2017-2018学年度第二学期七年级数学期末总复习(专题四)
17-18第二学期期末测试七年级数学答案
2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。
2017-2018年度七年级期末数学试题(含答案)
12017——2018学年度下学期七 年 级 数 学 期 末 试 题数学试题共6页,包括六道大题,共26道小题。
全卷满分120分。
考试时间为120分钟。
考试结束后,将本试题和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在 条形码区域内。
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答 题无效。
一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个 2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上 3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 500 6.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) ①∠1=∠2 ②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180° (A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 8.-364的绝对值等于 . 9.不等式组20210x x -≤⎧⎨->⎩的整数解是 .10.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花 了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m .13.比较大小:215- 1(填“<”或“>”或“=” ). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其 它10个小长方形高之和的41,且样本容量是60,则中间一组的频数是 . 学校 年 班 姓名: 考号:21 3 4 AB CDE (第6题)(第10题)2三、解答题(每小题5分,共20分) 15.计算:2393-+-.16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上.18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) ,又因为∠3=∠4(已知),所以∠5=∠ (等量代换),所以BC ∥EF ( ) .20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少?(2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售价至少定为多少,才能避免亏本?七年级数学试题 第3页 (共6页)七年级数学试题 第2页 (共6页) HGF E DC BA七年级数学试题 第4页 (共6页)七年级数学试题 第3页 (共6页)3五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的 圆心角度数是 ______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠P AC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠P AC ,∠PBD 之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠P AC ,∠PBD 之间的关系,并说明理由.学校 年 班 姓名: 考号:七年级数学试题 第5页 (共6页)七年级数学试题 第6页 (共6页)xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4 -1 -2 -3Ay5 25. 解:(1)设小李生产1件A 产品需要x min, 生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分 解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要20min. ………………………4分(2)1556元 . ……………………………6分 1978.4元 . ……………………………8分 (3)-19.2x +1978.4 . ……………………………10分 26. 解:(1)① x …………1分 3(100-x ) …………2分 ②依题意得 2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩. ………………………4分解得 3840x ≤≤.∵x 是整数,∴x =38或39或40 .………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分 (2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张, 所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71. ………………………9分 对应的a =303或298或293. ………………………10分。
17—18学年下学期七年级期末考试数学试题(附答案)
民勤六中2017—2018学年度第二学期期末考试七年级数 学 试 卷一、选择题 (每小题3分,共30分)1.下列四个实数中是无理数的是( )A .πB .1.414C .0D .2. 如图,已知AB ∥ED ,∠ECF=65°,则∠BAF 的度数为( )A .115°B .65°C .60°D . 25°3.由方程组可得出x 与y 的关系是( )A .2x+y=4B .2x ﹣y=4C .2x+y=﹣4D .2x ﹣y=﹣44.将不等式组的解集在数轴上表示出来,正确的是( )A .B .C.D .5. 下列各式是二元一次方程的是:( ) A. y x 21+B.342=+-y y xC. 95-=y xD.02=-y x 6. 若y x ,满足018)2(2=-++y x ,则y x +的平方根是: A. 4± B. 2± C. 4 D. 27. 若a <b ,则下列各式中,错误的是( )A .a ﹣3<b ﹣3B .3﹣a <3﹣bC .﹣3a >﹣3bD .3a <3b8.本地四月份第一周连续七天的空气质量指数(AQI )分别为:118, 96,60,82,56,69,86,则这七天空气质量变化情况最适合用哪种统计图描述( )A .折线统计图B .扇形统计图C .条形统计图D .以上都不对9.不等式组的解集为x <4,则a 满足的条件是( )A.a<4 B.a=4 C.a≤4 D.a≥410.比较下列各组数的大小,正确的是()A.>5 B.<2 C.>﹣2 D.+1>二、填空题(每小题3分,共30分)11. x的与12的差不小于6,用不等式表示为.12.方程组的解是.13.如图,已知AB⊥CD,垂足为点O,直线EF经过O点,若∠1=55°,则∠COE的度数为度.14. 点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为.15. 某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.16. 如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为.17. 已知a、b为两个连续的整数,且a<11<b,则a b+18.不等式:34125x+-<≤的非正整数解个数有个。
20172018学年苏科版七年级下数学期末复习综合试卷及答案
2017-2018 学年第二学期初一数学期末复习综合试卷一、 :(本 共 10 小 ,每小 3 分,共 30 分)1. 3 1等于⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.3 ;B.1;; D.1 ;332. 以下运算正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()2b 2 ; B . x 3 x 3 x 6 ; C . a 3 25 ;D . 2x 23x 36x 5 ;A . a ba 2 a3. 若 数 a 、b 、c 在数 上的地点如 所示, 以下不等式建立的是⋯⋯⋯⋯⋯⋯ ()A . ac > bc ;B . ab > cb ;C . a+c > b+c ;D . a+b > c+b ;4. 以下各式中,是完好平方式的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. m2mn n 2; B.x22x 1; C. x22x1; D.1 b2 ab a 2 ;445.如 ,有以下四个条件:①∠ B +∠ BCD =180°,②∠ 1=∠ 2, ③∠ 3=∠ 4,④∠ B =∠ 5 .此中能判断 AB ∥ CD 的条件的个数有⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . 1B . 2C . 3D . 4第 5第 6第 106.如 ,AD = AE . 充以下一个条件后, 仍不可以判断△ ABE ≌△ ACD 的是⋯⋯⋯⋯⋯⋯ ( )A .∠B =∠ CB . AB =ACC .∠ AEB =∠ ADCD . BE = CD7.( 2016? 州)把多 式 x 2ax b 分解因式, 得( x+1)( x-3 ), a ,b 的 分 是 ()A . a=-2 , b=-3 ;B . a=2, b=3;C . a=-2 , b=3;D . a=2, b=-3 ;8. 有以下四个命 :①相等的角是 角;②同位角相等;③两点之 ,直 最短;④从 直 外一点到 条直 的垂 段,叫做点到直 的距离.此中是真命 的个数有⋯( A . 0 个 B . 1 个 C . 2 个 D . 3 个)3x y a 2 , a 的 ⋯⋯⋯⋯ ()9. 在对于 x 、y 的二元一次方程2 y 中,若 2x 3yx 1A . 1B . -3C . 3D . 410. 如 ,将△ ABC 片沿 DE 折叠,使点 A 落在点 A' ,且 A'B 均分∠ ABC ,A'C 均分∠ ACB ,若∠ BA'C=110°, ∠ 1+∠ 2 的度数 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(A . 80°; B . 90°; C . 100°; D . 110°;)二、填空 :(本 共 8 小 ,每小 3 分,共 24 分)11. ( 2017? )当前,中国网民已 达到731 000 000 人,将数据 731 000 000 用科学 数法表示 .12 .一个多 形的内角和等于一个三角形的外角和的是.2 倍, 个多 形的 数13. 在△ ABC 中,∠ A=1 ∠ B= 1∠ C ,那么△ ABC 是三角形 .2 314.已知 x a4 , x b 3 ,则 x a 2 b =.15. 若 a 2b 2 1 , a b1 ,则 a b 的值为.6316.( 2017?抚顺)如图,分别过矩形 ABCD 的极点 A 、 D 作直线 l 1 、 l 2 ,使 l 1 / / l 2 , l 2 与边 BC 交于点 P ,若∠ 1=38°,则∠ BPD 的度数为.第 16 题图第 18 题图17. 的不等式组3xk0 的正整数解是 1, 2, 3,则 k 的取值范围是_______________.18.以下图, ∠ E =∠ F = 90°,∠ B =∠ C ,AE = AF ,结论:① EM = FN ;②AF ∥ EB ;③∠ FAN=∠ EAM ;④△ ACN ≌△ ABM 此中正确的有 .(只要填写序号)三、解答题 :(本大题共 76 分)19.(此题满分 8 分)x y1 1200847(1)计算:22009;( 2)解方程组:3323x y38220.(此题满分 8 分) 把以下各式分解因式:(1) 3a x y 5b y x ;(2)b 3 4ab 2 4a 2 b .21.(此题满分 4 分) 先化简,再求值:a 21 aa 1 ,此中 a32.422. (此题满分 7 分)解不等式:(1)x1 x 19x 5 8x 71;( 2) 4 2 1 2 ,并写出其整数解;23x 3x323. (此题满分 6分)(1)若x n2, y n3, 求 x2 y 2 n( 2)若3a6,9b2, 求32a 4b 1的值;的值 .24.(此题满分 6 分)(1)已知a13,求 a21的值;( 2)已知xy 9, x y3,求x23xy y 2a a2的值 .25.(此题满分 7 分)绘图并填空,如图:方格纸中每个小正方形的边长都为1,△ ABC的极点都在方格纸的格点上,将△ABC经过一次平移后获得△A'B'C'.图中标出了点 C 的对应点C' .(1)请画出平移后的△A'B'C';(2)若连结AA' , BB',则这两条线段的关系是;(3)利用网格画出△ABC中 AC边上的中线BD以及 AB边上的高CE;(4)线段 AB在平移过程中扫过地区的面积为.26.(此题满分 6 分)如图,在△ ABC和 ADE中,AB=AC,AD=AE,且∠ BAC=∠ DAE,点 E 在 BC上.过点 D 作 DF∥BC,连结 DB.求证:( 1)△ ABD≌△ ACE;(2) DF=CE.27.(此题满分8 分)已知对于2 x y 4mx、 y 的方程组(实数 m是常数).x 2 y 2m 1(1)若 x+ y= 1,务实数 m的值;(2)若- 1≤x- y≤ 5,求 m的取值范围;(3) 在 (2) 的条件下,化简:m 2 2m 3 .28.(此题满分 8 分)(2017?青海)某地图书室为了知足民众多样化阅读的需求,决定购置甲、乙两种品牌的电脑若干组建电子阅览室.经认识,甲、乙两种品牌的电脑单价分别3100 元和 4600 元.(1)若购置甲、乙两种品牌的电脑共 50 台,恰巧支出 200000 元,求甲、乙两种品牌的电脑各购置了多少台?(2)若购置甲、乙两种品牌的电脑共 50 台,每种品牌起码购置一台,且支出不超出 160000 元,共有几种购置方案?并说明哪一种方案最省钱.29.(此题满分 8 分)在△ ABC中,AB=AC,点 D 是射线 CB上的一动点(不与点 B、C重合),以 AD为一边在 AD的右边作△ ADE,使 AD=AE,∠ DAE=∠ BAC,连结 CE.(1)如图 1,当点 D 在线段 CB上,且∠ BAC=90°时,那么∠DCE=度;(2)设∠ BAC=α,∠ DCE=β.①如图 2,当点 D 在线段 CB上,∠ BAC≠ 90°时,请你研究α与β 之间的数目关系,并证明你的结论;②如图 3,当点 D 在线段 CB的延伸线上,∠ BAC≠ 90°时,请将图 3 增补完好,并直接写出此时α 与β之间的数目关系(不需证明)参照答案一、选择题:;;3.B ;;;;7.A ;8.A ;;;二、填空题:11. 7.31 108; 12.6 ; 13. 直角 14.4; 15.192; 16.142°; 17.9k 12 ;18.①③④;三、解答题:19. (1) 5 ;(2)x 60;2y2420.(1)x y 3a 5b;(2) b b 2a2;21.=8; 22. (1);(2)1,整数解是,;x 24a5x120123.(1)144;(2)27;24.(1)7;(2)54;25.图略;(2)平行且相等;(3)略;(4)20;26.(1)证明:∵∠ BAC=∠DAE,∴∠ BAC-∠BAE=∠DAE-∠BAE,∴∠ BAD=∠EAC,在△ BAD和△ CAE中AD AE∵BAD EAC ,∴△BAD≌△CAE(SAS);AB AC(2)证明:∵△ BAD≌△ CAE,∴∠ DBA=∠C,∵AB=AC,∴∠ C=∠ ABC,∵DF∥BC,∴∠ DFB=∠ABC=∠C=∠DBA,即∠ DFB=∠DBF,∴ DF=CE.27.(1)1;(2)0m 3;(3)当 0 m3时,原式 = 5m ;当3m 3 322时,原式 = 3m1;28.解:(1)设甲种品牌的电脑购置了 x 台,乙种品牌的电脑购置了y 台,则,解得,答:甲种品牌的电脑购置了20 台,乙种品牌的电脑购置了30 台.(2)设甲种品牌的电脑购置了 x 台,乙种品牌的电脑购置了(50﹣x)台,则,解得,∴x 的整数值为 47,48、49,当x=47 时, 50﹣x=3;当 x=48 时, 50﹣x=2;当 x=49 时, 50﹣x=1.∴一共有三种购置方案:甲种品牌的电脑购置 47 台,乙种品牌的电脑购置 3 台;甲种品牌的电脑购置 48 台,乙种品牌的电脑购置 2 台;甲种品牌的电脑购置 49 台,乙种品牌的电脑购置 1 台.∵甲、乙两种品牌的电脑单价分别 3100 元和 4600 元.∴甲种品牌的电脑购置 49 台,乙种品牌的电脑购置 1 台比较省钱.28.(1)证明:如图,∵ D是 AB的中点,∴ AD=BD.AC BC∵在△ ACD与△ BCD中,AD BD ,∴△ACD≌△BCD(SSS);CD CD(2)解:如图,∵在△ ABC中, AC=BC,∠ ACB=90°,∴∠ A=∠ ABC,∠ A+∠ ABC=90°,∴∠ A=∠ ABC=45°,即∠ A=45°;( 3)证明:如图1,∵点 D 是 AB中点, AC=BC,∠ ACB=90°,∴CD⊥AB,∠ ACD=∠ BCD=45°,∴∠ CAD=∠CBD=45°,∴∠ CAE=∠ BCG,又∵ BF⊥ CE,∴∠ CBG+∠BCF=90°,又∵∠ ACE+∠BCF=90°,∴∠ACE=∠CBG,在△ AEC和△ CGB中,CAE BCGAC BC,∴△ AEC≌△ CGB(ASA),∴ AE=CG;ACE CBG( 4)解: BE=CM.原因以下:∵CH⊥HM,CD⊥ ED,∴∠ CMA+∠ MCH=90°,∠ BEC+∠ MCH=90°,∴∠ CMA=∠BEC,又∵∠ ACM=∠CBE=45°,在△ BCE和△ CAM中,BEC CMAACM CBE ,∴△BCE≌△CAM(AAS),∴BE=CM.BC AC29.(1)90°;(2)∵∠ BAD+∠DAC=α,∠ DAC+∠CAE=α,∴∠ BAD=∠CAE,在△ BAD和△ CAE中,,∴△ BAD≌△ CAE( SAS),∴∠ ACE=∠B,∵∠ B+∠ACB=180°﹣α,∴∠ DCE=∠ACE+∠ACB=180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠ BAD+∠BAE=α,∠ BAE+∠CAE=α,∴∠ BAD=∠CAE,在△ BAD和△ CAE中,,∴△ BAD≌△ CAE(SAS),∴∠ AEC=∠ADB,∵∠ ADE+∠AED+α=180°,∠CDE+∠CED+β=180°,∠C ED=∠AEC+∠AED,∴α=β.。
2017年-2018北师大版七年级[下册]数学期末试题和的答案解析
2016—2017学年下学期期末水平质量检测初一数学试卷(全卷满分:120分钟考试时间:120分钟)注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、细心填一填(每小题3分,共计24分)1.计算:2)3(2x y+= ;)2b-b-2a a-)((= .2.如果12++kxx是一个完全平方式,那么k的值是.3.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为万元.4. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .5.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是.6.现在规定两种新的运算“﹡”和“◎”:a﹡b=22ba+;a◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .7.某物体运动的路程s(千米)与运动的时间t(小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为千米.8.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示,则该汽车的号码是.二、相信你的选择(每小题只有一个正确的选项,每小题3分,共27分)9.下列图形中不是..正方体的展开图的是()A B C D10.下列运算正确..的是()A.1055aaa=+B.2446aaa=⨯C.aaa=÷-10D.144=-aa11.下列结论中,正确..的是()A.若22ba,ba≠≠则B.若22ba,ba>>则C.若ba,ba22±==则D.若b1a1,ba>>则12. 如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是( )A.15°B.20°C.25°D.30°13. 观察一串数:0,2,4,6,….第n 个数应为( )A .2(n -1)B .2n -1C .2(n +1)D .2n +1 14.下列关系式中,正确..的是( ) A .()222b a b a -=- B.()()22b a b a b a -=-+C .()222b a b a +=+ D.()222b 2ab a b a +-=+15. 如图表示某加工厂今年前5)A .1月至3月每月产量逐月增加,4、5两月产量逐月减小B .1月至3月每月产量逐月增加,4、5两月产量与3持平C .1月至3月每月产量逐月增加,4、5生产D . 1月至3月每月产量不变,4、5两月均停止生产 16.下列图形中,不一定...是轴对称图形的是( ) A .等腰三角形 B .线段 C .钝角17. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A .1B .2C . 3D .4三、精心算一算(18题5分,19题6分,共计11分)18.()()3426y y 2-19.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.四、认真画一画(20题5分,21题5分,共计10分)20.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是:21.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)五、请你做裁判(第22题小5分,第23小题5分,共计10分)22.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额. 小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?23. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米; 小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(8分),24.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且在△ABO 和△DCO 中 ⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.(请将答案写在右侧答题区)七.探究拓展与应用满分30分,25.几何探究题(30分)请将题答在右侧区域。
2017-2018学年度第二学期期末考试七年级数学试题及答案
火车站李庄2017—2018学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 得分 评卷人 C 1A 1ABB 1CD CB A D18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
新人教版2017-2018 学年第二学期期末考试七年级数学试卷
2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确)1.下列计算正确的是()A. x2+x3 =x5B. x2∙x3 =x6C. x6÷x3 =x3D.(-x3)2 =-x62.下面有四个手机图案,其中是轴对称图形的是()A. B. C. D.3.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°4.三角形的重心是三角形的()A.三条中线的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三条高所在直线的交点5.某人从家匀速骑共享单车到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是()A.B.C.D.6.如图所示,∠1+∠2=180°,∠3=100°,则∠4 等于()A.100°B.90°C.80°D.70°7.如图是小明用七巧板拼成的一个机器人,其中全等三角形有()A.1 对B. 2对C.3对D. 4对8. 如图,已知∠1=∠2,要使△ABD≌△ACD,还需增加一个条件,该条件从下列选项中选取,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC9. 关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10 张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为12”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在12附近. 正确的说法是()①③B.①④C.②③D.②④10.如图,AB⊥BC,DC⊥BC,AE平分∠BAD,DE平分∠ADC,以下结论:①∠AED=90°②点E是BC的中点③DE=BE ④AD=AB+CD其中正确的是()A.①②③B.①②④C.①③④D.②③④二、填空题(本大题共6小题,每小题4分,共24分)11.计算:(-0.25)2017⨯42018 =.12.一个等腰三角形的两边分别为2和4,那么它的周长为13.光明中学的同学从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).14.如图,直线a∥b,直线c与直线a、b 分别交于A、B,AD⊥b,垂足为D,若∠1=47°,则∠2的度数为15.如图,小明和小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50 cm,当小红从水平位置CD下降40 cm时,这时小明离地面的高度是cm16.在自然数中,一个三位数个位上的数字和百位上的数字交换后还是一个三位数,它与原三位 数的差的个位数字是8,则这个差是三、解答题(一)(本小题3大题,每小题6分,共18分)17. 计算:(-1)2018+203199(()1623100----+⨯18. 先化简,再求值.(2x -3)2-(2x +1)(2x -1),其中x =2.19. 小王周末骑电单车从家出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原 路返回到刚经过的新华书店,买到书店后继续前往商场,如图是他离家的距离与时间的关系 示意图,请根据图中提供的信息回答下列问题: (1)小王从家到新华书店的路程是多少米? (2)小王在新华书店停留了多少分钟?(3)买到书店,小王从新华书店到商场的汽车速度是多少米/分钟?四、解答题(一)(本小题3大题,每小题7分,共21分)20.如图,在△ABC ,∠B <∠C .(1)做BC 的垂直平分线DE ,垂足为D ,与AB 相交于E (用尺规作图,保留作图痕迹,不要 求写作法);(2)连接CE,若∠B=25°,求∠BEC的度数.21.在一个不透明的袋子中装有4个红球和6 个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求摸出红球和摸出黄球的概率(2)为了使摸出两种球的概率相同,再放进去8个同样的红球或黄球,那么这8 个球中红球和黄球的数量分别是多少?22.如图1,已知:AB∥CD,点E、F分别在AB、CD上,求OE⊥OF.(1)求∠1+∠2 的度数(2)如图2,分别在OE、CD上取点G、H,使FO平分∠CFG,OE平分∠AEH.试说明FG∥EH.五、解答题(三)(本小题3大题,每小题9分,共27分)23.为了了解某种车的耗油量,我们对这种车在高速公路上做了耗油实验,并把实验的数据记录下来,制成下表:(1)根据上表的数据,请写出y与x的之间的关系式:;(2)如果汽车油箱中剩余油量为46L,则汽车行驶了多少小时?(3)如果该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700 公里的高速公路上均匀行驶,请问它在中途不加油的情况下能从高速公路起点开到高速公路终点吗?为什么?24、在△ABC中,AB=AC,D是直线BC上一点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上时,求证:△ABD≌△ACE;(2)如图2,当点D在线段BC上时,如果∠BAC=90°,求∠BCE的度数;(3)如图3,若∠BAC=α,∠BCE=β.点D在线段CB的延长线上时,则α、β之间有怎样的数量关系?并证明你的结论.图2 图3图125.如图1,长方形ABCD 中,AB=3cm,BC=6cm,P为矩形ABCD上的动点,动点P从A出发,沿着A-B-C-D运动到D点停止,速度为1cm/s,设点P运动时间为x 秒,△APD的面积为ycm². (1)填空:①当x=6时,对应y的值为;当9≤x<12 时,y与x 之间的关系式为;(2)当y=3 时,求x 的值;(3)当P在线段BC上运动时,是否存在点P使得△APD的周长最小?若存在,求出此时∠APD的度数;若不存在,请说明理由.A. D A. P P D A. DPB C B C B C参考答案.CCBAB ABCBB11.-412.1013.0.814.43°15.9016.19817. 解:原式=1+(-3)2-1+16⨯(1)23=1+9-1+2=1118. 解:原式=(2x)2-2•2x•3+32-[(2x)2-12]=(2x)2-12 x+9-(2 x)2+1=-12x+10当x=2 时,原式=-12×2+10=-14.19. 解:(1)根据函数图象,可知小刚从家到新华书店的路程是4000米;(2)30-20=10(分钟)所以小刚在书城停留了10 分钟;(3)(6250-4000)÷(35-30)=450(米/分钟)20(1)略(2)130°21.(1)一共有10种结果,且每种结果的可能性相同.摸到红球的可能性有4种,摸到黄球的可能性有6 种.P(摸到红球)=42= 4+65P(摸到黄球)=63= 4+65(2)放进去的红球的数量是5 个,放进去的黄球的数量是3 个.22.(1)过点O作OM∥AB,则∠1=∠EOM,∵AB∥CD,∴OM∥CD,∴∠2=∠FOM,∵OE⊥OF,∴∠EOF=90°,即∠EOM+∠FOM=90°,∴∠1+∠2=90°;(2)∵AB∥CD ∴∠AEH+∠CHE=180°,∵FO平分∠CFG,EO平分∠AEH ∴∠CFG=2∠2,∠AEH=2∠1,∵∠1+∠2=90°∴∠CFG+∠AEH=2∠1+2∠2=180°,∴∠CFG=∠CHE,∴FG∥EH.23.(1)y=100-6x(2)令y=46,则46=100-6x,解得x=9.(3)700÷100=7h,7⨯6=42L,42>36在中途不加油的情况下能从高速公路起点开到高速公路终点。
人教版2017---2018学年度第二学期期末考试七年级数学试卷及答案
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.点P (2,1)在平面直角坐标系中所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限2.计算05的结果是A .0B .1C .50D .53.人体中成熟的红细胞平均直径为0.00077厘米,将数字0.00077用科学记数法表示为A .37.710-⨯B .47710-⨯C .37710-⨯D .47.710-⨯4.下列计算正确的是A .3362a a a ⋅=B .336a a a +=C .3521a a a ÷=D .()336a a =5.已知a b <,下列变形正确的是A .33a b -->B .3131a b -->C .33a b -->D .33a b >6.如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°, 那么∠2的度数为 A .10°B .15°C .20°D .25°7.在下列命题中,为真命题的是A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相垂直8.如图,在一个三角形三个顶点和中心处的每个“○”中各填有一个式子,如果图中任意三个“○”中的式子之和均相等,那么a 的值为 A .1 B .2 C .3D .09.右图是某市 10 月 1 日至10 月 7 日一周内的“日平均气温变化统计图”.在“日平均气温”这组数据中,众数和中位数气温(℃)12分别是 A .13,13 B .14,14 C .13,14D .14,1310.如图,在平面直角坐标系xOy 中,点P (1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至 点P 2(-1,1),第3次向上跳动1个单位至 点P 3,第4次向右跳动3个单位至点P 4,第 5次又向上跳动1个单位至点P 5,第6次向左 跳动4个单位至点P 6,…….照此规律,点P 第100次跳动至点P 100的坐标是 A .(-26,50) B .(-25,50) C .(26,50) D .(25,50)二、填空题(本题共24分,每小题3分)11.如果把方程32x y +=写成用含x 的代数式表示y 的形式,那么y = . 12.右图中四边形均为长方形,根据图形,写出一个正确的等式: . 13.因式分解:34a a -= .14.如果∠1与∠2互余,∠3与∠2互余,∠1=35°,那么∠3 = 度.15.如果关于x ,y 二元一次方程组3+1,33x y a x y =+⎧⎨+=⎩的解满足2x y +<,那么a 的取值范围是 .16.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两; 牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有 5 头牛、2 只羊,值金10 两;2 头牛、5只羊,值金8 两.问:每头牛、每只羊各值金多少两?”设每头牛值金 x 两,每只羊值金 y 两,可列方程组为 . 17.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,如果∠FOD = 28°, 那么∠AOG = 度.18.学完一元一次不等式解法后,老师布置了如下练习:解不等式1532x -≥7x -,并把它的解集在数轴上表示出来.以下是小明的解答过程:解:第一步 去分母,得 ()15327x x --≥,第二步 去括号,得 153142x x --≥, 第三步 移项,得 321415x x -+-≥, 第四步 合并同类项,得 1x --≥, 第五步 系数化为1,得 1x ≥. 第六步 把它的解集在数轴上表示为:老师看后说:“小明的解题过程有错误!”问:请指出小明从第几步开始出现了错误,并说明判断依据.答: . 三、解答题(本题共33分,19-20每题6分,21-24每题4分,25题5分) 19.计算:(1)()()212a a a ---; (2)()()()()643223x x x x -+++-.20.解下列方程组:ABCD EFGOABCDEF12(1)5,22;y x x y =-⎧⎨-=⎩ (2)233,327.x y x y -=⎧⎨-=⎩21.已知12x =,13y =,求()()()232x y x y x y x y xy +++--÷的值.22.解不等式组 ()41710853x x x x ⎧++⎪⎨--⎪⎩,<≤并写出它的所有非负整数....解.23.完成下面的证明:已知:如图,D 是BC 上任意一点,BE ⊥AD ,交AD 的延长线于点E ,CF ⊥AD ,垂足为F . 求证:∠1=∠2.证明:∵ BE ⊥AD (已知),∴ ∠BED = °( ). 又∵ CF ⊥AD (已知), ∴ ∠CFD = °. ∴ ∠BED =∠CFD (等量代换).∴ BE ∥CF ( ). ∴ ∠1=∠2( ).24.为了更好的开展“我爱阅读”活动,小明针对某校七年级学生(共16个班,480名学生)课外阅读喜欢图书的种类(每人只能选一种书籍)进行了调查.(1)小明采取的下列调查方式中,比较合理的是 ;理由是: .A .对七年级(1)班的全体同学进行问卷调查;B .对七年级各班的语文科代表进行问卷调查;C .对七年级各班学号为3的倍数的全体同学进行问卷调查.(2)小明根据问卷调查的结果绘制了如下两幅不完整的统计图,根据图中提供的信息解答下列问题:① 在扇形统计图中,“其它”所在的扇形的圆心角等于 度; ② 补全条形统计图;③ 根据调查结果,估计七年级课外阅读喜欢“漫画”的同学有 人.25.为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格与月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买人数806040漫画科普常识其他种类小说020其它40%小说30% 科普常识漫画3台B型设备少6万元.(1)求x、y的值;(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.四、解答题(本题共13分,26题7分,27题6分)26.已知:△ABC和同一平面内的点D.(1)如图1,点D在BC边上,过D作DE∥BA交AC于E,DF∥CA交AB于F.①依题意,在图1中补全图形;②判断∠EDF与∠A的数量关系,并直接写出结论(不需证明).(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A.判断DE与BA的位置关系,并证明.(3)如图3,点D是△ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA 交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).F图1 图2 图327.定义一种新运算“a b ☆”的含义为:当a b ≥时,a b a b =+☆;当a b <时,a b a b =-☆.例如:()()34341-=+-=-☆,()()111666222-=--=-☆.(1)填空:()43-=☆ ;(2)如果()()()()34283428x x x x -+=--+☆,求x 的取值范围;(3)填空:()()222325x x x x -+-+-=☆ ;(4)如果()()37322x x --=☆,求x 的值.三、解答题(本题共33分,19-20每题6分,21-24每题4分,25题5分) 19.计算(本小题满分6分) (1)()()212a a a ---;解:原式22212a a a a =-+-+,…………………………………………………………2分1.=…………………………………………………………………………………3分 (2)()()()()643223x x x x -+++-.解:原式2222449x x x =--+-,………………………………………………………2分28220.x x =---………………………………………………………………3分20.解下列方程组(本小题满分6分) (1)5,22;y x x y =-⎧⎨-=⎩①② 解:把①代入②得 ()252x x --=,……………………………………………………1分 解得 4.x =把4x =代入得① 54 1.y =-=………………………………………………………2分∴ 原方程组的解为41.x y =⎧⎨=⎩……………………………………………………………3分(2)233,327x y x y -=⎧⎨-=⎩①②. 解:由①得 699x y -= ③由②得 6414x y -= ④………………………………………………………………1分 ③-④得 94914y y -+=-,解得 1.y =………………………………………………………………………………2分 把1y =代入①得 233x -=, 解得 1.x =∴ 原方程组的解为31.x y =⎧⎨=⎩……………………………………………………………3分21.(本小题满分4分)解:()()()232.x y x y x y x y xy +++--÷2222222x xy y x y x =+++--,2.xy =……………………………………………………………………………………3分∴ 当12x =,13y =时,原式1112.233=⨯⨯=………………………………………………………………………4分22.(本小题满分4分)解:()4171085.3x x x x ⎧++⎪⎨--⎪⎩①,< ②≤ 由①得 2x ≥-,…………………………………………………………………………1分 由②得 72x <,…………………………………………………………………………2分∴ 原不等式组的解集是72.2x -≤<…………………………………………………………3分∴ 原不等式组的所有非负整数解为0,1,2,3. …………………………………………4分 23.(本小题满分4分)证明:略. ……………………………………………………………………………………4分24.(本小题满分4分)解:略. ………………………………………………………………………………………4分 25.(本小题满分5分) 解:(1)由题意,得 2,23 6.x y x y -=⎧⎨-=-⎩ ………………………………………………………2分解得12,10.x y =⎧⎨=⎩………………………………………………………………………3分(2)设治污公司决定购买A 型设备a 台,则购买B 型设备(10-a )台.由题意,得 ()121010105.a a +-≤解得 5.2a ≤所以,该公司有以下三种方案: A 型设备0台,B 型设备为10台; A 型设备1台,B 型设备为9台;A 型设备2台,B 型设备为8台. …………………………………………………4分(3)由题意,得 ()240200102040.a a +-≥解得: 1.a ≥所以,购买A 型设备1台,B 型设备9台最省钱. ……………………………5分四、解答题(本题共13分,26题7分,27题6分) 26.(本小题满分7分)解:(1)① 补全图形;………………………………………………………………………1分② ∠EDF =∠A . ……………………………………………………………………2分 (2)DE ∥BA . ……………………………………………………………………………3分证明:如图,延长BA 交DF 与G .∵ DF ∥CA , ∴ ∠2=∠3. 又∵ ∠1=∠2, ∴ ∠1=∠3.∴ DE ∥BA . ………………………………………………………………5分(3)∠EDF =∠A ,∠EDF +∠A =180°.…………………………………………7分 、27.(本小题满分6分)解:(1)7-;…………………………………………………………………………………1分 (2)由题意得 3428x x -+<,………………………………………………………2分解得 12.x <∴ x 的取值范围是12.x <………………………………………………………3分 (3)2-;………………………………………………………………………………4分1F A BC DEG23七年级数学试卷 第 11 页 共 11 页 (4)当3732x x --≥,即2x ≥时, 由题意得 ()()37322x x --=+,解得 6.x =…………………………………………………………………………5分 当3732x x --<,即2x <时,由题意得 ()()37322x x --=-,解得 125x =(舍). ∴ x 的值为6. ……………………………………………………………………6分 说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2017-2018学年人教版初中数学七年级数学下学期期末总复习资料
2017-2018学年人教版初中数学七年级数学下学期期末总复习资料第五章 相交线与平行线一、本章知识结构:二、知识要点 (一).同一平面内两条直线的位置关系:(1)相交;(2)平行. (二).两条直线相交的有关性质:◆ 对顶角的定义注意:1、对顶角都是成对出现的,单独的角不能构成对顶角;2、两条直线相交构成两对对顶角;3、对顶角只有公共顶点、没有公共边,它们的两边互为反向延长线。
◆ 邻补角的定义注意:1、邻补角有一条公共边,另一边互为反向延长线;2、邻补角≠补角;3、两相交直线可以形成四对邻补角。
◆对顶角的性质:对顶角相等。
(三).垂线及其性质:◆ 垂直的定义两条直线相交,夹角为90°时,这两条直线的位置关系称为垂直,这两条线互为对方的“垂线”,它们的交点称为“垂足”;根据定义判断两直线是否垂直时,只需要判断其夹角是不是90°。
◆ 垂线的性质1、过一点有且只有一条直线与已知直线垂直;一般情况相交成直角相交线相交两条直线第三条所截两条直线被邻补角 垂线 邻补角互补点到直线的距离同位角、内错角、同旁内角 平行线平行公理及其推论 平行线的性质平行线的判定平移 对顶角 对顶角相等 垂线段最短 存在性和唯一性 两条平行线的距离平移的特征2、连接直线外一点与直线上各点的所有线段中,垂线段最短(其它的线段称为“斜线段”)。
◆ 距离1、点到直线的距离:从直线外一点到这条直线的垂线段的长度,称为点到直线的距离;2、平行线之间的距离:作平行线的垂线,两个垂足之间的线段的长度,称为平行线之间的距离。
(四).两条直线被第三条直线所截,三种位置的角:同位角;内错角;同旁内角。
(五).平行线及平行线的判定、性质:1.在同一平面内,不相交的两条直线叫做平行线; 2.平行公理及其推论:◆经过直线外一点,有且只有一条直线与已知直线平行; ◆平行于同一条直线的两条直线互相平行。
3.平行线的判定及性质:平行线的判定 平行线的性质 1、 同位角相等,两直线平行 2、 内错角相等,两直线平行 3、 同旁内角互补,两直线平行 4、 平行于同一条直线的两直线平行 5、 垂直于同一条直线的两直线平行 1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补 4、经过直线外一点,有且只有一条直线与已知直线平行 (六).平移及其性质: 平移的条件:(1)平移的方向(2)移动的距离 平移的性质:◆平移变换只改变图形的位置,不改变图形的形状和大小; ◆平移变换中,连结各组对应点的线段平行(或共线)且相等。
2017-2018学年第二学期七年级数学期末试题(含答案)
七年级数学质量监测试题 1 (共4页)2017-2018学年第二学期期末七年级数学质量监测试题(考试时间:120分钟 满分:150分)一、单项选择题(每小题4分,共40分。
) 1.下列各点中,在第二象限的点是( )A .(﹣4,2)B .(﹣4,﹣2)C .(4,2)D .(4,﹣2) 2.下列各数属于无理数的是( ) A .722B .3.14159C .32D .363.下列调查中,适宜采用全面调查方式的是( )A .调查电视剧《人民的名义》的收视率B .调查重庆市民对皮影表演艺术的喜爱程度C .调查某市居民平均用水量D .调查你所在班级同学的身高情况 4. 下列方程组中,是二元一次方程组的是( )A. ⎩⎨⎧=-=+54y x y xB. ⎩⎨⎧=-=+64382c b b aC. ⎩⎨⎧==-nm n m 20162D. ⎪⎩⎪⎨⎧+=-=4236316y xy x5. 如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( )A .140°B .40°C .50°D .60° 6.下列命题中,假命题是( ) A .垂线段最短 B .同位角相等 C .对顶角相等 D .邻补角一定互补 7.若方程组()⎩⎨⎧=-+=+611434y m mx y x 的解中x 与y 的值相等,则m 为(A. 4B. 3C. 28.把不等式组1010x x +≥⎧⎨-<⎩的解集表示在数轴上,正确的是( )七年级数学质量监测试题 2 (共4页)9.定义一种新的运算:对任意的有序数对(x ,y )和(m ,n )都有(x ,y )※(m ,n )=(x +m ,y +n )(x ,y ,m ,n 为任意实数),则下列说法错误的是( )A .若(x ,y )※(m ,n )=(0,0),则x 和m 互为相反数,y 和n 互为相反数.B .若(x ,y )※(m ,n )=(x ,y ),则(m ,n )=(0,0)C .存在有序数对(x ,y ),使得(x 2, y 2)※(1,-1)=(0,0)D .存在有序数对(x ,y ),使得(x 3, y 3)※(1,-1)=(0,0)10. 如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变 换成△OA 3B 3,……,则B 2018的横坐标为( )A. 22016B. 22017C. 22018D. 22019第10题图二、填空题(每小题4分,共24分)11.剧院里11排5号可以用(11,5)表示,则(9,8)表示 . 12.如图,D 、E 分别是AB 、AC 上的点,DE//BC ,若∠C =50°,则∠AED = °.13.一条船顺流航行每小时行40km ,逆流航行每小时行32km ,设该船在静水中的速度为每小时x km ,水流速度为每小时y km ,则可列方程组为 .14. 已知|x ﹣2y|+(y-2)2=0,则x +y = .15. 已知关于x 的不等式组⎪⎩⎪⎨⎧>-->-a x x 21125无解,则a 的取值范围是_______.16. 如果n 为正偶数且x n=(-2)n,y n =(-3)n ,那么x +y = .三、解答题(共86分)17. (8分)计算(1)25+38 (2)|2﹣3|-(3﹣1)18.(8分)解不等组⎪⎩⎪⎨⎧->--≥+13273)1(3x x x x ,并把解集表示在数轴上。
2017-2018学年七年级下期末数学试卷(有答案)四
2017-2018学年七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2 D.m2+m=m33.(3分)已知一组数据1,2,2,x的平均数为3,则这组数据的中位数为()A.1 B.2 C.3 D.74.(3分)如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°5.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+16.(3分)关于x,y的方程组的解满足x+y=7,则a的值为()A.7 B.8 C.9 D.107.(3分)下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.相等的角是对顶角8.(3分)已知(m﹣n)2=10,(m+n)2=2,则mn的值为()A.10 B.﹣6 C.﹣2 D.29.(3分)甲、乙两地相距880千米小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米.设大客车每小时行x 千米,小轿车每小时行y千米,则可列方程组为()A. B.C.D.10.(3分)如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有()A.1个B.2个C.3个 D.4个二、填空题(每小题3分,共24分)11.(3分)计算:=.12.(3分)分解因式:x3y﹣2x2y2+xy3=.13.(3分)如图所示,直线AB,CD相交于点O,OM⊥AB,若∠MOD=30°,则∠COB=度.14.(3分)当x=1,y=时,3x(2x+y)﹣2x(x﹣y)=.15.(3分)如图所示,以点O为旋转中心,将∠1按顺时针方向旋转110°得到∠2,若∠1=40°,则∠2的余角为度.16.(3分)未测试两种电子表的走时误差,做了如下统计.17.(3分)如图,在三角形ABC中,AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,得到三角形A′B′C′,连接A′C,则三角形A′B′C的面积为.18.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.三、解答题(共66分)19.(8分)解方程组:(1)(2).20.(8分)在如图所示的方格纸中,(1)作出三角形ABC关于MN对称的三角形A1B1C1;(2)说明三角形A2B2C2是由三角形A1B1C1经过怎样的平移得到的?21.(8分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2﹣x2=6,求A的值.22.(8分)初中毕业班质量考试结束后,老师和小亮进行了对话.老师:你这次质检语数英三科总分338分,据估计今年要上达标校,语数英三科总分需达到368分,你有何计划?小亮:中考时,我语文成绩保持123分,英语成绩再多18分,数学成绩增加10%,则刚好达到368分.请问:小亮质检英语、数学成绩各多少?23.(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.24.(10分)小明和小华参加某体育项目的训练,近期的8次测试成绩(单位:分)如表:25.(14分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°;(2)在(1)中,若∠1=55°,则∠3=°,若∠1=40°,则∠3=°;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3=°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行,请说明理由.2017-2018学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.(3分)下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2 D.m2+m=m3【解答】解:A、(﹣2mn)2=4m2n2 故A选项正确;B、y2+y2=2y2,故B选项错误;C、(a﹣b)2=a2+b2﹣2ab故C选项错误;D、m2+m不是同类项,故D选项错误.故选:A.3.(3分)已知一组数据1,2,2,x的平均数为3,则这组数据的中位数为()A.1 B.2 C.3 D.7【解答】解:由题意得=3,解得:x=7,这组数据按照从小到大的顺序排列为:1,2,2,7,则中位数为2.故选:B.4.(3分)如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°【解答】解:∵CF是∠ACM的平分线,∴∠FCM=∠ACF=50°,∵CF∥AB,∴∠B=∠FCM=50°.故选:D.5.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.6.(3分)关于x,y的方程组的解满足x+y=7,则a的值为()A.7 B.8 C.9 D.10【解答】解:,①+②得:3x+3y=3a﹣6,∴x+y=a﹣2,∵x+y=7,∴a﹣2=7,a=9,故选:C.7.(3分)下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.相等的角是对顶角【解答】解:A、旋转不改变图形的形状和大小,故本选项错误;B、两条平行直线被第三条直线所截,同位角相等,故本选项错误;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项正确;D、对顶角相等,但相等的角不一定是对顶角,故本选项错误;故选:C.8.(3分)已知(m﹣n)2=10,(m+n)2=2,则mn的值为()A.10 B.﹣6 C.﹣2 D.2【解答】解:∵(m﹣n)2=10,(m+n)2=2,∴m2+n2﹣2mn=10①,m2+n2+2mn=2②,②﹣①得:4mn=﹣8,解得:mn=﹣2.故选:C.9.(3分)甲、乙两地相距880千米小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米.设大客车每小时行x 千米,小轿车每小时行y千米,则可列方程组为()A. B.C.D.【解答】解:设大客车每小时行x千米,小轿车每小时行y千米,由题意得,.故选:B.10.(3分)如图已知∠1=∠2,∠BAD=∠BCD ,则下列结论:①AB ∥CD ,②AD ∥BC ,③∠B=∠D ,④∠D=∠ACB ,正确的有( )A .1个B .2个C .3个D .4个【解答】解:∵∠1=∠2∴AB ∥CD (内错角相等,两直线平行)所以①正确∵AB ∥CD (已证)∴∠BAD +∠ADC=180°(两直线平行,同旁内角互补)又∵∠BAD=∠BCD∴∠BCD +∠ADC=180°∴AD ∥BC (同旁内角互补,两直线平行)故②也正确∵AB ∥CD ,AD ∥BC (已证)∴∠B +∠BCD=180°∠D +∠BCD=180°∴∠B=∠D (同角的补角相等)所以③也正确.正确的有3个,故选C .二、填空题(每小题3分,共24分)11.(3分)计算: = ﹣a 3b 6 .【解答】解;原式=﹣a 3b 6.故答案是:﹣a 3b 6.12.(3分)分解因式:x3y﹣2x2y2+xy3=xy(x﹣y)2.【解答】解:x3y﹣2x2y2+xy3,=xy(x2﹣2xy+y2),=xy(x﹣y)2.13.(3分)如图所示,直线AB,CD相交于点O,OM⊥AB,若∠MOD=30°,则∠COB=120度.【解答】解:∵直线AB,CD相交于点O,∠BOC与∠BOD是邻补角,∴∠MOD=30°,又OM⊥AB,∴∠BOM=90°,∴∠BOD=90°﹣30°=60°.∴∠BOC=180°﹣60°=120°.故答案为:12014.(3分)当x=1,y=时,3x(2x+y)﹣2x(x﹣y)=5.【解答】解:原式=6x2+3xy﹣2x2+2xy=4x2+5xy,当x=1,y=时,原式=4+5×=5.故答案为:5.15.(3分)如图所示,以点O为旋转中心,将∠1按顺时针方向旋转110°得到∠2,若∠1=40°,则∠2的余角为50度.【解答】解:∵∠2由∠1按顺时针方向旋转110°得到,且∠1=40°,∴∠2=∠1=40°,∴∠2的余角为:90°﹣40°=50°.故答案为:50°.16.(3分)未测试两种电子表的走时误差,做了如下统计甲.【解答】解:∵甲的方差是0.026,乙的方差是0.137,0.026<0.137,∴这两种电子表走时稳定的是甲;故答案为:甲.17.(3分)如图,在三角形ABC中,AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,得到三角形A′B′C′,连接A′C,则三角形A′B′C的面积为6.【解答】解:∵AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,∴BB'=2,△ABC的高AD=△A'B'C'的高=△A'B'C的高=3,∴B'C=BC﹣BB'=6﹣2=4,∴三角形A′B′C的面积=,故答案为:618.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.三、解答题(共66分)19.(8分)解方程组:(1)(2).【解答】解:(1)②﹣①,得5y=5,解得y=1.(2分)把y=1代入①,得x=4.(3分)因此,方程组的解为(4分)(2)②×6,得3x﹣2y=6③,③﹣①,得3y=3,解得y=1.(6分)把y=1代入①,得3x﹣5=3.解得x=.(7分)因此,方程组的解为(8分)20.(8分)在如图所示的方格纸中,(1)作出三角形ABC关于MN对称的三角形A1B1C1;(2)说明三角形A2B2C2是由三角形A1B1C1经过怎样的平移得到的?【解答】解:(1)△A1B1C1如图所示.(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).21.(8分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2﹣x2=6,求A的值.【解答】解:(1)A=(x+2)2+(1﹣x)(2+x)﹣3=x2+4x+4+2+x﹣2x﹣x2﹣3=3x+3;(2)∵(x+1)2﹣x2=6,化简得2x+1=6,解得x=,∴A=3x+3=.22.(8分)初中毕业班质量考试结束后,老师和小亮进行了对话.老师:你这次质检语数英三科总分338分,据估计今年要上达标校,语数英三科总分需达到368分,你有何计划?小亮:中考时,我语文成绩保持123分,英语成绩再多18分,数学成绩增加10%,则刚好达到368分.请问:小亮质检英语、数学成绩各多少?【解答】解:设小亮质检的英语成绩为x分,质检数学成绩为y分,由题意得,,解得:,答:小亮质检英语成绩为95分,质检数学成绩为120分.23.(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.24.(10分)小明和小华参加某体育项目的训练,近期的8次测试成绩(单位:分)如表:【解答】解:(1)小明的平均成绩是:(10+10+11+10+14+16+16+17)÷8=13(分);小华的众数是:13分;先把小明的成绩从小到大排列为:10,10,10,11,14,16,16,17,最中间的数是第4、第5个数的平均数,则小明的中位数是=12.5分;故答案为:13,12.5,13.(2)∵小明和小华成绩的平均数均为13分,但小华的方差比小明的小,且高于13分的次数比小明的多,∴让小华去比较合适.25.(14分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=100°,∠3=90°;(2)在(1)中,若∠1=55°,则∠3=90°,若∠1=40°,则∠3=90°;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3=90°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行,请说明理由.【解答】解:(1)100°,90°.∵入射角与反射角相等,即∠1=∠4,∠5=∠6,根据邻补角的定义可得∠7=180°﹣∠1﹣∠4=80°,根据m∥n,所以∠2=180°﹣∠7=100°,所以∠5=∠6=(180°﹣100°)÷2=40°,根据三角形内角和为180°,所以∠3=180°﹣∠4﹣∠5=90°;(2)90°,90°.由(1)可得∠3的度数都是90°;(3)90°(2分)理由:因为∠3=90°,所以∠4+∠5=90°,又由题意知∠1=∠4,∠5=∠6,所以∠2+∠7=180°﹣(∠5+∠6)+180°﹣(∠1+∠4),=360°﹣2∠4﹣2∠5,=360°﹣2(∠4+∠5),=180°.由同旁内角互补,两直线平行,可知:m∥n.。
2017---2018学年度第二学期期末考试七年级数学试卷含答案
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017-2018学年人教版七年级下册期末数学试卷含答案解析
学年七年级(下)期末数学试卷20172018-6318一、选择题:本大题共小题,每小题分,共分,每小题只有一个正确选项. 1A21.点(﹣,)在() A B C D.第一象限.第二象限.第三象限.第四象限2ab.如果>,那么下列结论一定正确的是()22Aa3b3 B3a3b Cacbc Dab.﹣<﹣.﹣<﹣.>.> 3.要反映石城县一周内每天的最高气温的变化情况,宜采用() A B.条形统计图.扇形统计图 C D.折线统计图.频数分布直方图 4ABCD.如图,下列条件中不能判定∥的是()A3=4 B1=5 C14=180°D3=5.∠∠.∠∠.∠+∠.∠∠51250°1=x°.一副三角板按如图方式摆放,且∠的度数比∠的度数大,若设∠2=y°∠,则可得到方程组为() A B.. C D.. 6x2xm04m.若关于的不等式﹣≤的正整数解只有个,则的取值范围是()A8m10 B8m10C8m10 D4m5.<<.≤<.≤≤.≤<6318二、填空题:本大题共小题,每小题分,共分. 79 .的算术平方根是.8Pm1mm .点(,﹣)在第一象限,则的取值范围是.9“”“……” .把命题对顶角相等改写成如果那么的形式:.105621.一个班有名学生,在期中数学考试中优秀的有人,则在扇形统计图中,代表数学优秀的扇形圆心角度数是.1112.如图,第个图案是由同样规格的黑白两种颜色的正方形地砖组成,第31n个、第个图案可以看做是第个图案经过平移得到的,那么第个图案中需要n黑色正方形地砖块(用含的式子表示). 12A2ABx3AB=4B .点的坐标为)已知∥轴,(﹣,,并且,则点的坐标为.5630三、解答题:本大题共小题,每小题分,共分.131.()计算:﹣;22xay=8a()已知是方程﹣的一个解,求的值.14.解不等式:≥.15.解方程组:. 16EFAD1=2BAC=70°AGD.如图,已知∥,∠∠,∠,求∠的度数,下面给出AGD了求∠的度数的过程,将此补充完整并在括号里填写依据.EFAD【解】∵∥(已知)2= ∴∠()1=2又∵∠∠(已知)1=3∴∠∠(等式性质或等量代换) AB ∴∥()BAC =180°∴∠+ ()BAC=70°又∵∠(已知)AGD=110°∴∠(等式性质)171.在如图所示的正方形网格中,每个小正方形的边长为,格点三角形(顶点ABCAC441是网格线的交点的三角形)的顶点、的坐标分别为(﹣,),(﹣,2).1()请在如图所示的网格平面内作出平面直角坐标系;2ABC23()将△向右平移个单位长度,然后再向下平移个单位长度,得到△A′B′C′A′B′C′,画出平移后的△.3A′B′C′()写出点△各个顶点的坐标.3824四、解答题:本大题共小题,每小题分,共分.18.解不等式组,并把解集在数轴上表示出来.19ADBCA=D.如图,若∥,∠∠.1CABC()猜想∠与∠的数量关系,并说明理由;2CDBED=50°EBC()若∥,∠,求∠的度数.2012011.九()班同学为了解年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:x月均用水量频数频率 t()(户) 0x560.12<≤ 5x10 0.24<≤ 10x15160.32<≤ 15x20100.20<≤ 20x254<≤ 25x3020.04<≤ 1()把上面的频数分布表和频数分布直方图补充完整;215t()求该小区用水量不超过的家庭占被调查家庭总数的百分比;3100020t()若该小区有户家庭,根据调查数据估计,该小区月均用水量超过的家庭大约有多少户? 2918五、解答题:本大题共小题,每小题分,共分.21.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干3个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买个足球231025500和个篮球共需元,购买个足球和个篮球共需元. 1()购买一个足球、一个篮球各需多少元? 2()根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球965720共个,要求购买足球和篮球的总费用不超过元,这所中学最多可以购买多少个篮球?22xy.已知关于,的方程组的解满足不等式组,求满。
2017-2018学年苏科版七年级下数学期末复习综合试卷(4)及答案
2017-2018学年第二学期初一数学期末复习综合试卷(4)命题:汤志良;分值:130分;知识涵盖:七下全册及八上全等三角形;一、选择题(本题共10小题,每题3分,共30分)1.下列运算正确的是………………………………………………………………………( )A .437a a a -=;B .4312a a a =;C .()3412a a =;D .437a a a +=;2.若>y ,则下列式子错误的是…………………………………………………( )A .33x y ->-;B .33x y ->-;C .33x y +>+;D .33x y >; 3.有长为2cm 、3cm 、4cm 、6cm 的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是………………………………………………………………………( )A .1个;B .2个 ;C .3个;D .4个;4.一个多边形,它的每个内角的度数等于与其相邻外角的度数的5倍,则这个多边形是( )A .4;B .6;C .8;D .12;5.(2016•金华)如图,已知∠ABC=∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是…………( )A .AC=BD ;B .∠CAB=∠DBA ;C .∠C=∠D ; D .BC=AD ;6. (2017.山西)将不等式组的解集表示在数轴上,下面表示正确的是……( )7. 已知2(0.3)a =-,23b -=-,21()3c -=-,比较,,a b c 的大小………………………( )A. a b c << ; B. b a c << ; C. a c b <<; D. c a b <<;8.如图,FD//BE ,则∠1+∠2-A 的度数为……………………………………( )A .90°B .135°C .150°D .180° 第9题图A. B. C. D.第8题图第5题图9.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成西个相同的等腰梯形(图甲),然后拼成一个平行四边形(图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式是…………………………………………………………… ( )A .()2222a b a ab b -=-+;B .()2222a b a ab b +=++; C .()2222a b a ab b -=-+; D .()()22a b a b a b -=+-; 10.(2017•齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买………( )A .16个;B .17个 ;C .33个;D .34个;二、填空题:(本题共8小题,每题3分,共24分)11. 一生物教师在显微镜下发现,某种植物的细胞直径约为0.00012mm ,用科学记数法表示这个数为__________mm .12. 已知2a b +=,1ab =,则22a b ab += . 13.命题“在数轴上,表示互为相反数的两个数的点到原点的距离相等”的逆命题是 .14.已知22x y -=,则()()3312x x y y x -+--的值是 . 15.(2017.泰安)不等式组的解集为<2,则的取值范围为 .16. 如图,AD 是△ABC 的中线,∠ADC=60°,BC=4㎝,把△ADC 沿直线AD 折叠后,点C 落在C ′的位置上,则BC ′的长为 ㎝.17. 如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE=8,BF=5,则EF 的长为 .18.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC=90°﹣∠ABD ;④∠BDC=∠BAC .其中正确的结论的有 .(把正确结论的序号都写上去)三、解答题:(本题满分76分)19.(本题满分8分)(1)()()22018020171125424-⎛⎫⎛⎫---+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()()2322823m m m m ⋅-⋅ ;20.(本题满分6分)分解因式:(1)()28a 116a +-; (2)()()22248416x xx x ---+.21. (本题满分5分) 求解不等式组2(1)31213x x x +>-⎧⎪+⎨≥⎪⎩,并在数轴上表示出它的解集..............第16题图 第18题图22. (本题满分8分)(1)已知01452=--x x ,求代数式)2)(1()12()3(22++-+++-x x x x x 的值.(2)已知n 为正整数,且24n x=,求()()22322nn x x -的值.23.(本题满分6分)如图在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格.......). (1)分别画出△ABC 中BC 边上的高AH 、中线AG.(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.24. (本题满分6分)已知:如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB ∥CD ;(2)求∠C 的度数.25. (本题满分6分)如图,点C 、E 分别在直线AB 、DF 上,CF 和BE 相交于点O ,CO=FO ,EO=BO .(1)求证:△COB ≌△FOE ;(2)若∠ACE=70°,求∠DEC 的度数.26.(本题满分7分)已知关于,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩ (1)请直接写出方程260x y +-=的所有正整数解;(2)若方程组的解满足0x y +=,求m 的值;(3)无论实数m 取何值,方程250x y mx -++=总有一个固定的解,则这个解是 .27. (本题满分8分)(2017•绵阳)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.28. (本题满分7分)如图,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若动点P 从点C开始,按C→A→B→C的路径运动,且速度为每秒3个单位,设运动的时间为t 秒.(1)当t= 时,CP把△ABC的面积分成相等的两部分;= . (2)当t=5时,CP把△ABC分成的两部分面积之比是S:SAPC BPC(3)若△BPC的面积为18,试求t的值.29. (本题满分9分)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D 运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为cm/s,是否存在实数,使得△ACP与△BPQ全等?若存在,求出相应的、t的值;若不存在,请说明理由.(2)5×3=15,AP=15﹣12=3,BP=15﹣3=12,则S△APC :S△BPC=3:12=1:4;(3)分两种情况:①当P在AC上时,∵△BCP的面积=18,∴×9×CP=18,∴CP=4,∴3t=4,t=;②当P在AB上时,∵△BCP的面积=18=△ABC 面积的=,∴3t=12+15×=22,t=.故t=或秒时,△BCP的面积为12.29.(1)全等;(2)11xt=⎧⎨=⎩,322xt⎧=⎪⎨⎪=⎩;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度第二学期七年级数学期末总复习——
专题(四)
班别:姓名:学号:
一、选择题
1.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A.5 、7 、2 B.7 、13 、10 C.5 、7 、11 D.5 、10 、13
2.下列各图中,正确画出AC边长的高的是( )
A B C D
3.三角形两边长分别为3和5,若第三边的长为偶数,则这个三角形的周长可能是( )
A.10或12 B.10或14 C.12或14 D.14或16 4.下面说法错误的是()
A.三角形的三条角平分线交于一点B.三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点
5.小方画了一个有两边长为3和5的等腰三角形,则这个等腰三角形的周长为( )
A.11 B.13 C.8 D.11或13 6.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是( )
A.已知三条边B.已知三个角C.已知两角和夹边D.已知
两边和夹角
7.如图,在△ABC中,AB=4,AC=3,AD是BC边上的中
线,则下列结论错误的是( )
A.S△ABD=S△ACD B.△ABD比△ACD的周长多1
C.△ABD≌△ACD D.AD的值可以为3
8.如果在△ABC中,∠A=60°+∠B+∠C,那么∠A等于( )
A.30°B.60°C.120°D.140°9.如图,AE=CF,∠AFD=∠CEB,那么添加一个条件后,仍无法判定△ADF≌△CBE的是( )
A.∠A=∠C B.AD=CB
C.BE=DF D.AD∥BC
10.如图,在△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE的度数为( )
A.71°B.64°
C.80°D.45°
二、填空题
11.电线杆上的横梁下方用三角形的支架支撑的理论根据是_____________________.
12.如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配
一块完全一样形状的玻璃,那么最省事的办法是带
____________去配.
13.一个三角形的三个内角的度数的比是2:2:1,按角分类,则这个三角形是_____________ 三角形.
14.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF 于点D.给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD
=AC.其中正确的结论是__________________(填写所有正确结论的序号).
(第14题)(第15题)15.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为____________度.
三、解答题
16.已知线段a和一个角∠α(如图),请你利
用尺规作图,作△ABC,使
AB=AC=a,∠A=α(保留作图痕迹,不写作法).
17.如图,点B,F,C,E在同一直线上,并且BF=CE,∠B=∠E.
(1)请你只添加一个条件(不再加辅助线),使△ABC≌△DEF,你添加的条件是
___________;
(2)添加了条件后,试说明:△ABC≌△DEF.
18.如图所示,D,E是△ABC中BC边上的点,AD=AE,∠ADC=∠AEB,
EB=DC,那么∠1和∠2之间是什么关系?说明理由.
19.如图,△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.
20.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,
使得一直角边重合,连接BD,CE. (1)试说明:BD=CE;(2) 延长BD交CE 于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.
图1 图2。