球式破裂試驗ASTM D3787-2001針織品破裂強度測試方法.恒速橫向移動球式破裂試驗ASTM D3819a-1995男人及男孩用機織睡衣織物的標準性能規範ASTM D3820a-2002男人及男孩用機織內衣織物的標準性能規範ASTM D3822-2001單支紡織品纖維張力性能的標準試驗方法ASTM D3823-2001測定縫紉線標籤數目的標準實施規程ASTM D3882-1999機織和針織織物中弓緯和緯斜的試驗方法ASTM D3882-1999機織和針織織物中弓緯和緯斜的試驗方法ASTM D3883-1999機織織物中紗線捲曲性或捲繞性的標準試驗方法ASTM D3884-2001紡織品耐磨性的標準試驗方法(旋轉平臺,雙頭法)ASTM D3885-2002紡織纖維的耐磨性的標準試驗方法(撓曲及磨損法)ASTM D3886-1999紡織品耐磨性的標準試驗方法(充氣膜法)ASTM D3887-1996針織物公差的標準規範ASTM D3887-1996針織物公差的標準規範ASTM D3888-1995自由端紡紗的相關標準術語ASTM D3937-2001人造短纖維捲曲率的標準試驗方法ASTM D3937-2001人造短纖維捲曲率的標準試驗方法ASTM D3938-2000服裝和其它紡織消費產品用提示標籤的確定或確認標準指南ASTM D3938-2000服裝和其它紡織消費產品用提示標籤的確定或確認標準指南ASTM D3939a-1997織物的抗鉤絲標準試驗方法(MACE試驗法)ASTM D3990-1999紡織品缺陷的相關標準術語ASTM D3991-1994羊毛和馬海毛細度及分級的標準規範ASTM D3992-1994羊毛條和馬海毛條細度及分級的標準規範ASTM D3994a-2002機織泳裝織物的標準性能規範ASTM D3995-2002男人及婦女用針織職員工作服織物的標準性能規範ASTM D3995-2002男人及婦女用針織職員工作服織物的標準性能規範ASTM D3996-2002針織泳裝織物的標準性能規範ASTM D3996-2002針織泳裝織物的標準性能規範ASTM D4029-1997精整機織玻璃織物標準實施規程ASTM D4030-1999玻璃纖維繩和縫紉線規格ASTM D4031-2001變形紗線膨松特性的標準試驗方法ASTM D4032-1994用圓形彎曲法測定織物挺度的標準試驗方法ASTM D4035-2002針織領帶和圍巾織物的標準性能規範ASTM D4035-2002針織領帶和圍巾織物的標準性能規範ASTM D4037-2002機織、針織或植絨床罩織物的標準性能規範ASTM D4038a-1995婦女及女孩用機織服裝和襯衫織物的標準性能規範ASTM D4038a-1995婦女及女孩用機織服裝和襯衫織物的標準性能規範ASTM D4109a-2002男人及男孩用機織連衣褲工作服、勞動布工作服、工裝褲及車間塗層織物的標準性能規範ASTM D4110-2002男人及男孩用針織浴衣、晨衣和睡衣的標準性能規範ASTM D4110-2002男人及男孩用針織浴衣、晨衣和睡衣的標準性能規範ASTM D4111-2002家用及公共機構用機織餐巾和臺布織物的標準性能規範ASTM D4112a-2002機織傘布織物的標準性能規範ASTM D4114a-2002婦女及女孩衣服用機織平面襯裡織物的標準性能規範ASTM D4115-2002婦女及女孩用針織和機織服裝、手套織物的標準性能規範ASTM D4115-2002婦女及女孩用針織和機織服裝、手套織物的標準性能規範ASTM D4115-2002婦女及女孩用針織和機織服裝、手套織物的標準性能規範ASTM D4116-2001婦女及女孩用針織和機織緊身束腰胸衣織物的標準性能規範ASTM D4116-2001婦女及女孩用針織和機織緊身束腰胸衣織物的標準性能規範ASTM D4117-2001婦女及女孩用機織浴衣、長睡衣、睡衣、長襯裙、帶肩帶長內衣和內衣織物的標準性能規範ASTM D4118-2001婦女用機織工作服、勞動布、工裝褲及車間塗層織物的標準性能規範ASTM D4119-2001男人及男孩用針織襯衫織物的標準性能規範ASTM D4119-2001男人及男孩用針織襯衫織物的標準性能規範ASTM D41-1994鋪屋面、防潮及防水用瀝青底層的標準規範ASTM D4120-2001粗紗、梳條和毛條中纖維內聚力動態試驗的標準試驗方法ASTM D4154-2001男人和男孩用針織和機織海濱服和運動衫織物的標準性能規範ASTM D4155-2001婦女和女孩用機織運動服裝、短褲、寬鬆的長褲和套服織物的標準性能規範ASTM D4156-2001婦女和女孩用針織運動服織物的標準性能規範ASTM D4158-2001針織織物的耐磨損性的標準試驗方法(均勻磨損法)ASTM D4232-2001男人和婦女用服裝及職業工作人員工作服織物的標準性能規範ASTM D4232-2001男人和婦女用服裝及職業工作人員工作服織物的標準性能規範ASTM D4233-2001婦女和女孩用針織和機織胸罩織物的標準性能規範ASTM D4233-2001婦女和女孩用針織和機織胸罩織物的標準性能規範ASTM D4234-2001婦女和女孩用針織浴衣、便服、長睡衣、睡衣、長襯裙和女內衣織物的標準性能規範ASTM D4234-2001婦女和女孩用針織浴衣、便服、長睡衣、睡衣、長襯裙和女內衣織物的標準性能規範ASTM D4235-2001婦女和女孩用針織女襯衫和服裝織物標準性能規範ASTM D4235-2001婦女和女孩用針織女襯衫和服裝織物標準性能規範ASTM D4235-2001婦女和女孩用針織女襯衫和服裝織物標準性能規範ASTM D4270-1995制定和編寫試驗方法用現行規則的標準指南ASTM D4271-1988紡織品測試取樣的編寫規程ASTM D4356-1984建立一致的試驗方法公差的規程ASTM D4389-1999粗紗精製玻璃布標準規範ASTM D4391a-1993紡織品燃燒特性的標準術語ASTM D4466-2002多成分紡織纖維的標準術語ASTM D4467-1994獲得非正式分佈資料的紡織品試驗方法的實驗室間試驗的標準實施規程ASTM D4522-1986羽絨填充製品的性能規範ASTM D4524-1986羽衣成分的標準試驗方法ASTM D461-1993氊子的試驗方法ASTM D4686-1991頻率分佈的識別和轉換ASTM D4697-1995在用戶實驗室中維護試驗方法的標準指南ASTM D4720-1987軟窗簾性能評定的標準實施規程ASTM D4721-1989可機器洗滌的和乾洗的床罩與附屬品性能的評定ASTM D4723-1999紡織品耐熱性和易燃性試驗方法和性能規範的描述和標準索引ASTM D4769-1988紡織品和較舒適經紗針織品ASTM D4769-1988紡織品和較舒適經紗針織品ASTM D4772-1997絲絨紡織品表面吸水性的標準試驗方法(水流試驗法)ASTM D4845-1996有關羊毛的標準術語ASTM D4848-1998紡織品的強度、變形性及其有關特性的標準規範ASTM D4849b-2002與紗和纖維相關的標準術語ASTM D4851-1997建築用塗層織物和層壓織物的標準試驗方法ASTM D4852-1988懸掛的裝飾織物的評定ASTM D4853-1997還原試驗變異性的標準指南ASTM D4854-1995從取樣方案的期望原始資料中估算變異性幅度的標準指南ASTM D4911-1994平行精紡式開良精紡系統中手工織短纖維紗線的公差ASTM D4920-1998有關紡織材料水分的標準術語ASTM D4966-1998紡織品耐磨性的標準試驗方法(馬丁代爾磨擦試驗儀法)ASTM D4970-2002紡織纖維品的耐起球和其他有關表面變化的標準試驗方法(馬丁戴爾壓力檢驗機法) ASTM D5034-1995紡織品的伸長和斷裂強度的標準試驗方法(織物抓樣強力試驗)ASTM D5035-1995紡織纖維的伸長率和斷裂力的標準測試方法(剝離法)ASTM D5038-2001紡織材料保存的標準術語ASTM D5070-1990用電位測量滴定法對紡織品軟化劑中合成季銨鹽的試驗方法ASTM D5103-2001人造短纖維長度和長度分配的標準試驗方法(單纖維試驗)ASTM D5104-2002紡織纖維收縮的標準測試方法(單纖維試驗)ASTM D5141-1996使用特定場地土壤的淤泥柵欄用土工織物的篩選效益和流動率測定的標準試驗方法ASTM D519-1990羊毛條中纖維長度的標準試驗方法ASTM D5219-1999服裝量度用與人體尺寸相關的標準術語ASTM D5253-1996鋪地織物和傢俱裝飾布用的書寫管理指令和一般刷新程式標準術語ASTM D5264-1998用蘇瑟蘭德-板印試驗機對印刷材料抗磨性的標準試驗方法ASTM D5278-1992窄幅織物深長的試驗方法(靜態負載試驗)ASTM D5344-1999部分取向紗延展力的標準試驗方法ASTM D5362a-1997織物耐鉤私性的標準試驗方法(豆袋試驗法)ASTM D5378-1993單位和家用編織和針織浴簾的標準性能規範ASTM D5430-1993織物目視檢驗分級的標準試驗方法ASTM D5431-1993公共機構和家用編織及針織薄片製品的標準性能規範ASTM D5431-1993公共機構和家用編織及針織薄片製品的標準性能規範ASTM D5432-1993公共機構和家用毛毯製品的標準性能規範ASTM D5433-2000公共機構和家用毛巾製品的標準性能規範ASTM D5446-2002測定在充氣減振中用的織物、紗線和縫合線的物理性能的標準試驗方法ASTM D5489-2001a紡織品提示標籤用提示符號的標準指南ASTM D5497-1994c鈕扣術語ASTM D5585-1995成年女子號型的人體測量標準表,2號規格ASTM D5586-200155歲以上婦女人體測量的標準表(全部號型)ASTM D5684-2002絨面地板覆蓋物標準術語ASTM D5733-1999非織造織物抗撕裂強度的梯形法標準試驗方法ASTM D5735-1995非織造織物的榫舌(單撕裂)抗撕裂強度標準試驗方法(恒定伸長率拉伸試驗機) ASTM D579-1997本色布紡織玻璃布標準規範ASTM D5793-1995絨頭紗線地板覆蓋物每單位長度或寬度結接點的標準試驗方法ASTM D580-1999本色布機織玻璃纖維帶ASTM D581-1999玻璃纖維編織套管ASTM D584-1996原毛中羊毛含量實驗室標準試驗方法ASTM D5848-1998絨頭紗線地板覆蓋物單位面積品質的標準試驗方法ASTM D5884-2001內增強土工薄膜扯裂強度測定的標準試驗方法ASTM D6192-1998女孩人體測量的標準表,尺碼為7-16ASTM D6193-1997針角和縫合的標準操作規程ASTM D6240-1998尺寸為34至60的男性身體測量的標準表ASTM D629-1999紡織品定量分析標準試驗方法ASTM D6413-1999織物火焰抗性的標準試驗方法(垂直試驗)ASTM D6544-2000紫外線(UV)透射試驗前紡織品製作的標準實施規程ASTM D6545-2000兒童睡衣用紡織品易燃性的標準試驗方法ASTM D6613-2002測定尼龍或聚脂纖維尺寸的標準實施規程ASTM D6614-2000紡織織物拉伸性能的標準試驗方法.CRE法ASTM D6650-2001測定淨室中使用的無紡織物動擦除效率、濕顆粒去除能力和織物粒子作用的標準試驗方法ASTM D6651-2001無紡織物吸附率和吸附能力測定的標準試驗方法ASTM D6652-2001測定無紡織物留下的纖維狀碎屑的標準試驗方法ASTM D6663-2001單位和家用編織和針織蓋被及附屬品的標準規範ASTM D6664-2001單位和家用編織、針織和棉的床褥品的標準規範ASTM D6767-2002用毛細管流量試驗測定紡織物的標準試驗方法ASTM D6775-2002測定紡織品厚邊帶、線帶和飾帶的拉伸和撕裂強度的標準試驗方法ASTM D681-1987電氣與包裝用黃麻粗紗和合股線的規格ASTM D737-1996紡織纖維透氣率的試驗方法ASTM D76-1999紡織材料的拉伸試驗機ASTM D861-1995用特克斯制命名纖維,紗的半製品,紗和其它紡織品線度的標準操作規程ASTM D885-2002人造有機纖維制輪胎簾子線、輪胎簾布和工業長紗線的試驗ASTM D885-2002人造有機纖維制輪胎簾子線、輪胎簾布和工業長紗線的試驗ASTM E1684-2000顏色分級用棉分級室的照明的標準操作規程ASTM E1716-1995使用可呼吸碳化矽金屬須的人用的人身保護設備選擇與使用標準規範ASTM E2016-1999工業紡織金屬絲布規範ASTM E2225-2002紡織品和繩索檢驗論證用標準指南ASTM E2228-2002紡織纖維的顯微鏡檢驗用標準指南ASTM F1001a-1999防護服裝材料評估用化學試劑的選擇標準指南ASTM F1002-1996防止工人遭受特種熔化物質和有關高溫侵害用防護服裝的性能規範ASTM F1045-1999冰球運動用頭盔的性能規範ASTM F1060-2001表面接觸熱的防護服裝材料的熱防護性能的標準試驗方法ASTM F1117-1993介電防護鞋ASTM F1163-2001騎馬運動和騎馬行駛用防護帽的標準規範ASTM F1194-1999防護服裝材料化學試劑滲透性檢驗結果的報告編制ASTM F1291-1999通過加熱的人體模型測量服裝隔熱性能的試驗方法ASTM F1301-1990化工防護套服用標籤的標準實施規程ASTM F1342-1991防護服裝耐穿刺能力的測試方法ASTM F1358-2000主要不是用於耐火的防護服用材料遇火效應的標準試驗方法ASTM F1359a-1999淋噴狀態下人體模型上防護服裝或套裝耐液體滲透性的標準試驗方法ASTM F1383a-1999間斷接觸條件下防護服裝材料耐液體或氣體滲透性的標準試驗方法ASTM F1407a-1999化學防護服裝材料耐液體滲透性的標準試驗方法.滲透杯法ASTM F1407a-1999化學防護服裝材料耐液體滲透性的標準試驗方法.滲透杯法ASTM F1414-1999測量矮身材者(短腿)穿防護服裝耐鏈鋸切割性的標準試驗方法ASTM F1446a-2001評估防護帽性能特徵的設備和程式的標準試驗方法ASTM F1449-2001耐燃燒、耐熱、耐電弧性防護服裝的養護和維修標準指南ASTM F1458-1998測量護腳設備的鏈鋸切割阻力的標準試驗方法ASTM F1461-1993化工防護服的設計ASTM F1506-2000遭受暫態電弧和相關熱危害的電工用耐磨服裝紡織材料的標準性能規範ASTM F1506a-2002暴露到暫態電弧和相關熱危害環境的電工用耐磨服裝紡織材料抗燃的標準性能規範ASTM F1506a-2002暴露到暫態電弧和相關熱危害環境的電工用耐磨服裝紡織材料抗燃的標準性能規範ASTM F1518-2000紡織材料的熱傳導的標準試驗方法ASTM F1671b-1997使用Φ-X174噬菌體穿透率的試驗系統測試防護服裝材料抗血液攜帶病原體穿透率的標準試驗方法ASTM F1731-1996消防和救援人員制服及其他隔熱保護服裝的人體測量與尺寸標注的標準規程ASTM F1790-1997測量防護服用材料的耐切割的標準試驗方法ASTM F1816-1997兒童外上衣上綜線的標準安全規範ASTM F1819-1998用機械壓力技術測定防護服裝材料抗人造血滲透性的標準試驗方法ASTM F1868-1998用焊接熱板測定服裝材料耐熱和耐蒸發的標準試驗方法ASTM F1891b-2002雨衣耐電弧和耐火的標準規範ASTM F1932-1998測量睡袋紡織纖維回彈力的標準試驗方法ASTM F1939a-1999耐火服裝材料的抗輻射性能的標準試驗方法ASTM F1958/F1958M-1999使用人體模型的電弧暴露法測定服裝用不耐火焰材料易燃性的標準試驗方法ASTM F1959/F1959M-1999測定服裝材料電弧熱性能值的標準試驗方法ASTM F2050-2001有關拉鍊的名詞術語ASTM F2050-2001有關拉鍊的名詞術語ASTM F429-2001橄欖球運動用防護頭盔的減衝擊性能的標準試驗方法ASTM F739a-1999連續接觸條件下防護服材料耐液體或氣體滲透的標準試驗方法ASTM F903a-1999防護服材料耐液體滲透的標準試驗方法ASTM F914-1998航空人員隔音裝置用聲發射的試驗方法ASTM F955-1996評定通過接觸熔融物質的防護服裝材料的傳熱性的試驗方法ASTM G24-1997自然光透過玻璃進行曝光Standard Practice for Conducting Exposures to Daylight Filtered Through Glass。

ASTM与国标对应项目

ASTM与国标对应项目

ASTM与国标对应项目
1、GB/T7767-2003 炭黑术语——D3053-08b
2、GB3778-2011 橡胶用炭黑标准——D1765-10
3、GB/T3780.1-2006 吸碘值测定方法——D1510-09b
4、GB/T3780.2-2007 吸油值测定方法——D2414-09a
5、GB/T3780.4-2008 压缩吸油测定方法——D3493-09
6、GB/T10722-2003 炭黑总表面积和外表面积的测定氮吸附法——D6556-09
7、GB/T3780.6-2007 着色强度测定方法——D3265-07
8、GB/T3780.7-2006 pH值测定方法——D1512-05
9、GB/T3780.8-2008 加热减量测定方法——D1509-07
10、GB/T3780.10-2009 灰分测定方法——D1506-07
11、GB/T14853.2-2006 橡胶用造粒炭黑第2部分:细粉含量的测定和粒子磨损量的测定——D1508-07
12、GB/T14853.6-2002 橡胶用造粒炭黑单个粒子破碎强度的测定——D3313-05A
13、GB/T3780.15-2006 甲苯抽出物透光率测定方法——D1618-04
14、GB/T3780.18-2007 炭黑在天然橡胶(NR)中鉴定方法——D3192-09
15、GB/T15338-2012 炭黑试验方法精密度和偏差的确认——D4821-75
16、GB/T9580-2009 标准参比炭黑的鉴定方法——D4122-06。

焦炭的astm标准

焦炭的astm标准

焦炭的astm标准
ASTM (美国材料和试验协会)的标准通常用于衡量焦炭的质量
和特性。

以下是几个与焦炭相关的ASTM标准:
1. ASTM D367-96a:涉及焦炭和焦炉炉渣样品的制备和处理
方法的标准指南。

2. ASTM D4930-18:关于焦炭颗粒大小分布的标准试验方法。

3. ASTM D5672-18:用于评估焦炭堆密度的标准试验方法。

4. ASTM D5865-19:测定焦炭中灰分含量的标准试验方法。

5. ASTM D6376-19:测定焦炭中挥发分含量的标准试验方法。

6. ASTM D6377-10:评估焦炭中硫含量的标准试验方法。

7. ASTM D7204-19:评估焦炭固定碳含量的标准试验方法。

这些标准可以帮助确保焦炭的质量符合特定要求,同时还可以用于与其他样品进行比较和对焦炭进行精确的测试和分析。

请注意,这些标准可能会根据时间而有所更改,最新的版本应该向ASTM获得。

ASTM D类最新标准目录(一)

ASTM D类最新标准目录(一)

ASTM D类最新标准目录( 一)D4-86(2004) 沥青含量试验方法D5-06e1 沥青材料的渗透性试验方法D6-95(2000)e1 油及沥青混合物加热损失试验方法D8-02 与道路和路面材料相关的术语D9-05 与木材相关的术语D12-88(1998) 未加工的桐油D13-02 松节油规范D16-03 与涂料、清漆、亮漆和有关产品相关的术语D20-03 路面焦油的蒸馏试验方法D25-99(2005) 圆木桩D29-98 虫胶树脂的抽样和试验方法D34-91(2003) 白颜料化学分析指南D36-95(2000)e1 沥青软化点试验方法(沥青软化点测定器)D38-94(2000)e1 木材防腐剂的抽样试验方法D41-05 铺屋面、防潮及防水用沥青底层D43-00 屋顶、防潮及防水材料用杂酚油底漆D49-83(2002) 铅丹的化学分析D50-90(2005) 含铁和锰的黄色、橙色、红色和褐色涂料的化学分析试验方法D56-05 泰格密闭闪点试验器测定闪点的试验方法D61-75(2004) 硬沥青的软化点的试验方法(水中方块试验法)D69-01 磨擦带的试验方法D70-03 半固态沥青材料的比重和密度的试验方法D71-94(2004) 固体硬沥青和地沥青的相对密度试验方法(变位法)D75-03 集料的抽样D76-99(2005) 纺织材料的抗拉试验机D79-86(2004) 氧化锌颜料D81-87(2003) 碱性碳酸盐铅白颜料D83-84(2002) 铅丹颜料D85-05 赭色颜料规范D86-05 大气压下石油产品蒸馏试验方法D87-04 石蜡熔点的试验方法(冷却曲线)D88-94(2005) 赛波特粘度的试验方法D91-02 润滑油的沉淀值试验方法D92-05a 用克利夫兰德开杯法测定石油产品的闪点和燃点的试验方法D93-02a 用潘斯基-马丁斯仪闭杯闪点测定器测定闪点的试验方法D94-02 石油产品的皂化值试验方法D95-05e1 蒸馏法测定石油产品及沥青材料中水的试验方法D97-05a 石油的倾点的试验方法D98-05 氯化钙D113-99 沥青材料的延展性的试验方法D115-02 电绝缘用含清漆试验溶剂的试验方法D116-86(2006) 电气设备用上釉陶瓷材料的试验D117-02 产自石油的电绝缘油的试验方法和规范导则D120-02a 橡胶绝缘手套D121-05 煤和焦炭术语D123-03 与纺织材料相关的术语D124-88(1998) 脱胶的豆油D126-87(2002) 含铬酸铅和氧化铬绿的黄、橙和绿色颜料的化学分析方法D127-05 石油蜡包括凡士林滴熔点的试验方法D128-98(2003)e1 润滑脂分析试验方法D129-00(2005) 石油产品中硫含量试验方法(通用氧弹法)D130-04e1 用铜条变色法检测石油产品对铜腐蚀性的测试方法D139-95(2001)e1 沥青材料浮选试验的检测方法D140-01 沥青材料的抽样D143-94(2000)e1 洁净木材小样品的试验D146-04 防水与屋面材料用沥青浸渍的油毡和编织物的抽样与试验方法D149-97a(2004) 固体电绝缘材料在工业电源频率下的介电击穿电压和介电强度的试验方法D150-98(2004) 固体电绝缘材料的(恒久电介质)的交流损耗特性和介电常数的测试方法D153-84(2003) 颜料比重测试方法D154-85(2001) 清漆试验D156-02e1 石油产品赛波特比测试方法(赛波特比色计法)D167-93(2004)e1 块焦比重和孔隙度的试验方法D168-94(2000) 杂酚油焦炭渣的测试方法D173-03 屋顶和防水材料用饱和沥青棉织物D176-00 电绝缘用固体充填化合物与浸渍剂的试验方法D178-01(2005) 橡胶绝缘垫子D185-84(1999 颜料,糊剂及涂料中粗颗粒的试验方法D187-94(2003)e1 煤油燃烧质量的测试方法D189-05 石油产品康拉孙残碳测试方法D197-87(2002) 粉煤的取样方法与细度试验方法D198-05a 结构尺寸木料静力试验法D202-97(2002)e1 电绝缘用未浸渍纸的抽样和试验方法D204-02 缝线的测试方法D209-81(2003) 灯黑颜料D210-05 骨炭颜料D211-67(2002) 铬黄和铬橙颜料D215-91(2002) 白色亚麻籽油涂料的化学分析D217-02 润滑剂针入度的测试方法D225-04 表面有矿物颗粒的沥青屋面板D226-06 铺顶和防水用沥青饱和有机毡D227-03 铺顶和防水用焦油沥青饱和有机毡D228-06 沥青屋面卷材,盖板和瓦的试验方法D229-01 电绝缘用硬质薄板及板材的试验方法D233-02 松脂的抽样和测试试验方法D234-82(1998) 生亚麻子油D235-02 矿物溶剂油(石油溶液油)(烃干洗溶液)规格D237-57(1997) 橙色紫胶和其他虫胶D240-02 弹式量热器测定液烃燃料燃烧热的试验方法D242-04 沥青铺路混合料用矿物填料D243-02 规定残渣渗透性测试方法D244-04 乳化沥青的测试方法D245-06 制定目测分等木材的结构等级及有关允许性能的规程D246-04 杂酚油和杂酚油-煤焦油溶液的蒸馏试验方法D256-06 塑料及电绝缘材料的抗冲击性的测试方法D257-99(2005) 绝缘材料的直流电阻或电导的试验方法D260-86(2001) 熟亚麻籽油D261-75(1999) 铁蓝颜料D262-81(1999) 群青蓝颜料D263-05 氧化铬绿颜料D267-82(2003) 黄青铜粉规格D268-01 涂料及其相关涂层和原料用挥发性溶剂及化学中间体的抽样和测试D269-97(2002) 松香和松香衍生物中不溶物的试验方法D276-00a 纺织品中纤维的鉴定方法(AATCC方法20)D279-02 颜料渗出的试验方法D280-01 颜料吸收的水份(及试验条件下挥发的其他物质)的测试方法D281-95(2002) 用刮刀磨损法测定颜料油吸附性的试验方法D283-84(1999) 一氧化铜和铜涂料化学分析试验方法D287-92(2006) 原油和石油产品API比重的试验方法(液体比重计法)D291-86(2002) 烟煤立方英尺重量的试验方法D293-93(2004) 焦炭筛析分析试验方法D295-99(2004) 电绝缘用棉质漆布的试验方法D297-93(2002)e2 橡胶制品的测试方法.化学方法D299-04e1 石棉纱的标准规范D301-95(2004) 可溶性硝化纤维素的试验方法D304-05 n-丁醇(丁醇)D305-84(2003) 黑色涂料中的溶剂萃取材料的试验方法D312-00 屋顶用沥青D315-95(2004)e1 机织石棉带的标准规范D319-04 合成的戊醇D322-97(2002)e1 蒸馏法测定汽油发动机废机油中汽油稀释剂的试验方法D323-99a 石油产品蒸气压力的测试方法D329-02 丙酮D330-93(2001) 2-丁氧基乙醇D331-05 2-乙氧基乙醇D332-87(2004) 白色颜料着色力的试验方法D333-01 透明漆和着色漆的试验方法D341-03 液体石油产品粘度-温度关系曲线图D344-97(2004) 用擦试外规评定法对涂料相对遮盖力的测试方法D345-02 道路和结构用氯化钙的抽样和试验方法D346-04e1 实验室分析用焦炭试样的收集和制备D347-97 杂酚油和煤焦油的体积和比重修正表D348-00 电绝缘用刚性管的测试方法D349-99(2004) 电绝缘用层压圆棒的试验方法D350-01 电绝缘用经处理软套管的试验方法D351-97(2003) 天然白云母块及薄片目检质量分级D352-97(2003) 电绝缘用涂浆云母的试验方法D358-98 涂料耐大气老试验用木片规格D360-89(2001) 紫胶清漆规范D363-90(2000) 磷酸三甲苯酯规格D365-01(2005) 可溶性硝酸纤维素基溶液的试验方法D367-94(2000)e1 杂酚油中苯不溶物的测试方法D368-89(2002) 杂酚油及油质防腐剂比重的试验方法D369-84(2002) 杂酚油馏份与残渣比重的测试方法D370-02e1 油质防腐剂脱水作用的试验方法D372-00(2006) 电绝缘用经处理的软套管规格D374-99(2004) 固体电绝缘厚度的测试方法D374M-99(2005) 固体电绝缘厚度的标准测试方法(米制)D375-95(2004)e1 石棉粗砂的标准规范D378-00 平型橡胶传送带的测试方法D380-94(2006) 橡胶软管的测试方法D381-04 用喷射蒸发法测定燃烧中原在胶的测试方法D387-00 使用机械研磨机测定有色颜料主色和着力色的试验方法D388-05 用排列法测定煤的分类D390-92(1999) 海上,陆地及淡水中用木桩,电杆和木材的防腐处理用煤柏油杂酚油规程D391-94(2000)e1 杂酚油-煤焦油溶液D395-03 橡胶压缩永久变形特性的试验方法D396-05 燃料油规范D402-02 稀释沥青产品蒸馏的测试方法 Standard Test Method for Distillationof Cut-Back Asphalt ic (Bituminous) ProductsD409-02 粉碎机法测定煤炭可磨性的试验方法 Standard Test Method for Grindabilityof Coal by t he Hardgrove-Machine MethodD411-98(2003) 电绝缘用紫胶片试验方法 Standard Test Methods for ShellacUsed for Electrical I nsulationD412-98a(2002)e1 硫化橡胶、热塑橡胶和热塑合成橡胶的拉伸试验方法 Standard Test Methods f or VulcanizedRubber and Thermoplastic Elastomers—TensionD413-98(2002)e1 橡胶特性-与软质基底粘附性的试验方法 Standard Test Methods for RubberPro perty—Adhesion to Flexible SubstrateD420-98(2003) 土壤粒度分析的测试方法 Standard Guide to SiteCharacterization for Engineering, Design, and ConstructionPurposesD421-85(2002) 土壤粒度分析试验方法 Standard Practice for Dry Preparationof Soil Samples for Particle-Size Analysis and Determination ofSoil ConstantsD422-63(2002)e1 土壤粒度分析试验方法 Standard Test Method forParticle-Size Analysis of Soils D425-88(2001) 土壤离心湿度当量试验方法 Standard Test Method for CentrifugeMoisture Equiva lent of SoilsD427-04 用水银法测量土壤收缩系数的测试方法 Test Method for Shrinkage Factors ofSoils by t he Mercury MethodD429-03e1 橡胶特性与硬质基底粘附性的试验方法 Standard Test Methods for RubberProperty—Adhesion to Rigid SubstratesD430-06 橡胶变质的动态疲劳试验方法 Standard Test Methods for RubberDeterioration-Dynamic FatigueD434-95 Standard Test Method for Resistance toSlippage of Yarns in Woven Fabrics Using a St andard SeamD440-86(2002) 煤的跌落粉碎试验 Standard Test Method of Drop ShatterTest for CoalD441-86(2002) 煤的滚筒试验 Standard Test Method of Tumbler Test for CoalD444-88(2003) 锌黄颜料(铬酸锌黄)的化学分析方法 Standard Test Methods for Chemical Analysis of Zinc YellowPigment (Zinc Chromate Yellow)D445-06 透明和不透明液体运动粘度的测试方法.(包括动态粘度的计算) Standard Test Method for Kinematic Viscosity ofTransparent and Opaque Liquids (and the Calculation of DynamicViscosity)D446-06 玻璃毛细管运动粘度计操作说明书和规范 Standard Specifications and OperatingInstructi ons for Glass Capillary Kinematic ViscometersD448-03a 道路和桥梁建筑的集料尺寸分类 Standard Classification for Sizes ofAggregate for Roa d and Bridge ConstructionD449-03 防潮和防水用沥青规范 Standard Specification for AsphaltUsed in Dampproofing and WaterproofingD450-96(2006) 铺屋面,防潮与防水用硬煤沥青 Standard Specification for Coal-TarPitch Used in Roofing, Dampproofing, and WaterproofingD451-91(2002) 沥青屋顶制品用粒状矿物铺面材料筛分分析试验方法 Standard Test Method for Si eveAnalysis of Granular Mineral Surfacing For Asphalt RoofingProductsD452-91(2002) 沥青层面制品表面修整用非粒状矿物的筛分试验方法 Standard Test Method for Si eveAnalysis of Surfacing for Asphalt Roofing ProductsD453-94(2000)e1 杂酚油-煤焦油溶液中焦油酸含量的测试方法 Standard Test Method for Tar Aci ds inCreosote-Coal Tar SolutionsD454-04 用加热及空气压力测定橡胶变质的试验方法 Standard Test Method for RubberDeteriorat ion by Heat and Air PressureD459-00 肥皂和其它洗涤剂的术语规范 Standard Terminology Relating toSoaps and Other Deter gentsD460-91(2005) 肥皂和其它洗涤剂粒度的试验方法 Standard Test Methods for Samplingand Che mical Analysis of Soaps and Soap ProductsD464-05 松脂油产品包括妥尔油和其他相关产品的皂化值的试验方法 Standard Test Methods for Saponification Number of Naval Store Products Including Tall Oil and Other Related ProductsD465-05 松脂制品包括妥尔油及其它相关产品酸值的试验方法 Standard Test Methods for Acid N umberof Naval Stores Products Including Tall Oil and Other RelatedProductsD470-05 电线和电缆用交联绝缘与套管的测试方法 Standard Test Methods for CrosslinkedInsulati ons and Jackets for Wire and CableD471-98e2 液体对橡胶性能影响的测试方法 Standard Test Method for RubberProperty-Effect of LiquidsD473-02 萃取法测定原油和燃料油中沉积物的试验方法 Standard Test Method for Sediment inCr ude Oils and Fuel Oils by the Extraction MethodD476-00(2005) 二氧化钛颜料规范 Standard Classification for DryPigmentary Titanium Dioxide P roductsD478-02 锌黄(铬酸锌)颜料 Standard Specificationfor Zinc Yellow (Zinc Chromate) PigmentsD480-88(2003) 铝粉和铝粉浆的抽样和试验方法 Standard Test Methods for Samplingand Testin g of Flaked Aluminum Powders and PastesD482-03 石油产品灰分的测试方法 Standard Test Method for Ash fromPetroleum ProductsD483-04 石油制植物喷洒油不磺化残渣的试验方法 Standard Test Method for UnsulfonatedResidu e of Petroleum Plant Spray OilsD490-92(2005) 道路柏油 Standard Specification for Road TarD494-04 Standard Test Method for Acetone Extraction ofPhenolic Molded or Laminated Products Standard TestMethod for Acetone Extraction of Phenolic Molded or LaminatedProductsD495-99(2004) 固体电绝缘材料的耐高压低电流干电弧性能的测试方法 Standard Test Method for High-Voltage, Low-Current, Dry Arc Resistance of Solid ElectricalInsulationD500-95(2003) 磺化油和硫化油的化学分析和试验方法D501-03 碱性洗涤剂的抽样和化学分析试验方法D502-89(2003) 肥皂和其它洗涤剂粒度的试验方法D509-05 松香分级和抽样试验方法D511-03 水中钙镁离子的测试方法D512-04 测定水中氯离子含量的试验方法D513-02 水中二氧化碳溶解量和总量的试验方法D516-02 水中硫酸铁的试验方法D517-98(2003) 沥青厚板材D518-99 橡胶变质表面龟裂的试验方法D519-04 羊毛条中纤维长度的试验方法D520-00(2005) 锌粉颜料规范D521-02 锌粉(金属锌粉)的化学分析试验方法D522-93a(2001) 用锥形心轴仪测定涂覆有机涂层延伸率的试验方法D523-89(1999) 镜面光泽的试验方法D524-04 石油产品中兰氏残炭的试验方向D525-05 汽油氧化稳定性的试验方法(诱导期方法)D528-97(2002) 纸和纸板的机器定向试验方向D529-04 沥青材料的加速风化试验条件和程序的测试方法(碳弧法)D531-00(2005) 普西和琼斯橡胶压缩试验方法D542-00 透明有机塑料的折射指数的试验方法D543-06 塑料耐化学试剂性能的试验方法D545-99(2005) 混凝土用预制伸缩缝纫填料的试验方法(非挤压和弹性型)D546-05 道路和铺砌材料用矿物填料筛分的测试方法D548-97(2002) 纸张水溶解酸碱度的试验方法D555-84(1998) 干性油试验D558-04 土壤水泥混合物的水分与密度关系的试验方法D559-03 压实的掺土水泥混合物的湿润与干燥的试验方法D560-03 压实的掺土水泥混合物的冻融试验方法D561-82(2003) 涂料用炭黑颜料D562-01(2005) 斯氏粘度计测定涂料稠度的试验方法D563-88(1996)e1 醇酸树脂和树脂溶液中苯酐含量的试验方法D564-87(2002) 液体涂料催干剂的试验方法D565-99(2005) 白色矿物油中可碳化物质的试验方法D566-02 润滑脂滴点的试验方法D570-98(2005) 塑料吸水率的试验方法D572-04 用加热法和氧化法进行的橡胶变质的试验方法D573-04 在空气烤炉中作橡胶变质的试验方法D575-91(2001) 橡胶压缩特性的试验方法D578-05 玻璃纤维丝D579-04 原织物玻璃纤维D580-04 机织玻璃纤维带D581-99 机织玻璃纤维套管的编织D584-96(2005) 原毛中羊毛含量实验室测试方法D585-97(2002) 纸张、纸板、纤维板和相关产品的单批取样和验收方法D586-97(2002) 纸中灰分含量的试验方法D589-97(2002) 纸的不透明度的测试方法D590-93(2002) 纸中石油蜡的测试方法D596-01 水分析结果的报告D600-90(2001) 液体涂料催干剂D601-87(1998) 奥气油(永久液体)D602-81(2003) 硫酸钡颜料规范D605-82(2003) 硅酸镁颜料(滑石)D607-82(2003) 湿磨云母颜料D608-05 邻苯二甲酸二丁酯D609-00 涂料、油漆以及改性涂料与相关涂料产品的测试用冷轧钢板的制备D610-01 涂漆钢表面锈蚀程度评价的试验方法D611-04 石油产品和烃类溶剂苯胺点和混合苯胺点的试验方法D612-88(2004) 石蜡中可碳化物质的试验方法D613-05 十六烷法测定柴油燃料燃烧质量的试验方法D618-05 塑料及电绝缘材料的调理方法D619-99(2004) 电绝缘用硫化纤维的测试方法D622-99(2005) 汽车空气制动和真空制动系统用橡胶软管试验方法D623-99e1 橡胶特性-压缩中热的产生及挠曲疲劳的试验方法D624-00e1 橡胶的热塑性弹性的耐老化性的抗撕裂强度的试验方法D628-95(2004)e1 石棉套管的标准规范D629-99 纺织品定量分析试验方法D632-01 氯化钠D633-97(2005) 道路柏油的体积修正表D635-06 自承塑料在水平状态时的燃烧速率或者燃烧蔓延程度及燃烧时间的试验方法D638-03 塑料拉伸性能的试验方法D642-00(2005) 船用集装箱、组合件和单体加载的抗压缩能力的测试方法D643-97(2002) 用厦泊测试仪测试纸的折痕持久性的标准试验方法D644-99(2002) 用烘干法测定纸和纸板中水分的测试方法D645/D645M-97(2002) 纸和纸板厚度的测试方法D646-96(2001) 纸张及纸板的基本重量的试验方法(单位面积的重量)D648-06 在挠曲负荷下塑料的挠曲温度的试验方法D653-05 土壤、岩石和其内部所含液体的相关术语D660-93(2005) 外用漆龟裂程度评价方法D661-93(2005) 外用漆破裂程度评价的试验方法D662-93(2005) 外用漆侵蚀程度评价的试验方法D664-06 电位滴定法测定石油产品酸值的试验方法D665-06 水存在下抑制的矿物油防锈特性的试验方法D668-99(2004) 电绝缘用硬条和硬管尺度测量的测试方法D669-03 层压薄板与层压板的平行于层片的耗散系数和介电常数的试验方法D685-93(2002) 检测调理纸和纸制品D686-93(2002) 纸中矿物填料和矿物涂料的定性测试方法D689-03 纸张的内部耐撕裂的试验方法D692-00(2004) 沥青铺路砌混合用粗集料D693-03a 碎石路面用压碎集料D695-02a 硬质塑料抗压特性的试验方法D696-03 从-30摄氏度到30摄氏度的塑料线性热膨胀系数的试验方法D698-00ae1 实验室中用12000ft-lbt/ft(600KN-m/m)作用力测定土壤压力特性的试验方法D704-99(2004) 三氯氰胺甲醛模制化合物D705-99(2004) 脲甲醛模制化合物D706-05 乙酸纤维素模制和挤压化合物D707-05 醋酸丁酸纤维素模制与挤压料规格D709-01 层压热固材料D710-97(2002) 电绝缘用硫化纤维薄板、条和管D711-89(2004) 路标漆不粘着时间的试验方法D713-90(2004) 路标漆进行路面使用的试验方法D714-02e1 涂料起泡程度的试验方法D715-86(2003) 硫酸钡颜料分析的标准试验方法D716-86(2003) 评定云母颜料的标准试验方法D717-86(2003) 硅酸镁颜料分析的标准试验方法D718-86(2003) 硅酸铝颜料的分析标准试验方法D720-91(2004)e1 煤自由膨胀指数的试验方法D721-05 石油蜡含油量的试验方法D722-93(2002) 纸的抗油脂性标准试验方法D724-99(2003) 纸表面可湿性的测试方法(接触角法)D726-94(2003) 空气中无孔纸的透气性的测试方法D727-96(2001) 真空方法测定屋顶和地板油毡煤油值的试验方法D731-95(1999) 热固模塑料粉末的模塑指数的试验方法D732-02 用穿孔工具测量塑料剪切强度的测试方法D737-04 纺织纤维透气率的试验方法D740-05 丁酮规范D746-04 用冲击法测定塑料及弹性材料的脆化温度的试验方法D747-02 用悬臂梁法对塑料表观弯曲系数的测试方法D748-00(2005)e1 固定式云母介电电容器用天然云母块和云母薄片D750-00 用碳弧型装置和风化装置对橡胶变质的测试方法D751-06 涂层织物的测试方法D763-01 未加工棕土和焙烧棕土颜料D765-87(2003) 未加工黄土和焙烧黄土颜料技术规范D768-01 黄色氧化铁的水合物D769-01 黑色合成氧化铁D770-05 异丙醇规范D772-86(2005) 外部涂料剂落程度评价的试验方法D774/D774M-97(2002) 纸张抗破碎强度的测试方法D776-92(2001) 干热对纸和纸板特性的影响的试验方法D777-97(2002) 经过处理的纸和纸板易燃性的标准试验方法D778-97(2002) 纸萃液(热萃取和冷萃取法)氢离子浓度(pH)的标准试验方法D779-03 纸、纸板和其他印刷材料用干烧指示器法测试耐水性的测试方法D780-95(2003) 纸印刷油墨渗透性的测试方法(蓖麻油试验)D784-03 电绝缘材料用橙色紫胶和其他印度虫胶D785-03 塑料和电绝缘材料的洛氏硬度的测试方法D787-96(2003) 乙基纤维模制和挤压化合物D788-05 甲基丙烯酸酯模制和挤压化合物的分类系统D789-06 聚酰胺相对粘度,熔点和含水量的测试方法D790-03 未增强和增强塑料及电绝缘材料的挠曲性的试验方法D792-00 用位移法测定塑料密度和比重(相对密度)的标准试验方法D800-05 工业用金属除垢剂化学分析试验方法D801-02 二聚戊烯抽样和测试的试验方法D802-02 松油抽样和测试的试验方法D803-03 妥儿油的测试试验方法D804-02 松脂制品包括妥儿油及相关产品的术语D806-00(2006) 掺土水泥混合物中水泥含量的试验方法D807-05 工业锅炉用水引起脆裂倾向的评价方法(美国矿业局的脆变检查器方法)D808-05 新的和使用过的石油产品中氯含量的试验方法(氧弹法)D813-06 测定橡胶龟裂扩展的试验方法D814-95(2005) 橡胶特性挥发性液体蒸汽渗透性的试验方法D816-06 橡胶胶水的试验方法D817-96(2004) 乙酸丙酸纤维素和醋酸丁酸纤维素的试验方法D820-93(2003) 含合成洗涤剂肥皂的化学分析试验方法D822-01 用经过过滤明光碳弧灯和水中曝光装置对涂料及相关涂层和材料上做的导电试验D823-95(2001) 色漆,清漆,喷漆及有关产品制成厚度均匀漆膜试片的方法D824-94(2002) 用皱文纸测定吸水率的测试方法D828-97(2002) 纸和纸板拉力破坏强度的测试方法D829-97(2002) 纸和纸制品湿抗拉断裂强度的标准试验方法D831-94(2004) 电缆及电容器油的气体含量的测试方法D832-92(2001)e1 低温状态下的橡胶试验D841-02 甲苯的硝化定级D843-06 硝化二甲苯D847-04 苯,甲苯,二甲苯,溶剂石脑油和类似的工业芳烃酸度的试验方法D848-03 工业芳烃的酸洗颜色的标准试验方法D849-05 工业芳烃对铜条腐蚀的标准试验方法D850-03 工业芳轻及相关物质的蒸溜法D852-02 苯凝固点的试验方法D853-04 工业芳烃中硫化氢和二氧化硫含量(定性)的标准试验方法D854-06 土壤比重的试验方法D857-02 水中铝含量的测试方法D858-02 水中锰含量的试验方法D859-05 水中二氧化硅的测试方法D861-01a 用特克斯制命名纤维,纱的半制品,纱和其它纺织品线度D865-99(2005) 橡胶的空气中加热变质试验方法(试管法)D866-99(2004) 电线及电缆用丁苯合成橡胶套D868-85(2003) 路标漆渗色程度评价的试验方法D869-85(2004) 涂漆沉降程度评价试验方法D870-02 水浸渍法涂层耐水试验D871-96(2004) 测试乙酸纤维素的试验方法D873-02 航空燃料的氧化稳定性的测试方法D874-06 润滑油和添加剂中硫酸盐类灰分的测试方法D876-00 电绝缘用刚性氧化乙烯聚合物管的测试方法D877-02e1 用圆盘电极测定电绝缘液体介电击穿电压的试验方法D878-01e1 绝缘油中无机氯化物和硫酸盐的测试方法D880-92(2002) 船用集装箱的冲击试验的试验方法D882-02 塑料薄板材抗拉特性的试验方法D883-00 塑料相关术语D885-06 由人造有机纤维制成的轮胎帘子线,轮胎帘布和工业长纱线的测试D887-82(2003)e1 水沉积物抽样D888-05 水中溶解氧的试验方法D889-99(2004) 松香中油挥发性的试验方法D890-98(2003) 液体松脂中水含量的试验方法D891-95(2004) 液态工业化合物的比重,表观比重的测试方法D892-05 润滑油发泡特性的标准试验方法D893-05a 用过的润滑油中不溶物的试验方法D896-04 胶粘剂耐化学试剂粘法的试验方法D897-01e1 胶粘剂粘结力的抗拉性的测试方法D898-05 胶粘剂固体单位面积涂用重量的试验方法D899-00 单位面积涂用液体胶粘剂的重量的测试方法D902-00 电绝缘用挠性涂树脂玻璃布和玻璃布带的测试方法D903-98(2004) 胶粘剂粘结抗剥落或爆皮强度的试验方法D904-99(2005) 人造光(碳弧型)和自然光对胶粘剂试样的曝光D905-03 用压缩荷载法测定胶粘剂的抗剪切强度性能的试验方法D906-98(2004) 用拉力负荷法测定胶合板结构中胶粘剂剪切强度特性的试验方法D907-05e1 胶粘剂术语D909-01e1 增压进料法测定航空汽油抗震性的试验方法(联邦试验方法No.791b) D910-04a 航空汽油技术规范D912-81(1999) 防污涂料用氧化亚铜D913-03e1 路标漆耐磨程度的评价方法D914-00(2006) 乙基纤维的试验方法D918-99(2003) 纸和纸板的抗粘结性试验方法D919-97(2002) 纸和纸板的铜值测试方法D922-00a(2006) 非硬质聚氯乙烯管D923-97 电绝缘液体的抽样方法D924-04 电绝缘液体的损耗因数(或功率因数)和介电常数(电容率)的测试方法D925-06 橡胶特性.表面着色(接触、色移和扩散)的试验方法D926-04 用平行板法测量橡胶的塑性和弹性D928-03 碳酸氢钠D932-85(2002) 水和水沉积物中嗜铁细菌含量试验方法D933-84(2003) 水沉积物的检验和分析结果的报告方法D934-80(2003) 用X射线衍射法作水沉积物中结晶化合物的识别方法D937-04 石油脂的针入度试验方法D938-05 石油蜡(包括凡士林)凝固点的测试方法D942-02 氧弹法测定润滑脂氧化稳定性的试验方法D943-04a 防腐蚀矿物油氧化特性的试验方法D945-06 用机械示波器测定在压缩应力和剪切应力下橡胶特性的试验方法D946-82(2005) 路面建造用按贯入度级配的沥青膏D950-03 胶粘剂抗冲击强度的试验方法D951-99(2004) 用喷射法测定船运集装箱的耐水性的试验方法D952-02 薄板塑料和电绝缘材料粘结强度的试验方法D953-02 塑料支承强度的测试方法D955-00 模制塑料模型尺寸收缩率的测量方法D957-95(2006)e1 塑料生产用模型表面温度的测定D960-02a 生蓖麻油D961-86(2001) 脱水蓖麻油D962-81(2003) 涂料用铝粉和铝浆颜料D964-03 防污漆用铜粉D968-05 用落沙磨蚀法测定有机涂层耐磨性的试验方法D969-85(2003) 路标漆渗色程度的实验室试验方法D971-99a(2004) 环法测定油水界面张力的试验方法D972-02 润滑脂和润滑油蒸发损失的测试方法D974-04 用颜色指示剂滴定法测定酸碱值的标准试验方法D975-06 柴油技术规范D976-04be1 馏分燃料正十六烷指数的计算方法D977-05 乳化沥青D979-01(2006)e1 沥青铺面混合料的取样方法D982-05 Standard Test Method for Organic Nitrogen in Paper andPaperboard D984-97(2002)。

Ultem 1000F PEI 沙伯基础

Ultem 1000F PEI 沙伯基础

13.35 J /厘米
25.01 ft-lb/in
ASTM D 4812
缺口
温度 23.0°C
温度 73.4°F
加德纳冲击
36.0 Ĵ
26.6 磅-英尺
ASTM D 3029
@温度 23.0°C
@温度 73.4°F
泰伯磨耗,mg/1000
10
10
ASTM D 1044
周期
@负荷 1.00 公斤
@负荷 2.20 磅
宝瑞(国际)塑胶 提供

沙伯基础创新塑料的 Ultem 1000F PEI(亚太) 类别: 聚合物 ; 热塑性聚醚酰亚胺(PEI), 材质说明: 透明,标准流量聚醚酰亚胺(TG 217C)。ECO 不合格,UL94 V0 和 5VA 上市。 美国 FDA 和欧盟食品接触标准,NSF 51 上市。自 2007 年 6 月,这个档次将不再支持与生物 相容性的信息,不应该被用于医疗应用需要生物相容性。替代级 HU1000。
氧指数
厚度 1.60 毫米
32.7 千伏/毫米
厚度 1.60 毫米
0.0013
@频率 1000 赫兹
0.0025
@频率 2.45e +9 赫兹
120 - 180 秒 100 - 175 V 60 - 120 秒
15 - 30 弧 25.4 - 80.0 毫米/分钟
公制 55.8 μm/m-°C
温度-20.0 - 150°C
1.53 BTU-in/hr-ft²- °F 410 °F
@厚度 0.252
394 °F
@厚度 0.252
424 °F 338 °F。 338 °F。 338 °F。
0.70
@时间 0.0667 小时

ASTM D2700-2007a

ASTM D2700-2007a

Designation:D2700–07aDesignation:236/87An American National StandardStandard Test Method forMotor Octane Number of Spark-Ignition Engine Fuel1This standard is issued under thefixed designation D2700;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope*1.1This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Motor octane number except that this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2The sample fuel is tested in a standardized single cylinder,four-stroke cycle,variable com-pression ratio,carbureted,CFR engine run in accordance with a defined set of operating conditions.The octane number scale is defined by the volumetric composition of primary reference fuel blends.The sample fuel knock intensity is compared to that of one or more primary reference fuel blends.The octane number of the primary reference fuel blend that matches the knock intensity of the sample fuel establishes the Motor octane number.1.2The octane number scale covers the range from0to120 octane number,but this test method has a working range from 40to120octane number.Typical commercial fuels produced for automotive spark-ignition engines rate in the80to90 Motor octane number range.Typical commercial fuels pro-duced for aviation spark-ignition engines rate in the98to102 Motor octane number range.Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Motor octane number range.1.3The values of operating conditions are stated in SI units and are considered standard.The values in parentheses are the historical inch-pounds units.The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.1.4This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.For more specific hazard statements,see Section8,13.4.1,14.5.1,15.6.1,Annex A1,A2.2.3.1,A2.2.3.3(6)and(9),A2.3.5,X3.3.7,X4.2.3.1, X4.3.4.1,X4.3.9.3,X4.3.12.4,and X4.5.1.8.2.Referenced Documents2.1ASTM Standards:3D1193Specification for Reagent WaterD1744Test Method for Water in Liquid Petroleum Prod-ucts by Karl Fischer Reagent4D2268Test Method for Analysis of High-Purity n-Heptane and Iso octane by Capillary Gas ChromatographyD2360Test Method for Trace Impurities in Monocyclic Aromatic Hydrocarbons by Gas ChromatographyD2699Test Method for Research Octane Number of Spark-Ignition Engine FuelD2885Test Method for Determination of Octane Number of Spark-Ignition Engine Fuels by On-Line Direct Com-parison TechniqueD3703Test Method for Peroxide Number of Aviation Turbine FuelsD4057Practice for Manual Sampling of Petroleum and Petroleum ProductsD4175Terminology Relating to Petroleum,Petroleum Products,and LubricantsD4177Practice for Automatic Sampling of Petroleum and Petroleum ProductsD4814Specification for Automotive Spark-Ignition Engine FuelD5842Practice for Sampling and Handling of Fuels for V olatility MeasurementE344Terminology Relating to Thermometry and Hydrom-etryE456Terminology Relating to Quality and StatisticsE542Practice for Calibration of Laboratory V olumetric Apparatus1This test method is under the jurisdiction of ASTM Committee D02on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.01on Combustion Characteristics.Current edition approved March1,2007.Published March2007.Originally approved st previous edition approved in2007as D2700–07.2Research octane number,determined using Test Method D2699,is a compan-ion method to provide a similar but typically higher octane rating under milder operating conditions.3For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.4Withdrawn.*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.2.2ANSI Standard:5C-39.1Requirements for Electrical Analog Indicating In-struments2.3Energy Institute Standard:IP 224/02Determination of Low Lead Content of Light Petroleum Distillates by Dithizone Extraction and Colo-rimetric Method 63.Terminology 3.1Definitions:3.1.1accepted reference value ,n —a value that serves as an agreed-upon reference for comparison,and which is derived as:(1)a theoretical or established value,based on scientific principles,(2)an assigned or certified value,based on experi-mental work of some national or international organization,or (3)a consensus or certified value,based on collaborative experimental work under the auspices of a scientific orengineering group.E 4563.1.1.1Discussion —In the context of this test method,accepted reference value is understood to apply to the Motor octane number of specific reference materials determined empirically under reproducibility conditions by the National Exchange Group or another recognized exchange testing orga-nization.3.1.2Check Fuel ,n —for quality control testing ,a spark-ignition engine fuel of selected characteristics having an octane number accepted reference value (O.N.ARV )determined by round-robin testing under reproducibility conditions.3.1.3cylinder height ,n —for the CFR engine ,the relative vertical position of the engine cylinder with respect to the piston at top dead center (tdc)or the top machined surface of the crankcase.3.1.4detonation meter ,n —for knock testing ,the signal conditioning instrumentation that accepts the electrical signal from the detonation pickup and provides an output signal for display.3.1.5detonation pickup ,n —for knock testing ,a magnetostrictive-type transducer that threads into the engine cylinder and is exposed to combustion chamber pressure to provide an electrical signal that is proportional to the rate-of-change of cylinder pressure.3.1.6dial indicator reading ,n —for the CFR engine ,a numerical indication of cylinder height,in thousandths of an inch,indexed to a basic setting at a prescribed compression pressure when the engine is motored.3.1.7digital counter reading ,n —for the CFR engine ,a numerical indication of cylinder height,indexed to a basic setting at a prescribed compression pressure when the engine is motored.3.1.8dynamic fuel level ,n —for knock testing ,test proce-dure in which the fuel-air ratio for maximum knock intensity for sample and reference fuels is determined using the falling level technique that changes carburetor fuel level from a highor rich mixture condition to a low or lean mixture condition,at a constant rate,causing knock intensity to rise to a maximum and then decrease,thus permitting observation of the maxi-mum knockmeter reading.3.1.9equilibrium fuel level ,n —for knock testing ,test pro-cedure in which the fuel-air ratio for maximum knock intensity for sample and reference fuels is determined by making incremental step changes in carburetor fuel level,observing the equilibrium knock intensity for each step,and selecting the level which produces the highest knock intensity reading.3.1.10firing ,n —for the CFR engine ,operation of the CFR engine with fuel and ignition.3.1.11fuel-air ratio for maximum knock intensity ,n —for knock testing ,that proportion of fuel to air that produces the highest knock intensity for each fuel in the knock testing unit,provided this occurs within specified carburetor fuel level limits.3.1.12guide tables ,n —for knock testing ,the specific rela-tionship between cylinder height (compression ratio)and octane number at standard knock intensity for specific primary reference fuel blends tested at standard or other specified barometric pressure.3.1.13knock ,n —in a spark-ignition engine ,abnormal com-bustion,often producing audible sound,caused by autoignitionof the air/fuel mixture.D 41753.1.14knock intensity ,n —for knock testing ,a measure of the level of knock.3.1.15knockmeter ,n —for knock testing ,the 0to 100division indicating meter that displays the knock intensity signal from the detonation meter.3.1.16motoring ,n —for the CFR engine ,operation of the CFR engine without fuel and with the ignition shut off.3.1.17motor octane number ,n —for spark-ignition engine fuel ,the numerical rating of knock resistance obtained by comparison of its knock intensity with that of primary refer-ence fuels when both are tested in a standardized CFR engine operating under the conditions specified in this test method.3.1.18octane number ,n —for spark-ignition engine fuel ,any one of several numerical indicators of resistance to knock obtained by comparison with reference fuels in standardizedengine or vehicle tests.D 41753.1.19oxygenate ,n —an oxygen-containing organic com-pound,which may be used as a fuel or fuel supplement,for example,various alcohols and ethers.D 41753.1.20primary reference fuel blends above 100octane ,n —the millilitres per U.S.gallon of tetraethyllead in iso octane that define octane numbers above 100in accordance with an empirically determined relationship.3.1.21primary reference fuels ,n —for knock testing,iso oc-tane,n -heptane,volumetrically proportioned mixtures of iso oc-tane with n -heptane,or blends of tetraetyllead in iso octane that define the octane number scale.3.1.22primary reference fuel blends below 100octane ,n —the volume percent of iso octane in a blend with n -heptane that defines the octane number of the blend,iso octane being assigned as 100and n -heptane as zero octane number.3.1.23repeatability conditions ,n —conditions where inde-pendent test results are obtained with the same method on5Available from American National Standards Institute (ANSI),25W.43rd St.,4th Floor,New York,NY 10036,.6Available from Energy Institute,61New Cavendish St.,London,WIG 7AR,U.K.,.identical test items in the same laboratory by the same operator using the same equipment within short intervals of time.E456 3.1.23.1Discussion—In the context of this test method,a short time interval between two ratings on a sample fuel is understood to be not less than the time to obtain at least one rating on another sample fuel between them but not so long as to permit any significant change in the sample fuel,test equipment,or environment.3.1.24reproducibility conditions,n—conditions where test results are obtained with the same method on identical test items in different laboratories with different operators using different equipment.E456 3.1.25spread,n—in knock measurement,the sensitivity of the detonation meter expressed in knockmeter divisions per octane number.3.1.26standard knock intensity,n—for knock testing,that level of knock established when a primary reference fuel blend of specific octane number is used in the knock testing unit at maximum knock intensity fuel-air ratio,with the cylinder height(dial indicator or digital counter reading)set to the prescribed guide table value.The detonation meter is adjusted to produce a knockmeter reading of50for these conditions.3.1.27toluene standardization fuels,n—for knock testing, those volumetrically proportioned blends of two or more of the following:reference fuel grade toluene,n-heptane,and iso oc-tane that have prescribed rating tolerances for O.N.ARV deter-mined by round-robin testing under reproducibility conditions.3.2Abbreviations:3.2.1ARV—accepted reference value3.2.2C.R.—compression ratio3.2.3IAT—intake air temperature3.2.4K.I.—knock intensity3.2.5MIXT—mixture temperature3.2.6O.N.—octane number3.2.7PRF—primary reference fuel3.2.8RTD—resistance thermometer device(Terminology E344),platinum type3.2.9TSF—toluene standardization fuel4.Summary of Test Method4.1The Motor O.N.of a spark-ignition engine fuel is determined using a standard test engine and operating condi-tions to compare its knock characteristic with those of PRF blends of known pression ratio and fuel-air ratio are adjusted to produce standard K.I.for the sample fuel,as measured by a specific electronic detonation meter instrument system.A standard K.I.guide table relates engine C.R.to O.N. level for this specific method.The fuel-air ratio for the sample fuel and each of the PRF blends is adjusted to maximize K.I. for each fuel.4.1.1The fuel-air ratio for maximum K.I.may be obtained (1)by making incremental step changes in mixture strength, observing the equilibrium K.I.value for each step,and then selecting the condition which maximizes the reading or(2)by picking the maximum K.I.as the mixture strength is changed from either rich-to-lean or lean-to-rich at a constant rate.4.2Bracketing Procedures—The engine is calibrated to operate at standard K.I.in accordance with the guide table.The fuel-air ratio of the sample fuel is adjusted to maximize the K.I.,and then the cylinder height is adjusted so that standard K.I.is achieved.Without changing cylinder height,two PRFs are selected such that,at their fuel-air ratio for maximum K.I., one knocks harder(higher K.I.)and the other softer(lower K.I.)than the sample fuel.A second set of K.I.measurements for sample fuel and reference fuels is required,and the sample fuel O.N.is calculated by interpolation in proportion to the differences in average K.I.readings.Afinal condition requires that the cylinder height used shall be within prescribed limits around the guide table value for the calculated O.N.Bracketing procedure ratings may be determined using either the equilib-rium fuel level or dynamic fuel level approach.4.3C.R.Procedure—A calibration is performed to establish standard ing the cylinder height specified by the guide table for the O.N.of the selected PRF.The fuel-air ratio of the sample fuel is adjusted to maximize the K.I.under equilibrium conditions;the cylinder height is adjusted so that standard K.I. is achieved.The calibration is reconfirmed and the sample fuel rating is repeated to establish the proper conditions a second time.The average cylinder height reading for the sample fuel, compensated for barometric pressure,is converted directly to ing the guide table.Afinal condition for the rating requires that the sample fuel O.N.be within prescribed limits around that of the O.N.of the single primary reference blend used to calibrate the engine to the guide table standard K.I. condition.5.Significance and Use5.1Motor O.N.correlates with commercial automotive spark-ignition engine antiknock performance under severe conditions of operation.5.2Motor O.N.is used by engine manufacturers,petroleum refiners and marketers,and in commerce as a primary specifi-cation measurement related to the matching of fuels and engines.5.2.1Empirical correlations that permit calculation of auto-motive antiknock performance are based on the general equa-tion:Road O.N.5~k13Research O.N.!1~k23Motor O.N.!1k3(1) Values of k1,k2,and k3vary with vehicles and vehicle populations and are based on road-octane number determina-tions.5.2.2Motor O.N.,in conjunction with Research O.N., defines the antiknock index of automotive spark-ignition en-gine fuels,in accordance with Specification D4814.The antiknock index of a fuel approximates the road octane ratings for many vehicles,is posted on retail dispensing pumps in the United States,and is referred to in vehicle manuals.Antiknock Index50.5Research O.N.10.5Motor O.N.10(2) This is more commonly presented as:Antiknock Index5~R1M!2(3) 5.3Motor O.N.is used for measuring the antiknock perfor-mance of spark-ignition engine fuels that containoxygenates.5.4Motor O.N.is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.5.5Motor O.N.is utilized to determine,by correlation equation,the Aviation method O.N.or performance number (lean-mixture aviation rating)of aviation spark-ignition engine fuel.76.Interferences6.1Precaution —Avoid exposure of sample fuels to sunlight or fluorescent lamp UV emissions to minimize induced chemi-cal reactions that can affect octane number ratings.86.1.1Exposure to these fuels to UV wavelengths shorter than 550nm for a short period of time may significantly affect octane number ratings.6.2Certain gases and fumes,which can be present in the area where the knock testing unit is located,may have a measurable effect on the Motor O.N.test result.6.2.1Halogenated refrigerant used in air conditioning and refrigeration equipment can promote knock.Halogenated sol-vents can have the same effect.If vapors from these materials enter the combustion chamber of the CFR engine,the Motor O.N.obtained for sample fuels can be depreciated.6.3Electrical power subject to transient voltage or fre-quency surges or distortion can alter CFR engine operating conditions or knock measuring instrumentation performance and thus affect the Motor O.N.obtained for sample fuels.7.Apparatus7.1Engine Equipment 9—This test method uses a single cylinder,CFR engine that consists of standard components as follows:crankcase,a cylinder/clamping sleeve assembly to provide continuously variable C.R.adjustable with the engine operating,a thermal syphon recirculating jacket coolant sys-tem,a multiple fuel tank system with selector valving to deliver fuel through a single jet passage and carburetor venturi,an intake air system with controlled temperature and humidity equipment,electrical controls,and a suitable exhaust pipe.The engine flywheel is belt connected to a special electric power-absorption motor utilized to both start the engine and as a means to absorb power at constant speed when combustion is occurring (engine firing).The intensity of combustion knock is measured by electronic detonation sensing and metering instru-mentation.See Fig.1and Table 1.7.1.1The single cylinder test engine for the determination of O.N.is manufactured as a complete unit by WaukeshaEngine Division,Dresser Industries,Inc.The Waukesha En-gine Division designation for the apparatus required for this test method is Model CFR F-2Motor Method Octane Rating Unit.7.2Auxiliary Equipment —A number of components and devices have been developed to integrate the basic engine equipment into complete laboratory or on-line octane measure-ment systems.These include computer interface and software systems,as well as common hardware,tubing,fasteners,electrical and electronic items.Appendix X1contains a listing of such items,many of which are potentially available from multiple sources.In some cases,selection of specific dimen-sions or specification criteria are important to achieve proper conditions for the knock testing unit,and these are included in Appendix X1when applicable.7.3Reference and Standardization Fuel Dispensing Equipment —This test method requires repeated blending of reference fuels and TSF materials in volumetric proportions.In addition,blending of dilute tetraethyllead in iso octane may be performed on-site for making rating determinations above 100O.N.Blending shall be performed accurately because rating error is proportional to blending error.7.3.1Volumetric Blending of Reference Fuels —V olumetric blending has historically been employed to prepare the re-quired blends of reference fuels and TSF materials.For volumetric blending,a set of burets,or accurate volumetric apparatus,shall be used and the desired batch quantity shall be collected in an appropriate container and thoroughly mixed before being introduced to the engine fuel system.7.3.1.1Calibrated burets or volumetric apparatus having a capacity of 200to 500mL and a maximum volumetric tolerance of 60.2%shall be used for preparation of reference and standardization fuel blends.Calibration shall be verified in accordance with Practice E 542.7.3.1.2Calibrated burets shall be outfitted with a dispensing valve and delivery tip to accurately control dispensed volume.The delivery tip shall be of such design that shut-off tip discharge does not exceed 0.5mL.7.3.1.3The rate of delivery from the dispensing system shall not exceed 400mL per 60s.7.3.1.4The set of burets for the reference and standardiza-tion fuels shall be installed in such a manner and be supplied with fluids such that all components of each batch or blend are dispensed at the same temperature.7.3.1.5See Appendix X2for volumetric reference fuel dispensing system information.7.3.2Volumetric Blending of Tetraethyllead —A calibrated buret,pipette assembly,or other liquid dispensing apparatus having a capacity of not more than 4.0mL and a critically controlled volumetric tolerance shall be used for dispensing dilute tetraethyllead into 400mL batches of iso octane.Cali-bration of the dispensing apparatus shall be verified in accor-dance with Practice E 542.7.3.3Gravimetric Blending of Reference Fuels —Use of blending systems that allow preparation of the volumetrically-defined blends by gravimetric (mass)measurements based on the density of the individual components is also permitted,7Correlation information is given in ASTM research report RR:D02–69,Aviation Gasoline Antiknock Quality by ASTM Methods D 614and D 357.(Replaced by Test Method D 2700.)Refer to the Report Section,in this test method,for application of the correlation relationship.8Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02–1502.9The sole source of supply of the engine equipment and instrumentation known to the committee at this time is Waukesha Engine,Dresser,Inc.,1000W.St.Paul Avenue,Waukesha,WI 53188.Waukesha Engine also has CFR engine authorized sales and service organizations in selected geographical areas.If you are aware of alternative suppliers,please provide this information to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee 1,which you mayattend.A—Air humidifier tubeB—Intake air heaterC—Coolant condenserD—Four bowl carburetorE—C.R.change motorF—CFR-48crankcaseG—OilfilterH—Detonation meterJ—KnockmeterK—C.R.digital counterFIG.1Motor Method Test Engine Assemblyprovided the system meets the requirement for maximum 0.2%blending tolerance limits.7.3.3.1Calculate the mass equivalents of the volumetrically-defined blend components from the densities of the individual components at 15.56°C (60°F).7.4Auxiliary Apparatus :7.4.1Special Maintenance Tools —A number of specialty tools and measuring instruments should be utilized for easy,convenient,and effective maintenance of the engine and testing equipment.Lists and descriptions of these tools and instru-ments are available from the manufacturer of the engine equipment and those organizations offering engineering and service support for this test method.7.4.2Ventilation Hoods —Handling of reference and stan-dardization fuels,dilute tetraethyllead,and sample fuels having various hydrocarbon compositions is best conducted in a well ventilated space or in a laboratory hood where air movement across the area is sufficient to prevent operator inhalation of vapors.7.4.2.1General purpose laboratory hoods are typically ef-fective for handling hydrocarbon fuel blending.107.4.2.2A blending hood meeting the requirements for dis-pensing toxic material shall be utilized in testing laboratories that choose to prepare leaded iso octane PRF blends on-site.8.Reagents and Reference Materials8.1Cylinder Jacket Coolant —Water shall be used in the cylinder jacket for laboratory locations where the resultant boiling temperature shall be 10061.5°C (21263°F).Water with commercial glycol-based antifreeze added in sufficient quantity to meet the boiling temperature requirement shall be used when laboratory altitude dictates.A commercial multi-functional water treatment material should be used in the coolant to minimize corrosion and mineral scale that can alter heat transfer and rating results.8.1.1Water shall be understood to mean reagent water conforming to Type IV ,Specification D 1193.(Warning —Ethylene glycol based antifreeze is poisonous and may be harmful or fatal if inhaled or swallowed.See Annex A1.)8.2Engine Crankcase Lubricating Oil —An SAE 30viscos-ity grade oil meeting the current API service classification for spark-ignition engines shall be used.It shall contain a detergent additive and have a kinematic viscosity from 9.3to 12.5mm 2per s (cSt)at 100°C (212°F)and a viscosity index of not less than 85.Oils containing viscosity index improvers shall not be10Refer to Industrial Ventilation Manual ,published by the American Conference of Governmental Industrial Hygienists,Cincinnati,OH.TABLE 1General Rating Unit Characteristics and InformationItemDescriptionTest EngineCFR F-2Motor Method Octane Rating Unit with cast iron,box type crankcase with flywheel connected by V-belts to power absorption electrical motor for constant speed operationCylinder Type Cast iron with flat combustion surface and integral coolant jacketCompression RatioAdjustable 4:1to 18:1by cranked worm shaft and worm wheel drive assembly in cylinder clamping sleeve Cylinder Bore (Diameter),in. 3.250(Standard)Stroke,in.4.50Displacement,cu in.37.33Valve MechanismOpen rocker assembly with linkage forconstant valve clearance as C.R.changes Intake Valve Stellite faced,with 180°shroudExhaust Valve Stellite faced,plain type without shroud PistonCast iron,flat topPiston RingsTop Compression Ring 1chrome plated or ferrous,straight sided Other Compression Rings 3ferrous,straight sidedOil Control1cast iron,one piece,slotted (Type 85)Camshaft Overlap,degrees 5Fuel System Carburetor Single vertical jet and fuel flow control to permit adjustment of fuel-air ratio Venturi Throat Diameter,in.Dependent on installation altitude 9⁄16;sea level to 500m (1600ft)19⁄32;500m to 1000m (3300ft)3⁄4;over 1000m (3300ft)IgnitionElectronically triggered condenser discharge through coil to spark plugIgnition Timing Variable as cylinder height (C.R.)is changed Intake Air HumidityControlled within specified limited range Knock Measurement System Detonation Pickup Pressure-sensitive,magnetostrictive core rod and coilDetonation meterIntegrated electronic filter with adjustable gain and zerooffsetTABLE2Engine Dimensions and Manufacturing TolerancesItem Basic Dimension Manufacturing Tolerance Crankcase:Oil passages in crankcase Pass1⁄4in.rodCrankshaft bearings:Front main:Journal diameter 3.00 2.9995to3.0000Journal to bearing clearance...0.0035to0.0049 Rear main:Journal diameter 3.00 2.9995to3.0000Journal to bearing clearance...0.0035to0.0049 Main bearing to case clearance(both)0.0005to0.0020 Crankshaft end-play...0.006to0.008 Connecting rod bearing(big end):Crankshaft journal diameter 2.50 2.4995to2.5000 Journal to bearing clearance...0.0011to0.0036 End-play...0.008to0.014 Connecting rod bearing(piston pin end):Rod end to piston boss clearance1⁄16min...Piston pin to bushing clearance...0.0005to0.0010 Connecting rod alignment:(1)Piston wall perpendicular to axis of journal within0.003.(2)Piston pin twist in length of big-end bearing within0.002.Camshaft bearings:(3)Centerline of rod perpendicular to axis of bearings within0.003. Camshaft journal diameter:Front... 1.7795to1.7805 Rear... 1.2485to1.2495 Front journal to bearing clearance...0.0015to0.0030 Rear journal to bearing clearance...0.0020to0.0035 Bearing to case clearance(both)...0.0005to0.0020 End-play...0.002to0.005 Balancing shaft bearings:Balancing shaft journal diameter... 1.748to1.749Shaft to bearing clearance(both)...0.0015to0.0030 Bearing to case clearance(both)...0.0005to0.0020 End-play...0.002to0.006Idler gear:Stub shaft diameter...0.9980to0.9985 Stub shaft to bearing clearance...0.0015to0.0030 End-play...0.002to0.004Gear tooth backlash...0.002to0.004Valve lifter guide clearance...0.0005to0.0020Valve timing(based on0.010in.quieting ramp lift from base circle)Inlet valve opens10°atdc62.5°Inlet valve closes34°abdcExhaust valve opens40°bbdcExhaust valve closes15°atdc62.5°Flywheel:Side face run-out...0.005maxRim surface eccentricity...0.003maxPiston:Piston diameters:ATop land 3.235to3.237Second throughfifth lands 3.242to3.244Skirt 3.2465to3.2475Piston to cylinder clearances:Top land...0.013to0.016Second throughfifth lands...0.006to0.009Skirt...0.0025to0.0045Ring to land clearances:Top...0.001to0.003All others...0.001to0.0025Ring gap clearances:Compression rings...0.007to0.012Oil ring...0.007to0.012Piston pin diameter... 1.2495to1.2498 Pin to piston clearance...0.0002to0.0004 Piston pin retainers(Truarc)Free diameter after compression 1.340minPiston pin hole alignment...0.001maxStandard cylinder:BBore diameter 3.250 3.2500to3.2510 Bore out of round...0.0005maxBore taper...0.0005maxBore surface quality...10to20microinchBore surface hardness...196to269Brinell。

ASTM D3577-(2009)-Standard Specification for Rubber Surgical Gloves

ASTM D3577-(2009)-Standard Specification for Rubber Surgical Gloves

Designation:D3577–09´1Standard Specification forRubber Surgical Gloves1This standard is issued under thefixed designation D3577;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(´)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.´1N OTE—Footnote1and8.5.1were editorially corrected in February2009.1.Scope1.1This specification covers certain requirements for pack-aged sterile rubber surgical gloves used in conducting surgical procedures.1.2The values stated in SI units are to be regarded as standard.No other units of measurement are included in this standard.1.3The following safety hazards caveat pertains only to the test method portion,Section8,of this specification:This standard does not purport to address all of the safety concerns, if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limita-tions prior to use.2.Referenced Documents2.1ASTM Standards:2D412Test Methods for Vulcanized Rubber and Thermo-plastic Elastomers—TensionD573Test Method for Rubber—Deterioration in an Air OvenD3767Practice for Rubber—Measurement of Dimensions D5151Test Method for Detection of Holes in Medical GlovesD5712Test Method for Analysis of Aqueous Extractable Protein in Natural Rubber and Its Products Using the Modified Lowry MethodD6124Test Method for Residual Powder on Medical GlovesD6499Test Method for The Immunological Measurement of Antigenic Protein in Natural Rubber and its Products 2.2Other Documents:ISO2859Sampling Procedures and Tables for Inspection by Attributes3U.S.Pharmacopeia43.Classification3.1Type1—Gloves compounded primarily from natural rubber latex.3.2Type2—Gloves compounded from a rubber cement or from synthetic rubber latex.4.Materials and Manufacture4.1Any rubber polymer compound that permits the glove to meet the requirements of this specification.4.2A lubricant that meets the current requirements of the U.S.Pharmacopeia for Absorbable Dusting Powder may be applied to the glove.Other lubricants may be used if their safety and efficacy have been previously established.4.3The inside and outside surface of the rubber surgical gloves shall be free of talc.5.Significance and Use5.1The specification is intended as a reference to the performance and safety of rubber surgical gloves.The safe and proper use of rubber surgical gloves is beyond the scope of this specification.6.Sampling6.1For referee purposes,gloves shall be sampled and inspected in accordance with ISO2859.The inspection levels and acceptable quality levels(AQL)shall conform to those specified in Table1,or as agreed between the purchaser and the seller,if the latter is more comprehensive.7.Performance Requirements7.1Gloves,sampled in accordance with Section6,shall meet the following referee performance requirements:7.1.1Comply with requirements for sterility when tested in accordance with8.2.1This specification is under the jurisdiction of ASTM Committee D11on Rubber and is the direct responsibility of Subcommittee D11.40on Consumer Rubber Products.Current edition approved Jan.1,2009.Published February2009.Originally approved st previous edition approved in2006as D3577–06´1.2For referenced ASTM standards,visit the ASTM website,,orcontact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from American National Standards Institute,25West43rd St.,4th Floor,New York,NY10036.4U.S.Pharmacopeia,latest edition,Mack Publishing Co.,Easton,PA19175.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.--` , , ` ` ` , , , , ` ` ` ` -` -` , , ` , , ` , ` , , ` ---7.1.2Be free from holes when tested in accordance with8.3.7.1.3Have consistent physical dimensions in accordance with8.4.7.1.4Have acceptable physical property characteristics in accordance with8.5.7.1.5Have a powder residue limit of2.0mg in accordance with8.6.7.1.6Have a recommended aqueous soluble protein content limit of200µg/dm2in accordance with8.7and Annex A1or have a recommended antigenic protein content limit of10µg/dm2in accordance with8.9and Annex A2.7.1.7Have a recommended maximum powder limit of15 mg/dm2in accordance with8.8.8.Referee Test Methods8.1The following tests shall be conducted to assure the requirements of Section7as prescribed in Table1:8.2Sterility Test—Testing for sterility shall be conducted in accordance with the latest edition of the U.S.Pharmacopeia.8.3Freedom from Holes—Testing for freedom from holes shall be conducted in accordance with Test Method D5151.8.4Physical Dimensions Test:8.4.1The gloves shall comply with the dimension require-ments specified in Table2.8.4.2The length shall be expressed in millimetres as mea-sured from the tip of the secondfinger to the outside edge of the cuff.8.4.3The width of the palm shall be expressed in millime-tres as measured at a level between the base of the indexfinger and the base of the thumb.Values of width per size other than listed shall meet the stated tolerance specified in Table2.8.4.4The minimum thickness shall be expressed in milli-metres as specified in Table2when using a dial micrometer described in Practice D3767and in the locations indicated on Fig.1.For referee tests,cutting the glove is necessary to obtain single-thickness measurements.8.4.5Precision and Bias—The precision and bias of mea-suring glove dimensions are as specified in Practice D3767.8.5Physical Requirements Test:8.5.1Before and after accelerated aging,the gloves shall conform to the physical requirements specified in Table3. Tests shall be conducted in accordance with Test Methods D412.Die C is recommended.8.5.2Accelerated aging tests shall be conducted in accor-dance with Test Method D573.Test the gloves by either one of the following methods:8.5.2.1After being subjected to a temperature of7062°C for16662h,the tensile strength and ultimate elongation shall not be less than the values specified in Table3.This method shall be the condition for referee tests.8.5.2.2After being subjected to a temperature of10062°C for2260.3h,the tensile strength and ultimate elongation shall not be less than the values specified in Table3.8.5.3Precision and Bias—The precision and bias of deter-mining tensile strength and ultimate elongation of gloves are as specified in Test Methods D412.8.6Powder Free Gloves:8.6.1Determine the powder residue using Test Method D6124.8.7Aqueous Extractable Protein Content:8.7.1Determine the aqueous extractable protein(µg/mL) using Test Method D5712for each glove sample tested.8.7.2Determine the totalµg of aqueous extractable protein in each glove sample by multiplying the result from8.7.1by the total volume of extractant used for that specific glove sample.If the glove sample is less than a whole glove,then adjust the protein results to reflect the amount of protein in the whole glove.8.7.3Determine the square decimetres for the glove size. Multiply the minimum length and nominal width found in Table2and convert to dm2using(dm2/mm2)(mm2/10000). Four(4)is the factor for all inside and outside surface areas.8.7.4Determine the aqueous extractable protein content of a glove sample by dividing the result from8.7.2(totalµg of protein)by8.7.3(total surface area of glove).TABLE1Performance RequirementsCharacteristic Related Defects InspectionLevelAQLSterility fails sterility A N/A Freedom from holes holes I 1.5 Physical dimensions length,width,andthicknessS-2 4.0Physical properties before aging,after accel-erated agingS-2 4.0 Powder Free Residue Exceeds Maximum Limit N=5N/A Protein Content Exceeds RecommendedMaximum LimitN=3N/APowder Amount Exceeds RecommendedMaximum LimitN=2N/AAntigenic Protein Content Exceeds RecommendedMaximum LimitN=1N/AA See U.S.Pharmacopeia.TABLE2Dimensions and Tolerances8.7.5If the sample is more than one (1)glove,use theaverage µg/dm 2of protein for the number of gloves tested in the sample.8.8Powdered Gloves :8.8.1Determine the recommended maximum powder limit using Test Method D 6124for powdered gloves.8.8.2Determine the square decimeters for the glove size as in 8.7.3.8.9Antigenic Protein Content :8.9.1Determine the extractable antigenic protein (µg/mL)using Test Method D 6499for each glove sample tested.8.9.2Determine the total microgram of extractable anti-genic protein in each glove sample by multiplying the result from 8.9.1by the total volume of extractant used for that specific glove sample.8.9.3Determine the square decimeter for the glove size as in 8.7.3.8.9.4Determine the extractable antigenic protein content of a glove sample by dividing the result from 8.9.2(total microgram of antigenic protein)by 8.9.3(total surface area of glove).9.Acceptance9.1Gloves will be considered to meet the referee perfor-mance requirements when test results conform to the require-ments prescribed in Table 1.9.2Retests or reinspections are permissible under the pro-visions of the U.S.Pharmacopeia and ISO 2859.10.Packaging and Package Marking10.1Packaging —Packaging shall be provided to maintain sterility after sterilization during shipping and storage and permit opening without contamination of the gloves.10.2Marking:FIG.1Location of Thickness MeasurementsTABLE 3Physical RequirementsType Before Aging After Accelerated AgingTensile Strength Ultimate Elongation Stress at 500%Elongation Tensile Strength Ultimate Elongation I 24MPa,min 750%min 5.5MPa,max 18MPa,min 560%min II17MPa,min650%min7.0MPa,max12MPa,min490%min--`,,```,,,,````-`-`,,`,,`,`,,`---10.2.1Gloves shall have an appropriate marking or be color-coded to designate size.10.2.2Inner wrappers or wallets,if used,shall bear a size marking to be located on the outside of the wallet or wrapper.10.2.3Packages shall bear markings for the contents to include the glove size,instructions for opening,the legend “sterile,”and a manufacturing lot number.10.2.4The outermost case shall be labeled on one or more end panels with the glove size,the legend“sterile,”and a manufacturing lot number.10.2.5All levels of packaging shall conform to all appro-priate government labeling regulations.11.Keywords11.1gloves;rubber;surgicalANNEXES (Mandatory Information) A1.PROTEIN CONTENTA1.1The current assay precision is large enough that only a recommended limit can be considered.A1.2Consideration should be given to the relative repeat-ability and reproducibility when reporting test method results.A1.3Reasonable allowance should be given for test results in excess of the recommended limit until greater precision of the method can be attained.A2.ANTIGENIC PROTEIN CONTENTA2.1The current assay precision is large enough that only a recommended limit can be considered.A2.2Consideration should be given to the relative repeat-ability and reproducibility when reporting test method results.A2.3A pooled sample from three individual NR specimens or products as extracted in Test Method D5712is permitted for use as the extraction sample.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website().--`,,```,,,,````-`-`,,`,,`,`,,`---。

(完整版)ASTMD类最新标准目录(一)

(完整版)ASTMD类最新标准目录(一)

ASTM D类最新标准目录( 一)D4-86(2004) 沥青含量试验方法D5-06e1 沥青材料的渗透性试验方法D6-95(2000)e1 油及沥青混合物加热损失试验方法D8-02 与道路和路面材料相关的术语D9-05 与木材相关的术语D12-88(1998) 未加工的桐油D13-02 松节油规范D16-03 与涂料、清漆、亮漆和有关产品相关的术语D20-03 路面焦油的蒸馏试验方法D25-99(2005) 圆木桩D29-98 虫胶树脂的抽样和试验方法D34-91(2003) 白颜料化学分析指南D36-95(2000)e1 沥青软化点试验方法(沥青软化点测定器)D38-94(2000)e1 木材防腐剂的抽样试验方法D41-05 铺屋面、防潮及防水用沥青底层D43-00 屋顶、防潮及防水材料用杂酚油底漆D49-83(2002) 铅丹的化学分析D50-90(2005) 含铁和锰的黄色、橙色、红色和褐色涂料的化学分析试验方法D56-05 泰格密闭闪点试验器测定闪点的试验方法D61-75(2004) 硬沥青的软化点的试验方法(水中方块试验法)D69-01 磨擦带的试验方法D70-03 半固态沥青材料的比重和密度的试验方法D71-94(2004) 固体硬沥青和地沥青的相对密度试验方法(变位法)D75-03 集料的抽样D76-99(2005) 纺织材料的抗拉试验机D79-86(2004) 氧化锌颜料D81-87(2003) 碱性碳酸盐铅白颜料D83-84(2002) 铅丹颜料D85-05 赭色颜料规范D86-05 大气压下石油产品蒸馏试验方法D87-04 石蜡熔点的试验方法(冷却曲线)D88-94(2005) 赛波特粘度的试验方法D91-02 润滑油的沉淀值试验方法D92-05a 用克利夫兰德开杯法测定石油产品的闪点和燃点的试验方法D93-02a 用潘斯基-马丁斯仪闭杯闪点测定器测定闪点的试验方法D94-02 石油产品的皂化值试验方法D95-05e1 蒸馏法测定石油产品及沥青材料中水的试验方法D97-05a 石油的倾点的试验方法D98-05 氯化钙D113-99 沥青材料的延展性的试验方法D115-02 电绝缘用含清漆试验溶剂的试验方法D116-86(2006) 电气设备用上釉陶瓷材料的试验D117-02 产自石油的电绝缘油的试验方法和规范导则D120-02a 橡胶绝缘手套D121-05 煤和焦炭术语D123-03 与纺织材料相关的术语D124-88(1998) 脱胶的豆油D126-87(2002) 含铬酸铅和氧化铬绿的黄、橙和绿色颜料的化学分析方法D127-05 石油蜡包括凡士林滴熔点的试验方法D128-98(2003)e1 润滑脂分析试验方法D129-00(2005) 石油产品中硫含量试验方法(通用氧弹法)D130-04e1 用铜条变色法检测石油产品对铜腐蚀性的测试方法D139-95(2001)e1 沥青材料浮选试验的检测方法D140-01 沥青材料的抽样D143-94(2000)e1 洁净木材小样品的试验D146-04 防水与屋面材料用沥青浸渍的油毡和编织物的抽样与试验方法D149-97a(2004) 固体电绝缘材料在工业电源频率下的介电击穿电压和介电强度的试验方法D150-98(2004) 固体电绝缘材料的(恒久电介质)的交流损耗特性和介电常数的测试方法D153-84(2003) 颜料比重测试方法D154-85(2001) 清漆试验D156-02e1 石油产品赛波特比测试方法(赛波特比色计法)D167-93(2004)e1 块焦比重和孔隙度的试验方法D168-94(2000) 杂酚油焦炭渣的测试方法D173-03 屋顶和防水材料用饱和沥青棉织物D176-00 电绝缘用固体充填化合物与浸渍剂的试验方法D178-01(2005) 橡胶绝缘垫子D185-84(1999 颜料,糊剂及涂料中粗颗粒的试验方法D187-94(2003)e1 煤油燃烧质量的测试方法D189-05 石油产品康拉孙残碳测试方法D197-87(2002) 粉煤的取样方法与细度试验方法D198-05a 结构尺寸木料静力试验法D202-97(2002)e1 电绝缘用未浸渍纸的抽样和试验方法D204-02 缝线的测试方法D209-81(2003) 灯黑颜料D210-05 骨炭颜料D211-67(2002) 铬黄和铬橙颜料D215-91(2002) 白色亚麻籽油涂料的化学分析D217-02 润滑剂针入度的测试方法D225-04 表面有矿物颗粒的沥青屋面板D226-06 铺顶和防水用沥青饱和有机毡D227-03 铺顶和防水用焦油沥青饱和有机毡D228-06 沥青屋面卷材,盖板和瓦的试验方法D229-01 电绝缘用硬质薄板及板材的试验方法D233-02 松脂的抽样和测试试验方法D234-82(1998) 生亚麻子油D235-02 矿物溶剂油(石油溶液油)(烃干洗溶液)规格D237-57(1997) 橙色紫胶和其他虫胶D240-02 弹式量热器测定液烃燃料燃烧热的试验方法D242-04 沥青铺路混合料用矿物填料D243-02 规定残渣渗透性测试方法D244-04 乳化沥青的测试方法D245-06 制定目测分等木材的结构等级及有关允许性能的规程D246-04 杂酚油和杂酚油-煤焦油溶液的蒸馏试验方法D256-06 塑料及电绝缘材料的抗冲击性的测试方法D257-99(2005) 绝缘材料的直流电阻或电导的试验方法D260-86(2001) 熟亚麻籽油D261-75(1999) 铁蓝颜料D262-81(1999) 群青蓝颜料D263-05 氧化铬绿颜料D267-82(2003) 黄青铜粉规格D268-01 涂料及其相关涂层和原料用挥发性溶剂及化学中间体的抽样和测试D269-97(2002) 松香和松香衍生物中不溶物的试验方法D276-00a 纺织品中纤维的鉴定方法(AATCC方法20)D279-02 颜料渗出的试验方法D280-01 颜料吸收的水份(及试验条件下挥发的其他物质)的测试方法D281-95(2002) 用刮刀磨损法测定颜料油吸附性的试验方法D283-84(1999) 一氧化铜和铜涂料化学分析试验方法D287-92(2006) 原油和石油产品API比重的试验方法(液体比重计法)D291-86(2002) 烟煤立方英尺重量的试验方法D293-93(2004) 焦炭筛析分析试验方法D295-99(2004) 电绝缘用棉质漆布的试验方法D297-93(2002)e2 橡胶制品的测试方法.化学方法D299-04e1 石棉纱的标准规范D301-95(2004) 可溶性硝化纤维素的试验方法D304-05 n-丁醇(丁醇)D305-84(2003) 黑色涂料中的溶剂萃取材料的试验方法D312-00 屋顶用沥青D315-95(2004)e1 机织石棉带的标准规范D319-04 合成的戊醇D322-97(2002)e1 蒸馏法测定汽油发动机废机油中汽油稀释剂的试验方法D323-99a 石油产品蒸气压力的测试方法D329-02 丙酮D330-93(2001) 2-丁氧基乙醇D331-05 2-乙氧基乙醇D332-87(2004) 白色颜料着色力的试验方法D333-01 透明漆和着色漆的试验方法D341-03 液体石油产品粘度-温度关系曲线图D344-97(2004) 用擦试外规评定法对涂料相对遮盖力的测试方法D345-02 道路和结构用氯化钙的抽样和试验方法D346-04e1 实验室分析用焦炭试样的收集和制备D347-97 杂酚油和煤焦油的体积和比重修正表D348-00 电绝缘用刚性管的测试方法D349-99(2004) 电绝缘用层压圆棒的试验方法D350-01 电绝缘用经处理软套管的试验方法D351-97(2003) 天然白云母块及薄片目检质量分级D352-97(2003) 电绝缘用涂浆云母的试验方法D358-98 涂料耐大气老试验用木片规格D360-89(2001) 紫胶清漆规范D363-90(2000) 磷酸三甲苯酯规格D365-01(2005) 可溶性硝酸纤维素基溶液的试验方法D367-94(2000)e1 杂酚油中苯不溶物的测试方法D368-89(2002) 杂酚油及油质防腐剂比重的试验方法D369-84(2002) 杂酚油馏份与残渣比重的测试方法D370-02e1 油质防腐剂脱水作用的试验方法D372-00(2006) 电绝缘用经处理的软套管规格D374-99(2004) 固体电绝缘厚度的测试方法D374M-99(2005) 固体电绝缘厚度的标准测试方法(米制)D375-95(2004)e1 石棉粗砂的标准规范D378-00 平型橡胶传送带的测试方法D380-94(2006) 橡胶软管的测试方法D381-04 用喷射蒸发法测定燃烧中原在胶的测试方法D387-00 使用机械研磨机测定有色颜料主色和着力色的试验方法D388-05 用排列法测定煤的分类D390-92(1999) 海上,陆地及淡水中用木桩,电杆和木材的防腐处理用煤柏油杂酚油规程D391-94(2000)e1 杂酚油-煤焦油溶液D395-03 橡胶压缩永久变形特性的试验方法D396-05 燃料油规范D402-02 稀释沥青产品蒸馏的测试方法 Standard Test Method for Distillationof Cut-Back Asphalt ic (Bituminous) ProductsD409-02 粉碎机法测定煤炭可磨性的试验方法 Standard Test Method for Grindabilityof Coal by t he Hardgrove-Machine MethodD411-98(2003) 电绝缘用紫胶片试验方法 Standard Test Methods for ShellacUsed for Electrical I nsulationD412-98a(2002)e1 硫化橡胶、热塑橡胶和热塑合成橡胶的拉伸试验方法 Standard Test Methods f or VulcanizedRubber and Thermoplastic Elastomers—TensionD413-98(2002)e1 橡胶特性-与软质基底粘附性的试验方法 Standard Test Methods for RubberPro perty—Adhesion to Flexible SubstrateD420-98(2003) 土壤粒度分析的测试方法 Standard Guide to SiteCharacterization for Engineering, Design, and ConstructionPurposesD421-85(2002) 土壤粒度分析试验方法 Standard Practice for Dry Preparationof Soil Samples for Particle-Size Analysis and Determination ofSoil ConstantsD422-63(2002)e1 土壤粒度分析试验方法 Standard Test Method forParticle-Size Analysis of Soils D425-88(2001) 土壤离心湿度当量试验方法 Standard Test Method for CentrifugeMoisture Equiva lent of SoilsD427-04 用水银法测量土壤收缩系数的测试方法 Test Method for Shrinkage Factors ofSoils by t he Mercury MethodD429-03e1 橡胶特性与硬质基底粘附性的试验方法 Standard Test Methods for RubberProperty—Adhesion to Rigid SubstratesD430-06 橡胶变质的动态疲劳试验方法 Standard Test Methods for RubberDeterioration-Dynamic FatigueD434-95 Standard Test Method for Resistance toSlippage of Yarns in Woven Fabrics Using a St andard SeamD440-86(2002) 煤的跌落粉碎试验 Standard Test Method of Drop ShatterTest for CoalD441-86(2002) 煤的滚筒试验 Standard Test Method of Tumbler Test for CoalD444-88(2003) 锌黄颜料(铬酸锌黄)的化学分析方法 Standard Test Methods for Chemical Analysis of Zinc YellowPigment (Zinc Chromate Yellow)D445-06 透明和不透明液体运动粘度的测试方法.(包括动态粘度的计算) Standard Test Method for Kinematic Viscosity ofTransparent and Opaque Liquids (and the Calculation of DynamicViscosity)D446-06 玻璃毛细管运动粘度计操作说明书和规范 Standard Specifications and OperatingInstructi ons for Glass Capillary Kinematic ViscometersD448-03a 道路和桥梁建筑的集料尺寸分类 Standard Classification for Sizes ofAggregate for Roa d and Bridge ConstructionD449-03 防潮和防水用沥青规范 Standard Specification for AsphaltUsed in Dampproofing and WaterproofingD450-96(2006) 铺屋面,防潮与防水用硬煤沥青 Standard Specification for Coal-TarPitch Used in Roofing, Dampproofing, and WaterproofingD451-91(2002) 沥青屋顶制品用粒状矿物铺面材料筛分分析试验方法 Standard Test Method for Si eveAnalysis of Granular Mineral Surfacing For Asphalt RoofingProductsD452-91(2002) 沥青层面制品表面修整用非粒状矿物的筛分试验方法 Standard Test Method for Si eveAnalysis of Surfacing for Asphalt Roofing ProductsD453-94(2000)e1 杂酚油-煤焦油溶液中焦油酸含量的测试方法 Standard Test Method for Tar Aci ds inCreosote-Coal Tar SolutionsD454-04 用加热及空气压力测定橡胶变质的试验方法 Standard Test Method for RubberDeteriorat ion by Heat and Air PressureD459-00 肥皂和其它洗涤剂的术语规范 Standard Terminology Relating toSoaps and Other Deter gentsD460-91(2005) 肥皂和其它洗涤剂粒度的试验方法 Standard Test Methods for Samplingand Che mical Analysis of Soaps and Soap ProductsD464-05 松脂油产品包括妥尔油和其他相关产品的皂化值的试验方法 Standard Test Methods for Saponification Number of Naval Store Products Including Tall Oil and Other Related ProductsD465-05 松脂制品包括妥尔油及其它相关产品酸值的试验方法 Standard Test Methods for Acid N umberof Naval Stores Products Including Tall Oil and Other RelatedProductsD470-05 电线和电缆用交联绝缘与套管的测试方法 Standard Test Methods for CrosslinkedInsulati ons and Jackets for Wire and CableD471-98e2 液体对橡胶性能影响的测试方法 Standard Test Method for RubberProperty-Effect of LiquidsD473-02 萃取法测定原油和燃料油中沉积物的试验方法 Standard Test Method for Sediment inCr ude Oils and Fuel Oils by the Extraction MethodD476-00(2005) 二氧化钛颜料规范 Standard Classification for DryPigmentary Titanium Dioxide P roductsD478-02 锌黄(铬酸锌)颜料 Standard Specificationfor Zinc Yellow (Zinc Chromate) PigmentsD480-88(2003) 铝粉和铝粉浆的抽样和试验方法 Standard Test Methods for Samplingand Testin g of Flaked Aluminum Powders and PastesD482-03 石油产品灰分的测试方法 Standard Test Method for Ash fromPetroleum ProductsD483-04 石油制植物喷洒油不磺化残渣的试验方法 Standard Test Method for UnsulfonatedResidu e of Petroleum Plant Spray OilsD490-92(2005) 道路柏油 Standard Specification for Road TarD494-04 Standard Test Method for Acetone Extraction ofPhenolic Molded or Laminated Products Standard TestMethod for Acetone Extraction of Phenolic Molded or LaminatedProductsD495-99(2004) 固体电绝缘材料的耐高压低电流干电弧性能的测试方法 Standard Test Method for High-Voltage, Low-Current, Dry Arc Resistance of Solid ElectricalInsulationD500-95(2003) 磺化油和硫化油的化学分析和试验方法D501-03 碱性洗涤剂的抽样和化学分析试验方法D502-89(2003) 肥皂和其它洗涤剂粒度的试验方法D509-05 松香分级和抽样试验方法D511-03 水中钙镁离子的测试方法D512-04 测定水中氯离子含量的试验方法D513-02 水中二氧化碳溶解量和总量的试验方法D516-02 水中硫酸铁的试验方法D517-98(2003) 沥青厚板材D518-99 橡胶变质表面龟裂的试验方法D519-04 羊毛条中纤维长度的试验方法D520-00(2005) 锌粉颜料规范D521-02 锌粉(金属锌粉)的化学分析试验方法D522-93a(2001) 用锥形心轴仪测定涂覆有机涂层延伸率的试验方法D523-89(1999) 镜面光泽的试验方法D524-04 石油产品中兰氏残炭的试验方向D525-05 汽油氧化稳定性的试验方法(诱导期方法)D528-97(2002) 纸和纸板的机器定向试验方向D529-04 沥青材料的加速风化试验条件和程序的测试方法(碳弧法)D531-00(2005) 普西和琼斯橡胶压缩试验方法D542-00 透明有机塑料的折射指数的试验方法D543-06 塑料耐化学试剂性能的试验方法D545-99(2005) 混凝土用预制伸缩缝纫填料的试验方法(非挤压和弹性型)D546-05 道路和铺砌材料用矿物填料筛分的测试方法D548-97(2002) 纸张水溶解酸碱度的试验方法D555-84(1998) 干性油试验D558-04 土壤水泥混合物的水分与密度关系的试验方法D559-03 压实的掺土水泥混合物的湿润与干燥的试验方法D560-03 压实的掺土水泥混合物的冻融试验方法D561-82(2003) 涂料用炭黑颜料D562-01(2005) 斯氏粘度计测定涂料稠度的试验方法D563-88(1996)e1 醇酸树脂和树脂溶液中苯酐含量的试验方法D564-87(2002) 液体涂料催干剂的试验方法D565-99(2005) 白色矿物油中可碳化物质的试验方法D566-02 润滑脂滴点的试验方法D570-98(2005) 塑料吸水率的试验方法D572-04 用加热法和氧化法进行的橡胶变质的试验方法D573-04 在空气烤炉中作橡胶变质的试验方法D575-91(2001) 橡胶压缩特性的试验方法D578-05 玻璃纤维丝D579-04 原织物玻璃纤维D580-04 机织玻璃纤维带D581-99 机织玻璃纤维套管的编织D584-96(2005) 原毛中羊毛含量实验室测试方法D585-97(2002) 纸张、纸板、纤维板和相关产品的单批取样和验收方法D586-97(2002) 纸中灰分含量的试验方法D589-97(2002) 纸的不透明度的测试方法D590-93(2002) 纸中石油蜡的测试方法D596-01 水分析结果的报告D600-90(2001) 液体涂料催干剂D601-87(1998) 奥气油(永久液体)D602-81(2003) 硫酸钡颜料规范D605-82(2003) 硅酸镁颜料(滑石)D607-82(2003) 湿磨云母颜料D608-05 邻苯二甲酸二丁酯D609-00 涂料、油漆以及改性涂料与相关涂料产品的测试用冷轧钢板的制备D610-01 涂漆钢表面锈蚀程度评价的试验方法D611-04 石油产品和烃类溶剂苯胺点和混合苯胺点的试验方法D612-88(2004) 石蜡中可碳化物质的试验方法D613-05 十六烷法测定柴油燃料燃烧质量的试验方法D618-05 塑料及电绝缘材料的调理方法D619-99(2004) 电绝缘用硫化纤维的测试方法D622-99(2005) 汽车空气制动和真空制动系统用橡胶软管试验方法D623-99e1 橡胶特性-压缩中热的产生及挠曲疲劳的试验方法D624-00e1 橡胶的热塑性弹性的耐老化性的抗撕裂强度的试验方法D628-95(2004)e1 石棉套管的标准规范D629-99 纺织品定量分析试验方法D632-01 氯化钠D633-97(2005) 道路柏油的体积修正表D635-06 自承塑料在水平状态时的燃烧速率或者燃烧蔓延程度及燃烧时间的试验方法D638-03 塑料拉伸性能的试验方法D642-00(2005) 船用集装箱、组合件和单体加载的抗压缩能力的测试方法D643-97(2002) 用厦泊测试仪测试纸的折痕持久性的标准试验方法D644-99(2002) 用烘干法测定纸和纸板中水分的测试方法D645/D645M-97(2002) 纸和纸板厚度的测试方法D646-96(2001) 纸张及纸板的基本重量的试验方法(单位面积的重量)D648-06 在挠曲负荷下塑料的挠曲温度的试验方法D653-05 土壤、岩石和其内部所含液体的相关术语D660-93(2005) 外用漆龟裂程度评价方法D661-93(2005) 外用漆破裂程度评价的试验方法D662-93(2005) 外用漆侵蚀程度评价的试验方法D664-06 电位滴定法测定石油产品酸值的试验方法D665-06 水存在下抑制的矿物油防锈特性的试验方法D668-99(2004) 电绝缘用硬条和硬管尺度测量的测试方法D669-03 层压薄板与层压板的平行于层片的耗散系数和介电常数的试验方法D685-93(2002) 检测调理纸和纸制品D686-93(2002) 纸中矿物填料和矿物涂料的定性测试方法D689-03 纸张的内部耐撕裂的试验方法D692-00(2004) 沥青铺路砌混合用粗集料D693-03a 碎石路面用压碎集料D695-02a 硬质塑料抗压特性的试验方法D696-03 从-30摄氏度到30摄氏度的塑料线性热膨胀系数的试验方法D698-00ae1 实验室中用12000ft-lbt/ft(600KN-m/m)作用力测定土壤压力特性的试验方法D704-99(2004) 三氯氰胺甲醛模制化合物D705-99(2004) 脲甲醛模制化合物D706-05 乙酸纤维素模制和挤压化合物D707-05 醋酸丁酸纤维素模制与挤压料规格D709-01 层压热固材料D710-97(2002) 电绝缘用硫化纤维薄板、条和管D711-89(2004) 路标漆不粘着时间的试验方法D713-90(2004) 路标漆进行路面使用的试验方法D714-02e1 涂料起泡程度的试验方法D715-86(2003) 硫酸钡颜料分析的标准试验方法D716-86(2003) 评定云母颜料的标准试验方法D717-86(2003) 硅酸镁颜料分析的标准试验方法D718-86(2003) 硅酸铝颜料的分析标准试验方法D720-91(2004)e1 煤自由膨胀指数的试验方法D721-05 石油蜡含油量的试验方法D722-93(2002) 纸的抗油脂性标准试验方法D724-99(2003) 纸表面可湿性的测试方法(接触角法)D726-94(2003) 空气中无孔纸的透气性的测试方法D727-96(2001) 真空方法测定屋顶和地板油毡煤油值的试验方法D731-95(1999) 热固模塑料粉末的模塑指数的试验方法D732-02 用穿孔工具测量塑料剪切强度的测试方法D737-04 纺织纤维透气率的试验方法D740-05 丁酮规范D746-04 用冲击法测定塑料及弹性材料的脆化温度的试验方法D747-02 用悬臂梁法对塑料表观弯曲系数的测试方法D748-00(2005)e1 固定式云母介电电容器用天然云母块和云母薄片D750-00 用碳弧型装置和风化装置对橡胶变质的测试方法D751-06 涂层织物的测试方法D763-01 未加工棕土和焙烧棕土颜料D765-87(2003) 未加工黄土和焙烧黄土颜料技术规范D768-01 黄色氧化铁的水合物D769-01 黑色合成氧化铁D770-05 异丙醇规范D772-86(2005) 外部涂料剂落程度评价的试验方法D774/D774M-97(2002) 纸张抗破碎强度的测试方法D776-92(2001) 干热对纸和纸板特性的影响的试验方法D777-97(2002) 经过处理的纸和纸板易燃性的标准试验方法D778-97(2002) 纸萃液(热萃取和冷萃取法)氢离子浓度(pH)的标准试验方法D779-03 纸、纸板和其他印刷材料用干烧指示器法测试耐水性的测试方法D780-95(2003) 纸印刷油墨渗透性的测试方法(蓖麻油试验)D784-03 电绝缘材料用橙色紫胶和其他印度虫胶D785-03 塑料和电绝缘材料的洛氏硬度的测试方法D787-96(2003) 乙基纤维模制和挤压化合物D788-05 甲基丙烯酸酯模制和挤压化合物的分类系统D789-06 聚酰胺相对粘度,熔点和含水量的测试方法D790-03 未增强和增强塑料及电绝缘材料的挠曲性的试验方法D792-00 用位移法测定塑料密度和比重(相对密度)的标准试验方法D800-05 工业用金属除垢剂化学分析试验方法D801-02 二聚戊烯抽样和测试的试验方法D802-02 松油抽样和测试的试验方法D803-03 妥儿油的测试试验方法D804-02 松脂制品包括妥儿油及相关产品的术语D806-00(2006) 掺土水泥混合物中水泥含量的试验方法D807-05 工业锅炉用水引起脆裂倾向的评价方法(美国矿业局的脆变检查器方法)D808-05 新的和使用过的石油产品中氯含量的试验方法(氧弹法)D813-06 测定橡胶龟裂扩展的试验方法D814-95(2005) 橡胶特性挥发性液体蒸汽渗透性的试验方法D816-06 橡胶胶水的试验方法D817-96(2004) 乙酸丙酸纤维素和醋酸丁酸纤维素的试验方法D820-93(2003) 含合成洗涤剂肥皂的化学分析试验方法D822-01 用经过过滤明光碳弧灯和水中曝光装置对涂料及相关涂层和材料上做的导电试验D823-95(2001) 色漆,清漆,喷漆及有关产品制成厚度均匀漆膜试片的方法D824-94(2002) 用皱文纸测定吸水率的测试方法D828-97(2002) 纸和纸板拉力破坏强度的测试方法D829-97(2002) 纸和纸制品湿抗拉断裂强度的标准试验方法D831-94(2004) 电缆及电容器油的气体含量的测试方法D832-92(2001)e1 低温状态下的橡胶试验D841-02 甲苯的硝化定级D843-06 硝化二甲苯D847-04 苯,甲苯,二甲苯,溶剂石脑油和类似的工业芳烃酸度的试验方法D848-03 工业芳烃的酸洗颜色的标准试验方法D849-05 工业芳烃对铜条腐蚀的标准试验方法D850-03 工业芳轻及相关物质的蒸溜法D852-02 苯凝固点的试验方法D853-04 工业芳烃中硫化氢和二氧化硫含量(定性)的标准试验方法D854-06 土壤比重的试验方法D857-02 水中铝含量的测试方法D858-02 水中锰含量的试验方法D859-05 水中二氧化硅的测试方法D861-01a 用特克斯制命名纤维,纱的半制品,纱和其它纺织品线度D865-99(2005) 橡胶的空气中加热变质试验方法(试管法)D866-99(2004) 电线及电缆用丁苯合成橡胶套D868-85(2003) 路标漆渗色程度评价的试验方法D869-85(2004) 涂漆沉降程度评价试验方法D870-02 水浸渍法涂层耐水试验D871-96(2004) 测试乙酸纤维素的试验方法D873-02 航空燃料的氧化稳定性的测试方法D874-06 润滑油和添加剂中硫酸盐类灰分的测试方法D876-00 电绝缘用刚性氧化乙烯聚合物管的测试方法D877-02e1 用圆盘电极测定电绝缘液体介电击穿电压的试验方法D878-01e1 绝缘油中无机氯化物和硫酸盐的测试方法D880-92(2002) 船用集装箱的冲击试验的试验方法D882-02 塑料薄板材抗拉特性的试验方法D883-00 塑料相关术语D885-06 由人造有机纤维制成的轮胎帘子线,轮胎帘布和工业长纱线的测试D887-82(2003)e1 水沉积物抽样D888-05 水中溶解氧的试验方法D889-99(2004) 松香中油挥发性的试验方法D890-98(2003) 液体松脂中水含量的试验方法D891-95(2004) 液态工业化合物的比重,表观比重的测试方法D892-05 润滑油发泡特性的标准试验方法D893-05a 用过的润滑油中不溶物的试验方法D896-04 胶粘剂耐化学试剂粘法的试验方法D897-01e1 胶粘剂粘结力的抗拉性的测试方法D898-05 胶粘剂固体单位面积涂用重量的试验方法D899-00 单位面积涂用液体胶粘剂的重量的测试方法D902-00 电绝缘用挠性涂树脂玻璃布和玻璃布带的测试方法D903-98(2004) 胶粘剂粘结抗剥落或爆皮强度的试验方法D904-99(2005) 人造光(碳弧型)和自然光对胶粘剂试样的曝光D905-03 用压缩荷载法测定胶粘剂的抗剪切强度性能的试验方法D906-98(2004) 用拉力负荷法测定胶合板结构中胶粘剂剪切强度特性的试验方法D907-05e1 胶粘剂术语D909-01e1 增压进料法测定航空汽油抗震性的试验方法(联邦试验方法No.791b) D910-04a 航空汽油技术规范D912-81(1999) 防污涂料用氧化亚铜D913-03e1 路标漆耐磨程度的评价方法D914-00(2006) 乙基纤维的试验方法D918-99(2003) 纸和纸板的抗粘结性试验方法D919-97(2002) 纸和纸板的铜值测试方法D922-00a(2006) 非硬质聚氯乙烯管D923-97 电绝缘液体的抽样方法D924-04 电绝缘液体的损耗因数(或功率因数)和介电常数(电容率)的测试方法D925-06 橡胶特性.表面着色(接触、色移和扩散)的试验方法D926-04 用平行板法测量橡胶的塑性和弹性D928-03 碳酸氢钠D932-85(2002) 水和水沉积物中嗜铁细菌含量试验方法D933-84(2003) 水沉积物的检验和分析结果的报告方法D934-80(2003) 用X射线衍射法作水沉积物中结晶化合物的识别方法D937-04 石油脂的针入度试验方法D938-05 石油蜡(包括凡士林)凝固点的测试方法D942-02 氧弹法测定润滑脂氧化稳定性的试验方法D943-04a 防腐蚀矿物油氧化特性的试验方法D945-06 用机械示波器测定在压缩应力和剪切应力下橡胶特性的试验方法D946-82(2005) 路面建造用按贯入度级配的沥青膏D950-03 胶粘剂抗冲击强度的试验方法D951-99(2004) 用喷射法测定船运集装箱的耐水性的试验方法D952-02 薄板塑料和电绝缘材料粘结强度的试验方法D953-02 塑料支承强度的测试方法D955-00 模制塑料模型尺寸收缩率的测量方法D957-95(2006)e1 塑料生产用模型表面温度的测定D960-02a 生蓖麻油D961-86(2001) 脱水蓖麻油D962-81(2003) 涂料用铝粉和铝浆颜料D964-03 防污漆用铜粉D968-05 用落沙磨蚀法测定有机涂层耐磨性的试验方法D969-85(2003) 路标漆渗色程度的实验室试验方法D971-99a(2004) 环法测定油水界面张力的试验方法D972-02 润滑脂和润滑油蒸发损失的测试方法D974-04 用颜色指示剂滴定法测定酸碱值的标准试验方法D975-06 柴油技术规范D976-04be1 馏分燃料正十六烷指数的计算方法D977-05 乳化沥青D979-01(2006)e1 沥青铺面混合料的取样方法D982-05 Standard Test Method for Organic Nitrogen in Paper andPaperboard D984-97(2002)。

聚丙烯腈碳纤维性能表征规范

聚丙烯腈碳纤维性能表征规范

聚丙烯腈碳纤维性能表征规范聚丙烯腈碳纤维的性能主要有力学性能、热物理性能和电学性能。

对于碳纤维材料来说,拉伸力学性能,包括拉伸强度、拉伸模量以及断裂伸长率是其主要力学性能指标。

由于纤维材料本身的特点,很难对其压缩力学性能进行有效的表征,因此基本不考虑纤维本身的压缩性能。

碳纤维的热物理性能包括热容、导热系数、线膨胀系数等,也是材料应用的重要指标。

电性能主要为体积电阻率以及电磁屏蔽方面的性能。

对于碳纤维的拉伸力学性能测试,各国都已经基本形成了相应的测试标准系列,这些标准系列同时包括了在力学性能测试时需要的线密度、体密度、上浆量等相关的测试。

对于热物理性能,相关的测试标准较少。

5.5.1碳纤维性能测试标准日本从1986年开始发布了其碳纤维力学性能测试标准,有关标准见表5.30,其中JIS R7601-1986《碳纤维试验方法》涵盖了碳纤维单丝、束丝的拉伸力学性能测试方法外,还包括以及密度、上浆剂含量、线密度等测试方法及规范。

JIS R7601-2006《碳纤维试验方法(修正1)》是在国际对石棉制品应用规定严格的条件下,将JIS R7601-1986中拉伸性能测试中夹持用垫片的石棉材料进行了删除。

相比于JIS R7601-1986,JIS R7608-2007《碳纤维-树脂浸渍丝拉伸性能测试方法》被广泛地用于碳纤维力学性能的测试,其可操作性和规范性也更强。

表5.30日本碳纤维测试标准序号标准号标准名称1JIS R7601-1986碳纤维试验方法2JIS R7602-1995碳纤维织物试验方法3JIS R7603-1999碳纤维-密度的试验方法4JIS R7604-1999碳纤维-上浆剂附着率的试验方法5JIS R7605-1999碳纤维-线密度的试验方法6JIS R7606-2000碳纤维单纤维拉伸性能试验方法7JIS R7607-2000碳纤维单纤维直径及断面面积试验方法8JIS R7608-2007碳纤维-树脂浸渍丝拉伸性能测试方法9JIS R7609-2007碳纤维体积电阻率测试方法10JIS R7601-2006碳纤维试验方法(修正1)日本东丽公司作为世界聚丙烯腈基碳纤维生产能力和水平最高的企业,也有自己的碳纤维力学性能测试内部规范,测试规范号和名称为TY-030B-01《碳纤维拉伸强度、拉伸弹性模量和断裂延伸率测试方法》。

3600个ASTM标准目录清单

3600个ASTM标准目录清单

3600个ASTM标准目录清单ASTM A系列标准ASTM A100-2004 硅铁ASTM A1011-2006 高强度低合金和改型高强度低合金热轧结构碳钢板材和带材规范ASTM A1011-A1011M-2006b 高强度低合金和改型高强度低合金热轧结构碳钢板材和带材规范ASTM A101-2004 铬铁ASTM A1017-2005 压力容器铬-钼-钨合金钢板规范ASTM A1018-A1018M-2006b含铌或钒的高强度低合金和改性高强度低合金热轧厚镀锡卷板结构碳钢板材和带材规范ASTM A102-2004 钒铁合金ASTM A1035-A1035M-2006 用于混凝土加固的变形和未变形的低碳含铬棒材规范ASTM A105&A105M-2002 管道用碳素钢锻件标准规范ASTM A105-1998 管道部件用碳素钢锻件ASTM A105-A105M-2003 管系部件用碳素钢锻件ASTM A106-1999 高温设备用无缝碳素钢管的标准规范ASTM A106-A106M-2004a 高温用无缝碳素钢管ASTM A106-A106M-2006 高温用无缝碳素钢管ASTM A108-2003 优质冷加工碳素钢棒材技术规范ASTM A109-A109M-2003 冷轧碳素钢带技术规范ASTM A111-99a(2004)e1 电话和电报线路用镀锌-铁-丝规格ASTM A116-2000 镀锌钢丝编织栏栅网ASTM A1-2001 碳素钢丁字轨ASTM A121-99(2004) 镀锌刺钢丝ASTM A123&A123M-2001a 铁和钢制品镀锌层(热浸镀锌)的标准规范ASTM A135-A135M-2006 电阻焊钢管ASTM A143-2001 热浸镀锌结构钢制品防脆化的标准实施规程和脆化探测方法ASTM A148-2001 结构用高强度钢铸件ASTM A148A148M-2001 结构用高强度钢铸件ASTM A153&A153M-2001a 铁及钢制金属构件上镀锌层(热浸)标准规范ASTM A153-2003 钢铁制金属构件上镀锌层(热浸)的标准规范ASTM A181-2001 普通锻制碳素钢管的规格ASTM A182-2002 高温下使用的锻制或轧制的合金钢管法兰、锻制管件、阀门及零件的标准规范ASTM A182-A182M-2006 高温设备用锻制或轧制的合金钢管法兰、锻制管件、阀门及零件ASTM A184-A184M-2006 混凝土加筋用变形钢筋编织网ASTM A193-2000 高温设备用合金钢和不锈钢螺栓材料的标准规范ASTM A193-A193M-2006 高温设备用合金钢和不锈钢螺栓材料ASTM A194-A194M-2006 高温和高压设备用碳素钢与合金钢螺栓和螺母的规格ASTM A197-A197M-2000(2006) 化铁炉用可锻铸铁ASTM A202-2003 压力容器用铬锰硅合金钢板ASTM A202-202M-2003 压力容器用铬锰硅合金钢板ASTM A20A20M-2001 压力容器用钢板材通用要求ASTM A20-A20M-2006 压力容器用钢板材通用要求ASTM A213-2001 无缝铁素体和奥氏体合金钢锅炉、过热器和热交换器管的标准规范ASTM A213-A213M-2006 无缝铁素体和奥氏体合金钢锅炉、过热器和换热器管ASTM A2-2002 普通型,带槽和防护型碳素工字钢轨ASTM A225-A225M-2003 压力容器用锰矾镍合金钢板ASTM A227-A227M-1999 机械弹簧用冷拉钢丝ASTM A227-A227M-2006 机械弹簧用冷拉钢丝ASTM A228-1993 乐器用优质弹簧钢丝标准规范ASTM A234&A234M-2000a 中温与高温设备用锻制碳素钢及合金钢管配件的标准规范ASTM A234&A234M-2005 中温与高温设备用锻制碳素钢及合金钢管配件的标准规范ASTM A239-1995(2004) 用普力斯试验法(硫酸铜浸蚀)确定铁或钢制品上镀锌层最薄点的测试方法ASTM A239-2004 用普力斯试验法(硫酸铜浸蚀)确定铁或钢制品上镀锌层最薄点的测试方法ASTM A240-1994 压力容器用耐热铬及铬镍不锈钢板、薄板及带材ASTM A240-2004a 压力容器用耐热铬及铬镍不锈钢板、薄板及带材ASTM A249-2001 锅炉焊接管ASTM A262-2002ae2 奥氏体不锈钢晶间浸蚀敏感性的检测ASTM A266&A266M-2003 压力容器部件用碳素钢锻件标准规范ASTM A268&A268M-20001 通用无缝和焊接铁素体与马氏体不锈钢管的标准规范ASTM A269-2001 普通设备用无缝和焊接奥氏体不锈钢管标准规范ASTM A27-1995 通用碳素钢铸件ASTM A276-2006 不锈钢棒材和型材1ASTM A27A27M-2000 通用碳素钢铸件ASTM A283A&283M-1998 低和中等抗拉强度碳素钢板标准规范ASTM A290-1995 减速器环用碳素钢和合金钢锻件ASTM A295-2005 高碳耐磨轴承钢技术规范ASTM A29-A29M-1999 热锻及冷加工碳素钢和合金钢棒ASTM A307-2000 抗拉强度为60000PSI的碳素钢螺栓和螺柱的标准规范ASTM A308-2003 经热浸处理镀有铅锡合金的薄板材的技术规范ASTM A309-2001 用三点试验法测定长镀锌薄钢板镀层的重量成分的试验方法ASTM A311-2000 有机械性能要求的消除应力的冷拉碳素钢棒ASTM A312&A312M-2001a 无缝、焊接和深度冷加工奥氏体不锈钢管的标准规范ASTM A31-2004 钢铆钉及铆钉和压力容器用棒材ASTM A312-A312M-2006 无缝和焊接奥氏体不锈钢管ASTM A3-2001(2006) 低、中、高碳素钢鱼尾(连接)板ASTM A320-A320M-2005 低温用合金钢螺栓材料规格ASTM A325M-2000 最小抗拉强度为830Mpa的热处理钢结构螺栓标准规范(米制)ASTM A327M-1991(2006) 铸铁冲击试验方法(米制)ASTM A333&A333M-1999 低温设备用无缝和焊接钢管的标准规范ASTM A333-2004 低温设备用无缝和焊接钢管的标准规范ASTM A335-A335M-2006 高温用无缝铁素体合金钢管ASTM A336-A336M-2006 压力与高温部件用合金钢锻件规格ASTM A338-1994(2004)铁路、船舶和其它重负荷设施在650F (345℃)温度内使用的可锻铸铁法兰、管道配件和阀门零件ASTM A340-2003a 有关磁性试验用符号和定义的术语ASTM A343-2003在电力频率下用瓦特计-安培计-伏特计法(100-1000赫兹)和25厘米艾普斯亭(EPSTEIN) 机架测定材料的交流电磁性能的试验方法ASTM A343-343M-2003在电力频率下用瓦特计-安培计-伏特计法(100-1000赫兹)和25厘米艾普斯亭(EPSTEIN) 机架测定材料的交流电磁性能的试验方法ASTM A345-2004 磁设备用平轧电炉钢ASTM A348-2005用瓦特计-安培计-伏特计法(100-10000赫兹)和25厘米艾普斯亭框测定材料的交流磁性能的试验方法ASTM A34-A34M-2001 磁性材料的抽样和采购试验的标准惯例ASTM A351A315M-2000 压力容器部件用奥氏体和双相奥氏体-铁素体铸件ASTM A351-A351M-2006 容压零件用奥氏体及奥氏体铁素体铸铁的技术规范ASTM A354-2004 淬火与回火合金钢螺栓,双头螺栓及其他外螺纹紧固件规格ASTM A36&A36M-1996 结构碳钢的标准规范ASTM A366e1-1997 冷轧碳钢规范ASTM A370-1996 钢制品机械试验的标准试验方法和定义(中文版)ASTM A370-2003a 钢制品机械试验的标准试验方法和定义ASTM A380-1999(2005) 不锈钢零件、设备和系统的清洗和除垢ASTM A384-2005ASTM A385-2005 提供高质量镀锌覆层(热浸)ASTM A400-69(2006) 钢棒的成分及机械性能选择指南ASTM A403-1997 锻制奥氏体管不锈钢配件标准规范ASTM A403-A403M-2006 锻制奥氏体不锈钢管配件ASTM A409-409M-2001 腐蚀场所或高温下使用的焊接大口径奥氏体钢管ASTM A416-A416M-2006 预应力混凝土用无涂层七股钢铰线ASTM A421 A421M-2005 预应力混凝土用无涂层消除应力钢丝的技术规范ASTM A421-2002 预应力混凝土用无涂层消除应力钢丝的技术规范ASTM A437A&437M-2004 高温设备用经特殊热处理的涡轮型合金钢螺栓材料标准规范ASTM A451-A451M-2006 高温用离心铸造的奥氏体钢管ASTM A47-A47M-1999 铁素体可锻铁铸件ASTM A485-2003 高淬透性耐磨轴承钢的技术规ASTM A48-A48M-2003 灰铁铸件ASTM A49-2001 经热处理的碳素钢鱼尾(连接)板,微合金鱼尾板及锻制碳素钢异型鱼尾板ASTM A494-2004 镍和镍合金铸件ASTM A496-2001 混凝土增强用变形钢丝的标准规范ASTM A512-96 (2001)冷拉对缝焊碳素钢机械管规格标准ASTM A513-2000 电阻焊碳素钢与合金钢机械钢管标准规范ASTM A513-2006 电阻焊碳素钢与合金钢机械钢管ASTM A514M-2000a焊接用经回火与淬火的高屈服强度合金钢板ASTM A514M-2005 焊接用经回火与淬火的高屈服强度合金钢板ASTM A516-A516M-2006 中温及低温压力容器用碳素钢板ASTM A517-2006 压力容器用经回火与淬火的高强度合金钢板ASTM A518–2003 耐蚀高硅铁铸件ASTM A524-1996(2001) 常温和低温用无缝碳素钢管ASTM A530A530M-2004a 特种碳素钢和合金钢管ASTM A532 A532M-1993a(2003) 耐磨铸铁ASTM A53-2002 黑色和热浸镀锌焊接及无缝钢管规范ASTM A53-2006 无镀层热浸的、镀锌的、焊接的及无缝钢管的技术规范ASTM A536-1984(2004) 球墨铸铁件中文版ASTM A537-A537M-2006 压力容器用经热处理的碳锰硅钢板ASTM A540-A540M-2006 特殊用途的合金钢螺栓材料ASTM A541 A541M-2005 压力容器部件用经淬火和回火的碳素钢及合金钢锻件ASTM A553A&553M-1995(00) 压力容器用经回火和淬火的含8%及9%镍的合金钢板的标准规范ASTM A563M-2003 碳合金钢螺母ASTM A564-2004 热轧及冷精轧时效硬化处理过的不锈钢棒材和型材技术规范ASTM A568-A568M-2006 热轧及冷轧高强度低合金碳素钢薄板ASTM A572-2006 高强度低合金钴钒结构钢技术规范ASTM A572-A572M-2006 高强度低合金钴钒结构钢技术规范ASTM A575-1996(2002) 商品级碳素钢棒(M级)ASTM A577 A577M-1990(2001) 钢板的超声角波束检验ASTM A578 A578M-1996(2001) 特殊设备用的普通钢板和包覆钢板的直波束超声探伤检验ASTM A578A578M-2001 特殊设备用的普通钢板和包覆钢板的直波束超声探伤检验的标准规范ASTM A579-2004 超高强度合金钢锻件ASTM A580 A580M-1998 耐热不锈钢丝ASTM A581 A581M-1995b(2000) 高速切削用耐热不锈钢丝和盘条ASTM A581A581M-1995b(2004) 高速切削用耐热不锈钢丝和盘条ASTM A582 A582M-2005 热轧或冷精轧的高速切削不锈及耐热钢棒ASTM A586-1998 镀锌平行和螺旋形钢丝绳ASTM A587-1996(2001) 化学工业用电阻焊低碳钢管ASTM A588 A588M-2004 高强度低合金结构钢4英寸(100mm)厚屈服点最小为50ksi(345MPa) ASTM A589 A589M-2006 水井用无缝和焊接碳素钢管ASTM A6&A6M-1989 轧制结构钢棒材、板材、型材和板桩一般要求的标准规范ASTM A606,656715,JIS G3106,3114中文ASTM A615-A615M-2006 钢筋混凝土配筋用变形和光面坯钢筋ASTM A6-2000 轧制结构钢棒材、板材、型材和板桩一般要求的标准规范ASTM A6-2004 轧制结构钢棒材、板材、型材和板桩一般要求的标准规范(中文)ASTM A633-A633M-2001(2006) 正火的高强度低合金结构钢ASTM A644-1998(R2003) 铁铸件的相关术语ASTM A65-2001 钢轨道钉ASTM A653-A653M-2006 热浸处理的镀锌铁合金或镀锌合金薄钢板的标准规范ASTM A656-2003 具有改良可模锻性的高强度低合金热轧结构钢板ASTM A66-2001 钢质螺旋道钉ASTM A663-A663M-1989(2006) 商品级碳素钢棒的机械特性ASTM A666-奥氏体不锈钢板ASTM A67-2000 热加工低碳钢和高碳钢垫板技术规范ASTM A691-1998(2002) 高温下高压装置用电熔焊碳素钢和合金钢管ASTM A696-2000 压力管道部件专用热锻或冷精轧碳素钢棒ASTM A6-A6M-2006 轧制结构钢板材、型材和薄板桩通用技术要求ASTM A703-2004a 受压部件用钢铸件ASTM A704-A704M-2006 混凝土加筋用焊接普通钢棒或杆的光面钢筋或钢筋网ASTM A706-2006a 混凝土配筋用低合金变形和光圆钢筋ASTM A706-A706M-2006 混凝土配筋用变形低合金光面无节钢筋ASTM A707-2002 低温设备用锻制碳素钢和合金钢法兰ASTM A709-A709M-2006 桥梁用结构钢ASTM A722A&722M-1998 预应力混凝土用未涂覆的高强度钢棒材的标准规范ASTM A732-2002 一般设备用熔模铸造碳素低合金钢及高强度加温钴合金钢铸件ASTM A732A732M-2002 一般设备用熔模铸造碳素低合金钢及高强度加温钴合金钢铸件ASTM A737-1999(2004) 高强度低合金钢压力容器板ASTM A74-2004 铸铁污水管及配件的技术规范ASTM A743A743M-2003 一般用途铁铬、铁铬镍耐腐蚀铸件ASTM A748-1987 压力容器用静态铸造的激冷白口铁-灰口铁双金属轧辊ASTM A754-A754M-2006 X射线荧光涂层厚度的试验方法ASTM A763-2004 铁素体不锈钢晶间腐蚀敏感性检测ASTM A775-A775M-2006 涂环氧树脂的钢筋钢棒ASTM A781-2002 一般工业用一般要求的钢和合金铸件ASTM A781A781M-2002 一般工业用一般要求的钢和合金铸件ASTM A782-A782M-1990[1996] 经淬火和回火的锰铬钼硅锆合金钢压力容器板ASTM A782-A782M-2006 经淬火和回火的锰铬钼硅锆合金钢压力容器板ASTM A795M-2004 防火用黑色及热浸镀锌的焊接和无缝钢管ASTM A796-A796M-2006雨水管和卫生污水管及其它地下埋设管道用波纹钢管、管托架及拱形架结构设计惯例ASTM A800-A800M-2001(2006) 奥氏体合金钢铸件中铁素体含量的估算ASTM A802-A802M-1995(2006) 钢铸件外观检验的表面验收标准ASTM A810-2001 镀锌钢管用绕网ASTM A815-2004 锻制铁素体、铁素体奥氏体和马氏体不锈钢管配件ASTM A817-2003 链接栅栏网用金属涂覆钢丝ASTM A820-A820M-2006 纤维增强混凝土用钢纤维ASTM A82-2002 钢筋混凝土用无节钢丝ASTM A832-1995 压力容器板用铬钼钒及铬钼钒钛硼合金钢ASTM A836-1995 搪瓷管和压力容器设备用钛稳定碳素体钢锻件ASTM A841-2001 压力容器用温度机械控制工艺加工的钢板ASTM A844A844M-1993(1999) 压力容器用直接淬火加工的含镍9%的合金钢板ASTM A887-1989(2004) 核能设备用经硼酸处理的不锈钢板、薄板及带材ASTM A897-A897M-2006 等温淬火球墨铸铁ASTM A90&A90M-2001 镀锌和镀锌合金钢铁制品镀层重量的标准试验方法ASTM A905-1993 压力容器缠绕用钢丝ASTM A917-2006 要求每一面标识有镀层质量用的电解工艺涂层的薄钢板材标准规范ASTM A923-2006 检测锻制双重奥氏体-铁素体不锈钢中有害金属间相的标准试验方法ASTM A946-1995 耐腐蚀和耐热用铬,铬-镍和硅合金钢板,薄板和带的标准规范ASTM A955-A955M-2006a 混凝土增强的变形的和无节钢筋技术规范ASTM A960-A960-2003 普通要求的锻制钢管管件的标准规范ASTM A967-2001 不锈钢零件化学钝化处理的标准规范ASTM A99-2003 锰铁合金ASTM A996-A996M-2006a 混凝土用条钢和车轴钢变形钢棒规范ASTM B 系列标准ASTM B103-1998 锡磷青铜板带材标准ASTM B117-2003 盐雾喷射(雾化)装置操作的标准实施规范(中文版)ASTM B117-2003 盐雾喷射(雾化)装置操作的标准实施规范(EN)ASTM B117-2003 盐雾喷射装置操作的标准实施规范ASTM B137-1995 阳极镀铝层重量测定的标准试验方法ASTM B148-1997(2003) 铝青铜砂型铸件ASTM B152-152M-2000 铜薄板、带材、中厚板及轧制棒材技术规范ASTM B152M-2006 铜薄板、带材、中厚板及轧制棒材技术规范ASTM B16&B16M-2000 螺纹切削机用易切削黄铜杆材、棒材和型材的标准规范ASTM B16-2005 制螺钉机用易切削黄铜条材、棒材和型材ASTM B164-1998 镍铜合金杆材、棒材和线材标准规范ASTM B166-2004 镍铬铁合金及镍铬钴钼合金条材、棒材及线材ASTM B167-2001 无缝镍铬铁合金管ASTM B168-2001 镍铬铁合金及镍铬钴钼合金板、薄板和带材ASTM B179-2006 砂型铸件、永久型模铸件和压模铸件用铝合金锭及其熔化成形方式ASTM B183-1979(1997) 电镀用低碳钢的制备ASTM B187-B187M-2003 铜汇流棒、条和型材ASTM B208-2004 砂型、永久型、离心型和连续铸造铸件用的铜基合金拉伸试验样件制备标准惯例ASTM B230-B230M-2004 电气用1350-H19型铝线ASTM B231-B231M-2004 同心绞捻铝1350导线ASTM B232-B232M-2001 涂覆钢芯加强的同心绞捻铝导线(ACSR)ASTM B233-2003 电气用1350铝拉制坯料ASTM B234-2004 冷凝器及热交换器用拉制铝和铝合金无缝管ASTM B240-2004 压模铸造用锌及锌铝合金锭ASTM B242-1999(2004)e1 电镀用高碳钢的制备ASTM B249M-2006 铜和铜合金棒材、型材及锻件ASTM B311-1993(2002)e1 孔隙度小于2%的粉末冶金材料密度的标准测试方法ASTM B328-2003 烧结金属结构零件和油浸轴承密度与互连多孔性的试验方法规范ASTM B368-1997(2003) 加速铜氧化的醋酸盐喷雾试验(cass试验)ASTM B36M-2006 黄铜板、薄板、带材及轧制棒材ASTM B380-1997 装饰性电镀层的腐蚀膏试验中文版ASTM B388-2000 恒温双金属薄板和带材ASTM B389-1981(2004) 恒温双金属螺旋形线圈的热偏转率的测试方法ASTM B407-2001 镍铁铬合金无缝管ASTM B423-2005 镍铁铬钼铜合金无缝管ASTM B425-1999 镍铁铬钼铜合金(UNS N08825和UNS N08221)杆材和棒材标准规范ASTM B435-2003统一编制牌号为NO6002、NO6230、N12160和R30556的板材和带材及牌号为N06002、N06230和R30556的带材ASTM B439-2000 铁基烧结轴承(油浸的)ASTM B446-2000 镍铬钼钶合金(UNS N06625)条和棒规范ASTM B446-2003 镍铬钼钶合金(UNS N06625)条和棒规范ASTM B456-1995 铜+镍+铬及镍+铬的电解沉积镀层标准规范ASTM B466 B466M-2003 无缝铜镍合金管ASTM B488-2001(2006) 工程用电解沉积镀金层ASTM B527-1993用塔普-帕克(Tap-Pak)容量计测定金属粉末及化合物粉末的塔普(Tap)密度的标准试验方法ASTM B557-2002a 锻造和铸造的铝及镁合金制品的抗拉试验的标准试验方法ASTM B580-2000 铝阳极氧化镀层ASTM B594-2006 航空用铝合金锻件超声波检测ASTM B604-1991(97) 塑料表面装饰用铜加镍铬镀层标准规范ASTM B619-2005 焊接的镍和镍钴合金管ASTM B626-2004 焊接的镍和镍钴合金管ASTM B633-1998 钢和铁电积沉淀镀锌的标准(中文)ASTM B66-2003 蒸汽机车易损零件用青铜铸件ASTM B670-2002 高温设备用沉淀淬火镍合金(UNS N07718) 厚板、薄板及带材的标准规范ASTM B680-1980(00) 用酸溶解法测定铝的阳极镀层封闭质量的试验方法ASTM B68-2002 光亮退火的无缝铜管ASTM B689-1997(2003) 电镀工程镀镍层ASTM B689-2003 电镀工程镀镍层ASTM B733-2004 化学镀镍ASTM B735-1995(2000) 用硝酸蒸汽测试金属基体上金涂层孔隙度的方法ASTM B748-1990(2006) 用扫描电子显微镜测量横截面测定金属涂层厚度的方法ASTM B824-2004 铜合金铸件ASTM B870-2002 铜-铍合金锻制和挤制合金C17500和C17510的标准规范ASTM B912-2000 用电抛光法测定不锈钢钝化的标准规范ASTM B912-2002 电解抛光ASTM B93-2006 砂型铸件、永久型模铸件和压模铸件用镁合金锭ASTM B94-2005 镁合金压铸件ASTM C 系列标准ASTM C1005-2000 水硬水泥物理试验中质量和体积测定用标准质量与称重器具的标准规范ASTM C1017&C1017M-1998 生产流动混凝土用的化学混合物的标准规范ASTM C1025-2000 石墨电极芯挠曲断裂模数的试验方法ASTM C1038-2004 存放在水中的水硬性水泥灰浆棒膨胀的标准试验方法ASTM C1039-2000 石墨电极的表观孔隙率、表观比重和松密度的试验方法ASTM C1043-2006 使用护热板装置中线电源加热器时稳态热传导特性测量用的加热板温度的测定ASTM C109&C109M-2002 ASTM C110-2006 生石灰,熟石灰和石灰石的物理试验方法ASTM C1107-2002 干包装水硬水泥砂浆(非收缩的)标准规范ASTM C113-1993 耐火砖的二次加热变化的标准试验方法ASTM C1134-1990 部分浸入后刚性热绝缘材料水分保持标准试验方法ASTM C114-2004a 水硬水泥化学分析的标准试验方法ASTM C1166-2000 致密及多孔弹性体衬垫和附件火焰蔓延的试验方法ASTM C1179-2000 室外加工碳素材料及石墨材料氧化质量损失试验方法ASTM C1222-2006 实验室试验水硬水泥的评定ASTM C1276-1994 利用旋转米度计测量模制粉末熔点以上粘度的标准试验方法ASTM C1293-2006 用测定碱-硅石反应引起的混凝土长度变化对混凝土集料的标准试验方法ASTM C1305-2006 液体外加防水薄膜的裂缝挖补能力的标准测定方法ASTM C131-2006 用洛杉机磨耗试验机测定小规格粗集料的抗磨性与抗冲击性的试验方法ASTM C1329-2004 砂浆水泥的标准规范ASTM C1398-1998(04)用吉尔摩水泥稠度试验针实验室测定含喷浆混凝土添加剂的水硬水泥砂浆凝固时间的标准试验方法ASTM C1437-2001 水硬水泥灰浆流动性的标准试验方法ASTM C146-1994a(1999) 玻璃沙的化学分析试验方法ASTM C148-2000 玻璃容器偏振检验的试验方法ASTM C149-1986(2000) 玻璃容器热冲击的试验方法ASTM C158-2002 玻璃的挠曲试验方法(测定玻璃挠折模量)ASTM C1587-2006Standard PraASTM CtiASTM Ce for Preparation of Field Removed ManufaASTM Ctured Masonry Units and Masonry SpeASTM Cimens for ASTM Compressive Strength TestingASTM C169-1992(2000) 碱石灰玻璃及硅酸盐玻璃的化学分析试验方法ASTM C170-1990(R1999) 天然建筑石料抗压强度的试验方法ASTM C186(2000) 玻璃容器的内压的试验方法ASTM C-1997 用护热板法测定稳态热通量和传导性的标准试验方法ASTM C224-78(2004)e1 玻璃容器的取样方法ASTM C225-1985(1999) 玻璃容器耐化学腐蚀的试验方法ASTM C24-2001(2006)耐火和高矾土耐溶材料的溶锥当量测试法ASTM C242-2001 卫生陶瓷及其制品术语ASTM C25-2006 石灰石,生石灰和熟石灰的化学分析方法ASTM C270-2006 砌块用的灰浆ASTM C273-2000 夹层结构或夹层芯材的平直剪切性能的试验方法ASTM C305-2006 塑性稠度的水硬性水泥泥浆和灰浆机械搅拌ASTM C32-2004 污水管及检查井用砖(粘土或页岩)ASTM C329-1988(2006) 焙烧卫生陶瓷材料比重的试验方法ASTM C428-05(2006) 石棉水泥无压污水管ASTM C428-2005(2006) 石棉水泥无压污水管ASTM C473-2006 石膏板制品和石膏板条的物理测试标准试验方法ASTM C51-2006 与石灰及石灰石相关的(工业用)名词术语ASTM C518-2004用热流计法测定稳态热通量和热传递特性的试验方法ASTM C559-2000 用物理测量法测定碳加工品及石墨制品松密度的试验方法ASTM C560-1998 石墨的化学分析试验方法ASTM C561-2000 石墨样品中灰分的检测方法ASTM C562-2000 石墨样品中水分的检测方法ASTM C565-1998 碳和石墨机械加工材料抗拉检验的试验方法ASTM C595-2006 混合水硬性水泥ASTM C61(2006)基恩(Keene)石膏水泥ASTM C611-1998 在室温时,炭加工品及石墨制品的电阻率的试验方法ASTM C625-2000 石墨辐射结果的报告ASTM C651-2000 在室温下用四点负荷法,测定炭加工品及石墨制品的抗挠强度的试验方法ASTM C662-1998 不透水的石墨管和插片ASTM C67-2006 砖及结构粘土瓦的取样和试验的试验方法ASTM C695 -2000 碳和石墨和抗压强度的试验方法ASTM C70-2006 细集料表面湿度的测试方法ASTM C704-2001 室温下耐火材料耐腐蚀的试验方法ASTM C709-2003 炭和石墨加工术语ASTM C714-2000 用热脉冲法测定炭和石墨的热扩散系数的测试方法ASTM C747-1998 用音响共振法测定炭精和石墨的弹性模量与基本频率的试验方法ASTM C748-1998 细粒石墨材料的洛氏硬度的测试方法ASTM C749-2002 碳和石墨抗拉应力的试验方法ASTM C769-1998 为获得近似扬氏模量测量加工的炭精及石墨材料中音速的试验方法ASTM C773-1988(2006) 预制封缝带泛油或增塑剂泛出的试验方法ASTM C781-2002 高温气冷核反应堆用试验石墨及硼酸化石墨元部件的标准操作ASTM C783-2003 预制封缝带柔软度的测试方法ASTM C808-2000 炭加工的及石墨制承重材料和密封材料的磨擦及磨蚀结果的报告指南ASTM C816-1998 用燃烧碘量滴定法测定石墨中硫含量的试验方法ASTM C838-2001 加工炭精及石墨型材松密度的试验方法ASTM C880-2006 天然建筑石料弯曲强度的试验方法ASTM C886-1998 细粒炭精和石墨材料肖氏硬度的试验方法ASTM C90-2006a 承重混凝土空心砌块ASTM C94-2004 搅拌好的混凝土规范ASTM C94-2006 搅拌好的混凝土规范ASTM C989-2006 混凝土和灰浆用研磨成颗粒状的高炉碎渣的技术规范ASTM C990-2006 使用预制接缝密封胶粘结的混凝土管道、检查孔和预制箱型型件ASTM C99-1987(R2006) 规格石料断裂模数的试验方法ASTM D 系列标准ASTM D0091-2002润滑油的沉淀值试验方法ASTM D1002-2001 用拉力负载测定金属之间胶粘剂抗剪切强度特性的试验方法ASTM D1002-2005 用拉力负载测定金属之间胶粘剂抗剪切强度特性的试验方法ASTM D1003-1997 ;RASTM DEWMASTM DMTUKVEASTM D1003-2000 ;RASTM DEWMASTM DM-ASTM D1004-1994 ;RASTM DEWMASTM DQTOTRBASTM D1004-1994a R03 ;RASTM DEWMASTM DQTOTRBUJAZASTM D1004-1994a R03 ;RASTM DEWMASTM DQTUKVE ASTM D1004-2003 ;RASTM DEWMASTM DQ-ASTM D1004-2003 塑料薄膜和薄板的抗撕裂强度的测试方法ASTM D1005-1995 用千分尺测量有机涂层干膜厚度的试验方法ASTM D1007-2000 仲丁醇ASTM D1007-2005 仲丁醇ASTM D1015-1999高纯烃凝固点测定试验方法ASTM D1015-2004 高纯度烃冻结点的测试方法ASTM D1016-1999 烃纯度试验方法ASTM D1016-2004 冻结点测定烃纯度的试验方法ASTM D1018-2000 石油馏分中氢含量的测试方法ASTM D1018-2000 石油馏分中氢试验方法ASTM D1018-2000(2005) 石油馏分中氢含量的测试方法ASTM D1025-2000 聚合级丁二烯中不挥发性残余物的试验方法ASTM D1025-2000 聚合级丁二烯中固定渣滓试验方法ASTM D1042-1993 ;RASTM DEWNASTM DITOTM-ASTM D1042-2001 ;RASTM DEWNASTM DI-ASTM D1042-2001 ;RASTM DEWNASTM DITMASTM DE-ASTM D1042-2001 ;RASTM DEWNASTM DITUKVEASTM D1043-1999 ;RASTM DEWNASTM DMTOTK-ASTM D1043-1999 ;RASTM DEWNASTM DMTUKVEASTM D1043-2002 ;RASTM DEWNASTM DM-ASTM D1044-1999 ;RASTM DEWNASTM DQ-ASTM D1044-2005 透明塑料表面耐磨蚀性的试验方法ASTM D1045-1995 ;RASTM DEWNASTM DUTOTU-ASTM D1045-1995 R01 ;RASTM DEWNASTM DU-ASTM D1052-1999 用罗斯挠曲装置测定橡胶切口扩展的试验方法ASTM D1053-1997 橡胶特性试验.挠性聚合物和涂覆制品的低温劲度测试方法ASTM D1054-1991 用回跳摆锤法测定橡胶弹性的试验方法ASTM D1055-1997 ;RASTM DEWNTU-ASTM D1056-1998 ;RASTM DEWNTYTUKVEASTM D1056-2000 ;RASTM DEWNTY-ASTM D1062-1996 金属间粘结力抗裂强度的标准试验方法ASTM D1066-2001 蒸汽的抽样方法ASTM D1067-2002 水的酸性和碱性的测试方法ASTM D1068-2003 水中铁的测定ASTM D1068-2003 水中铁的测试方法ASTM D1076-1997 橡胶.浓缩的、氨储存的、乳状的和离心处理的天然胶乳ASTM D1078-2003 挥发性有机液体馏程的测定方法ASTM D1078-2003 挥发性有机液体馏程的试验方法ASTM D1083-1991(98)集装箱、大型船运箱和板条箱的机械搬运的试验方法ASTM D1084-1997 胶粘剂粘度的测试方法ASTM D1091-2000 润滑油和添加剂中磷含量的测试方法ASTM D1091-2000 润滑油及添加剂中磷试验方法ASTM D1092-1999 润滑油可测量表观粘度试验方法ASTM D1092-1999 润滑脂表观粘度的试验方法ASTM D1093-1998 液态烃和它们的蒸馏残余物酸度的测试方法ASTM D1094-00 航空燃料水反应性的试验方法ASTM D1094-2000 航空燃料水反应性的试验方法ASTM D1094-2000 航空燃料易溶于水成分试验方法ASTM D1101-1997a 室外用层压结构木制品的胶合接头完整性的试验方法ASTM D1102-1984(2001)木材中灰分的测试方法ASTM D1125-1999 水的电导性和电阻率的测试方法ASTM D1125-1999 水中的电导和电导率测定法ASTM D1126-2002 水硬度的测试方法ASTM D1126-2002 水中的总硬度 (以 CaCO3计)ASTM D1129-2004 与水相关的术语ASTM D1133-2004 烃类溶剂的贝壳杉脂丁醇值的测试方法ASTM D1141-2003 海水代用品ASTM D1144-1999 胶粘剂粘结强度提高的测定方法ASTM D1146-2000 有效粘结层粘结点的试验方法ASTM D1148-1995 橡胶变质.受热及紫外线使浅颜色表面退色的试验方法ASTM D1149-1999 橡胶变质试验.在小室中橡胶表面臭氧龟裂ASTM D1149-99 橡胶变质试验.在小室中橡胶表面臭氧龟裂ASTM D1151-2000 潮气和温度对胶粘剂粘结能力影响的试验方法ASTM D1152-2001 甲醇(甲基醇)ASTM D1153-2001 甲基异丁基甲酮ASTM D1157-1991 轻烃中TBC测试试验方法ASTM D1157-2000 轻质烃总抑制剂含量(TBC)的测试方法ASTM D1159-2001 电化学滴定法测量石油馏分及商用脂族烯烃的溴值试验方法ASTM D1159-2001 电位滴定法测试石油馏出物和脂肪烃溴数ASTM D1160-2002a 减压蒸馏石油产品试验方法ASTM D1160-2003 石油产品减压蒸馏方法ASTM D116-1986(2006) 电气设备用上釉陶瓷材料的试验ASTM D1171-1999 橡胶变质试验.室外或小室内橡胶表面臭氧龟裂(三角形试样) ASTM D1179-2004 水中氟化物离子的测试方法ASTM D1183-1996 胶粘剂耐周期性实验室老化条件的标准试验方法ASTM D1184-1998 胶粘剂粘结的层压部件抗挠强度的试验方法ASTM D1186-2001 铁基非磁性涂层干膜厚度的无损测量方法ASTM D1192-1998 水和蒸汽的抽样设备标准指南ASTM D1193-1999 试剂水(联邦试验方法No.7916)ASTM D1200-1994(2005) 福特粘度杯测定粘度的试验方法ASTM D1201-1999 ;RASTM DEYMASTM DE-ASTM D1203-1994 R03 ;RASTM DEYMASTM DM-ASTM D1203-1994 R99 ;RASTM DEYMASTM DMTOTRSOTLFMQ--ASTM D1204-1994 ;RASTM DEYMASTM DQTOTRFMQ--ASTM D1204-1994 ;RASTM DEYMASTM DQTUKVEASTM D1204-2002 ;RASTM DEYMASTM DQ-ASTM D1209-2000 透明液体色度的试验方法(铂钴标度)ASTM D1209-2000 无色透明液体色度的测定方法(铂钴标度)ASTM D1210-1996 颜料载体体系分散细度的测试方法ASTM D121-2005 煤和焦炭术语ASTM D1217-1993 宾汗比重瓶测试液体密度试验方法ASTM D1217-1993 用宾汉比重法测定液体密度和相对密度(比重)的试验方法ASTM D1217-2003 用宾汉比重法测定液体密度和相对密度(比重)的试验方法ASTM D1218-2002 碳氢化合物折射率试验方法ASTM D1218-2002 液态烃的折光率和折光分散度的测试方法ASTM D1218-2002 液态烃的折射率和折射分散度的测试方法ASTM D12-1988(1998)未加工的桐油ASTM D1229-1997 橡胶特性试验方法.低温时的压缩变形率ASTM D1230-1994(2001) 服装纺织品的易燃性的测试方法ASTM D1238-2000 ;RASTM DEYMZGTMASTM DA-ASTM D1238-2001 ;RASTM DEYMZGTMASTM DFFMQ--ASTM D1238-2001 ;RASTM DEYMZGTUKVEASTM D1238-2001 用挤压塑性计测定热塑性塑料流率的测试方法ASTM D1238-2004 ;RASTM DEYMZG-ASTM D1238-2004 用挤压塑性计测定热塑性塑料流率的测试方法ASTM D1238-2004a 用挤压塑性计测定热塑性塑料流率的测试方法ASTM D1238-2004c 用挤压塑性计测定热塑性塑料流率的测试方法ASTM D1239-1998 ;RASTM DEYMZK-。

ASTM D 257-1999 Standard Test Methods for DC Resistance or Conductance of Insulating Materials

ASTM D 257-1999 Standard Test Methods for DC Resistance or Conductance of Insulating Materials

Designation:D257–99An American National Standard Standard Test Methods forDC Resistance or Conductance of Insulating Materials1This standard is issued under thefixed designation D257;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1These test methods cover direct-current procedures for the determination of dc insulation resistance,volume resis-tance,volume resistivity,surface resistance,and surface resis-tivity of electrical insulating materials,or the corresponding conductances and conductivities.1.2These test methods are not suitable for use in measuring the electrical resistivity/conductivity of moderately conductive e Test Method D4496to evaluate such materials.1.3The test methods and procedures appear in the follow-ing sections:Test Method or Procedure Section Calculation13Choice of Apparatus and Test Method7Cleaning Solid Specimens10.1 Conditioning of Specimens11 Effective Area of Guarded Electrode X2 Electrode Systems6Factors Affecting Insulation Resistance or ConductanceMeasurementsX1 Humidity Control11.2Liquid Specimens and Cells9.4 Precision and Bias15 Procedure for the Measurement of Resist-ance or Conductance12 Referenced Documents2Report14 Sampling8Significance and Use5 Specimen Mounting10 Summary of Test Methods4 Terminology3Test Specimens for Insulation,Volume,and SurfaceResistance or Conductance Determination9Typical Measurement Methods X31.4This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.For a specific hazard statement,see6.1.8.2.Referenced Documents2.1ASTM Standards:D150Test Methods for AC Loss Characteristics and Per-mittivity Dielectric Contant of Solid Electrical Insulation2 D374Test Methods for Thickness of Solid Electrical Insu-lation2D618Practice for Conditioning Plastics for Testing3D1169Test Method for Specific Resistance(Resistivity)of Electrical Insulating Liquids4D1711Terminology Relating to Electrical Insulation2D4496Test Method for DC Resistance or Conductance of Moderately Conductive Materials5D5032Practice for Maintaining Constant Relative Humid-ity by Means of Aqueous Glycerin Solutions5E104Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions63.Terminology3.1Definitions—The following definitions are taken from Terminology D1711and apply to the terms used in these test methods.3.1.1conductance,insulation,n—the ratio of the total volume and surface current between two electrodes(on or in a specimen)to the dc voltage applied to the two electrodes. 3.1.1.1Discussion—Insulation conductance is the recipro-cal of insulation resistance.3.1.2conductance,surface,n—the ratio of the current between two electrodes(on the surface of a specimen)to the dc voltage applied to the electrodes.3.1.2.1Discussion—(Some volume conductance is un-avoidably included in the actual measurement.)Surface con-ductance is the reciprocal of surface resistance.3.1.3conductance,volume,n—the ratio of the current in the volume of a specimen between two electrodes(on or in the specimen)to the dc voltage applied to the two electrodes.1These test methods are under the jurisdiction of ASTM Committee D-9on Electrical and Electronic Insulating Materials and are the direct responsibility of Subcommittee D09.12on Electrical Tests.Current edition approved Oct.10,1999.Published November1999.Originally published as D257–st previous edition D257–93(1998).2Annual Book of ASTM Standards,V ol10.01.3Annual Book of ASTM Standards,V ol08.01.4Annual Book of ASTM Standards,V ol10.03.5Annual Book of ASTM Standards,V ol10.02.6Annual Book of ASTM Standards,V ol11.03. 1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.3.1.3.1Discussion—V olume conductance is the reciprocal of volume resistance.3.1.4conductivity,surface,n—the surface conductance multiplied by that ratio of specimen surface dimensions(dis-tance between electrodes divided by the width of electrodes defining the current path)which transforms the measured conductance to that obtained if the electrodes had formed the opposite sides of a square.3.1.4.1Discussion—Surface conductivity is expressed in siemens.It is popularly expressed as siemens/square(the size of the square is immaterial).Surface conductivity is the reciprocal of surface resistivity.3.1.5conductivity,volume,n—the volume conductance multiplied by that ratio of specimen volume dimensions (distance between electrodes divided by the cross-sectional area of the electrodes)which transforms the measured conduc-tance to that conductance obtained if the electrodes had formed the opposite sides of a unit cube.3.1.5.1Discussion—V olume conductivity is usually ex-pressed in siemens/centimetre or in siemens/metre and is the reciprocal of volume resistivity.3.1.6moderately conductive,adj—describes a solid mate-rial having a volume resistivity between1and10000000 V-cm.3.1.7resistance,insulation,(R i),n—the ratio of the dc voltage applied to two electrodes(on or in a specimen)to the total volume and surface current between them.3.1.7.1Discussion—Insulation resistance is the reciprocal of insulation conductance.3.1.8resistance,surface,(R s),n—the ratio of the dc voltage applied to two electrodes(on the surface of a specimen)to the current between them.3.1.8.1Discussion—(Some volume resistance is unavoid-ably included in the actual measurement.)Surface resistance is the reciprocal of surface conductance.3.1.9resistance,volume,(R v),n—the ratio of the dc voltage applied to two electrodes(on or in a specimen)to the current in the volume of the specimen between the electrodes.3.1.9.1Discussion—V olume resistance is the reciprocal of volume conductance.3.1.10resistivity,surface,(r s),n—the surface resistance multiplied by that ratio of specimen surface dimensions(width of electrodes defining the current path divided by the distance between electrodes)which transforms the measured resistance to that obtained if the electrodes had formed the opposite sides of a square.3.1.10.1Discussion—Surface resistivity is expressed in ohms.It is popularly expressed also as ohms/square(the size of the square is immaterial).Surface resistivity is the reciprocal of surface conductivity.3.1.11resistivity,volume,(r v),n—the volume resistance multiplied by that ratio of specimen volume dimensions (cross-sectional area of the specimen between the electrodes divided by the distance between electrodes)which transforms the measured resistance to that resistance obtained if the electrodes had formed the opposite sides of a unit cube.3.1.11.1Discussion—Volume resistivity is usually ex-pressed in ohm-centimetres(preferred)or in ohm-metres. V olume resistivity is the reciprocal of volume conductivity.4.Summary of Test Methods4.1The resistance or conductance of a material specimen or of a capacitor is determined from a measurement of current or of voltage drop under specified conditions.By using the appropriate electrode systems,surface and volume resistance or conductance may be measured separately.The resistivity or conductivity can then be calculated when the required speci-men and electrode dimensions are known.5.Significance and Use5.1Insulating materials are used to isolate components of an electrical system from each other and from ground,as well as to provide mechanical support for the components.For this purpose,it is generally desirable to have the insulation resis-tance as high as possible,consistent with acceptable mechani-cal,chemical,and heat-resisting properties.Since insulation resistance or conductance combines both volume and surface resistance or conductance,its measured value is most useful when the test specimen and electrodes have the same form as is required in actual use.Surface resistance or conductance changes rapidly with humidity,while volume resistance or conductance changes slowly although thefinal change may eventually be greater.5.2Resistivity or conductivity may be used to predict, indirectly,the low-frequency dielectric breakdown and dissi-pation factor properties of some materials.Resistivity or contivity is often used as an indirect measure of moisture content,degree of cure,mechanical continuity,and deteriora-tion of various types.The usefulness of these indirect measure-ments is dependent on the degree of correlation established by supporting theoretical or experimental investigations.A de-crease of surface resistance may result either in an increase of the dielectric breakdown voltage because the electricfield intensity is reduced,or a decrease of the dielectric breakdown voltage because the area under stress is increased.5.3All the dielectric resistances or conductances depend on the length of time of electrification and on the value of applied voltage(in addition to the usual environmental variables). These must be known to make the measured value of resistance or conductance meaningful.5.4V olume resistivity or conductivity can be used as an aid in designing an insulator for a specific application.The change of resistivity or conductivity with temperature and humidity may be great(1,2,3,4),7and must be known when designing for operating conditions.V olume resistivity or conductivity determinations are often used in checking the uniformity of an insulating material,either with regard to processing or to detect conductive impurities that affect the quality of the material and that may not be readily detectable by other methods.5.5V olume resistivities above1021V·cm(1019V·m),ob-tained on specimens under usual laboratory conditions,are of7The boldface numbers in parentheses refer to the list of references appended to these testmethods.doubtful validity,considering the limitations of commonly used measuring equipment.5.6Surface resistance or conductance cannot be measured accurately,only approximated,because some degree of volume resistance or conductance is always involved in the measure-ment.The measured value is also affected by the surface contamination.Surface contamination,and its rate of accumu-lation,is affected by many factors including electrostatic charging and interfacial tension.These,in turn,may affect the surface resistivity.Surface resistivity or conductivity can be considered to be related to material properties when contami-nation is involved but is not a material property in the usual sense.6.Electrode Systems6.1The electrodes for insulating materials should be of a material that is readily applied,allows intimate contact with the specimen surface,and introduces no appreciable error because of electrode resistance or contamination of the specimen (5).The electrode material should be corrosion-resistant under the conditions of test.For tests of fabricated specimens such as feed-through bushings,cables,etc.,the electrodes employed are a part of the specimen or its mounting.Measurements of insulation resistance or conductance,then,include the contami-nating effects of electrode or mounting materials and are generally related to the performance of the specimen in actual use.6.1.1Binding-Post and Taper-Pin Electrodes ,Fig.1and Fig.2,provide a means of applying voltage to rigid insulating materials to permit an evaluation of their resistive or conduc-tive properties.These electrodes simulate to some degree the actual conditions of use,such as binding posts on instrument panels and terminal strips.In the case of laminated insulating materials having high-resin-content surfaces,somewhat lower insulation resistance values may be obtained with taper-pin than with binding posts,due to more intimate contact with the body of the insulating material.Resistance or conductance values obtained are highly influenced by the individual contact between each pin and the dielectric material,the surface roughness of the pins,and the smoothness of the hole in the dielectric material.Reproducibility of results on different specimens is difficult to obtain.6.1.2Metal Bars in the arrangement of Fig.3were prima-rily devised to evaluate the insulation resistance or conduc-tance of flexible tapes and thin,solid specimens as a fairly simple and convenient means of electrical quality control.This arrangement is somewhat more satisfactory for obtaining approximate values of surface resistance or conductance when the width of the insulating material is much greater than itsthickness.FIG.1Binding-Post Electrodes for Flat,SolidSpecimensFIG.2Taper-PinElectrodesFIG.3Strip Electrodes for Tapes and Flat,SolidSpecimens6.1.3Silver Paint ,Fig.4,Fig.5,and Fig.6,is available commercially with a high conductivity,either air-drying or low-temperature-baking varieties,which are sufficiently po-rous to permit diffusion of moisture through them and thereby allow the test specimen to be conditioned after the application of the electrodes.This is a particularly useful feature in studying resistance-humidity effects,as well as change with temperature.However,before conductive paint is used as an electrode material,it should be established that the solvent in the paint does not attack the material so as to change its electrical properties.Reasonably smooth edges of guard elec-trodes may be obtained with a fine-bristle brush.However,for circular electrodes,sharper edges can be obtained by the use of a ruling compass and silver paint for drawing the outline circles of the electrodes and filling in the enclosed areas by brush.A narrow strip of masking tape may be used,provided the pressure-sensitive adhesive used does not contaminate the surface of the specimen.Clamp-on masks also may be used if the electrode paint is sprayed on.6.1.4Sprayed Metal ,Fig.4,Fig.5,and Fig.6,may be used if satisfactory adhesion to the test specimen can be obtained.Thin sprayed electrodes may have certain advantages in that they are ready for use as soon as applied.They may be sufficiently porous to allow the specimen to be conditioned,but this should be verified.Narrow strips of masking tape or clamp-on masks must be used to produce a gap between the guarded and the guard electrodes.The tape shall be such as not to contaminate the gap surface.6.1.5Evaporated Metal may be used under the same con-ditions given in 6.1.4.6.1.6Metal Foil ,Fig.4,may be applied to specimen surfaces as electrodes.The usual thickness of metal foil used for resistance or conductance studies of dielectrics ranges from 6to 80µm.Lead or tin foil is in most common use,and is usually attached to the test specimen by a minimum quantity of petrolatum,silicone grease,oil,or other suitable material,as an adhesive.Such electrodes shall be applied under a smoothing pressure sufficient to eliminate all wrinkles,and to work excess adhesive toward the edge of the foil where it can be wiped off with a cleansing tissue.One very effective method is to use a hard narrow roller (10to 15mm wide),and to roll outward on the surface until no visible imprint can be made on the foil with the roller.This technique can be used satisfactorily only on specimens that have very flat surfaces.With care,the adhesive film can be reduced to 2.5µm.As this film is in series with the specimen,it will always cause the measured resistance to be too high.This error may become excessive for the lower-resistivity specimens of thickness less than 250µm.Also the hard roller can force sharp particles into or through thin films (50µm).Foil electrodes are not porous and will not allow the test specimen to condition after the electrodes have been applied.The adhesive may lose its effectiveness at elevated temperatures necessitating the use of flat metal back-up plates under pressure.It is possible,with the aid of a suitable cutting device,to cut a proper width strip from one electrode to form a guarded and guard electrode.Such a three-terminal specimen normally cannot be used for surface resistance or conductance measurements because of the grease remaining on the gap surface.It may be very difficult to clean the entire gap surface without disturbing the adjacent edges of the electrode.6.1.7Colloidal Graphite ,Fig.4,dispersed in water or other suitable vehicle,may be brushed on nonporous,sheet insulat-ing materials to form an air-drying electrode.Masking tapes or clamp-on masks may be used (6.1.4).This electrode material is recommended only if all of the following conditions aremet:Volume Resistivity g |Ls 2t Surface ResistivityFIG.4Flat Specimen for Measuring Volume and SurfaceResistances orConductancesD 0=(D 1+D 2)/2L >4t g |La 2t Volume Resistivity g |Ls 2t Surface ResistivityFIG.5Tubular Specimen for Measuring Volume and SurfaceResistances orConductances6.1.7.1The material to be tested must accept a graphite coating that will not flake before testing,6.1.7.2The material being tested must not absorb water readily,and6.1.7.3Conditioning must be in a dry atmosphere (Proce-dure B,Methods D 618),and measurements made in this same atmosphere.6.1.8Mercury or other liquid metal electrodes give satisfac-tory results.Mercury is not recommended for continuous use or at elevated temperatures due to toxic effects.(Warning —Mercury metal vapor poisoning has long been recognized as a hazard in industry.The maximum exposure limits are set by the American Conference of Governmental Industrial Hygienists.8The concentration of mercury vapor over spills from broken thermometers,barometers,or other instruments using mercury can easily exceed these exposure limits.Mercury,being a liquid and quite heavy,will disintegrate into small droplets and seep into cracks and crevices in the floor.The use of a commercially available emergency spill kit is recommended whenever a spill occurs.The increased area of exposure adds significantly to the mercury vapor concentration in air.Mer-cury vapor concentration is easily monitored using commer-cially available sniffers.Spot checks should be made periodi-cally around operations where mercury is exposed to the atmosphere.Thorough checks should be made after spills.)The metal forming the upper electrodes should be confined by stainless steel rings,each of which should have its lower rim reduced to a sharp edge by beveling on the side away from the liquid metal.Fig.7A and Fig.7B show two electrode arrange-ments.6.1.9Flat Metal Plates ,Fig.4,(preferably guarded)may be used for testing flexible and compressible materials,both at room temperature and at elevated temperatures.They may be circular or rectangular (for tapes).To ensure intimate contact with the specimen,considerable pressure is usually required.Pressures of 140to 700kPa have been found satisfactory (see material specifications).8American Conference of Governmental and Industrial Hygienists,6500Glen-way Ave.,Building D-7,Cincinnati,OH,45211.FIG.6Conducting-PaintElectrodesN OTE 1—Warning:See 6.1.8FIG.7Mercury Electrodes for Flat,SolidSpecimens6.1.9.1A variation of flat metal plate electrode systems is found in certain cell designs used to measure greases or filling compounds.Such cells are preassembled and the material to be tested is either added to the cell between fixed electrodes or the electrodes are forced into the material to a predetermined electrode spacing.Because the configuration of the electrodes in these cells is such that the effective electrode area and the distance between them is difficult to measure,each cell constant,K ,(equivalent to the A/t factor from Table 1)can be derived from the following equation:K 53.6p C 511.3C(1)where:K has units of centimetres,andC has units of picofarads and is the capacitance of the electrode system withair as the dielectric.See Test Methods D 150for methods of measurement for C.6.1.10Conducting Rubber has been used as electrode ma-terial,as in Fig.4,and has the advantage that it can quickly and easily be applied and removed from the specimen.As the electrodes are applied only during the time of measurement,they do not interfere with the conditioning of the specimen.The conductive-rubber material must be backed by proper plates and be soft enough so that effective contact with the specimen is obtained when a reasonable pressure is applied.N OTE 1—There is evidence that values of conductivity obtained using conductive-rubber electrodes are always smaller (20to 70%)than values obtained with tinfoil electrodes (6).When only order-of-magnitude accuracies are required,and these contact errors can be neglected,a properly designed set of conductive-rubber electrodes can provide a rapid means for making conductivity and resistivity determinations.6.1.11Water is widely employed as one electrode in testing insulation on wires and cables.Both ends of the specimen must be out of the water and of such length that leakage alongtheN OTE 1—Warning:See 6.1.8FIG.7Mercury Cell for Thin Sheet Material (continued)TABLE 1Calculation of Resistivity or Conductivity AType of Electrodes or SpecimenVolume Resistivity,V -cmVolume Conductivity,S/cm r v 5A t R v g v 5t A G vCircular (Fig.4)A 5p ~D 11g !24Rectangular A =(a +g)(b +g)SquareA =(a +g)2Tubes (Fig.5)A =p D 0(L +g)Cablesr v 52p LR vln D 2D 1g v 5lnD 2D 12p LR vSurface Resistivity,V (per square)Surface Conductivity,S (per square)p s 5P g R sg s 5g PG sCircular (Fig.4)P =p D 0Rectangular P =2(a +b +2g)SquareP =4(a +g)Tubes (Figs.5and 6)P =2p D 2Nomenclature:A =the effective area of the measuring electrode for the particular arrangement employed,P =the effective perimeter of the guarded electrode for the particular arrangement employed,R v =measured volume resistance in ohms,G v =measured volume conductance in siemens,R s =measured surface resistance in ohms,G s =measured surface conductance in siemens,t =average thickness of the specimen,D 0,D 1,D 2,g,L =dimensions indicated in Figs.4and 6(see Appendix X2for correction to g ),a,b,=lengths of the sides of rectangular electrodes,and ln =natural logarithm.AAll dimensions are in centimetres.insulation is negligible.Guard rings may be necessary at each end.It may be desirable to add a small amount of sodium chloride to the water to ensure high conductivity.Measure-ments may be performed at temperatures up to about 100°C.7.Choice of Apparatus and Test Method7.1Power Supply —A source of very steady direct voltage is required (see X1.7.3).Batteries or other stable direct voltage supplies may be used.7.2Guard Circuit —Whether measuring resistance of an insulating material with two electrodes (no guard)or with a three-terminal system (two electrodes plus guard),consider how the electrical connections are made between the test instrument and the test sample.If the test specimen is at some distance from the test instrument,or the test specimen is tested under humid conditions,or if a relatively high (1010to 1015ohms)specimen resistance is expected,spurious resistance paths can easily exist between the test instrument and test specimen.A guard circuit is necessary to minimize interference from these spurious paths (see also X1.9).7.2.1With Guard Electrode —Use coaxial cable,with the core lead to the guarded electrode and the shield to the guard electrode,to make adequate guarded connections between the test equipment and test specimen.Coaxial cable (again with the shield tied back to the guard)for the unguarded lead is not mandatory here (or in 7.2.2),although its use provides some reduction in background noise (see also Fig.8).7.2.2Without Guard Electrode —Use coaxial cable,with the core lead to one electrode and the shield terminated about 1cm from the end of the core lead (see also Fig.9).7.3Direct Measurements —The current through a specimen at a fixed voltage may be measured using any equipment that has the required sensitivity and accuracy (610%is usually adequate).Current-measuring devices available include elec-trometers,d-c amplifiers with indicating meters,and galva-nometers.Typical methods and circuits are given in Appendix X3.When the measuring device scale is calibrated to read ohms directly no calculations are required.7.4Comparison Methods —A Wheatstone-bridge circuit may be used to compare the resistance of the specimen with that of a standard resistor (see Appendix X3).7.5Precision and Bias Considerations :7.5.1General —As a guide in the choice of apparatus,the pertinent considerations are summarized in Table 2,but it is not implied that the examples enumerated are the only ones applicable.This table is not intended to indicate the limits of sensitivity and error of the various methods per se ,but rather is intended to indicate limits that are distinctly possible with modern apparatus.In any case,such limits can be achieved or exceeded only through careful selection and combination of the apparatus employed.It must be emphasized,however,that the errors considered are those of instrumentation only.Errors such as those discussed in Appendix X1are an entirely different matter.In this latter connection,the last column of Table 2lists the resistance that is shunted by the insulation resistance between the guarded electrode and the guard system for the various methods.In general,the lower such resistance,the less probability of error from undue shunting.N OTE 2—No matter what measurement method is employed,the highest precisions are achieved only with careful evaluation of all sources of error.It is possible either to set up any of these methods from the component parts,or to acquire a completely integrated apparatus.InFIG.8Connections to Guarded Electrode for Volume and Surface Resistivity Measurements (Volume Resistance hook-upshown)FIG.9Connections to Unguarded Electrodes for UnguardedSurfaceMeasurementsgeneral,the methods using high-sensitivity galvanometers require a more permanent installation than those using indicating meters or recorders.The methods using indicating devices such as voltmeters,galvanometers,d-c amplifiers,and electrometers require the minimum of manual adjustment and are easy to read but the operator is required to make the reading at a particular time.The Wheatstone bridge (Fig.X1.4)and the potentiometer method (Fig.X1.2(b ))require the undivided attention of the operator in keeping a balance,but allow the setting at a particular time to be read at leisure.7.5.2Direct Measurements :7.5.2.1Galvanometer-Voltmeter —The maximum percent-age error in the measurement of resistance by the galvanometer-voltmeter method is the sum of the percentage errors of galvanometer indication,galvanometer readability,and voltmeter indication.As an example:a galvanometer having a sensitivity of 500pA/scale division will be deflected 25divisions with 500V applied to a resistance of 40G V (conductance of 25pS).If the deflection can be read to the nearest 0.5division,and the calibration error (including Ayrton Shunt error)is 62%of the observed value,the resultant galvanometer error will not exceed 64%.If the voltmeter has an error of 62%of full scale,this resistance can be measured with a maximum error of 66%when the voltmeter reads full scale,and 610%when it reads one-third full scale.The desirability of readings near full scale are readily apparent.7.5.2.2Voltmeter-Ammeter —The maximum percentage er-ror in the computed value is the sum of the percentage errors in the voltages,V x and V s ,and the resistance,R s .The errors in V s and R s are generally dependent more on the characteristics of the apparatus used than on the particular method.The most significant factors that determine the errors in V s are indicator errors,amplifier zero drift,and amplifier gain stability.With modern,well-designed amplifiers or electrometers,gain stabil-ity is usually not a matter of concern.With existing techniques,the zero drift of direct voltage amplifiers or electrometers cannot be eliminated but it can be made slow enough to be relatively insignificant for these measurements.The zero drift is virtually nonexistent for carefully designed converter-type amplifiers.Consequently,the null method of Fig.X1.2(b )is theoretically less subject to error than those methods employ-ing an indicating instrument,provided,however,that the potentiometer voltage is accurately known.The error in R s is to some extent dependent on the amplifier sensitivity.For mea-surement of a given current,the higher the amplifier sensitivity,the greater likelihood that lower valued,highly precise wire-wound standard resistors can be used.Such amplifiers can be obtained.Standard resistances of 100G V known to 62%,are available.If 10-mV input to the amplifier or electrometer gives full-scale deflection with an error not greater than 2%of full scale,with 500V applied,a resistance of 5000T V can be measured with a maximum error of 6%when the voltmeter reads full scale,and 10%when it reads 1⁄3scale.7.5.2.3Comparison-Galvanometer —The maximum per-centage error in the computed resistance or conductance is given by the sum of the percentage errors in R s ,the galvanom-eter deflections or amplifier readings,and the assumption that the current sensitivities are independent of the deflections.The latter assumption is correct to well within 62%over the useful range (above 1⁄10full-scale deflection)of a good,modern galvanometer (probably 1⁄3scale deflection for a dc current amplifier).The error in R s depends on the type of resistor used,but resistances of 1M V with a limit of error as low as 0.1%are available.With a galvanometer or d-c current amplifier having a sensitivity of 10nA for full-scale deflection,500V applied to a resistance of 5T V will produce a 1%deflection.At this voltage,with the preceding noted standard resistor,and with F s =105,d s would be about half of full-scale deflection,with a readability error not more than 61%.If d x is approxi-mately 1⁄4of full-scale deflection,the readability error would not exceed 64%,and a resistance of the order of 200G V could be measured with a maximum error of 651⁄2%.7.5.2.4Voltage Rate-of-Change —The accuracy of the mea-surement is directly proportional to the accuracy of the measurement of applied voltage and time rate of change of the electrometer reading.The length of time that the electrometer switch is open and the scale used should be such that the time can be measured accurately and a full-scale reading obtained.Under these conditions,the accuracy will be comparable with that of the other methods of measuring current.7.5.2.5Comparison Bridge —When the detector has ad-equate sensitivity,the maximum percentage error in the com-puter resistance is the sum of the percentage errors in the arms,A,B,and N .With a detector sensitivity of 1mV/scale division,500V applied to the bridge,and R N =1G V ,a resistance of 1000T V will produce a detector deflection of one scale division.Assuming negligible errors in R A and R B ,with R N =1G V known to within 62%and with the bridge balanced to oneTABLE 2Apparatus and Conditions for UseMethodReferenceMaximum Ohms Detectable at 500V Maximum Ohms Measurable to 66%at 500VType of MeasurementOhms Shunted by Insulation Resistancefrom Guard to Guarded ElectrodeSectionFigureVoltmeter-ammeter (galvanometer)X3.1X110121011deflection 10to 105Comparison (galvanometer)X3.4X310121011deflection 10to 105Voltmeter-ammeter (dc amplifica-X3.2X2(a )deflection 102to 109tion,electrometer)(Position 1)10151013X2(a )deflection 102to 103(Position 2)10151013deflection 103to 1011X2(b )10171015null0(effective)X2(b )10171015Comparison (Wheatstone bridge)X3.5X410151014null105to 106Voltage rate-of-change X3.3X5;100M V ·F deflection unguarded Megohmmeter (typical)commercial instruments10151014direct-reading104to 1010。

发动机冷却剂模拟腐蚀试验的标准试验方法ASTMD2570-16(中文翻译版)

发动机冷却剂模拟腐蚀试验的标准试验方法ASTMD2570-16(中文翻译版)

发动机冷却剂模拟腐蚀试验的标准试验⽅法ASTMD2570-16(中⽂翻译版)发动机冷却剂模拟腐蚀试验的标准试验⽅法ASTM D2570-16 (中⽂翻译版)1本试验⽅法由ASTM关于发动机冷却剂和相关液体的D15委员会管辖,并由关于模拟使⽤试验的D15.09⼩组委员会直接负责。

现⾏版本于2016年4⽉1⽇批准。

2016年5⽉出版。

最初批准于1966年。

上⼀版于2010年批准为D2570-10。

DOI:10.1520/D2570-16。

本标准以固定名称D2570发布;紧跟在名称后⾯的数字表⽰最初采⽤的年份,如果是修订版,则表⽰最后修订的年份。

括号中的数字表⽰上次重新批准的年份。

上标(')表⽰⾃上次修订或重新批准以来的编辑性更改。

1.范围*1.1本试验⽅法在受控的基本等温实验室条件下,评估循环发动机冷却剂对⾦属试样和汽车冷却系统部件的影响。

1.2本试验⽅法规定了试验材料、冷却系统部件、冷却剂类型和冷却剂流动条件,这些被认为是当前汽车使⽤的典型条件。

1.3以英尺-磅-秒为单位的数值应视为标准值。

括号中给出的值(SI单位)仅是信息的近似等价值。

1.4本标准并⾮旨在解决与其使⽤相关的所有安全问题(如有)。

本标准的使⽤者有责任在使⽤前建⽴适当的安全和健康实践,并确定法规限制的适⽤性。

具体预防说明见第6节。

2.参考⽂件2.1 ASTM标准:22如需参考ASTM标准,请访问ASTM⽹站/doc/159694863.html,或通过Service@/doc/159694863.html联系ASTM客户服务。

有关ASTM标准年鉴卷信息,请参阅ASTM⽹站上的标准⽂件摘要页。

D1121发动机冷却剂和防锈剂储备碱度的试验⽅法D1176试验⽤发动机冷却剂或防锈剂⽔溶液的取样和制备规程D1193试剂⽔规范D1287发动机冷却剂和防锈剂pH值的试验⽅法D1384玻璃器⽫中发动机冷却剂腐蚀试验⽅法D2758发动机测功机测定发动机冷却剂的试验⽅法D2847汽车和轻型卡车⽤发动机冷却剂试验规程D3306汽车和轻负荷⽤⼄⼆醇基发动机冷却液规范D4985需要预充补充冷却液添加剂(SCA)的重型发动机⽤低硅酸盐⼄⼆醇基发动机冷却液规范2.2 SAE标准:33可从SAE International(SAE)获得,地址:400 Commonwealth Dr.,Warrendale,PA 15096,⽹址:/doc/159694863.html。

ASTMD中文版绝缘材料直流电阻和电导测试…

ASTMD中文版绝缘材料直流电阻和电导测试…

ASTM D257-07 中文版绝缘材料直流电阻和电导测试.…ASTMD绝缘材料直流电阻或电导的标准试验方法本标准是以固定代号D发布的。

其后的数字表示原文本正式通过的年号在有修订的情况下为上一次的修订年号圆括号中数字为上一次重新确认的年号。

上标符号(ε)表示对上次修改或重新确定的版本有编辑上的修改。

本标准经批准用于国防部所有机构。

1.范围本试验方法包含直流绝缘电阻体积电阻和表面电阻的测量所用直流程序。

通过该测量及样本和电极的几何尺寸可以计算出电绝缘材料的体积电阻和表面电阻同时还可以计算出相应的电导和电导率。

这些试验方法不适用于测量中等导电材料的电阻电导。

这些材料评估可采用试验方法D4496。

本标准描述了几种可选择的测量电阻(或电导)的普通方法。

特殊材料科采用最合适的标准ASTM试验方法进行测试这些特殊材料具有电压应力范围和有限起电时间同时规定了样本结构和电极几何形状。

这些个别特殊试验方法将能更好得定义测量值的精度和偏差。

本试验方法包括以下章节:试验方法或步骤章节计算 13设备和试验方法的选择 7清洗固体样本样本的状态调节 11屏蔽电极的有效面积附录X2电极系 6绝缘电阻或电导材料的影响因素附录X1湿度控制液体样本和电池精度和偏差 15电阻或电导测量步骤 12引用文件 2报告 14抽样 8重要性和用途 5样本安装 10试验方法摘要 4术语 3绝缘电阻体积电阻和表面电阻或电导测量用试验样本 9典型测量方法附录X3本标准并没有完全列举所有的安全声明如果有必要根据实际使用情况进行斟酌。

使用本规范前使用者有责任制定符合安全和健康要求的条例和规范并明确该规范的使用范围。

引用文件ASTM标准:D150固体电绝缘材料的(恒久电介质)的交流损耗特性和介电常数的测试方法D374固体电绝缘材料厚度的标准试验方法D1169电绝缘液电阻率(电阻系数)试验方法D1711电绝缘相关术语D4496中等导电材料直流电阻或导电性的标准试验方法D5032用水甘油溶液设备维持恒定相关湿度的规程D6054测试用电工绝缘材料的调节规程E104用水溶液保持相对恒定湿度的标准实施规程术语定义:以下定义直接来自术语标准D1711适用于本标准正文所用术语。

纺织品标准

纺织品标准
GB/T 14593-2008山羊绒、绵羊毛及其混合纤维定量分析方法扫描电镜法
FZ/T 01101-2008
纺织品纤维含量的测定物理法
纺织品及成衣
3
纤维直径
ASTM D2130-1990(2008)
显微投影法测定羊毛和其它动物纤维直径的试验方法
ISO 137-1975羊毛-纤维直径的测定-投影显微镜法
认可的检测能力范围
产品/
产品类别
项目/参数
检测标准(方法)名称及编号
(含年号)
限制
范围
序号
名称
纺织品及成衣
1
纤维成分(定性分析)
AATCC 20-2007
纤维分析:定性
FZ/T 01057.1-2007
纺织纤维鉴别试验方法第1部分:通用说明
FZ/T 01057.2-2007
纺织纤维鉴别试验方法第2部分:燃烧法
(二甲基甲酰胺法)
GB/T 2910.13-2009
纺织品定量化学分析第13部分:某些含氯纤维与某些其他纤维的混合物
(二硫化碳/丙酮法)
GB/T 2910.14-2009
纺织品定量化学分析第14部分:醋酯纤维与某些含氯纤维的混合物(冰乙酸法)
GB/T 2910.15-2009
纺织品定量化学分析第15部分:黄麻与某些动物纤维的混合物(含氮量法)
纺织品-色牢度试验:耐氯化水色牢度
(游泳池水)
AS/NZS2001.4.5-1998
纺织品-色牢度试验:耐氯化水色牢度
(游泳池水)
GB/T 8433-1998
纺织品-色牢度试验:耐氯化水色牢度
(游泳池水)
16
摩擦色牢度
AATCC 8-2007

astm257标准

astm257标准

astm257标准
ASTM D257标准是美国材料和试验协会(ASTM)制定的标准,
涉及到材料的电阻率或电导率的测试方法。

这个标准主要用于测量
固体绝缘材料的电阻率,包括塑料、橡胶、纤维和其他绝缘材料。

该标准旨在提供一种标准化的测试方法,以便不同实验室和组织之
间进行可比较的测试结果。

ASTM D257标准包括了两种测试方法,平板电阻率测试和体积
电阻率测试。

平板电阻率测试是通过在材料上施加一定的电压,然
后测量通过材料的电流来计算电阻率。

而体积电阻率测试则是将材
料制成特定形状的样品,然后测量通过样品的电流和施加在样品上
的电压,也是用来计算电阻率。

这个标准的应用非常广泛,特别是在电气和电子工业中,因为
电阻率或电导率是评估绝缘材料性能的重要指标。

此外,该标准还
在材料研究和开发、质量控制以及产品认证等方面发挥着重要作用。

总的来说,ASTM D257标准对于测量固体绝缘材料的电阻率提
供了一种标准化的方法,有助于确保不同实验室和组织之间获得可
比较的测试结果,同时也为电气和电子工业以及其他相关领域提供了重要的参考依据。

(完整版)ASTMD257-07中文版绝缘材料直流电阻和电导测试.…

(完整版)ASTMD257-07中文版绝缘材料直流电阻和电导测试.…

ASTM D257-07 中文版绝缘材料直流电阻和电导测试.…ASTMD绝缘材料直流电阻或电导的标准试验方法本标准是以固定代号D发布的。

其后的数字表示原文本正式通过的年号在有修订的情况下为上一次的修订年号圆括号中数字为上一次重新确认的年号。

上标符号(ε)表示对上次修改或重新确定的版本有编辑上的修改。

本标准经批准用于国防部所有机构。

1.范围本试验方法包含直流绝缘电阻体积电阻和表面电阻的测量所用直流程序。

通过该测量及样本和电极的几何尺寸可以计算出电绝缘材料的体积电阻和表面电阻同时还可以计算出相应的电导和电导率。

这些试验方法不适用于测量中等导电材料的电阻电导。

这些材料评估可采用试验方法D4496。

本标准描述了几种可选择的测量电阻(或电导)的普通方法。

特殊材料科采用最合适的标准ASTM试验方法进行测试这些特殊材料具有电压应力范围和有限起电时间同时规定了样本结构和电极几何形状。

这些个别特殊试验方法将能更好得定义测量值的精度和偏差。

本试验方法包括以下章节:试验方法或步骤章节计算13设备和试验方法的选择7清洗固体样本10.1 样本的状态调节11屏蔽电极的有效面积附录X2电极系 6绝缘电阻或电导材料的影响因素附录X1湿度控制11.2 液体样本和电池9.4精度和偏差15 电阻或电导测量步骤12 引用文件 2 报告14 抽样8 重要性和用途 5 样本安装10 试验方法摘要 4 术语 3 绝缘电阻体积电阻和表面电阻或电导测量用试验样本9 典型测量方法附录X3本标准并没有完全列举所有的安全声明如果有必要根据实际使用情况进行斟酌。

使用本规范前使用者有责任制定符合安全和健康要求的条例和规范并明确该规范的使用范围。

引用文件ASTM标准:D150固体电绝缘材料的(恒久电介质)的交流损耗特性和介电常数的测试方法D374固体电绝缘材料厚度的标准试验方法D1169电绝缘液电阻率(电阻系数)试验方法D1711电绝缘相关术语D4496中等导电材料直流电阻或导电性的标准试验方法D5032用水甘油溶液设备维持恒定相关湿度的规程D6054测试用电工绝缘材料的调节规程E104用水溶液保持相对恒定湿度的标准实施规程术语定义:以下定义直接来自术语标准D1711适用于本标准正文所用术语。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Designation:D257–07An American National StandardStandard Test Methods forDC Resistance or Conductance of Insulating Materials1This standard is issued under thefixed designation D257;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope*1.1These test methods cover direct-current procedures forthe measurement of dc insulation resistance,volume resistance,and surface resistance.From such measurements and thegeometric dimensions of specimen and electrodes,both vol-ume and surface resistivity of electrical insulating materialscan be calculated,as well as the corresponding conductancesand conductivities.1.2These test methods are not suitable for use in measuringthe electrical resistance/conductance of moderately conductivee Test Method D4496to evaluate such materials.1.3This standard describes several general alternativemethodologies for measuring resistance(or conductance).Specific materials can be tested most appropriately by usingstandard ASTM test methods applicable to the specific materialthat define both voltage stress limits andfinite electrificationtimes as well as specimen configuration and electrode geom-etry.These individual specific test methodologies would bebetter able to define the precision and bias for the determina-tion.1.4The procedures appear in the following sections:Test Method or Procedure SectionCalculation13Choice of Apparatus and Test Method7Cleaning Solid Specimens10.1Conditioning of Specimens11Effective Area of Guarded Electrode AppendixX2Electrode Systems6Factors Affecting Insulation Resistance or Conductance Measurements Appendix X1Humidity Control11.2 Liquid Specimens and Cells9.4 Precision and Bias15 Procedure for the Measurement of Resist-ance or Conductance12 Referenced Documents2 Report14 Sampling8 Significance and Use5 Specimen Mounting10 Summary of Test Methods4Terminology3Test Specimens for Insulation,Volume,and SurfaceResistance or Conductance Determination9Typical Measurement Methods AppendixX31.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:2D150Test Methods for AC Loss Characteristics and Per-mittivity(Dielectric Constant)of Solid Electrical Insula-tionD374Test Methods for Thickness of Solid Electrical Insu-lationD1169Test Method for Specific Resistance(Resistivity)of Electrical Insulating LiquidsD1711Terminology Relating to Electrical InsulationD4496Test Method for D-C Resistance or Conductance of Moderately Conductive MaterialsD5032Practice for Maintaining Constant Relative Humid-ity by Means of Aqueous Glycerin SolutionsD6054Practice for Conditioning Electrical Insulating Ma-terials for TestingE104Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions3.Terminology3.1Definitions—The following definitions are taken from Terminology D1711and apply to the terms used in the text of this standard.3.1.1conductance,insulation,n—the ratio of the total volume and surface current between two electrodes(on or in a specimen)to the dc voltage applied to the two electrodes. 3.1.1.1Discussion—Insulation conductance is the recipro-cal of insulation resistance.1These test methods are under the jurisdiction of ASTM Committee D09onElectrical and Electronic Insulating Materials and are the direct responsibility of Subcommittee D09.12on Electrical Tests.Current edition approved May15,2007.Published June2007.Originally approved st previous edition approved in2005as D257–99(2005).2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States. --`,``,``,````,,,`,,,,,,`,````,`-`-`,,`,,`,`,,`---3.1.2conductance,surface,n—the ratio of the current between two electrodes(on the surface of a specimen)to the dc voltage applied to the electrodes.3.1.2.1Discussion—(Some volume conductance is un-avoidably included in the actual measurement.)Surface con-ductance is the reciprocal of surface resistance.3.1.3conductance,volume,n—the ratio of the current in the volume of a specimen between two electrodes(on or in the specimen)to the dc voltage applied to the two electrodes. 3.1.3.1Discussion—V olume conductance is the reciprocal of volume resistance.3.1.4conductivity,surface,n—the surface conductance multiplied by that ratio of specimen surface dimensions(dis-tance between electrodes divided by the width of electrodes defining the current path)which transforms the measured conductance to that obtained if the electrodes had formed the opposite sides of a square.3.1.4.1Discussion—Surface conductivity is expressed in siemens.It is popularly expressed as siemens/square(the size of the square is immaterial).Surface conductivity is the reciprocal of surface resistivity.3.1.5conductivity,volume,n—the volume conductance multiplied by that ratio of specimen volume dimensions (distance between electrodes divided by the cross-sectional area of the electrodes)which transforms the measured conduc-tance to that conductance obtained if the electrodes had formed the opposite sides of a unit cube.3.1.5.1Discussion—V olume conductivity is usually ex-pressed in siemens/centimetre or in siemens/metre and is the reciprocal of volume resistivity.3.1.6moderately conductive,adj—describes a solid mate-rial having a volume resistivity between1and10000000 V-cm.3.1.7resistance,insulation,(R i),n—the ratio of the dc voltage applied to two electrodes(on or in a specimen)to the total volume and surface current between them.3.1.7.1Discussion—Insulation resistance is the reciprocal of insulation conductance.3.1.8resistance,surface,(R s),n—the ratio of the dc voltage applied to two electrodes(on the surface of a specimen)to the current between them.3.1.8.1Discussion—(Some volume resistance is unavoid-ably included in the actual measurement.)Surface resistance is the reciprocal of surface conductance.3.1.9resistance,volume,(R v),n—the ratio of the dc voltage applied to two electrodes(on or in a specimen)to the current in the volume of the specimen between the electrodes.3.1.9.1Discussion—V olume resistance is the reciprocal of volume conductance.3.1.10resistivity,surface,(r s),n—the surface resistance multiplied by that ratio of specimen surface dimensions(width of electrodes defining the current path divided by the distance between electrodes)which transforms the measured resistance to that obtained if the electrodes had formed the opposite sides of a square.3.1.10.1Discussion—Surface resistivity is expressed in ohms.It is popularly expressed also as ohms/square(the size of the square is immaterial).Surface resistivity is the reciprocal of surface conductivity.3.1.11resistivity,volume,(r v),n—the volume resistance multiplied by that ratio of specimen volume dimensions (cross-sectional area of the specimen between the electrodes divided by the distance between electrodes)which transforms the measured resistance to that resistance obtained if the electrodes had formed the opposite sides of a unit cube.3.1.11.1Discussion—Volume resistivity is usually ex-pressed in ohm-centimetres(preferred)or in ohm-metres. V olume resistivity is the reciprocal of volume conductivity.4.Summary of Test Methods4.1The resistance or conductance of a material specimen or of a capacitor is determined from a measurement of current or of voltage drop under specified conditions.By using the appropriate electrode systems,surface and volume resistance or conductance may be measured separately.The resistivity or conductivity can then be calculated when the required speci-men and electrode dimensions are known.5.Significance and Use5.1Insulating materials are used to isolate components of an electrical system from each other and from ground,as well as to provide mechanical support for the components.For this purpose,it is generally desirable to have the insulation resis-tance as high as possible,consistent with acceptable mechani-cal,chemical,and heat-resisting properties.Since insulation resistance or conductance combines both volume and surface resistance or conductance,its measured value is most useful when the test specimen and electrodes have the same form as is required in actual use.Surface resistance or conductance changes rapidly with humidity,while volume resistance or conductance changes slowly although thefinal change may eventually be greater.5.2Resistivity or conductivity may be used to predict, indirectly,the low-frequency dielectric breakdown and dissi-pation factor properties of some materials.Resistivity or conductivity is often used as an indirect measure of:moisture content,degree of cure,mechanical continuity,or deterioration of various types.The usefulness of these indirect measure-ments is dependent on the degree of correlation established by supporting theoretical or experimental investigations.A de-crease of surface resistance may result either in an increase of the dielectric breakdown voltage because the electricfield intensity is reduced,or a decrease of the dielectric breakdown voltage because the area under stress is increased.5.3All the dielectric resistances or conductances depend on the length of time of electrification and on the value of applied voltage(in addition to the usual environmental variables). These must be known and reported to make the measured value of resistance or conductance meaningful.Within the electrical insulation materials industry,the adjective“apparent”is gen-erally applied to resistivity values obtained under conditions of arbitrarily selected electrification time.See X1.4.5.4V olume resistivity or conductivity can be calculated from resistance and dimensional data for use as an aidin --` , ` ` , ` ` , ` ` ` ` , , , ` , , , , , , ` , ` ` ` ` , ` -` -` , , ` , , ` , ` , , ` ---designing an insulator for a specific application.The change of resistivity or conductivity with temperature and humidity may be great(1,2,3,4),3and must be known when designing for operating conditions.V olume resistivity or conductivity deter-minations are often used in checking the uniformity of an insulating material,either with regard to processing or to detect conductive impurities that affect the quality of the material and that may not be readily detectable by other methods.5.5V olume resistivities above1021V·cm(1019V·m),cal-culated from data obtained on specimens tested under usual laboratory conditions,are of doubtful validity,considering the limitations of commonly used measuring equipment.5.6Surface resistance or conductance cannot be measured accurately,only approximated,because some degree of volume resistance or conductance is always involved in the measure-ment.The measured value is also affected by the surface contamination.Surface contamination,and its rate of accumu-lation,is affected by many factors including electrostatic charging and interfacial tension.These,in turn,may affect the surface resistivity.Surface resistivity or conductivity can be considered to be related to material properties when contami-nation is involved but is not a material property of electrical insulation material in the usual sense.6.Electrode Systems6.1The electrodes for insulating materials should be of a material that is readily applied,allows intimate contact with the specimen surface,and introduces no appreciable error because of electrode resistance or contamination of the specimen(5). The electrode material should be corrosion-resistant under the conditions of test.For tests of fabricated specimens such as feed-through bushings,cables,etc.,the electrodes employed are a part of the specimen or its mounting.Measurements of insulation resistance or conductance,then,include the contami-nating effects of electrode or mounting materials and are generally related to the performance of the specimen in actual use.6.1.1Binding-Post and Taper-Pin Electrodes,Fig.1and Fig.2,provide a means of applying voltage to rigid insulating materials to permit an evaluation of their resistive or conduc-tive properties.These electrodes simulate to some degree the actual conditions of use,such as binding posts on instrument panels and terminal strips.In the case of laminated insulating materials having high-resin-content surfaces,somewhat lower insulation resistance values may be obtained with taper-pin than with binding posts,due to more intimate contact with the body of the insulating material.Resistance or conductancevalues obtained are highly influenced by the individual contact between each pin and the dielectric material,the surface roughness of the pins,and the smoothness of the hole in the dielectric material.Reproducibility of results on different specimens is difficult to obtain.6.1.2Metal Bars in the arrangement of Fig.3were prima-rily devised to evaluate the insulation resistance or conduc-tance offlexible tapes and thin,solid specimens as a fairly simple and convenient means of electrical quality control.This arrangement is somewhat more satisfactory for obtaining approximate values of surface resistance or conductance when the width of the insulating material is much greater than its thickness.3The boldface numbers in parentheses refer to the list of references appended to these testmethods.FIG.1Binding-Post Electrodes for Flat,SolidSpecimensFIG.2Taper-PinElectrodes--`,``,``,````,,,`,,,,,,`,````,`-`-`,,`,,`,`,,`---6.1.3Silver Paint ,Fig.4,Fig.5,and Fig.6,is available commercially with a high conductivity,either air-drying or low-temperature-baking varieties,which are sufficiently po-rous to permit diffusion of moisture through them and thereby allow the test specimen to be conditioned after the application of the electrodes.This is a particularly useful feature in studying resistance-humidity effects,as well as change with temperature.However,before conductive paint is used as an electrode material,it should be established that the solvent in the paint does not attack the material so as to change itselectrical properties.Reasonably smooth edges of guard elec-trodes may be obtained with a fine-bristle brush.However,for circular electrodes,sharper edges can be obtained by the use of a ruling compass and silver paint for drawing the outline circles of the electrodes and filling in the enclosed areas by brush.A narrow strip of masking tape may be used,provided the pressure-sensitive adhesive used does not contaminate the surface of the specimen.Clamp-on masks also may be used if the electrode paint is sprayed on.6.1.4Sprayed Metal ,Fig.4,Fig.5,and Fig.6,may be used if satisfactory adhesion to the test specimen can be obtained.Thin sprayed electrodes may have certain advantages in that they are ready for use as soon as applied.They may be sufficiently porous to allow the specimen to be conditioned,but this should be verified.Narrow strips of masking tape or clamp-on masks must be used to produce a gap between the guarded and the guard e a tape that is known not to contaminate the gap surface.6.1.5Evaporated Metal may be used under the same con-ditions given in 6.1.4.6.1.6Metal Foil ,Fig.4,may be applied to specimen surfaces as electrodes.The usual thickness of metal foil used for resistance or conductance studies of dielectrics ranges from 6to 80µm.Lead or tin foil is in most common use,and is usually attached to the test specimen by a minimum quantity of petrolatum,silicone grease,oil,or other suitable material,as an adhesive.Such electrodes shall be applied under a smoothing pressure sufficient to eliminate all wrinkles,and to work excess adhesive toward the edge of the foil where it can be wiped off with a cleansing tissue.One very effective method is to use a hard narrow roller (10to 15mm wide),and to roll outward on the surface until no visible imprint can be made on the foil with the roller.This technique can be used satisfactorily only on specimens that have very flat surfaces.With care,the adhesive film can be reduced to 2.5µm.As this film is in series withtheFIG.3Strip Electrodes for Tapes and Flat,SolidSpecimensFIG.4Flat Specimen for Measuring Volume and SurfaceResistances orConductancesFIG.5Tubular Specimen for Measuring Volume and SurfaceResistances orConductancesspecimen,it will always cause the measured resistance to be too high.This error may become excessive for the lower-resistivity specimens of thickness less than 250µm.Also the hard roller can force sharp particles into or through thin films (50µm).Foil electrodes are not porous and will not allow the test specimen to condition after the electrodes have been applied.The adhesive may lose its effectiveness at elevated temperatures necessitating the use of flat metal back-up plates under pressure.It is possible,with the aid of a suitable cutting device,to cut a proper width strip from one electrode to form a guarded and guard electrode.Such a three-terminal specimen normally cannot be used for surface resistance or conductance measurements because of the grease remaining on the gap surface.It may be very difficult to clean the entire gap surface without disturbing the adjacent edges of the electrode.6.1.7Colloidal Graphite ,Fig.4,dispersed in water or other suitable vehicle,may be brushed on nonporous,sheet insulat-ing materials to form an air-drying electrode.Masking tapes or clamp-on masks may be used (6.1.4).This electrode material is recommended only if all of the following conditions are met:6.1.7.1The material to be tested must accept a graphite coating that will not flake before testing,6.1.7.2The material being tested must not absorb water readily,and6.1.7.3Conditioning must be in a dry atmosphere (Proce-dure B,Practice D 6054),and measurements made in this same atmosphere.6.1.8Liquid metal electrodes give satisfactory results and may prove to be the best method to achieving the contact to the specimen necessary for effective resistance measurements.The liquid metal forming the upper electrodes should be confined by stainless steel rings,each of which should have its lower rimreduced to a sharp edge by beveling on the side away from the liquid metal.Fig.7and Fig.8show two possible electrode arrangements.6.1.9Flat Metal Plates ,Fig.4,(preferably guarded)may be used for testing flexible and compressible materials,both at room temperature and at elevated temperatures.They may be circular or rectangular (for tapes).To ensure intimate contact with the specimen,considerable pressure is usuallyrequired.FIG.6Conducting-PaintElectrodesFIG.7Liquid Metal Electrodes for Flat,SolidSpecimens--`,``,``,````,,,`,,,,,,`,````,`-`-`,,`,,`,`,,`---Pressures of 140to 700kPa have been found satisfactory (see material specifications).6.1.9.1A variation of flat metal plate electrode systems is found in certain cell designs used to measure greases or filling compounds.Such cells are preassembled and the material to be tested is either added to the cell between fixed electrodes or the electrodes are forced into the material to a predetermined electrode spacing.Because the configuration of the electrodes in these cells is such that the effective electrode area and the distance between them is difficult to measure,each cell constant,K ,(equivalent to the A/t factor from Table 1)can be derived from the following equation:K 53.6p C 511.3C(1)where:K has units of centimetres,andC has units of picofarads and is the capacitance of the electrode system withair as the dielectric.See Test Methods D 150for methods of measurement for C.6.1.10Conducting Rubber has been used as electrode ma-terial,as in Fig.4,and has the advantage that it can quickly and easily be applied and removed from the specimen.As the electrodes are applied only during the time of measurement,they do not interfere with the conditioning of the specimen.The conductive-rubber material must be backed by proper plates and be soft enough so that effective contact with the specimen is obtained when a reasonable pressure is applied.N OTE 1—There is evidence that values of conductivity obtained using conductive-rubber electrodes are always smaller (20to 70%)than values obtained with tinfoil electrodes (6).When only order-of-magnitude accuracies are required,and these contact errors can be neglected,a properly designed set of conductive-rubber electrodes can provide a rapid means for making conductivity and resistivity determinations.6.1.11Water is widely employed as one electrode in testing insulation on wires and cables.Both ends of the specimen mustbe out of the water and of such length that leakage along the insulation is negligible.Refer to specific wire and cable test methods for the necessity to use guard at each end of a specimen.For standardization it is desirable to add sodium chloride to the water so as to produce a sodium chloride concentration of 1.0to 1.1%NaCl to ensure adequate conduc-tivity.Measurements at temperatures up to about 100°C have been reported as feasible.7.Choice of Apparatus and Test Method7.1Power Supply —A source of very steady direct voltage is required (see X1.7.3).Batteries or other stable direct voltage supplies have been proven suitable for use.7.2Guard Circuit —Whether measuring resistance of an insulating material with two electrodes (no guard)or with a three-terminal system (two electrodes plus guard),consider how the electrical connections are made between the test instrument and the test specimen.If the test specimen is at some distance from the test instrument,or the test specimen is tested under humid conditions,or if a relatively high (1010to 1015ohms)specimen resistance is expected,spurious resis-tance paths can easily exist between the test instrument and test specimen.A guard circuit is necessary to minimize interference from these spurious paths (see also X1.9).7.2.1With Guard Electrode —Use coaxial cable,with the core lead to the guarded electrode and the shield to the guard electrode,to make adequate guarded connections between the test equipment and test specimen.Coaxial cable (again with the shield tied back to the guard)for the unguarded lead is not mandatory here (or in 7.2.2),although its use provides some reduction in background noise (see also Fig.9).7.2.2Without Guard Electrode —Use coaxial cable,with the core lead to one electrode and the shield terminated about 1cm from the end of the core lead (see also Fig.10).7.3Direct Measurements —The current through a specimen at a fixed voltage is measured using any equipment that has the required sensitivity and accuracy (610%is usually adequate).Current-measuring devices available include electrometers,d-c amplifiers with indicating meters,and galvanometers.Typical methods and circuits are given in Appendix X3.When the measuring device scale is calibrated to read ohms directly no calculations are required for resistance measurements.7.4Comparison Methods —A Wheatstone-bridge circuit may be used to compare the resistance of the specimen with that of a standard resistor (see Appendix X3).7.5Precision and Bias Considerations :7.5.1General —As a guide in the choice of apparatus,the pertinent considerations are summarized in Table 2,but it is not implied that the examples enumerated are the only ones applicable.This table is not intended to indicate the limits of sensitivity and error of the various methods per se ,but rather is intended to indicate limits that are distinctly possible with modern apparatus.In any case,such limits can be achieved or exceeded only through careful selection and combination of the apparatus employed.It must be emphasized,however,that the errors considered are those of instrumentation only.Errors such as those discussed in Appendix X1are an entirely different matter.In this latter connection,the last column of Table 2lists the resistance that is shunted by the insulationresistanceFIG.8Liquid Metal Cell for Thin SheetMaterial--`,``,``,````,,,`,,,,,,`,````,`-`-`,,`,,`,`,,`---between the guarded electrode and the guard system for the various methods.In general,the lower such resistance,the less probability of error from undue shunting.N OTE2—No matter what measurement method is employed,the highest precisions are achieved only with careful evaluation of all sources of error.It is possible either to set up any of these methods from the component parts,or to acquire a completely integrated apparatus.In general,the methods using high-sensitivity galvanometers require a more permanent installation than those using indicating meters or recorders.The methods using indicating devices such as voltmeters,galvanometers,d-c amplifiers,and electrometers require the minimum of manual adjustment and are easy to read but the operator is required to make the reading at a particular time.The Wheatstone bridge(Fig.X1.4)and the potentiometer method(Fig.X1.2(b))require the undivided attention of the operator in keeping a balance,but allow the setting at a particular time to be read at leisure.7.5.2Direct Measurements:7.5.2.1Galvanometer-Voltmeter—The maximum percent-age error in the measurement of resistance by the galvanometer-voltmeter method is the sum of the percentage errors of galvanometer indication,galvanometer readability, and voltmeter indication.As an example:a galvanometer having a sensitivity of500pA/scale division will be deflected 25divisions with500V applied to a resistance of40G V (conductance of25pS).If the deflection can be read to the nearest0.5division,and the calibration error(including Ayrton Shunt error)is62%of the observed value,the resultant galvanometer error will not exceed64%.If the voltmeter has an error of62%of full scale,this resistance can be measured with a maximum error of66%when the voltmeter reads full scale,and610%when it reads one-third full scale.The desirability of readings near full scale are readily apparent.7.5.2.2Voltmeter-Ammeter—The maximum percentage er-ror in the computed value is the sum of the percentage errors in the voltages,V x and V s,and the resistance,R s.The errors in V s and R s are generally dependent more on the characteristicsTABLE1Calculation of Resistivity or Conductivity AA All dimensions are in centimetres.of the apparatus used than on the particular method.The most significant factors that determine the errors in V s are indicator errors,amplifier zero drift,and amplifier gain stability.Withmodern,well-designed amplifiers or electrometers,gain stabil-ity is usually not a matter of concern.With existing techniques,the zero drift of direct voltage amplifiers or electrometers cannot be eliminated but it can be made slow enough to be relatively insignificant for these measurements.The zero drift is virtually nonexistent for carefully designed converter-type amplifiers.Consequently,the null method of Fig.X1.2(b )is theoretically less subject to error than those methods employ-ing an indicating instrument,provided,however,that the potentiometer voltage is accurately known.The error in R s is to some extent dependent on the amplifier sensitivity.For mea-surement of a given current,the higher the amplifier sensitivity,the greater likelihood that lower valued,highly precise wire-wound standard resistors can be used.Such amplifiers can be obtained.Standard resistances of 100G V known to 62%,are available.If 10-mV input to the amplifier or electrometer gives full-scale deflection with an error not greater than 2%of full scale,with 500V applied,a resistance of 5000T V can be measured with a maximum error of 6%when the voltmeter reads full scale,and 10%when it reads 1⁄3scale.7.5.2.3Comparison-Galvanometer —The maximum per-centage error in the computed resistance or conductance is given by the sum of the percentage errors in R s ,the galvanom-eter deflections or amplifier readings,and the assumption that the current sensitivities are independent of the deflections.The latter assumption is correct to well within 62%over the useful range (above 1⁄10full-scale deflection)of a good,modern galvanometer (probably 1⁄3scale deflection for a dc current amplifier).The error in R s depends on the type of resistor used,but resistances of 1M V with a limit of error as low as 0.1%are available.With a galvanometer or d-c current amplifier having a sensitivity of 10nA for full-scale deflection,500V applied to a resistance of 5T V will produce a 1%deflection.At this voltage,with the preceding noted standard resistor,and with F s =105,d s would be about half of full-scale deflection,with a readability error not more than 61%.If d x is approxi-mately 1⁄4of full-scale deflection,the readability error would not exceed 64%,and a resistance of the order of 200G V could be measured with a maximum error of 651⁄2%.7.5.2.4Voltage Rate-of-Change —The accuracy of the mea-surement is directly proportional to the accuracy of the measurement of applied voltage and time rate of change of the electrometer reading.The length of time that the electrometer switch is open and the scale used should be such that the time can be measured accurately and a full-scale reading obtained.Under these conditions,the accuracy will be comparable with that of the other methods of measuring current.7.5.2.5Comparison Bridge —When the detector has ad-equate sensitivity,the maximum percentage error in the com-puter resistance is the sum of the percentage errors in the arms,A,B,and N .With a detector sensitivity of 1mV/scale division,500V applied to the bridge,and R N =1G V ,a resistance of 1000T V will produce a detector deflection of one scale division.Assuming negligible errors in R A and R B ,with R N =1G V known to within 62%and with the bridge balanced to one detector-scale division,a resistance of 100T V can be mea-sured with a maximum error of 66%.FIG.9Connections to Guarded Electrode for Volume and Surface Resistivity Measurements (Volume Resistance hook-upshown)FIG.10Connections to Unguarded Electrodes for Volume and Surface Resistivity Measurements (Surface Resistance Hook-UpShown)--`,``,``,````,,,`,,,,,,`,````,`-`-`,,`,,`,`,,`---。

相关文档
最新文档