【考点整合与训练】第十三章 选考部分 第2节 第2课时 不等式的证明
高三数学一轮复习不等式选讲第二节不等式的证明课件文
5.平均值不等式 如果a1、a2、…、an为n个正数,则 a1 ≥a2 n, 当且a仅n 当naa11a2an =a2=…=an时,等号成立.
附:不等式证明的常用方法有:(1)比较法;(2)综合法;(3)分析法;(4)反证
法;(5)放缩法;(6)换元法;(7)构造法.
1.已知a,b∈R+,a+b=2,则 1 +1 的最小值为 ( )
即(a+b)2-4ab<(c+d)2-4cd. 因为a+b=c+d,所以ab>cd. 由(1)得 a+ >b + c . d (ii)若 a+ >b + c , d 则( a+ )b2>( + c )2, d 即a+b+2 a>bc+d+2 . c d 因为a+b=c+d, 所以ab>cd. 于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2. 因此|a-b|<|c-d|. 综上, a+ >b + c 是|da-b|<|c-d|的充要条件.
A. b ≥m b
am a
B. b > m b
am a
C. b ≤m b D. b < m b
am a
am a
答案 B ∵a,b,m∈R+,且a>b,
∴ b -m
am
即 b >m
am
b= m >( a0, b )
a a(a m )
b,故选B.
a
3.若0<a<b<1,则a+b,2 a,ab 2+b2,2ab中最大的一个是 ( ) A.a+b B.2 a b C.a2+b2 D.2ab 答案 A 易知a+b>2 a,ab 2+b2>2ab,故只需比较a+b与a2+b2的大小即 可. (a2+b2)-(a+b)=a(a-1)+b(b-1), ∵0<a<1,0<b<1, ∴a(a-1)+b(b-1)<0, ∴a2+b2<a+b.故选A.
高中数学知识点总结不等式的性质与证明
要点重温之不等式的性质与证明1.在不等式两边非负的条件下能同时平方或开方,具体的:当a>0,b>0时,a>b ⇔a n >b n ; 当a<0,b<0时,a>b ⇔a 2<b 2;a 2>b 2⇔|a|>|b|。
在不等式两边同号的条件下能同时取倒数,但不等号的方向要改变,如:由x 1<2推得的应该是:x>21或x<0,而由x 1>2推得的应该是: 0<x<21(别漏了“0<x ”)等。
[举例]若)(x f =x 2,则)(31)(x f x g -=的值域为 ;3)(11)(++=x f x h 的值域为 。
解析:此题可以“逆求”:分别用g(x)、h(x)表示f(x),解不等式f(x)>0即可。
以下用“取倒数”求:3-f(x)<3,分两段取倒数即0<3-f(x)<3得)(31x f ->31或3-f(x)<0得)(31x f -<0, ∴g(x )∈(-∞,0)∪(31,+∞);f(x)+3>3⇒0<3)(1+x f <31⇒1<h(x)<34。
[巩固1] 若011<<b a ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④2>+ba ab 中,正确的不等式有( ) A .1个 B .2个C .3个D .4个 [巩固2] 下列命题:①若a>b,则ac 2>bc 2;②若ac 2>bc 2,则a>b ;③若a>b,c>d 则a -d>b -c ; ④若a>b,则a 3>b 3;⑤若a>b,则),1lg()1lg(22+>+b a ⑥若a<b<0,则a 2>ab>b 2;⑦若a<b<0,则|a|>|b|;⑧若a<b<0,则b a a b >;⑨若a>b 且b a 11>,则a>0,b<0; ⑩若c>a>b>0,则bc b a c a ->-;其中正确的命题是 。
全国高中数学竞赛讲义:不等式的证明(练习题)
不等式的证明课后练习1.选择题(1) 方程 x2-y 2=105 的正整数解有 (.. ).( A)一组(B)二组.(C)三组.(D)四组(2) 在 0,1,2, , 50 这 51 个整数中,能同时被2,3,4 整除的有( ..).(A)3 个(B)4 个.(C)5个.(D)6个2.填空题(1)的个位数分别为 _________及_________.(2) 满足不等式104≤A≤105的整数A的个数是x×104+1,则x的值________.(3)已知整数 y 被 7 除余数为 5, 那么 y3被 7 除时余数为 ________.(4)求出任何一组满足方程 x2-51y 2=1 的自然数解 x 和 y_________. 3.求三个正整数 x、 y、z 满足.4.在数列 4,8,17,77,97,106,125,238 中相邻若干个数之和是 3 的倍数,而不是 9 的倍数的数组共有多少组?5.求的整数解.6.求证可被37整除.7.求满足条件的整数x,y的所有可能的值.8.已知直角三角形的两直角边长分别为 l 厘米、m厘米,斜边长为 n 厘米,且 l ,m, n 均为正整数, l 为质数 . 证明: 2(l+m+n)是完全平方数 .9. 如果 p、 q、、都是整数,并且p>1,q>1,试求 p+q 的值 .课后练习答案1.D.C.2.(1)9及1.....(2)9....(3)4.(4) 原方程可变形为x2=(7y+1) 2+2y(y-7),令y=7可得x=50.3. 不妨设 x≤y≤z, 则, 故 x≤3. 又有故x≥2.若x=2,则,故 y≤6. 又有, 故 y≥4. 若 y=4, 则 z=20. 若 y=5, 则 z=10. 若 y=6, 则 z 无整数解 . 若 x=3, 类似可以确定 3≤y≤4,y=3 或 4,z 都不能是整数 . 4.可仿例 2 解.5.分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换..的方法.略解: a2b22ab,同理 b2c32bc, c2a22ca ;三式相加再除以2即得证 .评述:( 1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.如 x12x22x n2x1 x2x n,可在不等式两边同时加上x2x3x n x1 .x2x3x1再如证 (a1)(b1)(a c) 3 (b c) 3256a 2b 2c3 (a,b, c 0) 时,可连续使用基本不等式.(2)基本不等式有各种变式a b2a2b2如 ()2等.但其本质特征不等式两边的次数及2系数是相等的 .如上式左右两边次数均为2,系数和为 1.222226.8888 ≡8(mod37), ∴8888≡8(mod37).3333322223333 2 3而7777≡7(mod37),7777 ≡7(mod37),8888 +7777 ≡(8 +7 )(mod37), 82+73=407,37|407, ∴37|N.7. 简解 : 原方程变形为 3x 2-(3y+7)x+3y 2-7y=0 由关于 x 的二次方程有解的条件△≥0及 y 为整数可得 0≤y ≤5, 即 y=0,1,2,3,4,5. 逐一代入原方程可知 , 原方程仅有两组解 (4,5) 、(5,4).2 2 2 2 2,n-m=1. 于是8. ∵l +m=n , ∴l =(n+m)(n- m). ∵l 为质数 , 且 n+m > n-m >0, ∴n+m=l 22 2 +2l+1=(l+1) 2是 l =n+m=(m+1)+m=2m+1,2m=l-1,2(l+m+1)=2l+2+2m=l . 即 2(l+m+1) 完全平方数 .9. 易知 p ≠q, 不妨设 p >q. 令=n, 则 m >n 由此可得不定方程(4-mn)p=m+2, 解此方程可得 p 、q 之值 .。
高考数学二轮复习考点知识讲解与练习72---不等式的证明
高考数学二轮复习考点知识讲解与练习第72讲不等式的证明考点知识:通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知识梳理1.基本不等式定理1:如果a,b∈R,那么a2+b2≥2ab,当且仅当a=b时,等号成立.定理2:如果a,b>0,那么a+b2≥ab,当且仅当a=b时,等号成立,即两个正数的算数平均不小于(即大于或等于)它们的几何平均.定理3:如果a,b,c∈(0,+∞),那么a+b+c3≥3abc,当且仅当a=b=c时,等号成立.2.不等式的证明(1)比较法①作差法(a,b∈R):a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.②作商法(a>0,b>0):ab>1⇔a>b;ab<1⇔a<b;ab=1⇔a=b.(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法.1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等.3.几个重要不等式(1)ba+ab≥2(a,b同号);(2)a2+b2+c2≥ab+bc+ca.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )答案(1)×(2)√(3)×(4)×解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.2.若a>b>1,x=a+1a,y=b+1b,则x与y的大小关系是( )A.x>y B.x<y C.x≥y D.x≤y 答案 A解析x-y=a+1a-⎝⎛⎭⎪⎫b+1b=a-b+b-aab=(a-b)(ab-1)ab.由a>b>1得ab>1,a-b>0,所以(a-b)(ab-1)ab>0,即x-y>0,所以x>y.3.已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.答案M≥N解析M-N=2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b,即M≥N.4.已知a+b+c>0,ab+bc+ac>0,abc>0,用反证法求证a>0,b>0,c>0时的假设为( ) A.a<0,b<0,c<0 B.a≤0,b>0,c>0C.a,b,c不全是正数 D.abc<0答案 C5.(2021·聊城模拟)下列四个不等式:①log x10+lg x≥2(x>1);②|a-b|<|a|+|b|;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确;ab ≤0时,|a -b |=|a |+|b |,②不正确; 因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确;由|x -1|+|x -2|的几何意义知, |x -1|+|x -2|≥1恒成立,④也正确, 综上①③④正确.6.(2021·西安调研)已知a >0,b >0且ln(a +b )=0,则1a +1b的最小值是________.答案 4解析 由ln(a +b )=0,得a +b =1.又a >0,b >0,∴1a +1b =a +b a +a +b b =2+b a +ab≥2+2b a ·a b =4.当且仅当a =b =12时,等号成立.故1a +1b的最小值为4.考点一 比较法证明不等式【例1】 设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由. (1)证明 设f (x )=|x -1|-|x +2|=⎩⎨⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12.因此集合M =⎝ ⎛⎭⎪⎫-12,12,则|a |<12,|b |<12.所以⎪⎪⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14.(2)解 由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=16a 2b 2-4a 2-4b 2+1=(4a 2-1)(4b 2-1)>0,所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |. 感悟升华 比较法证明不等式的方法与步骤 (1)作差比较法:作差、变形、判号、下结论. (2)作商比较法:作商、变形、 判断、下结论.提醒 ①当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法. ②当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法. 【训练1】 设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是________. 答案s ≥t解析 s -t =a +b 2+1-(a +2b )=b 2-2b +1=(b -1)2≥0,∴s ≥t . 考点二 综合法证明不等式【例2】(2022·全国Ⅲ卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34. 证明 (1)由题设可知,a ,b ,c 均不为零, 所以ab +bc +ca =12[(a +b +c )2-(a 2+b 2+c 2)]=-12(a 2+b 2+c 2)<0. (2)不妨设max{a ,b ,c }=a .因为abc =1,a =-(b +c ),所以a >0,b <0,c <0.由bc ≤(b +c )24,可得abc ≤a 34,当且仅当b =c =-a2时取等号,故a ≥34,所以max{a ,b ,c }≥34.感悟升华 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】 已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 又abc =1,故有a2+b2+c2≥ab+bc+ca=ab+bc+caabc=1a+1b+1c.当且仅当a=b=c=1时,等号成立.所以1a+1b+1c≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥33(a+b)3(b+c)3(c+a)3=3(a+b)(b+c)(c+a)≥3×(2ab)×(2bc)×(2ca)=24.当且仅当a=b=c=1时,等号成立,所以(a+b)3+(b+c)3+(c+a)3≥24.考点三分析法证明不等式【例3】(2021·哈尔滨一模)设a,b,c>0,且ab+bc+ca=1. 求证:(1)a+b+c≥3;(2)abc+bac+cab≥3(a+b+c).证明(1)要证a+b+c≥3,由于a,b,c>0,因此只需证明(a+b+c)2≥3,即证a2+b2+c2+2(ab+bc+ca)≥3,又ab+bc+ca=1,故需证明a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca),即证a2+b2+c2≥ab+bc+ca.又易知ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立),∴原不等式成立.(2)abc+bac+cab=a+b+cabc.由于(1)中已证a+b+c≥3,因此要证原不等式成立,只需证明1abc≥a+b+c,即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.又a bc=ab·ac≤ab+ac2,b ac≤ab+bc2,c ab≤bc+ca2,∴a bc+b ac+c ab≤ab+bc+ca(a=b=c=33时等号成立).∴原不等式成立.感悟升华 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件【训练3】已知a>b>c,且a+b+c=0,求证:b2-ac<3a. 证明要证b2-ac<3a,只需证b2-ac<3a2.因为a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.因为a>b>c,所以a-b>0,a-c>0,所以(a-b)(a-c)>0显然成立,故原不等式成立.1.(2021·江西协作体联考)(1)已知x,y是实数,求证:x2+y2≥2x+2y-2;(2)用分析法证明:6+7>22+ 5.证明(1)(x2+y2)-(2x+2y-2)=(x2-2x+1)+(y2-2y+1)=(x-1)2+(y-1)2,而(x -1)2≥0,(y-1)2≥0,∴(x2+y2)-(2x+2y-2)≥0,∴x2+y2≥2x+2y-2.(2)要证6+7>22+5,只需证(6+7)2>(22+5)2成立,即证13+242>13+240成立,即证42>40成立,即证42>40成立,因为42>40显然成立,所以原不等式成立.2.(2022·兰州诊断)函数f(x)=x2-2x+1+24-4x+x2.(1)求f(x)的值域;(2)若关于x的不等式f(x)-m<0有解,求证:3m+2m-1>7.解f(x)=x2-2x+1+24-4x+x2=|x-1|+2|x-2|.(1)当x ≥2时,f (x )=3x -5≥1; 当1<x <2时,f (x )=3-x,1<f (x )<2; 当x ≤1时,f (x )=5-3x ≥2. 综上可得,函数的值域为[1,+∞). (2)证明 若关于x 的不等式f (x )-m <0有解, 则f (x )<m 有解,故只需m >f (x )min ,即m >1, ∴3m +2m -1=3(m -1)+2m -1+3≥26+3>7,原式得证. 3.(2021·沈阳五校协作体联考)已知a ,b ,c ,d 均为正实数. (1)求证:(a 2+b 2)(c 2+d 2)≥(ac +bd )2; (2)若a +b =1,求证:a 21+a+b 21+b ≥13. 证明 (1)(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2≥a 2c 2+2abcd +b 2d 2=(ac +bd )2. 当且仅当ad =bc 时取等号.(2)3⎝ ⎛⎭⎪⎫a 21+a +b 21+b =⎝ ⎛⎭⎪⎫a 21+a +b 21+b (1+a +1+b )=a 2+1+b 1+a ·a 2+1+a 1+b ·b 2+b 2≥a 2+2ab+b 2=(a +b )2=1,当且仅当a =b =12时取等号,所以a 21+a+b 21+b ≥13. 4.(2021·西安质检)已知a >0,b >0,c >0,且a +b +c =1. (1)求证:a 2+b 2+c 2≥13;(2)求证:a 2b +b 2c +c 2a≥1.证明(1)∵a2+b2≥2ab(当且仅当a=b时,取“=”),b2+c2≥2bc(当且仅当b=c时,取“=”),c2+a2≥2ca(当且仅当a=c时,取“=”),∴a2+b2+c2≥ab+bc+ca,∵(a+b+c)2=1,∴a2+b2+c2+2ab+2bc+2ca=1,∴3(a2+b2+c2)≥1,即a2+b2+c2≥1 3 .(2)∵a2b+b≥2a(当且仅当a=b时,取“=”),b2c+c≥2b(当且仅当b=c时,取“=”),c2a+a≥2c(当且仅当a=c时,取“=”),∴a2b+b2c+c2a+(a+b+c)≥2(a+b+c),即a2b+b2c+c2a≥a+b+c,∵a+b+c=1,∴a2b+b2c+c2a≥1.5.(2021·开封一模)已知a,b,c为一个三角形的三边长.证明:(1)ba+cb+ac≥3;(2)(a+b+c)2a+b+c>2.证明(1)因为a,b,c为一个三角形的三边长,所以ba+cb+ac≥33ba·cb·ac=3⎝⎛⎭⎪⎫当且仅当ba=cb=ac时,取等号,所以不等式得证.(2)由于a ,b ,c 为一个三角形的三边长,则有 (b +c )2=b +c +2bc >a ,即b +c >a , 所以ab +ac =a (b +c )>a , 同理,ab +bc >b ,ac +bc >c ,三式相加得2ac +2bc +2ab >a +b +c ,左右两边同加a +b +c 得(a +b +c )2>2(a +b +c ), 所以(a +b +c )2a +b +c>2,不等式得证. 6.(2022·贵阳诊断)∀a ∈R ,|a +1|+|a -1|的最小值为M .(1)若三个正数x ,y ,z 满足x +y +z =M ,证明:x 2y +y 2z +z 2x≥2; (2)若三个正数x ,y ,z 满足x +y +z =M ,且(x -2)2+(y -1)2+(z +m )2≥13恒成立,求实数m 的取值范围.(1)证明 由∀a ∈R ,|a +1|+|a -1|≥|a +1-a +1|=2,当且仅当-1≤a ≤1时取等号,得x +y +z =2,即M =2. 又x ,y ,z >0,所以x 2y +y ≥2x 2y ·y =2x , 同理可得y 2z +z ≥2y ,z 2x +x ≥2z , 三式相加可得,x 2y +y 2z +z 2x≥x +y +z =2, 当且仅当x =y =z =23时,取等号, 所以x 2y +y 2z +z 2x≥2.(2)解(x-2)2+(y-1)2+(z+m)2≥13恒成立,等价于13≤[(x-2)2+(y-1)2+(z+m)2]min,由(12+12+12)[(x-2)2+(y-1)2+(z+m)2]≥(x-2+y-1+z+m)2=(m-1)2,当且仅当x-2=y-1=z+m时取等号,可得13≤13(m-1)2,即|m-1|≥1,解得m≥2或m≤0,即m的取值范围是(-∞,0]∪[2,+∞).。
(江苏专用)2020版高考数学总复习第二节不等式的证明和几个重要不等式的应用课件苏教版选修4_5
证:a2+2b2+c2≥10.
证明
由柯西不等式得[a2+( 2
b)2+c2]·12
2 2
2
12
≥(a+b+c)2.
因为a+b+c=5,所以(a2+2b2+c2)· 5 ≥25.
2
所以a2+2b2+c2≥10,当且仅当a=2b=c=2时取等号.
方法技巧 基本不等式、均值不等式是证明不等式的重要工具,注意基本不等式的 正向应用、逆向应用和变形应用以及不等式应用的条件.
3-1 (2018江苏四校高三调研)已知x,y均为正数,且x>y,求证:2x+
x2
1 2xy
y
2
≥2y+3.
证明 因为x>0,y>0,x-y>0,
所以2x+ x2
2.不等式证明的其他方法和技巧
(1)反证法 从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从 而肯定结论是正确的证明方法. (2)放缩法 欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得A≥C1 ≥C2≥…≥Cn≥B,利用传递性达到证明的目的.
3.柯西不等式
若a、b、c、d均为实数,则③ (a2+b2)(c2+d2)≥(ac+bd)2 ,当且仅当ad= bc时取等号. 柯西不等式的一般形式:设a1、a2、…、an、b1、b2、…、bn为实数,则( a12 + a22 +…+ an2 )( b12+ b22+…+ bn2)≥(a1b1+a2b2+…+anbn)2,当且仅当bi=0(i=1,2, …,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.
2 第2讲 不等式的证明
第2讲 不等式的证明1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等.若a >b >1,证明:a +1a >b +1b.证明:a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0, 所以(a -b )(ab -1)ab >0.即a +1a -⎝⎛⎭⎫b +1b >0, 所以a +1a >b +1b.已知a >0,b >0,c >0,且a ,b ,c 不全相等,求证:bc a +ac b +abc >a +b +c .证明:因为a ,b ,c ∈(0,+∞),所以bc a +acb≥2bc a ·acb=2c . 同理ac b +ab c ≥2a ,ab c +bca≥2b .因为a ,b ,c 不全相等,所以上述三个不等式中至少有一个等号不成立,三式相加,得2⎝⎛⎭⎫bc a +ac b +ab c >2(a +b +c ),即bc a +ac b +abc>a +b +c .用综合法、分析法证明不等式(师生共研)(一题多解)(2017·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 法一(综合法):(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24·(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.法二(分析法):(1)因为a >0,b >0,a 3+b 3=2. 要证(a +b )(a 5+b 5)≥4,只需证(a +b )(a 5+b 5)≥(a 3+b 3)2, 再证a 6+ab 5+a 5b +b 6≥a 6+2a 3b 3+b 6, 再证a 4+b 4≥2a 2b 2,因为(a 2-b 2)2≥0,即a 4+b 4≥2a 2b 2成立. 故原不等式成立.(2)要证a +b ≤2成立,只需证(a +b )3≤8, 再证a 3+3a 2b +3ab 2+b 3≤8, 再证ab (a +b )≤2, 再证ab (a +b )≤a 3+b 3,再证ab (a +b )≤(a +b )(a 2-ab +b 2),即证ab ≤a 2-ab +b 2显然成立. 故原不等式成立.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.1.(2019·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6,解得-1<x <9,所以m =-1,n =9. (2)证明:由(1)知9x +y =1,又x >0,y >0, 所以⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,所以1x +1y≥16,即x +y ≥16xy .2.(2019·长春市质量检测(一))设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.解:(1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2得-1<x <1,即A ={x |-1<x <1}.(2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1-a 2b 2>c 2(1-a 2b 2), 只需证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立.综上,⎪⎪⎪⎪⎪⎪1-abc ab -c>1.放缩法证明不等式(师生共研)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1. (2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.反证法证明不等式(师生共研)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎢⎡⎦⎥⎤(1-a )+a 22=14.同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾. (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0. 证明:①设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. ②若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.[基础题组练]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立,只需证a +b a +a +b b ≥4成立,即证b a +a b ≥2成立,因为a >0,b >0,所以b a +ab≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2. 3.(2019·长春市质量检测(二))已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎨⎧3-2x +6-3x ⎝⎛⎭⎫x <322x -3+6-3x ⎝⎛⎭⎫32≤x ≤22x -3+3x -6(x >2)=⎩⎨⎧-5x +9⎝⎛⎭⎫x <32-x +3⎝⎛⎭⎫32≤x ≤25x -9(x >2),其图象如图,由图象可知:f (x )<2的解集为⎝⎛⎭⎫75,115.(2)证明:由图象可知f (x )的最小值为1,由基本不等式可知a +b2≤a +b2=14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12,所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.[综合题组练]1.设a ,b ,c ∈(0,+∞),且a +b +c =1. (1)求证:2ab +bc +ca +c 22≤12;(2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.证明:(1)要证2ab +bc +ca +c 22≤12,只需证1≥4ab +2bc +2ca +c 2,即证1-(4ab +2bc+2ca +c 2)≥0,而1-(4ab +2bc +2ca +c 2)=(a +b +c )2-(4ab +2bc +2ca +c 2)=a 2+b 2-2ab =(a -b )2≥0成立,所以2ab +bc +ca +c 22≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca,所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +ca +c ⎝⎛⎭⎫ab +b a ≥2a +2b +2c =2(当且仅当a =b =c =13时,等号成立). 2.(2019·新疆自治区适应性检测)设函数f (x )=|2x +1|-|2x -4|,g (x )=9+2x -x 2. (1)解不等式f (x )>1;(2)证明:|8x -16|≥g (x )-2f (x ).解:(1)当x ≥2时,f (x )=2x +1-(2x -4)=5>1恒成立,所以x ≥2. 当-12≤x <2时,f (x )=2x +1-(4-2x )=4x -3>1,得x >1,所以1<x <2.当x <-12时,f (x )=-2x -1-(4-2x )=-5>1不成立.综上,原不等式的解集为(1,+∞).(2)证明:|8x -16|≥g (x )-2f (x )⇔|8x -16|+2f (x )≥g (x ),因为2f (x )+|8x -16|=|4x +2|+|4x -8|≥|(4x +2)-(4x -8)|=10,当且仅当-12≤x ≤2时等号成立,所以2f (x )+|8x -16|的最小值是10,又g (x )=-(x -1)2+10≤10,所以g (x )的最大值是10,当x =1时等号成立. 因为1∈⎣⎡⎦⎤-12,2,所以2f (x )+|8x -16|≥g (x ), 所以|8x -16|≥g (x )-2f (x ).3.(2019·四川成都模拟)已知函数f (x )=m -|x -1|,m ∈R ,且f (x +2)+f (x -2)≥0的解集为[-2,4].(1)求m 的值;(2)若a ,b ,c 为正数,且1a +12b +13c =m ,求证:a +2b +3c ≥3.解:(1)由f (x +2)+f (x -2)≥0得,|x +1|+|x -3|≤2m , 设g (x )=|x +1|+|x -3|,则g (x )=⎩⎪⎨⎪⎧-2x +2,x ≤-1,4,-1<x <3,2x -2,x ≥3,数形结合可得g (-2)=g (4)=6=2m ,得m =3. (2)证明:由(1)得1a +12b +13c=3.由柯西不等式,得(a +2b +3c )⎝⎛⎭⎫1a +12b +13c ≥⎝⎛⎭⎫a ·1a+2b ·12b+3c ·13c 2=32, 所以a +2b +3c ≥3.4.(2019·高考全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值.(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.解:(1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)]≤3[(x -1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2],故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。
高考数学一轮复习 不等式选讲 第2讲 不等式的证明习题
[B 级 能力达标]
5.求证:1×1 3+3×1 5+5×1 7+…+2n-112n+1<12(n
∈N*).
证明 ∵2n-112n+1=122n1-1-2n1+1
∴
左
边
=
1 2
1-13+13-15+…+2n1-1-2n1+1
S<a+a b+a+b b+c+c d+c+d d=2,
∴1<S<2.故选 B.
2.[2018·驻马店期末]若 x1,x2,x3∈(0,+∞),则 3
个数xx12,xx23,xx31的值(
)
A.至多有一个不大于 1
B.至少有一个不大于 1
C.都大于 1
D.都小于 1
解析 故选 B.
解法一:设 x1≤x2≤x3,则xx12≤1,xx23≤1,xx31≥1.
17,联立求解得
1+ 2<a< 2
17 .
综上,a
的取值范围为
1+ 1<a< 2
17 .
7.[2018·龙门县校级模拟]已知函数 f(x)=|2x-1|. (1)若不等式 fx+12≤2m+1(m>0)的解集为[-2,2],求 实数 m 的值; (2)对任意 x∈R,y>0,求证:f(x)≤2y+24y+|2x+3|.
=
1 2
1-2n1+1<12.
6.[2018·泸州模拟]设函数 f(x)=x-4a+|x+a|(a>0). (1)证明:f(x)≥4; (2)若 f(2)<5,求 a 的取值范围.
解 (1)证明:x-4a+|x+a|≥x+a+4a-x=a+4a≥4; 当且仅当 a=2 时取等号.
板块三 模拟演练·提能增分
初中数学重点梳理:不等式的证明和应用
不等式的证明和应用知识定位不等式是数学竞赛的热点之一。
由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。
而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。
证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。
但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。
知识梳理1. 不等式三个基本性质:① 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
② 不等式两边都乘(或除以)同一个正数,不等号的方向不变。
③ 不等式两边都乘(或除以)同一个负数,不等号的方向改变。
2. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
设a>b,不等式组⎩⎨⎧>>b x ax 的解集是x>a ⎩⎨⎧<<b x ax 的解集是x<b ⎩⎨⎧<>ax bx 的解集是 b<x<a ⎩⎨⎧<>bx ax 的解集是空集 3.不等式证明的基本方法:(1)比较法比较法可分为差值比较法和商值比较法。
差值比较法:原理 A - B >0A >B .商值比较法:原理 若>1,且B>0,则A>B 。
3.不等式的应用:(1)几何中证明线段或角的不等关系常用以下定理①三角形任意边两边的和大于第三边,任意两边的差小于第三边。
②三角形的一个外角等于和它不相邻的两个内角和。
③在一个三角形中,大边对大角,大角对大边。
直角三角形中,斜边大于任一直角边。
④有两组边对应相等的两个三角形中如果这两边的夹角大,那么第三边也大;如果第三边大,那么它所对的角也大。
⑤任意多边形的每一边都小于其他各边的和(2)不等式(组)的应用主要表现在:作差或作商比较数的大小;求代数式的取值范围;求代数式的最值,列不等式(组)解应用题.其中,不等式(组)解应用题与列方程解应用题的步骤相仿,一般步骤是:(1)弄清题意和题中的数量关系,用字母表示未知数;(2)找出能够表示题目全部含义的一个或几个不等关系;(3)列出不等式(组);(4)解这个不等式(组),求出解集并作答.例题精讲【试题来源】【题目】已知x<0,-1<y<0,将x,xy,xy2按由小到大的顺序排列.【答案】x<xy2<xy.【解析】分析用作差法比较大小,即若a-b>0,则a>b;若a-b<0,则a<b.解因为x-xy=x(1-y),并且x<0,-1<y<0,所以x(1-y)<0,则x<xy.因为xy2-xy=xy(y-1)<0,所以xy2<xy.因为x-xy2=x(1+y)(1-y)<0,所以x<xy2.综上有x<xy2<xy.【知识点】不等式的证明和应用【适用场合】当堂例题【难度系数】2【试题来源】【题目】若试比较A,B的大小.【答案】A>B【解析】显然,2x>y,y>0,所以2x-y>0,所以A-B>0,A>B.【知识点】不等式的证明和应用【适用场合】当堂练习题【难度系数】3【试题来源】【题目】若正数a,b,c满足不等式组试确定a,b,c的大小关系.【答案】b<c<a【解析】解①+c得②+a得③+b得由④,⑤得所以c<a.同理,由④,⑥得b<c.所以a,b,c的大小关系为b<c<a.【知识点】不等式的证明和应用【适用场合】当堂例题【难度系数】3【试题来源】【题目】当k取何值时,关于x的方程3(x+1)=5-kx分别有(1)正数解;(2)负数解;(3)不大于1的解.【答案】k≥-1或k<-3.【解析】解将原方程变形为(3+k)x=2.(1)当 3+k>0,即k>-3时,方程有正数解.(2)当3+k<0,即k<-3时,方程有负数解.(3)当方程解不大于1时,有所以1+k,3+k应同号,即得解为k≥-1或k<-3.注意由于不等式是大于或等于零,所以分子1+k可以等于零,而分母是不能等于零的。
高考备考指南文科数学第13章第4讲不等式的证明
件.
栏目索引
第十三章 选考部分
高考备考指南
文科数学
【跟踪训练】
3.(2018 年银川模拟)已知 x,y,z 是正实数,且 x+2y+3z=1.
(1)求1x+1y+1z的最小值;
(2)求证:x2+y2+z2≥114.
栏目索引
第十三章 选考部分
高考备考指南
文科数学
【
解
析
】
(1)
由
柯
西
不
等
式
,
得
1 x
栏目索引
第十三章 选考部分
高考备考指南
文科数学
【解析】(1)证明:因为( 3x+1+ 3y+2+ 3z+3)2≤(12+12+12)(3x+1+3y+
2+3z+3)=27,所以 3x+1+ 3y+2+ 3z+3≤3 3.
当且仅当 x=23,y=13,z=0 时取等号.
(2)因为 6=x+2y+3z≤ x2+y2+z2· 1+4+9,所以 x2+y2+z2≥178,当且仅当 x
栏目索引
又 a,b 均为正数,所以 a(a-1)x2+b(b-1)y2+2abxy=-ab(x2+y2-2xy)=-ab(x -y)2≤0,当且仅当 x=y 时等号成立.所以(ax+by)2≤ax2+by2.
第十三章 选考部分
高考备考指南
文科数学
(2)a+1a2+b+1b2=4+a2+b2+a12+b12=4+a2+b2+a+a2b2+a+b2b2=4+a2 +b2+1+2ab+ba22+ab22+2ba+1=4+(a2+b2)+2+2ba+ab+ba22+ab22≥4+a+2 b2+2+ 4+2=225,当且仅当 a=b 时等号成立.
栏目索引
2019届高考数学一轮复习选修部分不等式选讲第2讲不等式的证明知能训练及解析-经典汇编
第2讲不等式的证明1.如果x>0,比较(x-1)2与(x+1)2的大小.解:(x-1)2-(x+1)2=[(x-1)+(x+1)][(x-1)-(x+1)]=-4x.因为x>0,所以x>0,所以-4x<0,所以(x-1)2<(x+1)2.2.设a>b>0,求证:a2-b2a2+b2>a-ba+b.证明:法一:a2-b2a2+b2-a-ba+b=a3-b3-ab2+a2b-a3+b3+a2b-ab2(a2+b2)(a+b)=2a2b-2ab2(a2+b2)(a+b)=2ab(a-b)(a2+b2)(a+b),因为a>b>0,所以a-b>0,ab>0,a2+b2>0,a+b>0.所以a 2-b 2a 2+b 2-a -b a +b >0, 所以a 2-b 2a 2+b 2>a -b a +b . 法二:因为a>b>0,所以a +b>0,a -b>0.所以a 2-b2a 2+b 2a -b a +b =a 2-b 2a 2+b 2·a +b a -b=(a +b )2a 2+b 2 =a 2+b 2+2ab a 2+b 2 =1+2aba 2+b 2>1. 所以a 2-b 2a 2+b 2>a -b a +b . 3.(2015·高考湖南卷)设a>0,b>0,且a +b =1a +1b.证明: (1)a +b ≥2;(2)a 2+a<2与b 2+b<2不可能同时成立. 证明:由a +b =1a +1b =a +b ab,a>0,b>0,得ab =1. (1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2.(2)假设a 2+a<2与b 2+b<2同时成立,则由a 2+a<2及a>0,得0<a<1; 同理,0<b<1,从而ab<1,这与ab =1矛盾.故a 2+a<2与b 2+b<2不可能同时成立. 4.已知a ,b ,c 均为正实数,且互不相等,且abc =1,求证:a +b +c<1a +1b +1c. 证明:法一:因为a ,b ,c 均为正实数,且互不相等,且abc =1, 所以a +b +c = 1bc + 1ca + 1ab <1b +1c 2+1c +1a 2+1a +1b 2=1a +1b +1c . 所以a +b +c<1a +1b +1c. 法二:因为1a +1b ≥21ab=2c ; 1b +1c ≥21bc =2a ;1c +1a ≥21ac=2 b. 所以以上三式相加,得1a +1b +1c ≥a +b + c. 又因为a ,b ,c 互不相等,所以1a +1b +1c >a +b + c. 法三:因为a ,b ,c 是不等正数,且abc =1,所以1a +1b +1c =bc +ca +ab =bc +ca 2+ca +ab 2+ab +bc 2>abc 2+a 2bc +ab 2c =a +b + c. 所以a +b +c<1a +1b +1c.5.(2014·高考课标全国卷Ⅰ)若a>0,b>0,且1a +1b =ab. (1)求a 3+b 3的最小值; (2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.6.(2016·贵州省六校第一次联考)已知a>0,b>0,a +b =1,求证:(1)1a +1b +1ab≥8; (2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明:(1)因为a +b =1,a>0,b>0,所以1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b =2⎝⎛⎭⎫a +b a+a +b b=2⎝⎛⎭⎫b a +a b +4≥4 b a ×a b +4=8⎝⎛⎭⎫当且仅当a =b =12时,等号成立, 所以1a +1b +1ab≥8. (2)因为⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1a +1b +1ab+1, 由(1)知1a +1b +1ab ≥8.所以⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9.。
2019版高考数学一轮复习 选考部分 不等式选讲 2 证明不等式的基本方法
K12教育课件
10
【证明】因为a,b,c∈(0,+∞),所以
同理
因为a,b,c不全相等,
所以上述三个不等式中至少有一个等号不成立,三式
相加,得
>2(a+b+c),即
>a+b+c.
ac+ab 2a,ab+bc 2b. bc ca
bc+ac 2 bc ac=2c. a b ab
2( bc+ ac+ ab ) abc
题号 1 2 3 4
知识点
作差法比 较大小
综合法
分析法
作差法比 较大小
K12教育课件
源自教材 P21·例1 P23·例1 P24·例3 P26·习题2.2T7
15
考向一 综合法证明不等式
【典例1】(2015·全国卷Ⅱ)设a,b,c,d均为正数,且
a+b=c+d.证明:
(1)若ab>cd,则
(2)
是|a-b|<|c-d|的充要条件.
4 2 2 2 2 2 2 16,
bc+ac+ab abc
K12教育课件
11
3.求证:
【证明】
3 7 2 6.
故原不等式成立.
2
2
3 7 2 6 3 7 2 6
10 2 21 10 4 6 21 2 6 21 24.
K12教育课件
12
4.已知a>0且a≠1,P=loga(a3+1),Q=loga(a2+1), 试比较P,Q的大小. 【解析】P-Q=loga(a3+1)-loga(a2+1)= 当0<a<1时,0<a3+1<a2+1,0< <1,所以 即P-Q>0,所以P>Q.
高考数学(人教B版 文科)总复习课件:13-2-2不等式的证明
3 .反证法
先假设要证的命题___不__成__立____,以此为出发点,结
合已知条件,应用公理、定义、定理、性质等,进行正
确推的理_____,得到和命题的条件(或已证明的定理、性质
、明显成立的事矛实盾等)______
的结论,不以正说确明假设
_________,从而证明原命题成立,我们把它称为反证
法.
4 .放缩法 证明不等式时,通过把所证不等式的一边适当地放大 ___缩__小或_____,以利于化简,并使它与不等式的另一边 的不等关系更为明显,从而得出原不等式成立,这种方 法称为放缩法.
5 .数学归纳法
数学归纳法证明不等式的一般步骤:
(1)证明当_n_=___n_0_时命题成立; (2)假设当_n_=__k_ (k ∈N *,且k ≥n 0 )时命题成立,证明n =k +1
________
时命题也成立.
综合(1)(2)可知,结论对于任意n ≥n 0 ,且n 0 ,n ∈N *都成
立.
【方法规律】 用综合法证明不等式是“由因导果”, 用分析法证明不等式是“执果索因”,它们是两种思路截 然相反的证明方法.综合法往往是分析法的逆过程,表 述简单、条理清楚,所以在实际应用时,往往用分析法 找思路,用综合法写步骤,由此可见,分析法与综合法 相互转化,互相渗透,互为前提,充分利用这一辩证关 系,可以增加解题思路,开阔视野.
届高考数学一轮总复习 第13章 不等式选讲 第2节 不等式的证明课件 理 新人教版
最小值为________. 解析:把 a+b+c=1 代入1a+1b+1c得 a+ab+c+a+bb+c+a+cb+c
=3+ba+ab
+ac+ac
+bc+bc
≥3+2+2+2=9,
当且仅当 a=b=c=13时,等号成立. 答案:9
考点一 比较法证明不等式 基础送分型考点——自主练透
[题组练透] 1.(2016·莆田模拟)设 a,b 是非负实数,
[由题悟法] 1.综合法证明不等式的方法 综合法证明不等式,要着力分析已知与求证之间,不等 式的左右两端之间的差异与联系.合理进行转换,恰当选择 已知不等式,这是证明的关键.
2.综合法证明时常用的不等式 (1)a2≥0. (2)|a|≥0. (3)a2+b2≥2ab,它的变形形式有: a2+b2≥2|ab|;a2+b2≥-2ab;(a+b)2≥4ab; a2+b2≥12(a+b)2;a2+2 b2≥a+2 b2. (4)a+2 b≥ ab,它的变形形式有: a+1a≥2(a>0);ab+ba≥2(ab>0); ab+ba≤-2(ab<0).
求证:a2+b2≥ ab(a+b).
证明:因为 a2+b2- ab(a+b)
=(a2-a ab)+(b2-b ab)
=a a( a- b)+b b( b- a)
=( a- b)(a a-b b)
1
13
3
=(a 2 -b 2 )(a 2 -b 2 ),
因为 a≥0,b≥0,所以不论 a≥b≥0,还是 0≤a≤b,都
1
1
3
3
1
13
3
有 a 2 -b 2 与 a 2 -b 2 同号,所以(a 2 -b 2 )(a 2 -b 2 )≥0,
走向高考高三数学一轮北师大基础巩固:第章 选修 第节 不等式的证明
第十三章 选修4-5 第二节一、选择题1.若实数x ,y 适合不等式xy >1,x +y ≥-2,则( )A .x >0,y >0B .x <0,y <0C .x >0,y <0D .x <0,y >0 [答案] A[解析] x ,y 异号时,显然与xy >1矛盾,所以可排除C 、D .假设x <0,y <0,则x <1y. ∴x +y <y +1y≤-2与x +y ≥-2矛盾,故假设不成立. 又xy ≠0,∴x >0,y >0.2.已知x ,y ∈R ,M =x 2+y 2+1,N =x +y +xy ,则M 与N 的大小关系是( )A .M ≥NB .M ≤NC .M =ND .不能确定 [答案] A[解析] M -N =x 2+y 2+1-(x +y +xy )=12[(x 2+y 2-2xy )+(x 2-2x +1)+(y 2-2y +1)] =12[(x -y )2+(x -1)2+(y -1)2]≥0.故M ≥N . 3.(2014·南昌第一次模拟)若x >1,则函数y =x +1x +16x x 2+1的最小值为( ) A .16B .8C .4D .非上述情况[答案] B[解析] y =x +1x +16x x 2+1=x +1x +16x +1x≥216=8,当且仅当x =2+3时等号成立. 二、填空题4.若1a <1b<0,则下列四个结论: ①|a |>|b |;②a +b <ab ;③b a +a b >2;④a 2b<2a -B . 其中正确的是________.[答案] ②③④[解析] 取特殊值a =-1,b =-2,代入验证得②③④正确.5.若T 1=2s m +n,T 2=s (m +n )2mn ,则当s ,m ,n ∈R +时,T 1与T 2的大小为________. [答案] T 1≤T 2[解析] 因为2s m +n -s (m +n )2mn =s ·4nm -(m +n )22mn (m +n )=-s (m -n )22mn (m +n )≤0. 所以T 1≤T 2.6.设0<x <1,则a =2x ,b =1+x ,c =11-x中最大的一个是________. [答案] c[解析] 由a 2=2x ,b 2=1+x 2+2x >a 2,a >0,b >0,得b >A .又c -b =11-x -(1+x )=1-(1-x 2)1-x =x 21-x>0, 得c >b ,知c 最大.三、解答题7.已知实数x ,y 满足:|x +y |<13,|2x -y |<16, 求证:|y |<518. [解析] 因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |,由题设知|x +y |<13,|2x -y |<16, 从而3|y |<23+16=56,所以|y |<518. 8.(2014·新课标Ⅰ)若a >0,b >0,且1a +1b =ab (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.[解析] (1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.一、选择题1.已知a >0,且M =a 3+(a +1)3+(a +2)3,N =a 2(a +1)+(a +1)2(a +2)+a (a +2)2,则M 与N 的大小关系是( )A .M ≥NB .M >NC .M ≤ND .M <N [答案] B[解析] 取两组数:a ,a +1,a +2与a 2,(a +1)2,(a +2)2,显然a 3+(a +1)3+(a +2)3是顺序和;而a 2(a +1)+(a +1)2(a +2)+a (a +2)2是乱序和,由排序不等式易知此题中,“顺序和”大于“乱序和”.故应选B .2.若长方体从一个顶点出发的三条棱长之和为3,则其对角线的最小值为( )A .3B . 3C .13D .33 [答案] B[解析] 不妨设长方体同一顶点出发的三条棱长分别为a ,b ,c ,则a +b +c =3,其对角线长l =a 2+b 2+c 2≥13(a +b +c )2=3,当且仅当a =b =c =1时,对角线长取得最小值3,故选B .3.(2015·黄冈模拟)若不等式t t 2+9≤a ≤t +2t 2在t ∈(0,2]上恒成立,则a 的取值范围是( ) A .[16,1] B .[213,1] C .[16,413] D .[16,22] [答案] B[解析] 由已知⎩⎪⎨⎪⎧ a ≥1t +9t ,a ≤1t +2(1t )2,对任意t ∈(0,2]恒成立,于是只要当t ∈(0,2]时,⎩⎪⎨⎪⎧ a ≥(1t +9t )max,a ≤[1t +2(1t )2]min ,记f (t )=t +9t ,g (t )=1t +2(1t )2,可知两者都在(0,2]上的单调递减,f (t )min =f (2)=132,g (t )min =g (2)=1,所以a ∈[213,1],选B . 二、填空题4.设x >0,y >0,M =x +y 2+x +y ,N =x 2+x +y 2+y,则M 、N 的大小关系是________. [答案] M <N[解析] N =x 2+x +y 2+y >x 2+x +y +y 2+x +y =x +y 2+x +y=M . 5.若a ,b ∈R +,且a ≠b ,M =a b +b a ,N =a +b ,则M 、N 的大小关系为________. [答案] M >N[解析] ∵a ≠b ,∴a b +b >2a ,b a +a >2b , ∴a b +b +b a +a >2a +2b . ∴a b +1a >a +b .即M >N . 6.(2014·陕西高考)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________. [答案] 5[解析] 解法1:在平面直角坐标系aob 中,由条件知直线ma +nb =5与圆a 2+b 2=5有公共点, ∴5m 2+n 2≤5,∴m 2+n 2≥5, ∴m 2+n 2的最小值为 5.解法2:由柯西不等式:a 2+b 2·m 2+n 2≥ma +nb ,∴m 2+n 2≥55= 5. 三、解答题7.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1].(1)求m 的值;(2)若a ,b ,c ∈R +,且1a +12b +13c=m . 求证:a +2b +3c ≥9.[分析] (1)应用绝对值不等式的解法确定m 的值;(2)利用柯西不等式证明.[解析] (1)因为f (x +2)=m -|x |,f (x +2)≥0等价于|x |≤m ,由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1. (2)证法一:由(1)1a +12b +13c=1,又a ,b ,c ∈R +, a +2b +3c =(a +2b +3c )(1a +12b +13c )=1+1+1+2b a +a 2b +3c a +a 3c +3c 2b +2b 3c≥3+2+2+2=9. 证法二:由(1)知1a +12b +13c=1,又a ,b ,c ∈R +, 由柯西不等式得a +2b +3c =(a +2b +3c )(1a +12b +13c) ≥(a ·1a +2b ·12b +3c ·13c)2=9. 8.(2014·广东高考)设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n-(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13. [解析] (1)令n =1得:S 21-(-1)S 1-3×2=0,即S 21+S 1-6=0,∴(S 1+3)(S 1-2)=0,∵S 1>0,∴S 1=2,即a 1=2.(2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,得:(S n +3)[S n -(n 2+n )]=0,∵a n >0(n ∈N *),S n >0,从而S n +3>0,∴S n =n 2+n ,∴当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n ,又a 1=2=2×1,∴a n =2n (n ∈N *).(3)当k ∈N *时,k 2+k 2>k 2+k 2-316=(k -14)(k +34), ∴1a k (a k +1)=12k (2k +1)=14·1k (k +12)<14·1(k -14)(k +34) =14·1(k -14)·[(k +1)-14] =14·[1k -14-1(k +1)-14] ∴1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<14[(11-14-12-14)+(12-14-13-14)+…+1n -14-1(n +1)-14]=14(11-14-1(n +1)-14) =13-14n +3<13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R ):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b .②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b =1⇔a =b . (2)综合法与分析法 ①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.()(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.()(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.()(4)使用反证法时,“反设”不能作为推理的条件应用.()解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a +b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a+1b+1c的最小值为________.解析 把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立.答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( ) A.1 B.2 C.3 D.4解析 log x 10+lg x =1lg x +lg x ≥2(x >1),①正确;ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b 同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b 12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b 12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a>b>1,证明:a+1a>b+1b.(1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b .考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z .证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z ①, 同理可得y xz +z yx ≥2x ②,z xy +x yz ≥2y ③,当且仅当x =y =z 时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得x yz +y zx +z xy ≥1x +1y +1z .规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】 已知实数a ,b ,c 满足a >0,b >0,c >0,且abc =1.(1)证明:(1+a )(1+b )(1+c )≥8;(2)证明:a +b +c ≤1a +1b +1c .证明 (1)1+a ≥2a ,1+b ≥2b ,1+c ≥2c ,相乘得:(1+a )(1+b )(1+c )≥8abc =8.(2)1a +1b +1c =ab +bc +ac ,ab +bc ≥2ab 2c =2b ,ab +ac ≥2a 2bc =2a ,bc +ac ≥2abc 2=2c , 相加得a +b +c ≤1a +1b +1c .考点三 分析法证明不等式【例3】 已知函数f (x )=|x -1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a .(1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝ ⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 2.设a >0,b >0,a +b =1,求证1a +1b +1ab ≥8.证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab ≥4,∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8.当且仅当a =b =12时等号成立,∴1a +1b +1ab ≥8.3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝ ⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10 或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明∵f(x)=|x+1|+|x-5|≥|(x+1)-(x-5)|=6,∴m=6,即a+b+c=6.∵a2+b2≥2ab,a2+c2≥2ac,c2+b2≥2cb,∴2(a2+b2+c2)≥2(ab+ac+bc),∴3(a2+b2+c2)≥a2+b2+c2+2ab+2ac+2bc=(a+b+c)2,∴a2+b2+c2≥12.当且仅当a=b=c=2时等号成立.5.(2019·沈阳模拟)设a,b,c>0,且ab+bc+ca=1.求证:(1)a+b+c≥3;(2)abc+bac+cab≥3(a+b+c).证明(1)要证a+b+c≥3,由于a,b,c>0,因此只需证明(a+b+c)2≥3.即证a2+b2+c2+2(ab+bc+ca)≥3.而ab+bc+ca=1,故只需证明a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca),即证a2+b2+c2≥ab+bc+ca.而这可以由ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立)证得. 所以原不等式成立.(2)abc+bac+cab=a+b+cabc.在(1)中已证a+b+c≥ 3. 因此要证原不等式成立,只需证明1abc≥a+b+c,即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.而a bc =ab ·ac ≤ab +ac 2, b ac ≤ab +bc 2,c ab ≤bc +ac 2, 所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b 的最小值.(1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2.要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞), 所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b 的最小值为4.能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98.(1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3,解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3, 分析可得f (x )的最小值为4,即n =4,则正数a ,b 满足8ab =a +2b ,即1b +2a =8,又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5 ≥18⎝⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a+b>c+d,则(a+b)2>(c+d)2,∴a+b+2ab>c+d+2cd.∵a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2. 因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。