Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2

合集下载

CuS纳米片修饰Bi_(5)O_(7)I复合材料用于光催化还原Cr(Ⅵ)水溶液

CuS纳米片修饰Bi_(5)O_(7)I复合材料用于光催化还原Cr(Ⅵ)水溶液
In addition, CuS, as a p-type photocatalyst with narrow band gap exhibits broad absorption spectra in the range from ultraviolet (UV) to near-infrared (NIR) region, has been extensively used as an efficient photocatalyst. For example, Lai, et al. [17] reported that CuS decorated BiVO4 to enhance its photocatalytic property in ciprofloxacin degradation. Naghizadeh, et al. [18] reported that the CoFe2O4@CuS nanocomposite shows enhanced photocatalytic degradation of penicillin G antibiotic. Ghim, et al. [19] prepared ZnMoS4/CuS p-n heterojunctions which exhibited efficient photocatalytic hydrogen generation. These results indicate that CuS could be a favorable co-catalyst for Bi5O7I photocatalyst. Yet there are little reports on the fabrication and photocatalytic reduction activity of Cr(VI) under visible light of CuS/Bi5O7I composite.

UiO-66BiVO_(4)复合光催化剂的制备及其对四环素的光解

UiO-66BiVO_(4)复合光催化剂的制备及其对四环素的光解

中国环境科学 2021,41(3):1162~1171 China Environmental Science UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解綦毓文1,魏砾宏1*,石冬妮1,蒋进元2,烟征1(1.沈阳航空航天大学能源与环境学院,辽宁沈阳 110112;2.中国环境科学研究院,北京 100012)摘要:通过两步溶剂热法成功制备了UiO-66/BiVO4复合光催化材料,考察其对四环素(TC)的光催化降解性能.在模拟可见光下,当锆(Zr):铋(Bi)物质的量投料比为2:1时,对TC的光解效果最好(85.8%).对TC的总去除率分别比纯UiO-66和纯BiVO4提高27.1%和23.5%,降解速率是纯BiVO4的47.9倍.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射(UV-vis DRS)等对所制备的纳米光催化剂进行结构、形貌、组成及光电性能表征分析.结果表明:UiO-66与BiVO4紧密结合形成II型异质结,复合材料性能的提升归因于比表面积的和光生载流子分离率的提升及孔隙结构的改善.关键词:UiO-66/BiVO4;异质结;光催化;四环素降解中图分类号:X703 文献标识码:A 文章编号:1000-6923(2021)03-1162-10Preparation of UiO-66/BiVO4 composite photocatalyst and its photodegradation of tetracycline. QI Yu-wen1, WEI Li-hong1*, SHI Dong-ni1, JIANG Jin-yuan2, YAN Zheng1 (1.College of Energy and Environment, Shenyang Aerospace University, Shenyang 110122, China;2.Chinese Research Academy of Environmental Sciences, Beijing 100012, China). China Environmental Science, 2021,41(3):1162~1171Abstract:The UiO-66/BiVO4 composite photocatalytic material was successfully preparated by a two-step solvothermal method, and its photocatalytic degradation performance for tetracycline (TC) was investigated. Under simulated visible light, when the amount of substance about zirconium(Zr): bismuth(Bi) was 2:1, the photolysis effect of TC was the best (85.8%). Its total removal rate of TC was increased by 27.1% and 23.5% compared to pure UiO-66 and pure BiVO4, respectively. The degradation rate was 47.9times that of pure BiVO4. The structure, morphology and composition of the prepared nano-photocatalyst by X-ray diffractometer (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection (UV-vis DRS) and photoelectric performance characterization analysis. The results showed that UiO-66 and BiVO4 were tightly combined to form II heterojunction. The improvement of composite material performance was attributed to improvements in various aspects, including specific surface area, photogenerated carrier separation rate, and pore structure.Key words:UiO-66/BiVO4;heterojunction;photocatalysis;Tetracycline degradation抗生素作为重要的药物成分,已经广泛用于人类医学和兽医学[1-2].中国是世界上最大的抗生素生产国和使用国,2013年,我国抗生素使用量为16.2万吨,约占全球抗生素使用量的一半[3].抗生素的大量使用导致其通过各种途径进入到污水处理厂[4]、地表水[5]等环境介质中.据有关报道,制药和医院废水中的抗生素浓度最高可达100~ 500mg/L[6],我国海河流域沉积物中四环素类平均含量为2783.2ng/g[7].抗生素的滥用导致水体中的细菌产生抗药性.根据世界卫生组织的预测,到2050年,因“耐药性”导致细菌感染而引起的死亡人数将超过癌症的致死人数[8].因此,水环境中的抗生素因其溶解性、持久性和高毒性而成为全球性的环境问题.电化学、臭氧氧化法等高级氧化技术是现行处理难降解有机废水的主要技术,但因存在能耗高、运行费用高等缺陷而受到限制.近年来,光催化技术作为一种绿色、高效的手段被用于抗生素废水的处理,引起了广泛关注.钒酸铋(BiVO4)作为一种廉价、环境友好型催化剂,且具有适宜的禁带宽度(约2.4eV),在可见光下对难降解有机物展现出了良好的降解性能[9-10],已被证明是一种具有良好应用前景的可见光催化剂[11].由于受到反应位点少及光生载流子效率低的限制[12],BiVO4作为光催化剂尚不能达到较好的光催化效果而无法满足实际应用的需要.研究者采用了多种方法对其改性,其中构建异质结作为一种提高收稿日期:2020-07-27基金项目:沈阳市科技局“中青年科技创新人才计划”(RC190169);辽宁省教育厅“服务地方项目”(JYT19011)* 责任作者, 教授,*****************.cn3期綦毓文等:UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解 1163催化剂光电转换性能的有效方法被广泛使用[13-14].半导体异质结包含TypeⅠ型(内嵌型)、TypeⅡ型(交错型)和TypeⅢ型(错开型),Ⅱ型异质结中的半导体单元因具有载流子相互传递的特性而被广泛研究.宋等[15]制备出具有II型异质结的BiOCl/ BiVO4复合纳米片,经4h光催化后对10mg/L的RhB的降解率达96%.杜等[16]研制的BiVO4/WO3异质结复合膜经3h可见光辐射后对诺氟沙星有较好的降解效果.然而传统的铋基双半导体异质结复合催化剂仍存在处理时间长、催化剂投加量大等制约工程应用的弊端,需要进一步研究提高其表面积及载流子传输能力等性能,以期加快其进一步实际应用的进程.近十几年来,金属有机框架(MOFs)作为一种新型的多孔晶体材料引起了较多关注[17-18],其中锆(Zr)基MOFs[19]不仅具有多活性位点、高比表面积等MOFs的通用特性,还兼具强可修饰性[20]、强稳定性[21]的特点,在吸附[22]、催化[23]、传感[24]等领域被广泛应用.其中UiO-66的结构以Zr6O4(OH)4原子簇作为节点[25],与12个BDC2–配位组装而成. UiO-66中含有两种笼状结构,直径约0.8nm的正四方体笼和直径约1.1nm的正八面体笼,丰富的孔道及笼状结构使其具有很高的比表面积(600~ 1600m2/g)[26].因此,UiO-66作为Zr基直接半导体[27] MOFs的典型代表,在光催化研究中数见不鲜[28].但是,纯相UiO-66光致电子-空穴对分离率低以及光利用能力差[29],从而导致其光催化性能有限.为了克服上述缺点,许多研究者通过UiO-66与其他半导体材料构建异质结来提升其光催化性能[30-31].因此,将多活性位点的UiO-66与廉价、具有可见光响应的BiVO4相结合可能是提高材料光催化性能和实际应用性的有效方法.然而,目前对UiO-66/ BiVO4复合催化剂的构建及其可见光光催化降解机制的系统研究还鲜有报道.本研究将载流子复合率高的BiVO4锚定在UiO-66周围及表面,形成能级及尺寸匹配的异质结,提升复合催化剂的活性位点数和光生载流子分离率,同时增强复合催化剂对四环素的吸附和光催化降解能力.以期为新型铋系MOFs可见光光催化剂的设计和光催化机理的深入研究提供参考. 1材料与方法1.1主要试剂与仪器1.1.1试剂本实验中使用的试剂和溶剂均为分析纯,无需进一步纯化,购自上海阿拉丁生化科技股份有限公司.五水硝酸铋[Bi(NO3)3·5H2O]、偏钒酸铵(NH4VO3)、乙二醇(C2H6O2)用于合成BiVO4;二甲基甲酰胺(C3H7NO)、氯化锆(ZrCl4)、对苯二甲酸(C8H6O4)、苯甲酸(C7H6O2)用于合成UiO-66;实验用水为娃哈哈纯净水.1.1.2仪器 AHD500W型光化学反应器,深圳中图博安光电有限公司;紫外-可见分光光度计UV2000,上海精密科学仪器有限公司;X射线衍射仪(XRD),D8-Advance,BrukerAXS,Germany;场发射扫描电镜(SEM/EDS),∑IGMA,卡尔蔡司(上海)管理有限公司,电压15KV,观察催化剂形貌;全自动比表面积分析仪(BET),Quantachrome AUTOSORB IQ,USA;紫外-可见-近红外分光光度计(DRS),Agilent Cary 5000,Australia;X射线光电子能谱仪(XPS),紫外电子能谱(UPS),KRATOS Axis Ultra, England.1.2UiO-66和UiO-66/BiVO4的制备1.2.1UiO-66的制备准确称量5mmol的ZrCl4及30当量(相对于ZrCl4)的C7H6O2分别超声完全溶解于40mL和25mL二甲基甲酰胺(DMF)中,分别记为溶液A和B.随后将5mmol C8H6O4加入A溶液中超声至完全溶解,记为溶液C.待溶液C磁力搅拌20min后将溶液B逐滴加入搅拌40min后转移至100mL衬底为聚四氟乙烯的水热反应釜中,120℃恒温24h.待反应溶液冷却后,离心分离并用DMF和无水甲醇清洗多次去除杂质,干燥研磨制得白色固体粉末.1.2.2 UiO-66/BiVO4的制备称取2mmol Bi(NO3)3·5H2O完全溶解于10mL乙二醇中,记为溶液D.称取2.4mmol的NH4VO3溶解于15mL纯净水中,记为溶液E.为了研究不同复合比例对产物光催化性能的影响,在相同Bi3+(2mmol)投加量下,分别称取1.1094g、0.5547g、0.2774g的UiO-66超声分散于50mL乙二醇中,即溶液中的Zr含量分别为4mmol、2mmol和1mmol,记为溶液F.将溶液D加入F中充分混合,随后将溶液E逐滴加入搅拌1h后移入100mL衬底为聚四氟乙烯的水热反应釜中,1801164 中国环境科学 41卷℃恒温12h,待反应溶液冷却后,离心分离并用无水乙醇和纯净水清洗多次去除杂质,干燥研磨制得黄色固体粉末.最后将制得的Zr:Bi物质的量投料比分别为1:0.5、1:1、1:2的复合催化剂分别编号为UB-0.5、UB-1、UB-2.1.3UiO-66/BiVO4的光催化性能测试将90mg所制备的光催化剂加入到300mL浓度为10mg/L的四环素(TC)溶液中.为了保证在光催化降解实验之前保持吸附-解吸平衡,将溶液在黑暗条件下搅拌90min.随后将样品放置于500W的氙灯下(滤光片滤除λ<420nm紫外光)进行光催化降解,光强(50±5)mW/cm2.在光催化过程中,间隔抽取5mL样品,通过三次离心去除催化剂.采用紫外可见分光光度计测量357nm处的吸光度值,通过标准曲线确定TC浓度.2结果与讨论2.1XRD分析XRD分析可以提供所合成样品的组成和晶相信息.UiO-66、BiVO4及UB-X(X为Zr:Bi物质的量投料比,数值为0.5、1、2)的XRD图谱如图1所示.纯UiO-66在7.34°和8.46°出现特征衍射峰,与之前的报道相同[21-32],证明UiO-66的成功合成.纯BiVO4在18.88°、28.86°、30.56°出现特征衍射峰,对应的晶面指数分别为(011)、(121)、(040),与单斜白钨矿型BiVO4的标准卡片(JCPDS:00-14-0688)吻合.当BiVO4与UiO-66复合后,其衍射峰相对于纯BiVO4没有显著差别,UiO-66在7.34°的特征峰并没有消失,且衍射峰强度随着BiVO4复合量的增加而减少,这可能是复合材料中UiO-66含量相对少所致.UB-X中均保留了BiVO4和UiO-66的特征峰,说明UiO-66/ BiVO4复合材料成功制备.根据文献[33],Bi3+与UiO-66的官能团(-OH和-COOH)之间存在配位关系.因此,Bi3+首先通过配位键吸附在UiO-66的表面上,然后由过量VO3-转化的VO43-逐渐与UiO-66表面固定的Bi3+结合形成化学键,成键的BiVO4分子在溶剂热环境下充分结晶生长成与UiO-66尺寸匹配的BiVO4颗粒,最终形成UiO-66/BiVO4复合催化剂.此外,在27.2°出现Bi单质的衍射峰,由于在这种典型的多元醇反应过程中,乙二醇既是溶剂又是还原剂.微量乙二醇在溶剂热反应过程中首先分解生成中间体甲醛再将Bi3+还原为Bi单质,最终生成微量粒径为150nm左右的球形Bi颗粒(图2(b)),这与先前研究报道的一致,反应见式(1)和式(2)[34-35].HOCH2CH2OH→CH3CHO+H2O (1) 2Bi3++6CH3CHO→3CH3CO–OCCH3+2Bi+6H+ (2)1020304050 60 7080(4)(121)UiO-66UB-2UB-1UB-0.52θ(°)BiVO4(11)Bi图1 样品的XRD谱图Fig.1The XRD patterns of the samples(e1) (e2)(e3) (e4) (e5)图2 UiO-66(a), BiVO4(b), UB-0.5(c)的SEM图;UB-0.5(d~e)的EDS分析Fig.2 SEM images of UiO-66(a), BiVO4(b), UB-0.5(c); theEDS analysis of UB-0.5(d~e)3期綦毓文等:UiO -66/BiVO 4复合光催化剂的制备及其对四环素的光解 11652.2 形貌分析为了进一步确定复合材料中UiO -66与BiVO 4的结合方式,对样品进行表观形貌分析(SEM)和元素分析(EDS).图2为纯UiO -66、纯BiVO 4及UB -0.5的SEM 图.在30当量的苯甲酸调节下,结晶良好的纯UiO -66为尺寸800-1100nm 的正八面体(图2a).纯BiVO 4为长度在500-1000nm 的纺锤状颗粒(图2b).负载前后UiO -66与BiVO 4的形貌和颗粒尺寸相似,纺锤状BiVO 4紧密结合在UiO -66周围,另外如图2d 中的EDS 点谱图像显示,UiO -66表面能检测到BiVO 4的所有元素,即表明一些未结晶完全的BiVO 4颗粒分散在八面体UiO -66表面(图2c),说明BiVO 4与UiO -66复合后在界面处形成了异质结结构.UB -0.5的EDS 分层图像如图2(e)所示,组成UB - 0.5的Bi 、O 、V 、Zr 、C 元素分布在整个复合颗粒中,且组成BiVO 4的Bi 、O 、V 元素在外侧显示突出,组成UiO -66的Zr 、C 元素主要集中在对应的中心八面体处,与SEM 图像2c 的结果一致.进一步表明了异质结的成功构建. 2.3 XPS 及UPS 分析通过XPS 进一步分析研究了UiO -66/BiVO 4复合材料的表面元素化学态.图3(a)为BiVO 4和UB - 0.5的完整测量光谱.相较于单一BiVO 4,当UiO -66与BiVO 4复合后,出现Zr 的衍射峰,表明Bi 、Zr 、C 、V 、O 存在于UiO -66/BiVO 4异质结的表面上,这与EDS 的结果一致.如图3(b)中显示,BiVO 4主要在Bi 4f 7/2的159.2eV 和Bi 4f 5/2的164.5eV 附近处有两个对称峰,为Bi 3+在BiVO 4中的典型值[36].与原始BiVO 4相比,UB -0.5中的Bi 4f 的主要拟合峰的结合能升高,分别由BiVO 4中的159.2eV 和164.5eV 变为UB -0.5中的159.4eV 和164.7eV ,表明的Bi 3+的价态因UB - 0.5异质结中的电荷转移而变低,即电子由BiVO 4向UiO -66转移,与电荷转移机制图8一致.此外,Bi 的XPS 光谱表明UB -0.5具有更大的半峰全宽(FWHM),这是由于BiVO 4颗粒相对较小而增强的无序性和化学不均一性所致,表明大表面积的UiO -66可以有效地稳定BiVO 4颗粒并抑制聚集[37].图3(c)显示了V 元素与UiO -66结合前后的结合能同样发生了变化,且结合后的结合能移至更低的位置.UB -0.5的O1s 峰可以拟合为图3(d)中530.27eV ,531.44eV 和532.88eV 的三个峰.其中530.27eV 处的峰属于Bi -O 和Zr -O 键[38-39].531.44eV 处的峰则与表面吸附氧有关,可归因于BiVO 4表面的氧空位[40],而532.88eV 处的峰与表面羟基有关[41].对于UB -0.5的C1s 的光谱(图3(e)),约284.90eV 、286.30eV 和288.60eV 处的三个结合能峰分别属于UiO -66的C=C 、C -C 和C=O 基[36].UB - 0.5中Zr 3d 光谱(图3(f))在184.58和182.18eV 处显示典型的Zr 3d 3/2和3d 5/2峰,这些峰源自[Zr 6O 4(OH)4(CO 2)12]集群[42].综上,XPS 结果进一步提供了UiO -66/BiVO 4异质结构形成的证据,且UiO -66与BiVO 4相之间的界面结合紧密.图4显示了样品的UPS 结果.BiVO 4和UiO -66样品的VB(价带)水平为2.08eV 和3.77eV ,分别与报道的实验数据2.10eV [11]和3.50eV [43]相符.与BiVO 4相比,UiO -66/BiVO 4异质结的VB 电位为1.76eV ,负移动为0.32eV ,这证明表面部分的UiO -66/BiVO 4异质结可以向能带位置的负方向移动,增强了将氧气转化为超氧自由基的能力.1000 800 600 4002000强度(a) Survey UB-0.5BiVO 4Z r 3p B i 4fZ r 3d B i 5dC 1sB i 4dV 2p O 1sO K L LO K L LO 1s B i 4dB i 4pV 2p C 1sB i 4fB i 5d结合能(eV)170168166164162160158 156结合能(eV)1166中 国 环 境 科 学 41卷强度526 524522 520 518 516514512510(c) V2p V2p 1/2524.4 V2p 3/2517.0BiVO 4516.9524.1UB-0.5结合能(eV)538536534532530528 526结合能(eV)295 290 285 280275结合能(eV)192190188186184182180 178 176结合能(eV)图3 样品的XPS 光谱.(a)全扫描,(b)Bi 4f,(c)V 2p,(d)O 1s,(e)C 1s,(f)Zr 3dFig.3 The XPS spectrum of the sample. Typical wide survey(a), and high resolution XPS spectrum of Bi 4f(b);V 2p(c);O 1s(d);C1s(e);Zr 3d(f)图4 样品的UPS 结果 Fig.4 The UPS results of sample2.4 比表面积及孔径分析表1和图5是催化剂在77K 下的N 2吸附-脱附测试结果.对于纯UiO -66纳米颗粒,N 2吸附-脱附等温线属于无滞后环的I 型吸附-脱附等温线,这是微孔材料所具有的特定吸附-脱附等温线类型[44],且比表面积为1502.1m 2/g,其中微孔面积为1372.00m 2/g,占总比表面积的91.34%.对于复合材料UB -0.5,N 2吸附-脱附等温线由I 型转变为Ⅳ型,在较高的相对压力下出现小的回滞环(图5(a)),表明介孔的出现主要是由于BiVO 4纳米粒子在UiO -66表面堆积而引起的,如SEM 图2(c)所示.随着BiVO 4的引入,比表面积值从原始UiO -66的1502.1m 2/g 降为UB -0.5的256.3m 2/g,孔体积值从原始UiO -66的0.58cm 3/g 降为UB -0.5的0.26cm 3/g.尽管如此,其数值仍远高于纯BiVO 4纳米颗粒的17.8m 2/g 和0.05cm 3/g.相似地,在图5(b)~(c)的孔径分布曲线中,UiO -66的孔径主要分布在0.78nm 和1.10nm 附近,为八面体UiO -66的典型值,BiVO 4的孔径主要分布在5.69-14nm.在UiO -66与BiVO 4成功复合后,微孔和介孔的分布曲线分别和UiO -66与BiVO 4相似,表明UiO -66与BiVO 4分别主导了UB -0.5的微孔和介孔结构.因为在UB -0.5的复合过程中,先加入的UiO -66载体影响了的结晶过程,原先纺锤状BiVO 4的形貌发生改变(图2(b)~(c)),导致原来介孔结构发生改变而呈现出新的孔径分布,使得BiVO 4的孔径主要分布在3.81nm 附近((图5(d)).当BiVO 4复合分散在UiO -66的表面后,UiO -66的部分空隙被覆盖或堵塞((图2(c)),导致UB -0.5的微孔孔径主要分布在0.43nm.相应地,平均孔径为13.11nm 的BiVO 4负载到平均孔径为1.77nm 的UiO -66表面后,形成了平均孔径为4.36nm 的UB -0.5复合材料.表明UiO -66与BiVO 4复合之后,使孔径结构向更有利于提高吸附速率和3期綦毓文等:UiO -66/BiVO 4复合光催化剂的制备及其对四环素的光解 1167容量的方向发展,具有显著改善单一材料的表面吸附性能的潜力.0 0.2 0.4 0.6 0.81.01234567891000.20.40.60.81.01.2 1.100.78(b)孔体积变化率(d V /d r )孔径(nm)UiO-66吸附量(c m 3/g )相对压力(P/P 0)12345678910-0.020.020.040.060.080.100.120.14UB-0.53.810.43孔体积变化率(d V /d r )孔径(nm)(d)0 510 15 20 2530350.002 0.004 0.006 0.008 0.010 (c)BiVO 4孔体积变化率(d V /d r )孔径(nm)7.45图5 合成样品的BET 曲线(a)及孔径分布图UiO -66(b); BiVO4(c); UB -0.5(d)Fig.5 BET curve(a) and pore size distribution of synthetic samples. UiO -66(b); BiVO4(c); UB -0.5(d) 表1 样品的比表面积、孔径和孔体积Table 1 S BET , average pore size and pore volume of samples样品 比表面积 (m 2/g)微孔面积 (m 2/g)平均孔径 (nm)孔体积 (cm 3/g) UiO -661502.1 1372.00 1.770.58BiVO 417.8 0.18 13.11 0.05UB -0.5 256.3 107.73 4.36 0.262.5 UV -vis DRS 漫反射分析光催化剂对可见光的吸收能力是决定着其光催化性能的重要因素,因此对纯UiO -66、纯BiVO 4及复合材料UB -0.5进行UV -vis DRS 漫反射表征.如图6(a)所示,纯UiO -66在380~780nm 可见光区吸收能力微弱,纯BiVO 4具有较强的吸收能力,复合材料UB -0.5的吸收能力相较于纯UiO -66明显提升,特别是在380~500nm 尤为明显.另外,根据Kubelka -Munk 方法,利用式(3)可计算得到BiVO 4、UiO -66和UB -0.5的带隙能[36].2()n/g Ahv A hv E =− (3)式中:α,h ,ν,E g 和A 分别为吸收系数、以eV 为单位的普朗克(Planck)常数、光频率、带隙宽度和样品在吸收边处的吸光系数.同时,由于UiO -66和BiVO 4属于直接带隙半导体,因此n 取值为l.将各参数代入式(3),计算得到纯BiVO 4、UiO -66和UB -0.5的带隙能分别为2.34eV 、2.38eV 和4.00eV,如图6(b)所示.UB -0.5的带隙宽度相较于UiO -66明显减小,略高于纯BiVO 4,与图6(a)中光吸收曲线一致.说明UB -0.5复合光催化剂易于被可见光激发产生光生载流子,提高量子效率.通过图4中的UPS 分析可知,BiVO 4与UiO -66的VB 位置分别为2.08eV 、3.77eV.从图6的Tauc 图可知BiVO 4与UiO -66的Eg 分别为2.34eV 和4.00eV.CB(导带)位置可以由式(4)计算得出:E CB = E g - E VB(4)式中:E VB 代表半导体价带电位,eV;E CB 代表半导体导带电位,eV;E g 代表半导体带隙能,eV.计算出知BiVO 4与UiO -66的E g 分别为2.34eV 和4.00eV.1168 中 国 环 境 科 学 41卷BiVO 4与UiO -66的CB 位置分别为-0.26eV 和-0.23eV.300 400 500 600 700 800UiO-66UB-0.5 BiVO 4 强度波长(nm) (a)1.52.0 2.53.0 3.54.04.5带隙宽度(e V )结合能(eV)图6 样品的DRS 光谱图(a)及相应的Tauc 图(b) Fig.6 The DRS spectrum (a) and (b)corresponding Taucdiagram of Sample2.6 光催化性能通过在模拟可见光照射下抗生素TC 的降解来评判催化剂的光催化性能,结果如图7所示.如图7(a)所示,纯UiO -66在暗吸附90min 后对TC 的吸附率为51.1%,明显低于其他样品.但由于曲线斜率较大,可能尚未达到吸附平衡.为此,开展了更长时间的暗吸附实验,发现12h 后UiO -66对TC 达到吸附平衡,总吸附去除率为88.14%.纯UiO -66对TC 的吸附效率低主要因为理论分子动力学直径为1.26nm 的TC 分子[45]难以进入UiO -66中1.1nm 左右八面体笼孔道[46],并造成部分堵塞.纯BiVO 4及复合材料UB - X (X =0.5、1、2)在暗吸附第90min 达到吸附平衡,对TC 的吸附去除率分别为59.6%、68.7%、61.5%、61.6%.其中复合材料UB -0.5的吸附能力明显高于纯UiO -66,主要由于亲水性良好的BiVO 4[47]的引入极大的改善了孔径结构并提高了单一UiO -66的表面亲水性能,在比表面积减少的情况下反而加速了对液相中TC 的吸附.UB -0.5对TC 的吸附能力皆高于纯BiVO 4、UB -1和UB -2,主要由于高比表面积和孔隙率的UiO -66提供了大量的吸附位点.因此,材料对目标污染物的吸附,不仅仅依赖于高比表面积提供的多活性位点,材料的相对孔径结构和亲水性质也是非常关键的因素.UB -0.5对TC 的强吸附能力主要归因于复合材料UB -0.5良好的亲水性、较大的比表面积和适当的孔径.-90-60-300 30 60 900.10.20.30.40.50.60.70.80.91.0C /C 0时间(min)2040 60 8000.20.40.60.81.0l n (C 0/C )时间(min)图7 模拟可见光下催化剂对TC 的去除曲线(a)及降解速率曲线(b)Fig.7 The removal curve and degradation rate curve ofcatalyst for TC under visible light经90min 可见光照射后,空白实验表明TC 的直接光解可以忽略不计.纯UiO -66对TC 的总去除率为58.7%,主要因为90min 的吸附时间,尚未达到吸附平衡.相同条件下,纯BiVO 4及复合材料UB -X(X= 0.5、1、2)对TC 的总去除率分别为62.3%、85.8%、72.6%、73.2%.其中,纯BiVO 4在开灯后去除率变化微小,说明纯的BiVO 4对TC 光降解作用微弱.结果3期綦毓文等:UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解 1169表明,复合材料对TC的总去除率均高于单一催化剂,其中UB-0.5异质结光催化剂最高为85.8%,比纯UiO-66和纯BiVO4分别提升27.1%和23.5%.结合BET、DRS等表征结果,显然UB-0.5对TC降解效率的提升归因于复合材料催化活性位点的增多、可见光吸收能力的增强和形成异质结复合材料后光生载流子效率的提高.研究TC的光催化降解动力学,其结果如图7(b)所示.拟一阶动力学模型很好地拟合了所有光催化剂对TC降解的动力学曲线,空白、纯UiO-66、纯BiVO4和UB-X(X=0.5、1、2)的速率常数为分别为1.19×10−4min-1、2.32×10−3min-1、1.59×10−4min-1、7.61×10−3min-1、3.74×10−3min-1和3.53×10−3min-1.毫无疑问,UB-0.5异质结的速率常数最高,分别是UB-1和UB-2速率常数的2.03和2.16倍,是纯BiVO4的47.9倍.显然,异质结复合催化剂的成功制备,极大的升高了对TC的可见光光降解速率.2.7光催化机理探讨为了探究异质结体系提高光催化活性的机制,根据我们的实验结果,提出了UiO-66/BiVO4复合材料在可见光下的光催化反应机理.当UiO-66与BiVO4复合时,复合材料的能带结构发生变化,在两个半导体之间的界面处形成稳定的异质结构.通过考虑样品的带隙和VB水平,可以绘制UiO-66/ BiVO4异质结的能带排列图.如图8所示,当复合材料暴露于可见光时,BiVO4产生电子-空穴对,由于II型异质结的形成且BiVO4的CB电势比UiO-66更负,光生电子易于从BiVO4层的CB移动到高比面积的UiO-66的CB.同时,受到VB电势的限制,两者VB层不容易发生空穴转移,从而抑制了光生电子-空穴对的复合.理论上,只有CB电势低于氧气(O2)转变为超氧自由基(·O2-)的电势(+0.13eV),溶解氧才能与CB上的电子结合生成·O2-[48],故迁移到BiVO4表面的电子和迁移到UiO-66表面的电子都能与吸附氧和溶解氧结合产生·O2-对四环素进行降解.同样,只有当电势大于·OH/H2O的转化电势(+2.68eV),光致空穴才能氧化吸附的水分子产生羟基自由基[49],故BiVO4的CB边的空穴直接对四环素氧化降解,而没有将吸附的H2O分子转化为·OH后再降解的转化过程.综上,超氧自由基和空穴是对四环素进行降解的主要活性物种,催化降解性能的提高主要归因于UiO-66/BiVO4异质结的成功构建.一方面,被激发的载流子得以有效分离,从而减少了电子-空穴对的重组并延长了载流子的寿命;另一方面,UiO-66的引入大大的增加了吸附位点和催化位点数量,进而提高了光催化降解性能.图8 UiO-66/BiVO4异质结的光催化机理示意Fig.8 Schematic diagram of the photocatalytic mechanism ofUiO-66/BiVO4 heterojunction3结论3.1采用两步溶剂热法成功制备了UiO-66/BiVO4异质结光催化剂.研究表明UiO-66的加入量对该复合材料的光学性能、吸附及光催化降解TC的性能有显著的影响.其中复合材料UB-0.5的可见光光催化活性最高,对TC的光解率达85.8%,比纯UiO-66和纯BiVO4分别提高27.1%和23.5%,降解速率是纯BiVO4的47.9倍.3.2能级匹配异质结复合材料的成功构建使光生载流子在界面电场的作用下迅速迁移,抑制了光生电子-空穴对的复合,延长了载流子寿命;其次,相较于单一材料,UB-0.5具有更高的比表面积和光吸收能力,提升了处理效率和光利用率.从而二者共同增强了复合催化剂的光催化活性.3.3根据能带隙、UPS表征结果,向负方向移动的异质结导带加强了氧气向超氧自由基的转化,进而有利于四环素的催化降解,且超氧自由基和空穴是降解TC的主要活性物种.参考文献:[1] Tang L, Zeng G M, Shen G L, et al. Rapid Detection of Picloram inAgricultural Field Samples Using a Disposable I mmunomembrane- Based Electrochemical Sensor [J]. Environmental Science & Technology, 2008,42(4):1207-1212.1170 中国环境科学 41卷[2] Yang Z H, Xu R, Zheng Y, et al. Characterization of extracellularpolymeric substances and microbial diversity in anaerobic co- digestion reactor treated sewage sludge with fat, oil, grease: biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies [J]. Bioresource Technology, 2016,212:164- 173.[3] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation ofantibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J].Environmental Science & Technology, 2015,49(11):6772-6782.[4] Gao L H, Shi Y L, Li W H, et al. Occurrence of antibiotics in eightsewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6):665-671.[5] Liu X H, Lu S Y, Guo W, et al. Antibiotics in the aquatic environments:A review of lakes, China [J]. Science of the Total Environment, 2018,627:1195-1208.[6] Cetecioglu Z, Ince B, Gros M, et al. Chronic impact of tetracycline onthe biodegradation of an organic substrate mixture under anaerobic conditions [J]. Water Research, 2013,47(9):2959-2969.[7] Chen H Y, Jing L J, Teng Y G, et al. Characterization of antibiotics in alarge-scale river system of China: occurrence pattern, spatiotemporal distribution and environmental risks [J]. Science of the Total Environment, 2018,618:409-418.[8] Willyard C, The drug-resistant bacteria that pose the greatest healththreats [J]. Nature, 2017,543(7643):15-15.[9] Zhou C Y, Cui L, Huang D L, et al. Highly porous carbon nitride bysupramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven [J]. Applied Catalysis B Environmental, 2018,220:202-210.[10] 刘琼君,林碧洲,李培培,等.BiPO4/BiVO4复合材料的制备及可见光催化活性 [J]. 高等学校化学学报, 2017,38(1):94-100.Liu Q J, Lin B Z, Li P. et al. Preparation of BiPO4/BiVO4 composites with high visible-light photocatalytic activity [J]. Chemical Journal of Chinese Universities, 2017,38(1):94-100.[11] RidhwanI S M F, Suriati S, Hameed B H. Epigrammatic progress andperspective on the photocatalytic properties of BiVO4-based photocatalyst in photocatalytic water treatment technology: A review [J]. Journal of Molecular Liquids, 2018,268:438-459.[12] Kudo A, Omori K, Kato H. Novel aqueous process for preparation ofcrystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties [J]. Journal of the American Chemical Society, 1999,121(49):11459–11467.[13] Liu C, Zhou J L, Su J Z, et al. Turning the unwanted surface bismuthenrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance [J]. Applied Catalysis B: Environmental, 2019,241:506-513.[14] 柴晴雯,吕艳,张周,等.Cu2O@ZnO复合光催化剂对难生物降解有机物的光降解 [J]. 中国环境科学, 2019,39(7):2822-2830.Chai Q W, Lu Y, Zhang Z, et al. Photodegradation of refractory organic compounds by Cu2O@ZnO composite photocatalyst [J].China Environmental Science, 2019,39(7):2822-2830.[15] Song L J, Pang Y Y, Zheng Y J, et al. Design, preparation andenhanced photocatalytic activity of porous BiOCl/BiVO4, microspheres via a coprecipitation-hydrothermal method [J]. Journal of Alloys and Compounds, 2017,710:375-382.[16] Du H, Pu W H, Wang Y Y, et al. Synthesis of BiVO4/WO3 compositefilm for highly efficient visible light induced photoelectrocatalytic oxidation of norfloxacin [J]. Journal of Alloys and Compounds, 2019, 787:284-294.[17] 张哲,王磊,贺苗露,等.UIO-66改性聚酰胺正渗透复合膜的制备及性能研究 [J]. 中国环境科学, 2020,40(6):2418-2425.Zhang Z, Wang L, He M L, et al. Preparation andperformance of UIO-66modified thin-film nanocomposite membrane for forward osmosis [J]. China Environmental Science, 2020,40(6):2418-2425. [18] S.nadar S, Vaidya L, Maurya S. Polysaccharide based metal organicframeworks (polysaccharide–MOF): A review [J]. Coordination Chemistry Reviews, 2019,369:1-21.[19] Jiang D N, Chen M, Zeng G M. The application of differenttypological and structural MOFs-based materials for the dyes adsorption [J]. Coordination Chemistry Reviews, 2019,380:471-483. [20] Bai Y, Dou Y, Xie L H, et al. Zr-based metal-organic frameworks:design, synthesis, structure, and applications [J]. Chemical Society Reviews, 2016,45(8):2327-2367.[21] 盛炳琛,李从,刘颖雅,等.微通道连续合成UiO-66系列改性MOF材料 [J]. 高等学校化学学报, 2019,40(7):1365-1373.Sheng B C, Li C, Liu Y Y, et al. Microfluidic synthesis of UiO- 66 metal-organic frameworks modified with different functional groups [J]. Chemical Journal of Chinese Universities, 2019,40(7):1365-1373.[22] Azhar M R, Abid H R, Periasaamy V, et al. Adsorptive removal ofantibiotic sulfonamide by UiO-66and Z I F-67 for wastewater treatment [J]. Journal of Colloid and I nterface Science, 2017,500: 88-95.[23] 崔莹莹,崔丽,崔玫瑰,等.光电催化协同还原CO2和氧化有机污染物 [J]. 中国环境科学, 2018,38(6):2075-2081.Cui Y Y, Cui L, Cui M G, et al. Photo-electrochemical synergetic reduction of CO2 and oxidation of organic pollutants [J]. China Environmental Science, 2018,38(6):2075-2081.[24] Kim S N, Lee Y R, Hong S H, et al. Pilot-scale synthesis of azirconium-benzenedicarboxylate UiO-66for CO2 adsorption and catalysis [J]. Catalysis Today, 2015,245:54-60.[25] Kata M J, Klet R C, Moon S Y, et al. One step backward is two stepsforward: enhancing the hydrolysis rate of UiO-66by decreasing [OH– ] [J]. ACS Catalysis, 2015,5(8):4637–4642.[26] Ramsahye N A, Gao J, Jobic H, et al. Adsorption and diffusion of lighthydrocarbons in UiO-66(Zr): a combination of experimental and modeling tools [J]. The Journal of Physical Chemistry C, 2014, 118(47):27470–27482.[27] Lustig W P, Mukherjee S, Rudd N D, et al. Metal-organic frameworks:Functional luminescent and photonic materials for sensing applications [J]. Chemical Society Reviews, 2017,46(11):3242-3285.[28] Xue Y, Wang P F, Wang C, et al. Efficient degradation of atrazine byBiOBr/UiO-66 composite photocatalyst under visible light irradiation: Environmental factors, mechanisms and degradation pathways [J].Chemosphere, 2018,203:497-505.[29] Sun D, Li Z. Robust Ti- and Zr-based metal-organic frameworks for。

Ni–TiO2光催化还原CO2和水制备甲烷

Ni–TiO2光催化还原CO2和水制备甲烷

Ni–TiO2光催化还原CO2和水制备甲烷摘要:光催化是一种最潜在的方法来减少二氧化碳转化为有用的化合物。

在这个工作中,为了提高照片的二氧化碳减少,镍离子被嵌入二氧化钛作为光催化剂。

XRD 和TEM结果显示与纳米二氧化钛锐钛矿结构。

表面的特点用BET和电动电势测量。

经紫外可见和PL的光化学属性。

二氧化碳减排测试液体反应器和GC对产品进行了分析。

Ni-TiO2(0.1摩尔%)相比其他催化剂有最高收益率的甲烷。

简介在过去的几十年中,快速推动了全球能源需求不断增长的世界人口。

如今,能源基础设施几乎依赖于化石燃料。

使用化石燃料产生的温室气体如二氧化碳(CO2),这是全球变暖的主要原因[1,2]。

为了解决这个问题,许多研究人员正努力开发替代能源和利用二氧化碳。

有三种途径:利用二氧化碳CO2转化为燃料,利用二氧化碳作为化工原料,以及非转换使用的二氧化碳。

在各种方法中,光催化还原二氧化碳与水成烃燃料和有用的化学物质是值得注意的方式来生产能源与缓解全球气温降低二氧化碳浓度[3 - 5]。

Inoue at al [6]报道,HCOOH一氧化碳,CH3OH,甲烷是主要的产品在CO2和H2O的光致还原作用。

在一般情况下,运输过程中电子和空穴在光催化反应中可以通过几个步骤来解释:光吸收,运输光生电子和空穴在光催化剂表面,反应的电子和空穴,电子和空穴的复合光催化剂表面和反应物的传质[7]。

在各种半导体如氧化钛(二氧化钛)[8],氧化钨电致)[9],氧化锌(氧化锌)[10]、磷化镓(GaP)[11],硫化镉(cd)[12],和碳化硅(SiC)[13],重点是二氧化钛。

二氧化钛研究在过去几年中由于其众多的优点包括良好的光敏,电荷转移潜力,低成本、无腐蚀性,生物稳定、无毒[14]。

然而,二氧化钛的效率很低,因为宽的带隙(3.20 eV),立即重组光生电子空穴对[15-16]。

为了提高二氧化钛的光催化效率,许多表面改性方法已被研究人员进行。

氧化锌(Zinc oxide)基本资料

氧化锌(Zinc oxide)基本资料

氧化锌(Zinc oxide)基本资料氧化锌(ZnO)是锌的一种氧化物,俗称锌白,英文名称是Zinc oxide。

中文别名有锌氧粉、锌白、锌白粉、锌华、亚铅华、锌白银、一氧化锌、水锌矿等等。

难溶于水,可溶于酸和强碱。

氧化锌是一种常用的化学添加剂,广泛地应用于塑料、硅酸盐制品、合成橡胶、润滑油、油漆涂料、药膏、粘合剂、食品、电池、阻燃剂等产品的制作中,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。

此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。

氧化锌氧化锌生产厂家主要集中在辽宁(大连)、山东(潍坊)、河北(高邑、邢台)、江苏、浙江等地,生产的氧化锌以99.7%含量的为主,俗称997(99.7)氧化锌。

一、氧化锌物理化学性质1.1.基本信息密度:5.6沸点:2360ºC熔点:1975°C分子式:OZn分子量:81.408精确质量:79.924065PSA:17.07000外观性状:白色粉末折射率:2.008~2.0291.2.分子结构摩尔折射率:无可用的摩尔体积(cm3/mol):无可用的等张比容(90.2K):无可用的表面张力(dyne/cm):无可用的介电常数:无可用的极化率(10-24cm3):无可用的单一同位素质量:79.924061Da 标称质量:80Da平均质量:81.4084Da1.3.编号系统CAS号:1314-13-2MDL号:MFCD00011300 EINECS号:215-222-5 RTECS号:ZH4810000二、性质与稳定性2.1.如果遵照规格使用和储存则不会分解,未有已知危险反应,避免碱、碱金属2.2.受阳光照射发磷光,在阴极线和阳极线上,能发出绿色和紫色等光。

为两性氧化物,溶于稀酸、浓氢氧化碱溶液、氨水和铵盐溶液,不溶于水和醇。

2.3.工作人员应做好防护,应注意防尘通风。

空气中最高允许浓度0.5mg/m3。

溶于酸、氢氧化钠、氯化铵,不溶于水、乙醇和氨水。

溶剂热法制备CeO2

溶剂热法制备CeO2

第28卷㊀第3期2023年6月㊀哈尔滨理工大学学报JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY㊀Vol.28No.3Jun.2023㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀溶剂热法制备CeO 2/BiOI 复合光催化剂及性能米世新,㊀牟红旭,㊀王剑浩,㊀杨陆娟,㊀吴鹏伟,㊀刘子薇,㊀庄艳丽(哈尔滨理工大学材料科学与化学工程学院,哈尔滨150080)摘㊀要:针对提高单体BiOI 的可见光催化降解效率的问题,采用煅烧法在不同温度下制备出了CeO 2三维花型结构,然后将CeO 2加入到BiOI 前驱体溶液中,通过溶剂热法制备出不同复合比例的BiOI /CeO 2复合光催化剂㊂运用X 射线粉末衍射(XRD )㊁扫描电子显微镜(SEM )㊁紫外-可见漫反射光谱(UV-Vis DRS )㊁电化学等对制备样品进行表征,利用对罗丹明B (RhB )的降解实验评价了不同CeO 2煅烧温度㊁不同复合比例对光催化降解效率的影响,并通过自由基捕获实验对复合材料的光催化机理进行了分析㊂结果表明,当BiOI 与CeO 2(煅烧温度为400ħ)的质量比为1ʒ1时,复合材料对RhB 的降解率最佳,约为38.1%㊂相比于BiOI (约为24%)和CeO 2(约为23%)其降解率有了一定的提高㊂这可能归因于两种材料复合后在界面处形成的异质结结构有效地抑制了光生电子-空穴的复合速率,实现了光催化性能的提高㊂关键词:CeO 2;BiOI ;溶剂热法;光催化性能DOI :10.15938/j.jhust.2023.03.015中图分类号:TQ135.3+2;TQ136.1+3文献标志码:A文章编号:1007-2683(2023)03-0119-10Preparation and Photocatalytic Dye DegradationProperties of CeO 2/BiOI HeterojunctionMI Shixin,㊀MU Hongxu,㊀WANG Jianhao,㊀YANG Lujuan,㊀WU Pengwei,㊀LIU Ziwei,㊀ZHUANG Yanli(Harbin University of Science &Technology,School of Materials Science and Chemical Engineering,Harbin 150080,China)Abstract :In order to improve the visible light catalytic degradation efficiency of monomer BiOI,the three-dimensional floralstructure of CeO 2was prepared by calcination at different temperatures.Then,CeO 2was added to BiOI precursor solution and BiOI /CeO 2composite photocatalysts with different composite ratios were prepared by solvothermal method.X-ray powder diffraction (XRD),scanning electron microscope (SEM),ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS)and electrochemistry were used to characterize the prepared samples,and the effects of CeO 2calcination temperatures and different mass ratios on the photocatalytic degradation efficiency were evaluated by the degradation experiments of rhodamine B (RhB).The photocatalytic mechanism of the composites was analyzed by radical trapping experiments.The results showed that when the mass ratio of BiOI to CeO 2(400ħ)was 1ʒ1,the degradation rate of RhB was the best,which was about 38.1%.Compared with BiOI (about 24%)andCeO 2(about 23%),the degradation rate was improved.This may be attributed to the heterojunction structure formed at the interface after the composite of the two materials,which effectively inhibits the photoelectron-hole recombination rate and improves the photocatalytic performance.Keywords :CeO 2;BiOI;hydrothermal method;photocatalytic performance㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-02-28基金项目:国家自然科学基金青年科学基金(52105332);先进焊接与连接国家重点实验室开放课题基金面上项目(AWJ-22M15);有色金属及材料加工新技术教育部重点实验室开放基金(20KF14);黑龙江省大学生创新性实验计划资助项目(8105/218200003).作者简介:米世新(2000 ),男,本科生;牟红旭(2000 ),男,本科生.通信作者:庄艳丽(1984 ),女,博士,讲师,E-mail:zhuangyanli@.0㊀引㊀言三次技术革命在推动世界工业化扩展和科学技术提升的同时,也打破了大自然长期稳定的自净能力,造成了众多的环境问题,其中工业污水处理成为国家关注的重点问题之一[1]㊂伴随着科技的发展,越来越多的污水处理技术被发掘出来,相较于传统的处理技术,半导体光催化技术因其能耗低㊁反应速度快㊁催化降解完全等特点在污水处理领域备受关注[2]㊂半导体光催化技术是以可再生环保的太阳能作为能源对有机污染物进行降解,过程中的中间产物没有危害性且不存在二次污染,这些特性使它能够很好地解决能源短缺和生态环境污染问题,但是半导体催化技术在对大量工厂污水处理时仍存在一定的限制[3],所以提高半导体光催化剂的性能势在必行㊂在1972年日本学者藤岛和本田提出纯的TiO2材料在日光照射条件下能够被用作电极对水进行分解,电极旁产生的气泡经检测后发现是氢气和氧气[4],光催化领域自此拉开序幕㊂众多学者对TiO2材料深入地进行探究㊁开拓,它本身无毒㊁价格低廉㊁具有较强的氧化能力和相当良好的化学稳定性,本应成为最佳光催化材料的它因自身的禁带宽度相对较大(~3.2eV),使其只在紫外光(太阳光谱的5%左右)下才可以显示出光催化响应,因此极大程度地限制了该种材料在实际应用过程中对太阳光的高效利用[5-8]㊂所以,开发高效稳定的半导体光催化材料并拓宽其应用是光催化领域研究的发展趋势[9-11]㊂Zhang等[12]在2006年指出了具有高光催化活性的BiOCl材料,从此,卤氧化铋这类材料[BiOX (X=I㊁Br㊁Cl)]进入了人们的视野中[13-14]㊂BiOX 是一种具有层状开放式晶体和间接跃迁带隙结构的高度各向异性的半导体光催化剂,这种结构拥有足够空间可以极化相应的原子和原子轨道,诱导光生载流子的有效分离[15]㊂卤氧化铋体系中BiOI的窄禁带宽度(1.72~1.92eV)最小,经过大量实验后判定BiOI可以作为一种光催化性能良好的材料进行使用[16]㊂但因为BiOI的光生电子-空穴对极易结合㊁对可见光的吸收能力也十分有限㊁量子效率相对较低,限制了它的实际应用[17]㊂当前,光催化材料的合成方法主要有化学沉淀法㊁溶胶-凝胶法和水热法(溶剂热法)等,其中最为常用的方法是溶剂热法,该方法的优点是制备方法简便,缺点是制备周期较长,产率较低㊂研究者们采用该种方法对BiOI进行了改性研究,如CdSQDs/BiOI/WO3[18]㊁BiOI/TiO2[19]㊁AgI/BiOI[20]等㊂将一种或两种以上半导体材料或具有不同能带结构的光催化材料与BiOX复合制备成异质结或同质结,改变自身的光生载流子的迁移率,以提高光催化活性㊂作为一种典型的n型半导体材料和稀土氧化物,CeO2由于其宽禁带宽度(2.8~3.1eV)㊁高稳定性㊁优异的光学和催化性能以及成本效益而被认为是一种新型的光催化材料㊂据报道,材料的带隙结构和电子转移过程受其可调形态㊁晶体结构的极大影响[21]㊂到目前为止,已经开发了许多技术来合成具有各种形态的CeO2纳米材料,例如一维纳米棒/纳米线/纳米管[22-23]㊁二维纳米片[24]和三维纳米立方体/纳米球/空心纳米球[25-29]㊂CeO2作为催化剂的助剂和催化剂载体的良好添加剂,在催化剂和载体的双重作用下,具有2D薄层结构的氧化铈通过与共催化剂偶联表现出更有效的光活性㊂例如,Sul-tana等[30]报道了一种CeO2基的2D-2D纳米复合材料,用于在光照下对RhB染料进行脱色,其显著的光催化性能主要是由于BiOI和CeO2纳米片之间通过异质结的构建从而达到电荷的高效输运㊂因此,为提高单体BiOI的可见光催化降解效率,本文选择对材料进行复合的方法,以碘氧化铋为前驱体,拟采用溶剂热法制备CeO2/BiOI复合材料,改变二氧化铈的制备温度以及两者不同质量掺比对复合材料的光催化性能进行探讨㊂1㊀实㊀验1.1㊀CeO2/BiOI复合催化剂的制备1.1.1㊀实验试剂六水合硝酸铈(上海麦克林生化科技有限公司,99.95%)㊁碳酸氢铵(上海麦克林生化科技有限公司,99.995%)㊁五水合硝酸铋(天津福晨化学试剂有限公司,分析纯,99.0%)㊁碘化钾(上海银典化工有限公司,99.0%)㊁乙二醇(天津富宇精细化工有限公司,分析纯)㊁无水乙醇(天津富宇精细化工有限公司,分析纯)㊁去离子水(永昌化学试剂,分析纯)㊁罗丹明B(天津福晨化学试剂有限公司,分析纯)㊂1.1.2㊀催化剂的制备1)煅烧法制备CeO2:称取1.39g的Ce(NO3)3㊃6H2O溶解在200mL去离子水中进行搅拌㊂接下来称取0.75g的NH4HCO3溶解在200mL去离子水021哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀中,随后快速加入至Ce(NO3)3㊃6H2O的水溶液中,在0ħ环境下搅拌30min㊂使用滤纸进行产物收集,去离子水进行3次离心洗涤㊂恒温60ħ下干燥12h,最后在不同温度(350ħ㊁400ħ㊁450ħ㊁500ħ)下煅烧4h,取出后便得到纯CeO2㊂2)溶剂热法制备BiOI:称取0.97g的Bi(NO3)3㊃5H2O溶解在20mL无水乙醇和20mL乙二醇的混合溶液中,搅拌10min㊂接下来称取0.332g的KI,将其溶解在20mL的去离子水中,进行5min搅拌,待KI完全溶解,将KI水溶液缓慢滴加到硝酸铋醇溶液中,并且搅拌10min使材料充分混合,充分混合后的溶液移至聚四氟乙烯内衬的反应釜中,加热炉中加热到180ħ,反应12h㊂冷却至室温,用去离子水和无水乙醇对产物进行离心洗涤,最后恒温60ħ下干燥12h,样品最后经过研磨得到Bi(NO3)3㊃5H2O与KI摩尔比为1ʒ1的BiOI样品㊂3)溶剂热法制备CeO2/BiOI复合材料:取0.97g 的Bi(NO3)3㊃5H2O溶解在20mL无水乙醇和20mL 乙二醇的混合溶液中,搅拌10min㊂取0.332g的KI,将其溶解在20mL去离子水中并搅拌5min,待KI完全溶解,将KI水溶液缓慢滴加到硝酸铋醇溶液中,并且搅拌10min,使材料充分混合后加入0.704g的CeO2成品,搅拌溶解后转移到聚四氟乙烯内衬的反应釜中,加热炉中加热到180ħ,反应24 h㊂冷却至室温,用去离子水和无水乙醇对产物进行离心洗涤,最后恒温60ħ下干燥12h,样品最后经过研磨得到BiOI与CeO2质量比为1ʒ1的CeO2/ BiOI样品㊂改变二氧化铈加入质量,制备出BiOI与CeO2质量比为1ʒ0.5㊁1ʒ1㊁1ʒ1.5和1ʒ2的4组复合样品㊂1.2㊀样品的性能及表征对所制备样品的物相以及组成的研究是使用以Cu-Ka作为发射源的日本东京ModelD/MaX-3B的XRD衍射仪(λ=0.154nm)进行表征分析,确定扫描速率为4ʎ/min,扫描角度2θ=10ʎ~80ʎ;对制备完成的材料选择扫描电子显微镜(SEM,FEI Sirion200)进行形貌和尺寸大小的观察;利用紫外-可见分光光度计(UV-vis DRS,UV-757CRT)对样品的光学性质进行了表征;并用具有标准的三电极系统的法国Bio-Logic VPM3多通道电化学工作站上进行电化学阻抗谱(EIS)测试和莫特肖特基测试(MS)㊂通过将制备好的材料置于25ħ室温下降解模拟染料废水的程度来对材料的光催化性能进行评估,光降解实验使用产于上海田颖特种电光源厂生产的400W氙灯作为照明源,实验中选择一定浓度的罗丹明B(RhB)溶液进行染料废水的模拟㊂相关的操作流程为:量取50mL的20mg/L的RhB溶液置于烧杯中,首先对RhB溶液初始吸光度进行测试,将测量数值作为初始数值A0㊂随后称量0.05g 制备好的光催化材料放入其中,在黑暗环境下进行吸附搅拌,时间持续1h使染料和水分子在材料表面达到吸附-脱附平衡㊂每半小时取8mL搅拌溶液进行离心,取离心后的样品上清液约5mL至石英比色皿中,利用UV-757CRT型的紫外-可见分光光度计进行吸光度测试㊂1h暗环境下吸附搅拌后,打开氙灯进行模拟太阳光照,每隔30min重复操作,利用式(1)计算光催化降解效率:D=(A0-A t)/A0ˑ100%(1)式中:D为模拟染料废水 罗丹明B的降解率;A0为未加入样品的RhB的初始吸光度;A t为样品在经过各个不同时间段的光催化降解反应后测得的吸光度㊂为了阐明复合材料中光催化过程的活性成分,通过活性氧捕获实验对可能的光催化机理进行研究㊂在光催化活性实验的基础上,活性氧捕获实验中加入1mmol/L的清除剂,分别使用对苯醌(BQ)㊁草酸钠(Na2C2O4)㊁异丙醇(IPA)作为牺牲剂捕获超氧自由基(㊃O2-)㊁空穴(h+)和羟基自由基(㊃OH),其余步骤与光催化活性实验相同㊂2㊀结果与讨论2.1㊀物相分析图1~3为所制备的BiOI㊁CeO2以及CeO2/BiOI 复合材料的XRD谱图㊂由图1可见,在2θ=29.6ʎ㊁31.6ʎ和45.4ʎ处的特征峰分别与四方相BiOI的(012)㊁(110)和(020)晶面相互对应(JCPDS No.10-0445),这表明所合成的试样为BiOI㊂此外,从图1中还可以看出,不同煅烧温度下得到的CeO2,其在2θ=28.5ʎ㊁33.1ʎ㊁48.1ʎ㊁56.8ʎ处的峰值分别与立方萤石结构CeO2的(111),(200),(220),(311)晶面相对应(JCPDS No.43-1002),且无其它特征峰出现,这表明合成的CeO2纯度较高㊂由图2可见,当用不同煅烧温度下制备的CeO2与BiOI复合,所有复合样品的XRD图谱中均出现了CeO2与BiOI特征峰,这表明两种物质成功复合㊂图3为不同比例下CeO2/BiOI复合材料的XRD衍射图谱㊂可以看121第3期米世新等:溶剂热法制备CeO2/BiOI复合光催化剂及性能出,随着CeO 2含量增加,其特征峰逐渐明显,进一步表明两种材料成功复合㊂图1㊀纯BiOI ㊁纯CeO 2(不同煅烧温度)的XRD 图Fig.1㊀XRD patterns of Pure BiOI ,CeO 2(differentcalcination temperatures)图2㊀质量比1ʒ1的CeO 2/BiOI (不同煅烧温度)复合材料的XRD 图Fig.2㊀XRD patterns of CeO 2/BiOI (different calcinationtemperatures )composites with a mass ratio of1ʒ1图3㊀不同质量比的CeO 2/BiOI (400ħ)复合材料的XRD 图Fig.3㊀XRD patterns of CeO 2/BiOI (400ħ)compositeswith different mass ratios2.2㊀SEM 分析图4为BiOI㊁CeO 2的微观形貌图㊂如图4(a)所示,所制备的BiOI 主要由片状结构组成的三维花球形貌,且花球的直径约为1~3μm㊂如图4(b)㊁(c)㊁(d)㊁(e)所示,以Ce(NO 3)3㊃6H 2O 为原料在不同煅烧温度为下制备出的CeO 2均是由片组装成的三维花状结构,其长度约为5~8μm㊂图5为质量比为1ʒ1的CeO 2/BiOI 复合材料的微观形貌图㊂图4㊀所制备材料的SEM 图Fig.4㊀SEM images of the preparedmaterials图5㊀质量比1ʒ1的CeO 2/BiOI 的SEM 图Fig.5㊀SEM images of CeO 2/BiOI with a mass ratio of 1ʒ1221哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀由图可见,BiOI 负载在CeO 2的三维花状结构上,复合后的材料大小约为5~8μm,花球状BiOI与的CeO 2紧密接触有助于电荷载流子的分离,并且两者复合后片状结构相互交错有利于光催化反应过程中更好地与染料废水接触起到吸附和分散作用,因此有助于提高材料的光催化降解性能㊂图6为不同质量比的CeO 2/BiOI 复合材料的微观形貌图㊂由图6可见,随着BiOI 的比例增加,负载在CeO 2上的BiOI 逐渐增多㊂图6㊀不同质量比的CeO 2(400ħ)/BiOI 的SEM 图Fig.6㊀SEM images of CeO 2(400ħ)/BiOI withdifferent mass ratios图7与表1为质量比1ʒ1的CeO 2(400ħ)/BiOI 的EDS 图和测定的相对元素含量表㊂由图7可见,CeO 2(400ħ)/BiOI 复合材料中含有Bi㊁O㊁Ce 和I 元素㊂结合表1㊁图7和XRD 测试结果,进一步表明了所制备的试样为CeO 2/BiOI 复合材料㊂表1㊀质量比1ʒ1的CeO 2(400ħ)/BiOI 的相对元素含量Tab.1㊀Relative element content of CeO 2(400ħ)/BiOIwith mass ratio of 1ʒ1元素质量分数/%体积分数/%O 18.3469.55I 3.74 1.79Ce 42.3518.34Bi35.5710.33图7㊀质量比1ʒ1的CeO 2(400ħ)/BiOI 的元素面分析Fig.7㊀Elements maps analysis of CeO 2(400ħ)/BiOIat a mass ratio of 1ʒ12.3㊀UV-Vis DRS 分析材料的光催化性能,在一定程度上受其吸收光能力的影响㊂通常选用紫外-可见漫反射对材料吸收光的能力进行测试,分析材料的表层结构等㊂因此使用紫外可见漫反射光谱对样品进行了光吸收特性测试,结果如图8㊁9所示㊂由图8可见,纯BiOI 的吸收边缘约为682nm,CeO 2/BiOI 的吸收边缘约为677nm,材料复合后对光吸收范围基本无影响,吸光度相对纯物质有小幅下降㊂从图9中得到复合材料CeO 2/BiOI 的带隙宽度为1.92eV,相比于两种纯物质,其复合后得到的带隙宽度更小,表明了两种材料的复合可以减小带隙宽度,使复合材料更容易被可见光激发产生载流子,也就是更利于在可见光下响应,得到更优异的光催化活性㊂321第3期米世新等:溶剂热法制备CeO 2/BiOI 复合光催化剂及性能图8㊀BiOI ㊁CeO 2㊁CeO 2/BiOI 材料的UV-Vis 谱图Fig.8㊀UV-Vis reflectance spectrum of BiOI ,CeO 2andCeO 2/BiOImaterials图9㊀BiOI ㊁CeO 2㊁CeO 2/BiOI 材料的禁带宽度Fig.9㊀Energy gap of BiOI ,CeO 2and CeO 2/BiOI materials2.4㊀电化学分析为了明确材料的能带结构,在固定频率下对材料进行了Mott-Schottky 电化学测试,如图10所示㊂由于线型图表现为正斜率,所以显示了n 型半导体的特性,即BiOI㊁CeO 2均为n 型半导体㊂其中莫特-肖特基曲线的切线与横轴(y =0)的交点是样品的平带电势㊂由于平带电势与导带电势相差约0.1eV,所以可以凭此来确定BiOI 和CeO 2的的导带电势(E CB )分别为-1.8eV 和-0.9eV㊂再根据式(2)对BiOI 与CeO 2的价带㊁导带位置进行计算:E CB =E VB -E g (2)式中:E CB 为导带电位;E VB 为价带电位㊂结合图9中BiOI 与CeO 2带隙宽度(E g )1.97eV 和2.83eV,进一步计算得到BiOI 和CeO 2的E VB 分别为0.17eV 和1.93eV㊂图11为BiOI㊁CeO 2㊁CeO 2/BiOI 材料的电化学阻抗测试(EIS)㊂众所周知,EIS 谱图中较小的半圆直径代表着较低的电荷转移电阻,这表明成功阻止了光诱导电子和空穴的复合,界面处发生的有效电荷转移也就越高㊂所以从图11中可以看到CeO 2/BiOI 复合材料的半圆直径比的CeO 2和BiOI 更小,也就说它具有更低的电子传输阻力,这也是其具有最佳的光催化性能的前提㊂综上所述,与两个纯的CeO 2和BiOI 光催化材料相比,CeO 2/BiOI 复合材料具有更多的光生载流子,以及更低的电子传输阻力,并更有效地分离和转移,以此提高电子空穴对的分离效率,因此,CeO 2/BiOI 复合材料具有优异的光催化活性㊂图10㊀CeO 2㊁BiOI 材料的莫特-肖特基曲线Fig.10㊀Mott-Schottky curves of BiOI and CeO 2materials图11㊀BiOI ㊁CeO 2㊁CeO 2/BiOI 材料的EIS 谱图Fig.11㊀EIS reflectance spectrum of BiOI ,CeO 2andCeO 2/BiOI materials421哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀2.5㊀光催化分析图12为在不加入任何光催化材料下的罗丹明B 自降解情况,可以看到其前2.5h 并未发生自降解,实验结束时由于罗丹明B 在氙灯的照射下温度上升,使其发生轻微的自降解(小于1%),对降解率影响甚微㊂图13为氙灯照射下纯物质CeO 2和BiOI 降解罗丹明B(RhB)污染物的降解速率图㊂由图13(a)可见,在相同条件下,BiOI 的降解率约为24%(暗吸附16%),主要表现为暗吸附,光催化降解效果不明显㊂CeO 2进行4h 降解实验后的降解率约为23%(暗吸附8%),材料降解效率低㊂图12㊀罗丹明B 自降解率图Fig.12㊀The self degradation rate images ofRhB图13㊀CeO 2、BiOI 对罗丹明B 的降解率图Fig.13㊀The degradation rate images of RhB图14为两种材料进行1ʒ1质量比复合后的降解速率图,其变量为二氧化铈的煅烧温度,通过图14(a)观察当二氧化铈煅烧温度为400ħ时,复合材料的降解效率最高,具体表现为暗吸附效果21%,光催化过程中降解了约18%㊂其它3组在加入氙灯照射后,材料的降解效率基本不变,均以暗吸附为主,经过分析为400ħ的CeO 2与BiOI 复合后形成的异质结结构效果最好㊂图15为BiOI /CeO 2(400ħ)不同质量比时的降解速率图,通过观察图15(a)可以确定两种材料复合的最优质量比为1ʒ1㊂图14㊀质量比为1ʒ1的CeO 2/BiOI 复合材料对罗丹明B 的降解率图及一阶动力学k 值图Fig.14㊀The degradation rate images of RhB and the first-order kinetic k value images by CeO 2/BiOI composite material with a mass mixing ratio of1ʒ1521第3期米世新等:溶剂热法制备CeO 2/BiOI 复合光催化剂及性能图15㊀煅烧温度为400ħ的CeO 2/BiOI 复合材料对罗丹明B 的降解率图及一阶动力学k 值图Fig.15㊀The degradation rate images of RhB and the first-order kinetic k value images by CeO 2/BiOIcomposite material calcined at400ħ图16㊀不同捕获剂存在下质量比1ʒ1的CeO 2(400ħ)/BiOI 复合材料可见光降解RhB 图Fig.16㊀Visible light degradation of RhB in CeO 2(400ħ)/BiOI composites with a mass ratio of 1ʒ1in thepresence of different scavengers采用式(3)L-H 动力学模型公式:-ln(c t /c 0)=kt (3)对多组降解数据进行拟合来探究光催化剂在降解过程中的反应动力学,模拟污染物初始浓度在式中用c 0表示,c t 则代表污染物经过t 时刻的反应时间后的浓度,单位均为mol /L,k 为反应速率常数(min -1),结果如图13㊁14㊁15(b)所示㊂图中质量比1ʒ1的CeO 2(400ħ)/BiOI 的反应速率常数要显著高于其它各组数据的,表明煅烧温度为400ħ的CeO 2与BiOI 以质量比为1ʒ1的复合是提升材料的光催化活性效果最佳的㊂一般来说,活性物质是在光催化过程中产生的,并且在光照下可以降解染料,包括超氧自由基(㊃O 2-)㊁光生空穴(h +)和羟基自由基(㊃OH)㊂为了研究CeO 2/BiOI 复合材料在RhB 溶液中的光催化反应机理,如图16所示使用自由基捕获实验来识别主要自由基㊂不同的清除剂分散在有光催化剂存在的染料溶液中,会影响降解效率㊂对苯醌(BQ)㊁草酸钠(Na 2C 2O 4)㊁异丙醇(IPA)作为牺牲剂分别捕获超氧自由基(㊃O 2-)㊁空穴(h +)和羟基自由基(㊃OH),当在反应过程中加入1mmol /L BQ 和1mmol /L IPA 时,CeO 2/BiOI 复合材料的最终降解效率存在小幅下降,这表明㊃O 2-和㊃OH 参与RhB 光催化降解过程㊂与之相比,添加1mmol /L 草酸钠对光催化效率的抑制作用更明显,这证明h +在光降解过程中起关键作用㊂所以,CeO 2/BiOI 异质结的构建显著改善了电子-空穴对的分离,从而产生更多的活性基团,增强了对RhB 的光催化降解效率,使材料的光催化性能得到提升㊂2.6㊀光催化机理分析经过各种测试中多组平行数据的分析,复合材料光催化性能提高的大概率因素是形成了异质结结构,能带理论中提出电子会从高费米能级向低费米能级持续运动,直到两侧费米能级相等才停止㊂从测得的Mott-Schottky 曲线中可以得知本次材料复合中BiOI 的费米能级更靠近价带,而n 型半导体CeO 2的费米能级更靠近导带,从电化学测试结果可知对于纳米片组装成的花球状BiOI,其导带电势和价带电势分别为-1.8eV 和0.17eV,CeO 2的导带电势和价带电势分别为-0.9eV 和1.93eV㊂在模拟太阳光照射下,材料内部电子与空穴的转移情况如图17所示㊂根据图17中能带位置推断,结合自由基捕获实验结果,综上推断CeO 2与BiOI 复合形成了传统的Ⅱ型异质结㊂复合材料在进行拟太阳光照射后,两组份都会对能量高于自身能带隙的光子进行吸收,电子吸收能量后从价带激发到导带上,价带产生空穴,不断积累的电子与空穴就会作用于另一材料的导带与价带产生强氧化还原作用,由于CeO 2晶体具有较强的吸附氧能力,吸附氧脱附可以进一步抑制电子-空穴复合速率,因此这种异质结结构可以延长所产生空穴的存在时间,促进光催化降解效率㊂621哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图17㊀光催化过程示意图Fig.17㊀Diagram of photocatalytic process3㊀结㊀论综上所述,首先制备BiOI前驱体溶液,加入不同煅烧温度㊁不同质量比的CeO2,采用溶剂热法合成CeO2/BiOI复合光催化剂,然后利用氙灯模拟太阳光下CeO2/BiOI对罗丹明B的降解效率表征复合材料的光催化性,能得到质量比1ʒ1的CeO2 (400ħ)/BiOI复合材料光催化性能最优越㊂通过SEM㊁EDS图像和相应的元素图谱证实在CeO2的三维花球状结构上成功负载了片状的BiOI㊂紫外可见漫反射光谱对样品进行光吸收特性测试,结果表明复合后的材料带隙宽度明显减小,复合后更容易被可见光激发产生载流子㊂最后通过电化学测试明确复合材料由于异质结的构建使其光生电荷的分离效率得到显著的提高,并确定了其价带㊁导带位置,然后利用捕获实验证明h+是降解罗丹明B的主要自由基,根据上述结果提出了合理的复合机理㊂我们认为CeO2/BiOI复合材料是一种具有光明前景的可见光驱动光催化剂,还有更多的开发潜力㊂所以,对有机污染物的光降解方面我们还会有更深的探索㊂参考文献:[1]㊀刘光石.对环境工程污水处理的几点思考[J].环境与发展,2017,29(5):77.LIU Guangshi.Some Thoughts on Wastwater Treament ofEnvironmental Engineering[J].Environment and Devel-opment,2017,29(5):77.[2]㊀CHEN Chuncheng,MA Wanhong,ZHAO Jincai.Semi-conductor-mediated Photodegradation of Pollutants UnderVisible-light Irradiation[J].Chemical Society Reviews,2010,39(11):4206.[3]㊀吴乾威,祝媛媛.基于半导体光催化剂研究[J].当代化工研究,2021(3):14.WU Qianwei,ZHU Yuanyuan.Research on Semiconduc-tor Photocaatalyst[J].Modern Chemical Research,2021(3):14.[4]㊀FUJISHIMA A,HOND A K.Electrochemical Photolysisof Water at a Semiconductor Electrode[J].Nature,1972,238(5358):37.[5]㊀李大玉,张文韬,张超.不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J].材料导报,2019,33(23):3900.LI Dayu,ZHANG Wentao,ZHANG Chao.Research Pro-gress in Improving the Photocatalytic Properties of TiO2Materials by Doping with Different Metals[J].MaterialsReports,2019,33(23):3900.[6]㊀王骜,仪修佶.TiO2光催化应用综述[J].当代化工研究,2021(8):1.WANG Ao,YI Xiuji.Review on Application of TiO2Photocatalysis[J].Modern Chemical Research,2021(8):1.[7]㊀汪克富.二氧化碳光催化还原材料的制备与性能研究[D].中国科学院大学:中国科学院上海硅酸盐研究所,2018.[8]㊀ZHANG Liwu,FU Hongbo,ZHU Yongfa.Efficient TiO2Photocatalysts from Surface Hybridization of TiO2Particleswith Graphite-like Carbon[J].Advanced Functional Ma-terials,2008,18(15):2180.[9]㊀孙海杰,陈凌霞,张晓锋,等.Ru-B-BiOI催化剂光催化降解甲基橙性能研究[J].水处理技术,2019,45(6):48.SUN Haijie,CHEN Lingxia,Zhang Xiaofeng,et al.Study on Performance of Ru-B-BiOI Catalyst for Photocat-alytic Degradation of Methyl Orange[J].Technology ofWater Treatment,2019,45(6):48.[10]杨帆,盛亮,岳晓霞.工业水处理技术的发展概况与技术进步[J].中国资源综合利用,2020,38(4):140.YANG Fan,SHENG Liang,YUE Xiaoxia.Developmentof Industrial Water Treatment Technology and Reasearchon Technical Progress[J].China Resources Comprehen-sive Utilization,2020,38(4):140.[11]GIL J J,AGUILAR M O,PINA P Y,et al.Efficient ZnSZnO/ZnAILDH Composite for H2Production by Photoca-talysis[J].ACS Applied Materials&Interfaces,2019,11(39):35702.[12]ZHANG Kelei,LIU Cunming,HUANG Fuqiang,et al.Study of the Electronic Structure and Photocatalytic Activ-ity of the BiOCl Photocatalyst[J].Applied Catalysis B:Environmental,2006,68(3/4):125. [13]ZHAO Yang,TAN Xin,YU Tao,et al.SDS-assistedSolvothermal Synthesis of BiOBr Microspheres with High-721第3期米世新等:溶剂热法制备CeO2/BiOI复合光催化剂及性能ly Visible-light Photocatalytic Activity[J].Materials Let-ters,2016,164:243.[14]LI Baoying,HUANG Hongwei,GUO Yuxi,et al.Diat-omite-immobilized BiOI Hybrid Photocatalyst:FacileDeposition Synthesis and Enhanced Photocatalytic Activity[J].Applied Surface Science,2015,353:1179. [15]鲍玥,周旻昀,邹骏华,等.C3N4/BiOBr复合可见光催化剂的性能及其作用机制[J].环境科学,2017,38(5):2182.BAO Yue,ZHOU Minyun,ZOU Junhua,et al.Perform-ance and Mechanism Study of Visible Light-driven C3N4/BiOBr Composite Photocatalyst[J].Environmental Sci-ence,2017,38(5):2182.[16]HE Rongan,CAO Shaowen,GUO Daipeng.3D BiOI-GOComposite with Enhanced Photocatalytic Performance forPhenol Degradation Under Visible-light[J].Ceramics In-ternational,2015,41(3):3511.[17]孙艳娟,廖佳珍,董帆,等.Bi/BiOI/(BiO)2CO3异质结可见光催化净化NO的性能增强[J].催化学报,2019,40(3):362.SUN Yan Juan,LIAO Jiazhen,DONG Fan,et al.A Bi/BiOI/(BiO)2CO3Heterostructure for Enhanced Photocat-alytic NO Removal Under Visible Light[J].ChineseJournal of Catalysis,2019,40(3):362. [18]BI Qiang,GAO Yu,WANG Zengqiang,et al.Prepara-tion of a Direct Z-scheme Thin-film Electrode Based onCdS QD-sensitized BiOI/WO3and Its Photoelectrocatalyt-ic Performance[J].Colloids and Surfaces A:Physico-chemical and Engineering Aspects,2020,599:124849.[19]ZHANG Xi,ZHANG Lizhi,XIE Tengfeng,et al.Low-temperature Synthesis and High Visible-light-inducedpho-tocatalytic Activity of BiOI/TiO2Heterostructures.TheJournal of Physical Chemistry C,2009,113(17):7371.[20]CHENG Hefeng,HUANG Baibiao,DAI Ying,et al.One-step Synthesis of the Nanostructured AgI/BiOI Com-posites with Highly Enhanced Visible-light Photocatalyticngmuir,2010,26(9):6618. [21]YU Jiaguo,YU Yanfang,ZHOU Peng,et al.Morpholo-gy-dependent Photocatalytic H2-production Activity of CdS[J].Applied Catalysis B:Environmental,2014,156:184.[22]MA Zhaoxia,SHENG Liping,WANG Xinwei,et al.Ox-ide Catalysts with Ultrastrong Resistance to SO2Deactiva-tion for Removing Nitric Oxide at Low Temperature[J].Advanced Materials,2019,31(42):1903719.[23]PENG Honggen,DONG Tao,ZHANG Li,et al.Activeand Stable Pt-Ceria Nanowires@Silica Shell Catalyst:Design,Formation Mechanism and Total Oxidation of COand Toluene[J].Applied Catalysis B:Environmental,2019,256:117807.[24]LIU Ying,MA Chao,ZHANG Qinghua,et al.Phos-phate-functionalized CeO2Nanosheets for Efficient Cata-lytic Oxidation of Dichloromethane[J].EnvironmentalScience&Technology,2018,52(22):13430. [25]HILLARY Brendan,SUDARSANAM Putla,AMIN Mo-hamad Hassan,et al.Nanoscale Cobalt-manganese OxideCatalyst Supported on Shape-controlled Cerium Oxide:Effect of Nanointerface Configuration on Structural,Red-ox,and Catalytic Properties[J].Langmuir,2017,33(8):1743.[26]DAI Qiguang,ZHANG Zhiyong,YAN Jiaorong,et al.2D Electron Gas and Oxygen Vacancy Induced High Oxy-gen Evolution Performances for Advanced Co3O4/CeO2Nanohybrids[J].Advanced Materials,2019,31(21):1900062.[27]LIANG Xizhuang,WANG Peng,GAO Yugang,et al.Design and Synthesis of Porous M-ZnO/CeO2Micro-spheres as Efficient Plasmonic Photocatalysts for NonpolarGaseous Molecules Oxidation:Insight Into the Role ofOxygen Vacancy Defects and M=Ag,Au Nanoparticles[J].Applied Catalysis B:Environmental,2020,260:118151.[28]ZHENG Ningchao,OUYANG Ting,CHEN Yibo,et al.Ultrathin CdS Shell-sensitized Hollow S-doped CeO2Spheres for Efficient Visible-light Photocatalysis[J].Ca-talysis Science&Technology,2019,9(6):1357.[29]WANG Haiyan,YANG Weipeng,WANG Xiaoxia,et al.A CeO2@MnO2Core-shell Hollow Heterojunction asGlucose Oxidase-like Photoenzyme for Photoelectrochemi-cal Sensing of Glucose[J].Sensors and Actuators B:Chemical,2020,304:127389.[30]SULTANA S,MANSINGH S,PARIDA K M.Facile Syn-thesis of CeO2Nanosheets Decorated Upon BiOI Micro-plate:A Surface Oxygen Vacancy Promoted Z-scheme-based2D-2D Nanocomposite Photocatalyst with EnhancedPhotocatalytic Activity[J].The Journal of PhysicalChemistry C,2018,122(1):808.(编辑:温泽宇)821哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀。

浅谈二氧化钛

浅谈二氧化钛

浅谈纳米二氧化钛纳米二氧化钛(Ti02)是一种重要的无机功能材料,由于其粒子具有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等性质;其晶体具有防紫外线、光吸收性好、随角异色效应和光催化等性能;而且它的耐候性、耐用化学腐蚀性和化学稳定性较好,因此纳米二氧化钛被广泛应用于光催化、太阳能电池、有机污染物降解、涂料等领域。

但纳米二氧化钛也有一定的局限性,可在纳米二氧化钛中添加合适的物质(如树脂、聚苯胺、偶联剂、氟碳树脂等),对其进行改性。

1. 纳米TiO2的制备(纳米TiO2溶胶)纳米TiO2的制备方法一般分为气相法和液相法。

由于气相法制备纳米TiO2有诸多缺点如:能耗大、成本高、设备复杂等,且条件苛刻,大大限制了其发展。

液相法主要包括水解法、沉淀法、溶胶-凝胶法、水热法、微乳液法、微波感应等离子体法等制备技术。

而液相法能耗小、设备简单、成本低,是实验室和工业上广泛使用的制备方法。

由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂,在此仅介绍用溶胶-凝胶法制备纳米TiO2溶胶。

溶胶一凝胶法制备纳米TiO2:是以钛的醇盐Ti(OR)2,(R为-C2H5、-C3H7、-C4H9等烷基)为原料。

其主要步骤为:钛醇盐溶于溶剂中形成均相溶液,以保证钛醇盐的水解反应在分子均匀的水平上进行,由于钛醇盐在水中的溶解度不大,一般选用醇(乙醇、丙醇、丁醇等)作为溶剂;钛醇盐与水发生水解反应,同时失去水和失醇缩聚反应,生成物聚集成1nm左右的粒子并形成溶胶;经陈化、溶胶形成三维网络而成凝胶;干燥凝胶以除去残余水分、有机基团和有机溶剂,得到干凝胶;干凝胶研磨后煅烧,除去化学吸附的羟基和烷基团,以及物理吸附的有机溶剂和水,得到纳米TiO2粉体。

因为钛醇盐的水解活性很高,所以需添加抑制剂来减缓其水解速度,常用的抑制剂有盐酸、醋酸、氨水、硝酸等。

铋及其复合物的研究进展

铋及其复合物的研究进展

第46卷第3期2021年6月广州化学Guangzhou ChemistryV ol. 46 No. 3Jun. 2021文章编号:1009-220X(2021)03-0029-08 DOI:10.16560/ki.gzhx.20210304铋及其复合物的研究进展吕振春(上海理工大学,上海200093)摘要:简单介绍了单质铋的低毒或无毒性、低电导率超导电性、冷膨胀和热收缩等独特性质。

基于文献重点讨论了铋及其复合物近些年在电催化、光催化、抗肿瘤、光热放射治疗等方面的新应用,尤其是在光催化净化水体污染和抗肿瘤/癌药物方面具有广阔的发展前景。

铋复合物独特的层状结构、合适的带隙、近红外光吸收及X-射线衰减等特性为其进一步应用奠定了坚实的基础,且不同的制备工艺及掺杂金属元素等各种改性方法也为其广泛普及提供了新的思路。

关键词:铋;光催化;电催化;光热放射治疗中图分类号:O6-1 文献标识码:A半导体光催化技术能够实现高效且环境友好的净化水资源,因此,利用光催化反应处理水污染问题被认为是具有广阔前景的绿色环境治理技术。

而铋(Bi)及其复合物因为独特的层状结构、合适的禁带宽度、更适合被可见光激发等特点,逐渐发展成为一类独特的新型光催化材料,引起了人们的广泛关注。

与此同时,随着研究的深入,铋的各种特殊性质及不同应用也开始进入人们的视线。

最开始,Bi的典型应用集中在冶金添加剂、焊料、弹药等方面,其化合物广泛应用于颜料、化妆品和药物中。

特别是后者,水杨酸铋常见于腹泻的治疗[1]。

目前大多数的研究针对于Bi基材料的热电、铁电、光电化学、电催化、光催化性能、其纳米材料及合成方法、薄膜制备及薄膜电极替代汞电极测定重金属离子等方面[2-8]。

近年来,关于Bi及其复合物的特殊性质及综合应用的相关综述较少,大多数是描述其一种具体的应用,例如Bi基光催化材料的研究进展等。

本综述则简单介绍了Bi的特殊性质,对光电催化、抗肿瘤及光热放射治疗等方面的应用进行总结,并详细介绍了Bi及其复合物光热治疗的研究进展。

南通市人民政府关于公布南通市第十二届自然科学优秀学术论文的通知

南通市人民政府关于公布南通市第十二届自然科学优秀学术论文的通知

南通市人民政府关于公布南通市第十二届自然科学优秀学术论文的通知文章属性•【制定机关】南通市人民政府•【公布日期】2021.08.27•【字号】通政发〔2021〕28号•【施行日期】2021.08.27•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】科技成果与知识产权正文市政府关于公布南通市第十二届自然科学优秀学术论文的通知各县(市、区)人民政府,市各直属园区管委会,市各委、办、局,市各直属单位:近年来,全市上下深入学习贯彻习近平总书记关于科技创新的重要论述,着力构建“如鱼得水、如鸟归林”的一流创新生态,注重发挥科技人员的积极性和创造性,鼓励科技人员进行理论创新和实践创新,取得了较好成绩。

2019~2020年度,全市科技人员结合南通实际,撰写并在省级以上刊物发表了一大批基础科学和工程技术科学领域的学术论文,为推进科技创新工程作出了积极贡献。

经南通市自然科学优秀学术论文奖评审委员会认真评审,并向社会公示,共评出南通市第十二届自然科学优秀学术论文119篇,现将获奖论文名单予以公布。

希望各地、各部门、各单位和全市广大科技工作者切实担负起新时代科技创新责任与使命,自觉投身我市高质量发展生动实践,奋力谱写无愧于时代的壮丽篇章,为“强富美高”新南通建设贡献智慧和力量。

附件:南通市第十二届自然科学优秀学术论文奖获奖名单南通市人民政府2021年8月27日附件南通市第十二届自然科学优秀学术论文奖获奖名单(共119篇)一等奖(共12篇)1.紫菜番茄红素环化酶的功能研究阐明了红藻的叶黄素合成过程(Functional characterization of lycopene cyclases illustrates the metabolic pathway toward lutein in red algal seaweeds)邓银银(江苏省海洋水产研究所)、程璐、王齐2.串联式细纱机短车集落改造技术探讨及应用效果分析吉宜军(南通双弘纺织有限公司)、夏春明、吕兴明3.靶向递送siVEGF的仿病毒壳聚糖胶束和FRET技术追踪下的酸触发释药过程(Virus Mimetic Shell-Sheddable Chitosan Micelles for siVEGF Delivery and FRET-Traceable Acid-Triggered Release)张胜喻(南通市海门区人民医院)、干烨、邵兰兰4.精神应激-糖皮质激素-tsc22d3信号通路抑制肿瘤治疗诱导的抗肿瘤免疫应答(Stress–glucocorticoid–TSC22D3 axis compromises therapy-induced antitumor immunity)陈健(南通市肿瘤医院)、马瑜婷、杨衡5.1ncRNA Gm10451靶向miR-338-3p调控PTIP促进胰岛类β细胞体外分化的机制研究(1ncRNA Gm10451 regulates PTIP to facilitate iPSCs-derived β-like cell differentiation by targeting miR-338-3p as a ceRNA)黄(南通大学附属医院)、徐阳、陆玉华6.大跨度钢桥沥青混凝土面层疲劳寿命损伤演化新规律(New damage evolution law for modeling fatigue life of asphalt concrete surfacing of long-span steel bridge)徐勋倩(南通大学)、杨霄、黄卫7.元麦麸皮羧甲基β-葡聚糖的制备及其对金黄色葡萄球菌的抗菌活性和机理研究(Synthesis of carboxymethylated β-glucan from naked barley bran and its antibacterial activity an d mechanism against Staphylococcus aureus)宋居易(江苏沿江地区农业科学研究所)、陈惠、魏亚凤8.基于最近邻模因组量子粒子群算法的深度神经-感知模糊属性协同约简(Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping PSO with nearest-neighbor memeplexes)丁卫平(南通大学)、Chin-Teng Lin、Zehong Cao9.血糖响应控制释放-红细胞载药平台的构建及解决肿瘤乏氧提高放疗效果研究(Overcoming Hypoxia-Restrained Radiotherapy Using an Erythrocyte-Inspired and Glucose-Activatable Platform)夏栋林(南通大学)10.激光冲击诱发镍基高温合金GH202渗铝涂层高温氧化性能的提升(Laser shock processing improving the high temperature oxidation resistanceof the aluminized coating on GH202 by pack cementation)曹将栋(江苏航运职业技术学院)11.“封城”措施遏制中国黄石市新冠疫情发展——早期流行病学发现(Lockdown Contained the Spread of 2019 Novel Coronavirus Diseas e in Huangshi City,China:EarlyEpidemiological Findings)秦刚(南通市第三人民医院)、纪托、陈海莲12.无单元伽辽金法在船体开孔板格弹性屈曲分析中的应用杨源(南通中远海运川崎船舶工程有限公司)、莫中华、孙启荣二等奖(共24篇)1.通过具有联合稀疏性的堆叠式深度嵌入式回归进行脑电特征选择(EEG Feature Selection via Stacked Deep Embedded Regression Wit h Joint Sparsity)蒋葵(南通大学)、唐嘉茜、王宇龙2.有序介孔五氧化二铌/氮掺杂氧化石墨烯复合材料的制备及光催化性能(Structure Retentively Synthesis of Highly Ordered Mesoporous Nb 2O5/N-Doped Graphene Nanocomposite with Superior Interfacial Contacts a nd Improved Visible Photocatalysis)黄徽(南通职业大学)、周君、周杰3.聚合硅酸铁钛混凝剂的表征及其处理分散和活性印染废水的研究(Characterization and application of poly-ferric-titanium-silicate-sulfate in disperse and reactive dye wastewaters treatment)石健(南通大学)、万杨4.利用锌指介导的蛋白标记方法揭示膜蛋白复合体的亚基几何构型(Zinc-finger-mediated labeling reveals the stoichiometry of membrane proteins )XXX盛(南通大学)、Maximilian H. Ulbrich5.用于下一代设备的功能性2D MXene纳米结构的最新进展(Recent Advances in Functional 2D MXene-Based Nanostructures for Next-Generation Devices)黄卫春(南通大学)、胡兰萍、汤艳峰6.矿物质粉尘诱导基因在肿瘤外在调节作用的新发现(New discoveries of mdig in the epigenetic regulation of cance rs)施军卫(南通市第六人民医院)7.脑卒中患者早期肌力训练的最佳证据总结陈晓艳(南通大学附属医院)、王娅、仲悦萍8.严重创伤患者谵妄发生风险预测模型的构建吉云兰(南通大学附属医院)、徐旭娟、单君9.直流电场干扰对γ-FeOOH向α-FeOOH转变的抑制作用加速碳钢在模拟工业大气环境中的腐蚀速率(The Suppression of transformation of γ-FeOOH to α-FeOOH accelerating the steel corrosion in simulated industrial a tmospheric environment with a DC electric field interference)顾剑锋(南通科技职业学院)、肖轶、戴念维10.养老机构照护服务质量评价指标的构建及信效度检验耿桂灵(南通大学)、高晶、肖玉华11.低频交变电磁疗法结合计算机辅助认知训练对脑卒中患者康复的影响胡永林(南通市第二人民医院)、陈晓磊、华永萍12.代谢相关基因FDFT1和UQCR5在CLM中表达和突变的双重调控机制(Dual Regulatory Mechanisms of Expression and Mutation Involving Metabolism-Related Genes FDFT1 and UQCR5 during CLM)吴徐明(南通市第四人民医院)、刘继斌13.绿色合成具有强磁性的复合石墨烯气凝胶用于有效的水修复(Green Synthesis of Composite Graphene Aerogels with Robust Mag netism for Effective Water Remediation)刘其霞(南通大学)、胡世棋、杨智联14.响应面法优化蒲公英根多糖的提取工艺、结构表征及抗氧化活性(Optimization of extraction of polysaccharide from dandelion roo t by response surface methodology: Structural characterization an dantioxidant activity)蔡亮亮(南通大学附属医院)、陈伯华、易芳莲15.异质结和磷掺杂协同提升氮化碳光催化降解抗生素废水性能的研究(Boosting Photocatalytic Degradation of Antibiotic Wastewater by Synergy Effect of Heterojunction and Phosphorus Doping)周杰(南通职业大学)16.基于弹塑性减震曲线的黏滞阻尼器减震加固结构设计方法研究(Design method of structural retrofitting using viscous dampers based on elastic-plastic response reduction curve)沈华(南通职业大学)、张瑞甫、翁大根17.p-Ag2O/n-Nb2O5分级结构异质结微球制备及其光催化性能研究(Facile fabrication of hierarchical p-Ag2O/n-Nb2O5 heterojunction microspheres with enhanced visible-light photocatalytic activity)王璐(南通职业大学)、李亚、韩萍芳18.益气养阴方联合化疗治疗非小细胞肺癌的荟萃分析与系统回顾(Chinese herbal medicines of supplementing Qi and nourishing Yi n combined with chemotherapy for non–small cell lung cancer: A meta‐analysis and systematic review)沈水杰(南通市中医院)、姜水菊19.B/Bax/Caspase-3通路调控脑出血后神经元凋亡(GATA-4 regulates neuronal apoptosis after intracerebral hemorrhage via the NF- B/Bax/Caspase-3 pathway both in vivo and in vitro GATA-4蛋白通过NF-κ)徐辉(南通市第六人民医院)20.海马PPARα参与文拉法辛对小鼠的抗抑郁样作用(Hippocampal PPARαis involved in the antidepressant-like effects of venlafaxine in mice)陈诚(南通市第六人民医院)、吴中华、沈剑虹21.中国帕金森病患者血清SIRT1下降——一项病例对照研究(Reduced serum SIRT1 levels in patients with Parkinson’s disea se:a cross-sectional study in China)朱向阳(南通市第一人民医院)、朱羽婷、周永22.半潜式起重拆解平台重型吊机基座疲劳损伤分析陈文科〔招商局重工(江苏)有限公司〕、来海华、张时运23.高维分位数回归模型的纠偏和分布式估计(Debiasing and distributed estimation for high-dimensional quantile regression)赵为华(南通大学)、Zhang Fode、Lian Heng24.携带myocilin基因Val25lAla突变的中国青光眼大家系临床表型研究(Glaucoma phenotype in a large Chinese family with myocilin Va l25lAla mutation)陆宏(南通大学附属医院)、徐绘、陈颖三等奖(共83篇)1.低成本且价态丰富的铜-铁-硫-氧多孔纳米簇在碱性或近中性电解质中驱动出色节能的碳酰肼氧化反应(Low-cost valence-rich copper–iron–sulfur–oxygen porous nanocluster that drives an exceptional energy-saving carbohydrazide oxidization reaction in alkali and near-neutral electrolytes)王艳青(南通大学)、李岳濛、丁丽萍2.一个核糖体DNAl来源的microRNA调控斑马鱼胚胎血管新生(A ribosomal DNA-hosted microRNA regulates zebrafish embryonic angiogenesis)石运伟(南通大学)、段旭初、许广敏3.高表达的MIR106A-5p可抑制自噬并促进鼻咽癌的恶性进展(MIR106A-5p upregulation suppresses autophagy and accelerates malignant ph enotype in nasopharyngeal carcinoma)游波(南通大学附属医院)、尤易文、张启成4.可以查询肿瘤表型及免疫微环境相关性的DNA调控元件网络平台(SPACE: a web server for linking chromatin accessibility with clinical phenotypes and the immune microenvironment in pan-cancer analysis)范义辉(南通大学)、吴英成5.各向异性沟脊微结构调节雪旺细胞形态和生物功能的研究(Anisotropic ridge/groove microstructure for regulating morphology and biological function of Schwann cells)李贵才(南通大学)、赵雪莹、张鲁中6.Bi(OH)3修饰Pt纳米框架的精准构筑及其催化乙醇氧化研究(Porous Pt nanoframes decorated with Bi(OH)3 as highly efficien t and stable electrocatalyst for ethanol oxidation reaction)袁小磊(南通大学)、蒋孛、曹暮寒7.BDH2通过促进Nrf2泛素化在胃癌中触发ROS诱导的细胞死亡和自噬(BDH2 triggers ROS-induced cell death and autophagy by promoting Nrf2 ubiquitinatio n in gastric cancer)刘家洲(南通大学附属医院)、毛勤生、薛万江8.LncRNA H19过表达通过miR-29b-3p靶向MCL-1诱导多发性骨髓瘤对硼替佐米耐药(LncRNA H19 overexpression induces bortezomib resistance in mult iple myeloma by targeting MCL-1 via miR-29b-3p)潘亚芳(南通大学附属医院)、丛辉、陈宏梅9.风电接入系统的低碳电力调度策略优化(Optimization of power dispatching strategies integrating managem ent attitudes with low carbon factors)金晶亮(南通大学)、李晨宇、温晴岚10.基于纳米粒修饰的中性粒细胞的高灵敏“活”探针用于精准肿瘤影像诊断(A highly sensitive living probe derived from nanoparticle-remodeled neutrophils for precision tumor imaging diagnosi)邱钱赛(南通市肿瘤医院)、冯峰、温亚11.ABHD6通过调控单酰甘油的脂解影响非小细胞肺癌的发病机制(Enhanced monoacylglycerol lipolysis by ABHD6 promotes NSCLC pat hogenesis)汤志远(南通大学附属医院)、倪松石12.新生对比成年大鼠源性星形胶质细胞对神经干细胞的增殖影响及其机制研究(Effects and Mechanism of Action of Neonatal Versus Adult Astr ocytes on Neural Stem Cell Proliferation After Traumatic Brain Injury)戴勇(南通大学附属医院)、孙非凡、朱慧13.启东:肝癌病因学和预防研究的熔炉(Qidong: A Crucible for Studies on Liver Cancer Etiology and Prevention)陈建国(启东肝癌防治研究所)、朱健、王高仁14.长链非编码RNA ANRIL通过表观抑制ERRFI1基因的表达促进胆管癌恶性进展(Long non-coding RNA ANRIL promotes the malignant progression of cholangiocarcinoma by epigenetically repressing ERRFI1 expression)于洋(南通市肿瘤医院)、陈俏羽、张珣磊15.血清半乳糖凝集素-3可以作为胰腺癌筛查、早期诊断、预后和疗效评价的生物标记物(Serum galectin-3 as a biomarker for screening, early diagnosis, prognosis, and therapeutic effect evaluation of pancreatic cancer)易楠(南通大学附属医院)、赵絮影、江枫16.表观遗传调控机制在丙戊酸抑制肝星状细胞激活中的交互作用:蛋白质组和miRNA表达谱的整合研究(Crosstalk between Epigenetic Modulations in Valproic Acid Deact ivated Hepatic Stellate Cells: An Integrated Protein and miRNA Profiling Study)陆鹏(南通大学)、颜民、何理17.hsa_circ_0005785通过miR-578/APRIL轴促进肝细胞癌的细胞生长和转移的研究(Upregulated hsa_circ_0005785 Facilitates Cell Growth andMetastasi s of Hepatocellular Carcinoma Through the miR-578/APRIL Axis)陈琳(南通市第三人民医院)、王峰、吴安琪18.长非编码RNA NR_027471作为miRNA-8055的竞争性内源RNA通过调节TP53INP1的表达抑制骨肉瘤的生长(LncRNA NR_027471 Functions as a ceRNA for miRNA-8055 Leading to Suppression of Osteosarcoma by Regulating the E xpression of TP53INP1)陈佳佳(南通市第一人民医院)、缪吴军、杨赛帅19.第二代不可逆性表皮生长受体抑制剂——阿法替尼氧化还原敏感脂质聚合物纳米粒用于非小细胞肺癌靶向给药系统的体内外评价(Non-small cell lung cancer-targeted,redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a second-generation irreversible epidermal growth factor inhibitor—Afatinib: In vitro and in vivo evaluation)王金丽(南通大学附属医院)、苏高星、殷晓芹20.未知控制方向下高阶非线性多智能体系统一致性分布式控制(Consensus control of higher-order nonlinear multi-agent systems with unknown control directions)张智华(江苏航运职业技术学院)、王朝立、蔡轩21.慢性吗啡诱导小鼠脊髓环磷酸腺苷的形成和超极化激活环核苷酸门控通道的表达(Chronic morphine induces cyclic adenosine monophosphate formatio n and hyperpolarization-activated cyclic nucleotide-gated channel expression in the spinal cord of mic)袁林(南通市通州区人民医院)、骆利敏、马霞青22.胰腺癌来源血清外泌体的特征和蛋白质组学分析(Characterization and proteomic profiling of pancreaticcancer-derived serum exosomes)江枫(南通大学附属医院)、倪温慨、朱净23.人类活动背景下江苏近岸海域(中国东部)海洋生物价值评价研究(The evaluation of marine biological value of the Jiangsu coas tal zone (east of China) under the interference of human activities)于雯雯(江苏省海洋水产研究所)、邹欣庆、张东菊24.一种新的逆转录环介导的恒温扩增方法用于快速检测SARS-CoV-2 (A Novel Reverse Tranion Loop-Mediated Isothermal Ampli?cationMethod for Rapid Detection)陆仁飞(南通市第三人民医院)、武秀明、万郑州25.刺激性干预在老年创伤性颅脑损伤昏迷患者中的应用顾宇丹(南通大学附属医院)、费雅雅、秦殊26.丙氨酸乙醛酸-丝氨酸丙酮酸氨基转移酶低表达促进肝细胞肝癌演进和预后不良(Loss of alanine-glyoxylate and serine-pyruvate aminotransferase expression accelerated the progression o f hepatocellular carcinoma and predicted poor prognosis)孙玉风(南通大学)、李文超、沈诗琪27.在非酒精性脂肪性肝中CCN1促进肝脏脂肪变性和炎症(CCN1 promotes hepatic steatosisand inflammation in non-alcoholicsteatohepatitis)居林玲(南通市第三人民医院)、孙燕、薛红28.CD14在结直肠癌中的临床和免疫特征的大样本的分析(The clinical and immune features of CD14 in colorectalcancer identified vialage-scale analysis)陈达天(南通市海门区人民医院)29.用于电池充电的谐振变换器设计及其CC-CV输出特性研究(Resonant Converter for Battery Charging Applications With CC-CV Output Profiles)王书昶〔海迪科(南通)光电科技有限公司〕、刘玉申、王雪峰30.肾母细胞瘤基因(WT1)通过调控E-cadherin和ERK1/2信号通路促进卵巢癌进展(Wilms’tumor 1 (WT1) promotes ovarian cancer progression by regulating E-cadherin and ERK1/2 signaling)韩云(南通市第一人民医院)、宋超、张婷婷31.基于共价组装的荧光探针用于活细胞中hNQO1的检测与成像(Covalent-Assembly Based Fluorescent Probes for Detection of hNQO1 and Im aging in Living Cells)韩佳玲(南通市海门区人民医院)32.黏膜相关恒定T细胞在乙肝病毒相关肝衰竭中的表达(Mucosal-associated invariant T cells in hepatitis B virus-related liver failure)卞兆连(南通市第三人民医院)、薛红、李晗33.以医院为基础的肿瘤登记系统资料收集过程中常见问题辨析潘敏侠(江苏省南通卫生高等职业技术学校)、陈海珍、沈茜34.由华北污染物区域输送引起的一次江苏污染天气分析(Cold fronts transport features of North China pollutant over Jiangsu Province, China)顾沛澍(南通市气象局)、钱俊龙、刘端阳35.一类适用于血浆浓度预测的基于自记忆算法的非线性灰色Bernoulli组合模型(A prediction method for plasma concentration by using a nonli near grey Bernoulli combined model based on a self-memory algorithm)郭晓君(南通大学)、刘思峰、Yingjie Yang36.一种去除细菌生物膜的聚酯基伤口清创材料(A textile pile debridement material consisting of polyester fi bers for in vitro removal of biofilm)付译鋆(南通大学)、安琪、成悦37.基于热刺激驻极的高过滤效率稳定性聚丙烯熔喷非织造材料(Design of Polypropylene Electret Melt Blown Nonwovens with Sup erior Filtration Efficiency Stability through Thermally Stimulated Charging)张海峰(南通大学)、刘诺、曾倩茹38.基于高通量测序的舌癌转录组学研究(Tranome analysis of tongue cancer based on high throughput se quencing)汤明明(南通市肿瘤医院)、韩靓39.玉米苞叶数目和长度的遗传解析及苞叶数目主效QTL的精细定位(Genetic dissection of husk number and length across multiple environments and fine-mapping of a major-effect QTL for husk number in maize (Zea may L.))周广飞(江苏沿江地区农科所)、冒宇翔、薛林40.并行框架下大数据挖掘的改进K-Means聚类算法(Improved K-Means Clustering Algorithm for Big Data Mining under Hadoop Par allel Framework.Hadoop)陆维嘉(南通大学附属医院)41.木板抓取机器人手眼标定方法徐呈艺(南通职业大学)、刘英、贾民平42.考虑应力——锈胀开裂动态相互作用的钢筋混凝土构件耐久性劣(Durability of Reinforced Concrete Members Considering the Dynam ic Interaction of Stress-Corrosion Expansion and Cracking)戴丽(南通理工学院)、吴旭、刘荣桂43.超声辅助双水相萃取虎杖酶解液中的白藜芦醇(Ultrasound-assisted aqueous two-phase extraction of resveratrol from the enzymatic hydrolysates of Poly-gonum cuspidatum)周林芳(江苏工程职业技术学院)、江波、张涛44.Ti3Zr2Sn3Mo25Nb新型β钛合金超声冲击纳米化后的疲劳性能(Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb)曹小建(南通大学)、徐小丽45.角度可控性斜坡支架在经皮肾镜手术中的应用(Application of angle controllable slope stent in percutaneousne phrolithotomy)毛秋月(南通市第一人民医院)、陈黎敏46.南通地区住宅使用分户式地源热泵系统设计和运行分析邹丽丽(南通国能制冷空调技术有限公司)、吴志华、杨晓宏47.FGF21通过抑制神经炎症保护帕金森模型中多巴胺能神经元的研究(FGF21 Protects Dopaminergic Neurons in Parkinson’s Disease Mod els Via Repression of Neuroinflammation)连博琳(南通大学)、孙诚、房星星48.基于形态联合约束的结直肠肿瘤病理图像分割研究(Multiple Morphological Constraints-Based Complex Gland Segmentation in Colorectal Cancer Pathology Image Analysis)张堃(南通大学)、付君红、华亮49.针刺配合呼吸训练在慢性阻塞性肺疾病急性加重期病人中的应用王小琴(海安市人民医院)50.卵巢切除诱导大鼠前额叶皮质小胶质细胞活化和炎症反应加速慢性应激介导的焦虑和抑郁机制研究(Ovariectomy Induces Microglial Cell Activation and Inflammatory Response in Rat Prefrontal Cortices to Accelerate the Chronic Unpredictable Stress-Mediated Anxiety and Depression)葛飞(海安市中医院)、刘丽娜、严晶51.个别差异与交通要素对儿童在虚拟交通情境中过马路行为的影响(Roles of individual differences and traffic environment factors on children’s street-crossing behaviour in a VR environment)王华容(南通大学)、高瞻、沈婷52.双面神亲/疏水锌箔制备及其气泡运输特性肖轶(南通职业大学)、孟东、徐呈艺53.中西医结合治疗急性哺乳期乳腺炎并脓肿形成临床疗效观察乔楠(南通市中医院)、丁晓雯、倪毓生54.改良腰腹肌康复锻炼对经皮椎间孔镜髓核摘除术后患者的影响郭玲(海安市中医院)、田春燕、邵月琴55.轴影响阿尔茨海默病的发生发展(LncRNA ZBTB20-AS1靶向miR-132-3p/MAPT)李文玲(南通大学附属医院)、陈伯华、徐新56.水稻种植对沿海滩涂土壤有机碳及碳库管理指数的影响张蛟(江苏沿江地区农业科学研究所)、崔士友、胡帅栋57.文蛤CDK1基因克隆及其在早期生长阶段中的差异表达陈素华(江苏省海洋水产研究所)、吴杨平、陈爱华58.解毒消瘿汤治疗亚急性甲状腺炎热毒壅盛证临床疗效及对血清炎性因子水平的影响张允申(南通市中医院)、方勇、丁晓雯59.C反应蛋白及降钙素原在血流细菌感染诊断中的应用价值沈旭峰(如东县中医院)60.不同形式冷空气侵入台风暴雨过程对比分析张树民(南通市气象局)、吴海英、王坤61.基于第一性原理的锰掺杂二维二硫族化物的电磁学特性研究卿晓梅(南通理工学院)、镇思琦62.污水处理厂达标尾水导流排江可行性研究——以南通市益民污水处理厂为例张云(江苏省水文水资源勘测局南通分局)、蔡彬彬63.有极小边界的非负Bakry-émery Ricci曲率流形(Manifolds with non-negative Bakry-émery Ricci curvature and minimal boundary)杨宁(南通师范高等专科学校)64.del Nido心脏停搏液在成人冠脉动脉旁路移植联合瓣膜置换手术中的安全性姜秀丽(南通市第一人民医院)、顾天玉、刘麟65.固定卡座级进模设计孟玉喜(南通开放大学)、李强66.用好河长制“金钥匙”打造农民身边“幸福河”——江苏省南通市农村治水初探吴晓春(南通市水利局)、卢建均、喻红芬67.医学科研人员科研数据管理的认知调查与分析——以江苏省某地三甲医院医学科研人员为例王玥(南通大学附属医院)、陈飞、徐水珠68.基于认知分析的急诊标准化分诊及质控软件升级与应用刘颖(南通市第一人民医院)、陈建荣、张鹏69.模块化康复训练在车祸致脑外伤偏瘫痪患者中的应用吴莉蓉(如东县人民医院)、季晓平、石利平70.不同拭子和润湿试剂对生物物证的转移释放效果研究高泽华(南通市公安局)、贾东涛、韩海军71.XDA-1大孔树脂吸附处理含苯甲酸废水李珣珣(江苏九九久科技有限公司)、周新基、葛大伟72.南通市农机化发展短板及对策研究姜广林(南通市农业农村局)、周宇、陆锦林73.黄秋葵花的采摘贮运保鲜方法初探唐明霞(江苏沿江地区农业科学研究所)、顾拥建、袁春新74.血清外泌体Annexin A11检测方法学构建及其在胰腺癌中的临床应用肖明兵(南通大学附属医院)、徐伟松、陈晓君75.胸腹部肿瘤手术患者术后重度疼痛的危险因素王迪(南通市肿瘤医院)、缪长虹、陈万坤76.长链非编码RNAATB检测在乳腺癌诊断中的意义洪宏(南通市中医院)、喻海忠、袁建芬77.人工授精前实时三维子宫输卵管超声造影对输卵管通畅性评估的有效性彭琛(南通大学附属医院)、王迪、王霞78.基于心肺交互机制的监测技术对感染性休克患者容量反应性预测价值祁峰(南通市第一人民医院)、曹亮、张玲玲79.新型城镇化背景下土地资源节约集约利用的标准化实践与探索茆根明(海安市自然资源和规划局)、夏晶、崔晓鹏80.互联网医院发热咨询平台在新型冠状病毒肺炎疫情防控中的应用蒋杏茂(南通市第六人民医院)、金琰斐、尹栗81.肝癌患者血清miR-493-5p检测临床应用研究蔡卫华(南通市第三人民医院)、陈琳、居林玲82.如皋市桑树主要害虫的消长规律与防控布局徐祥(如皋市蚕桑技术指导站)、王静、钱小兰83.红木家具雕刻写实手法的应用探析陈加国(江苏翎视界红木艺术品有限公司)。

卤氧化铋在光催化领域的研究进展

卤氧化铋在光催化领域的研究进展

2021 年第50 卷第 5 期石油化工PETROCHEMICAL TECHNOLOGY·479·卤氧化铋在光催化领域的研究进展孙新宇,李会鹏,赵 华,蔡天凤(辽宁石油化工大学 石油化工学院,辽宁 抚顺 113001)[摘要]卤氧化铋(BiOX ,X=Cl ,Br ,I )作为窄带隙的光催化材料,具有优秀的可见光吸收能力,特殊的层状结构使光生电子更容易分离,体现了优秀的光催化性能。

首先对BiOX 的晶体结构和电子结构进行了介绍,分析了BiOX 一般的光催化机理;其次分析了阻碍BiOX 实际应用的问题,对近年来BiOX 的改性措施进行了综述,包括异质结的构建、元素掺杂、表面修饰、特殊形貌的构建等四种改性措施;最后对BiOX 在今后的研究方向进行了展望。

[关键词]卤氧化铋;光催化;表面修饰;光催化活性[文章编号]1000-8144(2021)05-0479-08 [中图分类号]TQ 06 [文献标志码]ARecent advances on bismuth oxyhalide in photocatalysisSun Xinyu ,Li Huipeng ,Zhao Hua ,Cai Tianfeng(Institute of Petroleum and Chemical Engineering ,Liaoning Petrochemical University ,Fushun Liaoning 113001,China )[Abstract ]Bismuth oxyhalide(BiOX ,X is Cl ,Br ,I),as a narrow band gap photocatalytic material ,has shown excellent visible light absorption and photocatalytic performance due to its special layered structure which makes it easier to separate photo-generated electrons. The crystal structure and electronic structure of BiOX are firstly introduced and general photocatalytic mechanism of BiOX is also analyzed. The problems which hinder the practical application of BiOX is illustrated and the modification measures of that in recent years ,especially four kind of modification measures ,namely ,heterojunction construction ,element doping ,surface modification and special morphology construction ,are reviewed. The research direction of BiOX in the future is further prospected.[Keywords ]bismuth oxyhalide ;photocatalysis ;surface modification ;photocatalytic activityDOI :10.3969/j.issn.1000-8144.2021.05.013[收稿日期]2020-12-22;[修改稿日期]2021-01-28。

二氧化钛纳米管的制备及应用综述

二氧化钛纳米管的制备及应用综述

二氧化钛纳米管的制备及应用综述段秀全盖利刚周国伟(山东轻工业学院化学工程学院,山东济南250353)摘要:TiO2纳米管具有较大的直径和较高的比表面积等特点,在微电子、光催化和光电转换等领域展现出良好的应用前景。

本文对TiO2纳米管材料的合成方法、形成机理及应用研究进行了综述。

关键词:TiO2纳米管;制备;应用中图分类号: O632.6 文献标识码: APreparation and Application of TiO2 nanotubesDUAN Xiu-quan, GAI Li-gang, ZHOU Guo-wei(School of Chemical Engineering, Shandong Polytechnic University, Jinan, 250353, China) Abstract: TiO2nanotubes have wide applications in microelectronics, photocatalysis, and photoelectric conversions, due to their relatively larger diameters and higher specific surface areas. In this paper, current research progress relevant to TiO2nanotubes has been reviewed including synthetic methods, formation mechanisms, and potential applications.Keywords: TiO2 nanotubes; preparation; application自1991年日本NEC公司Iijima[1]发现碳纳米管以来,管状结构纳米材料因其独特的物理化学性能,及其在微电子、应用催化和光电转换等领域展现出的良好的应用前景,而受到广泛的关注。

WO3光催化材料的制备及表征

WO3光催化材料的制备及表征

2021年9期科技创新与应用Technology Innovation and Application研究视界WO 3光催化材料的制备及表征姚远卓,王艳霞,来诗语,龚玲,陶紫怡,王圣婕,冯宇扬(湖北工业大学材料与化学工程学院,湖北武汉430068)引言光催化材料是指一类在光的作用下能发生化学反应的半导体材料。

光催化技术从发现到现如今已经有三十多年的历史了,随之产生的光催化材料越来越多,包括各种氧化物硫化物半导体。

1953年,Markham 等[1]研究了H 2O 2对ZnO 表面上的动力学行为,发现苯可以通过ZnO表面的照明下被氧化成过氧化有机物。

在1972年,藤岛等人,发现二氧化钛光电极在小于415nm 波长的光的照射下产生的光生电子和空穴,由此产生的光催化性能可降解有机污染物,以控制水的污染。

随着研究的不断深入,发现WO 3具有较好的光催化效率,并能够更好地利用阳光,和WO 3的光催化效率有关是它的结构,形态和颗粒大小,这与其制备方法是分不开的。

二氧化钛是目前为止研究的比较成熟的材料。

但是二氧化钛也存在着缺点,它禁带宽度较宽,只能吸收紫外光,这就大大限制了它的使用效率。

而WO 3的禁带宽度较窄,可以高效的利用可见光,它还具有无毒,自然界矿产资源丰富,廉价等优点,因而其应用领域十分广泛,WO 3在电致变色[2]、气致变色、光致变色、气体传感[3]、光催化[4-7]、太阳能电池[8]、SERS 检测[9]及癌症光疗[10]以及超级电容器[11]方向有优良的应用研究。

本文分别采用固相合成法与溶剂热法合成了良好形貌的WO 3,并在可见光条件下研究其对甲基橙的降解效果,获得了比较好的结果。

1实验部分1.1实验原料实验所使用的化学试剂包括钨源,结构调整剂等,由表1分类列出。

1.2氧化钨的制备量取50mL 的乙酸放入100mL 的烧杯中,接着称取一定质量的WCl 6,将WCl 6溶解在乙酸中磁力搅拌30min ,设WCl 6在乙酸中的浓度为X 。

光催化降解水体中磺胺类抗生素的研究进展

光催化降解水体中磺胺类抗生素的研究进展

[关键词] 光催化;磺胺类抗生素;废水处理;高级氧化
[中图分类号] X703
[文献标志码] A
[文章编号] 1006-1878(2021)02-0127-07
[DOI] 10.3969/j.issn.1006-1878.2021.02.001
Recent developments in photocatalytic degradation of sulfonamide antibiotics in water
磺胺类抗生素(sulfonamide antibiotics,SAs)是 一类传统的人工合成抗菌药物,由于价格低廉、化 学性质稳定、具有广谱活性等特点,在畜牧业和水 产养殖中被广泛使用[1],我国的使用尤其广泛[2]。 然而,抗生素的滥用以及缺乏对抗生素废水的有效 处理,使抗生素污染对生态系统和人体健康都构成 了严重的威胁[3]。SAs是在水体中最常被检出的抗 生素种类,江苏省的畜牧场废水中仅磺胺二甲嘧啶 的含量就达到了211 μg/L[4],而在桂林市的地表水 中SAs的浓度达到了1 281.50 μg/L[5]。在用量或疗 程不足时,细菌对SAs易出现抗药性,继而产生抗 性基因,抗药细菌进入环境中易导致进一步的抗性
Sulfadiazine (SDZ)
C10H10N4O2S
Sulfamonomethoxine (SMM)
C11H12N4O3S
Sulfisoxazole (SSX)
C11H13N3O3S
Sulfamethazine (SMZ)
C12H14N4O2S
Sulfadimethoxine (SDM)
C12H14N4O4S
·128·
化工环保 ENVIRONMENTAL PROTECTION OF CHEMICAL INDUSTRY

ZnSn(OH)6SrSn(OH)6光催化降解甲苯的性能研究

ZnSn(OH)6SrSn(OH)6光催化降解甲苯的性能研究

1. 2. 2 ZnSn( OH) 6 / SrSn( OH) 6 的制备方法
称取 0. 4 g 制备好的 SrSn( OH) 6 样品于烧杯中,加入 30 mL 去离子水超声 20 min 使其分散均匀。 在强
烈磁力搅拌下,称取 0. 014 g 的 C4 H6 O4 Zn·2H2 O 加入上述溶液中,并用 0. 1 mol / L NaOH 溶液调节 pH 值为
形貌和光吸收性质进行了表征,并以甲苯为目标污染物对其光催化性能进行评价。 结果表明,与纯相 SrSn( OH) 6 和
ZnSn( OH) 6 相比,复合材料 ZnSn( OH) 6 / SrSn( OH) 6 的紫外光吸收能力显著增强,光生载流子的复合效率降低,进而
增强了其光催化降解甲苯的效率。 复合样品 ZSH / SSH-10 摩尔比为 10% 对甲苯的降解率达到 58% ,是 SrSn( OH) 6 单
1. 3 样品表征
通过具有 Cu K α 辐射( Bruker D8 Advance,λ = 0. 154 06 nm) 的 X 射线衍射仪( XRD) 表征晶体结构和相
组成,以 4( °) / min 的扫描速率在 10° ~ 80°的 2θ 区域中记录数据。 使用场发射扫描电子显微镜( SEM,JSM-
(SSH) 相比,紫外光吸收能力增强,同时异质结的形成有效提高了光生载流子转移速率,并降低了光生电子空穴复合效率,有利于提高光催化活性。 本文还探讨了 ZSH / SSH 在紫外光下降解甲苯的光催化性能。 这种
新型催化剂为羟基锡酸盐光催化处理 VOCs 提供了新途径。
1 实 验
1. 1 试剂及仪器
通信作者:傅 敏,教授。 E-mail:fumin1022@ 126. com

CdS异相结的固相法制备及其光催化性能

CdS异相结的固相法制备及其光催化性能

CdS异相结的固相法制备及其光催化性能王鑫;张静【摘要】以醋酸镉和硫代乙酰胺为原料,首次通过固相法成功制备了立方/六方硫化镉(c/h-CdS)异相结催化剂.利用XRD、SEM和SPV等测试手段对合成的催化剂进行表征.以可见光为光源,评价了该催化剂光催化降解罗丹明B(RhB)的活性,考察了焙烧温度对CdS光催化性能的影响,探讨了降解过程机理.结果表明,随着焙烧温度的增加,CdS逐渐发生立方相硫化镉(c-CdS)向六方相硫化镉(h-CdS)的转变,相变过程中形成的c/h-CdS异相结比纯c-CdS和h-CdS具有更高的光催化活性,而且适当的六方相含量更有利于提高异相结样品的光催化性能.表面光电压的结果表明,异相结的形成可以显著提高光生电子-空穴的分离效率,从而促进了c/h-CdS异相结的光催化性能.牺牲剂实验结果表明,在CdS光催化反应中的活性物种为·O2-.【期刊名称】《辽宁石油化工大学学报》【年(卷),期】2019(039)003【总页数】5页(P30-34)【关键词】焙烧;CdS;相变;光催化【作者】王鑫;张静【作者单位】辽宁石油化工大学化学化工与环境学部,辽宁抚顺 113001;辽宁石油化工大学化学化工与环境学部,辽宁抚顺 113001【正文语种】中文【中图分类】O69;O611.65目前半导体光催化剂的研究已经成为全世界关注的重点课题[1-2]。

其中CdS材料具有较窄的禁带宽度、良好的光导电性以及较高的电子亲和能等优点。

但是其较低的电子与空穴分离效率限制了它的应用。

提高电子与空穴分离效率的方法有许多[3-5],其中同一半导体的不同晶型之间形成的异相结是有效的方法之一[6-7]。

这是由于异相结界面处形成的空间电场有利于电子-空穴的分离[8],从而可以显著提高半导体光催化剂的光催化活性。

CdS主要有立方相(c-CdS)和六方相(h-CdS)两种晶相[9-10],这两种晶相构成的异相结已经被成功合成。

非金属在多相催化芬顿体系中的应用

非金属在多相催化芬顿体系中的应用

收稿日期:2020-04-29作者简介:刘 强(1966-),男,教授,硕士生导师,主要从事水资源污染控制研究。

非金属在多相催化芬顿体系中的应用刘 强1,李亦伦1,姜成春2,李锦卫2(1.沈阳建筑大学 市政与环境工程学院,辽宁 沈阳 110168;2.深圳职业技术学院城市水良性循环工程研发中心,广东 深圳 518055)摘要:近年来,S、Cl、Si、C 等非金属在多相芬顿催化领域的应用越来越广泛。

本文在前人研究的基础上,综述了近几年来,非金属元素和金属相结合在多相芬顿催化领域取得的成就。

按照非金属与金属结合所形成催化剂的作用形式,将其分为两类:包括非金属掺杂在金属中直接催化反应、作为载体负载金属来催化反应。

总结这些催化剂的反应原理,论述目前非金属在多相芬顿催化领域存在的问题,同时展望未来多相芬顿技术发展的趋势。

关键词:芬顿;多相芬顿;非金属中图分类号:O643.32;X131.2;X52 文献标志码:B 文章编号:1673-0402(2021)01-0083-03随着经济快速发展,有毒有害废水处理已成为当今最重要的环境问题之一。

大量的污染物被排放到河流中,这些污染物中绝大多数对于阳光照射与微生物降解的抵抗能力很高。

长时间残留在水体里,直接或间接对人类和水体中动植物造成危害[1-4]。

经过长期研究,高级氧化工艺(AOP)中的多相芬顿技术已被证明是一种高效的方法[5-6]。

但由于芬顿反应本身反应机制的制约,电子转移速率始终控制催化剂的活性。

迄今为止,将富电子金属掺杂到催化剂中或者作为载体,已被证明是一种简单、高效地增加活性方法之一。

科研人员已将Co、Mn、Ce 等金属掺入到铁基与铜基催化剂中,发现加入的元素促进了活性金属离子的氧化还原,导致催化剂的活性高于之前的活性[7-9]。

但引入其他金属后,金属离子释放到水体的几率大幅增加,而催化剂在碱性条件下催化活性不高的问题依然没能得到改善。

为了克服上述缺点,研究人员逐渐将目光转移到更为廉价安全的非金属元素。

浅谈二氧化钛

浅谈二氧化钛

浅谈纳米二氧化钛纳米二氧化钛(Ti02)是一种重要の无机功能材料,由于其粒子具有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等性质;其晶体具有防紫外线、光吸收性好、随角异色效应和光催化等性能;而且它の耐候性、耐用化学腐蚀性和化学稳定性较好,因此纳米二氧化钛被广泛应用于光催化、太阳能电池、有机污染物降解、涂料等领域。

但纳米二氧化钛也有一定の局限性,可在纳米二氧化钛中添加合适の物质(如树脂、聚苯胺、偶联剂、氟碳树脂等),对其进行改性。

1. 纳米TiO2の制备(纳米TiO2溶胶)纳米TiO2の制备方法一般分为气相法和液相法。

由于气相法制备纳米TiO2有诸多缺点如:能耗大、成本高、设备复杂等,且条件苛刻,大大限制了其发展。

液相法主要包括水解法、沉淀法、溶胶-凝胶法、水热法、微乳液法、微波感应等离子体法等制备技术。

而液相法能耗小、设备简单、成本低,是实验室和工业上广泛使用の制备方法。

由于传统の方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大の单组分或多组分分子级纳米催化剂,在此仅介绍用溶胶-凝胶法制备纳米TiO2溶胶。

溶胶一凝胶法制备纳米TiO2:是以钛の醇盐Ti(OR)2,(R为-C2H5、-C3H7、-C4H9等烷基)为原料。

其主要步骤为:钛醇盐溶于溶剂中形成均相溶液,以保证钛醇盐の水解反应在分子均匀の水平上进行,由于钛醇盐在水中の溶解度不大,一般选用醇(乙醇、丙醇、丁醇等)作为溶剂;钛醇盐与水发生水解反应,同时失去水和失醇缩聚反应,生成物聚集成1nm左右の粒子并形成溶胶;经陈化、溶胶形成三维网络而成凝胶;干燥凝胶以除去残余水分、有机基团和有机溶剂,得到干凝胶;干凝胶研磨后煅烧,除去化学吸附の羟基和烷基团,以及物理吸附の有机溶剂和水,得到纳米TiO2粉体。

因为钛醇盐の水解活性很高,所以需添加抑制剂来减缓其水解速度,常用の抑制剂有盐酸、醋酸、氨水、硝酸等。

发表一篇nano letters

发表一篇nano letters

发表一篇nano lettersTitle: Enhanced Photocatalytic Activity of TiO2 Nanoparticles through Surface Plasmon ResonanceAbstract:In this study, we demonstrate a significant enhancement in the photocatalytic activity of TiO2 nanoparticles through surface plasmon resonance. We have functionalized TiO2 nanoparticles with gold nanoclusters, creating a surface plasmon resonance effect that increases the absorption of photons under visible light. This enhancement in absorption results in higher electron-hole pair generation, leading to improved photocatalytic activity. Our findings open up new possibilities for designing more efficient photocatalytic systems for environmental remediation and solar energy conversion.Introduction:Photocatalysis, the use of light to activate catalysts, has garnered significant interest in recent years due to its potential applications in energy conversion and environmental remediation. TiO2 nanoparticles, due to their stability and non-toxicity, have beenwidely used as photocatalysts. However, their wide bandgap limits their use to UV light, which accounts for only a small fraction of the solar spectrum. To address this limitation, various approaches have been taken to modify TiO2 to expand its spectral response. One such approach involves the use of surface plasmons, collective electron oscillations that can enhance light absorption through resonance effects.Methods:TiO2 nanoparticles were synthesized using a sol-gel method and subsequently functionalized with gold nanoclusters using a wet chemical approach. The as-synthesized TiO2 and Au-functionalized TiO2 were characterized using powder X-ray diffraction, UV-visible spectroscopy, and transmission electron microscopy. The photocatalytic activity of both samples was then evaluated by monitoring the degradation of a model organic pollutant under visible light irradiation.Results and Discussion:The Au-functionalized TiO2 showed a significant enhancement in absorption under visible light compared to the unmodified TiO2. Thisincrease in absorption was attributed to the surface plasmon resonance effect, which allows for more efficient electron-hole pair generation upon photon absorption. As a result, the Au-functionalized TiO2 exhibited significantly higher photocatalytic activity than the unmodified TiO2, with a nearly 50% increase in pollutant degradation observed.Conclusion:In conclusion, we have successfully functionalized TiO2 nanoparticles with gold nanoclusters to enhance their photocatalytic activity under visible light. The surface plasmon resonance effect, which results from the interaction between Au and TiO2, leads to increased light absorption and electron-hole pair generation. This study provides valuable insights into the design of more efficient photocatalytic systems for environmental remediation and solar energy conversion applications. Future work will focus on optimizing the Au loading on TiO2 to further enhance its photocatalytic performance and exploring the underlying mechanisms of plasmon-enhanced photocatalysis.。

综合性实验——溴氧化铋光催化剂的制备及降解罗丹明B性能

综合性实验——溴氧化铋光催化剂的制备及降解罗丹明B性能

山东化工SHANDONGCHEMCCALCNDUSTRY・42・2021年第50卷综合性实验一一漠氧化钮光催化剂的制备及降解罗丹明B性能金晓丽,徐怡雪,葛腾,曹建,詹金泉,王继伟,党元林,谢海泉(南阳师范学院化学与制药工程学院,河南南阳473061)摘要:介绍了一个化学综合性实验,涉及漠氧化6(BiOBr)光催化剂的制备及降解罗丹明B(RhB)性能。

该实验采用溶剂热合成的方法制备了BiOBo光催化材料,利用X-射线粉末衍射(XRD)和紫外可见漫反射光谱(DRS)对其晶相和吸光性能进行了表征,并测试其在全光谱照射下降解RhB的活性,最后通过自由基捕获实验证明了光催化降解过程中的活性物种,解释了光催化降解机理。

本实验贯穿材料的制备、表征、性能和机理研究,有利于学生拓宽知识面,开阔视野,提高其实践能力和对知识的综合运用能力,培养他们的创新能力和科研兴趣’关键词:综合性实验#8氧化6#溶剂热;光催化降解;活性物种中图分类号:O643P6文献标识码:A文章编号:1008-021X(X0X1)05-0042-03A。

,卩氓人亡朋:化ExpeUmeni:Piupaiution and Photocatalytic Degradationof Rhodamine B over Bismuth OxybromiCeJI o XiaoH,Xu Yixue,Ge Teng,Cao Jan,Zhan Jinquan,Wang Jihei,Dang Yuanlm,Xi Haiquan(College of Chemistry and Pharmaceutical Engineering,Nanyang Normal University,Nanyang473061,China)Abstract:The preparation of bismuth oxybromide(BiOBr)photocatalyst and the degradation of Rhodamine B(RhB)were described in this paper.In this experiment,the BiOBr photocatalyst was prepared by a solvothermal method,and—s crystal phase and light absorption properties were characterized by X-ray powder diOraction(XRD)spectrum and ueravOlet-visible dOfuse re/ectance(DRS)spectroscopy.The photocatalytic activity was evaluated by the degradation of RhB under full-spectrum light —■radiation.FinCly,the free radical capture experiment was carried out to prove the oxygen-active species during the photocatalytic degradation process explain the photocatalytic degradation mechanism.This experiment runs through the preparation,characterization,performance and mechanism research of materials,which is conducive to broaden their knowledge and vision,improve their practical ability and comprehensive application of knowledge,and cul/vato their innovative ability and scientific research interest.Key wo U s:comprehensive experiment#bismuth oxybromide#solvothermal#photocatalytic degradation#active species针对目前大多数本科生的创新意识及实践能力较差、科研兴趣不高、难以适应市场需求的现状,通过综合研究型实验来提高学生的科研兴趣、创新及实践能力的课程实践也应运而生。

高级氧化技术在抗生素废水的应用进展

高级氧化技术在抗生素废水的应用进展

第53卷第2期 辽 宁 化 工 Vol.53,No. 2 2024年2月 Liaoning Chemical Industry February,2024收稿日期: 2023-01-25高级氧化技术在抗生素废水的应用进展吴晓慧(沈阳建筑大学 市政与环境工程学院, 辽宁 沈阳 110168)摘 要: 随着医药以及畜牧养殖业的快速发展,抗生素的使用也越来越广泛,而传统的物理、化学和生物技术难以对污水中的抗生素进行有效去除,如果没能将污水中的抗生素有效去除,排放到水体以及环境中会对人的身体健康造成很大的危害。

高级氧化技术是最近几年在处理抗生素方面应用较广泛的处理方式,其降解效率比其他方法高,操作也比较简单。

介绍了抗生素废水的危害,重点综述了臭氧氧化技术、光催化技术、Fenton 技术、超声波技术4种高级氧化技术在抗生素废水处理中的应用,并对该类废水处理技术进行了总结,并提出了展望。

关 键 词:臭氧氧化;光催化;Fenton;超声波氧化中图分类号:X703 文献标识码: A 文章编号: 1004-0935(2024)02-0278-04近年来,环境问题成为重点要解决的问题之一,环保的趋势越来越严峻,对水质监测要求也越来越高。

抗生素水的成分相对比较复杂,经过研究调查发现,在很多国家的地表水和沉积物、养殖水域、污水处理系统、医药制药废水甚至饮用水、空气中都存在着一定程度的抗菌基因[1-2]。

GUO [3]等在长三角地区2家饮用水处理厂,针对抗生素类的污染问题,研究了磺胺类抗性基因和四环素类抗性基因。

另外,对钱塘江2个城市的污水处理厂的工艺末端进行了检测,发现了大量的磺胺、内酰胺、万古霉素等抗菌基因[4]。

传统的水处理方式难以将水中抗生素完全去除。

高级氧化技术是近几年针对污水处理所研究的新型处理技术,在进行水处理反应时其可以产生具有强氧化性的羟基自由基,具有降解能力强、操作简单等优点,被广泛应用到废水的处 理中[5-6]。

可见光下氮化碳活化过硫酸钠降解罗丹明B

可见光下氮化碳活化过硫酸钠降解罗丹明B

可见光下氮化碳活化过硫酸钠降解罗丹明B廖高祖;张静雯;邓达义;彭立斌;马传军【摘要】以尿素为原材料高温聚合法制备了石墨相氮化碳(g-C3N4)纳米片催化剂,采用X射线衍射(XRD)、紫外可见漫反射光谱(UV-Vis DRS)等对g-C3N4进行表征,研究了可见光下g-C3N4活化过硫酸钠对罗丹明B(RhB)的降解效果,并对降解过程中的影响因素如g-C3N4和过硫酸钠的质量浓度进行了考察.结果表明:g-C3N4在可见光下协同过硫酸钠对RhB具有较好的降解效果,反应30 min后,降解率达到91.7%.RhB的降解效率随着g-C3N4和过硫酸钠质量浓度的增加而提高.对反应过程中过硫酸钠质量浓度的滴定结果表明:g-C3N4在可见光下对过硫酸钠有一定的活化效果.经过4次循环降解实验,g-C3N4催化剂仍然具有较好的活性.%g-C3N4 was synthesized by direct calcination of urea and characterized by XRD and DRS.Degradation of Rhodamine B by g-C3N4 activated sodium persulfate under visible light was investigated.The dosage of g-C3N4,sodium persulfate in the degradation process was also studied.Results showed that 91.7% of RhB was degraded in 30 min by g-C3 N4 activated sodium persulfate under visible light.A positive correlation existed between degradation ratio of RhB and amount of g-C3N4 or sodium persulfate.The results of titration experiment indicate that g-C3N4 is effective for activation of sodium persulfate under visiblelight.Moreover,g-C3N4 shows good stability after four cycle experiments.【期刊名称】《华南师范大学学报(自然科学版)》【年(卷),期】2017(049)003【总页数】5页(P44-48)【关键词】g-C3N4;过硫酸钠;罗丹明B;可见光【作者】廖高祖;张静雯;邓达义;彭立斌;马传军【作者单位】华南师范大学化学与环境学院,广州510006;华南师范大学化学与环境学院,广州510006;华南师范大学化学与环境学院,广州510006;华南师范大学化学与环境学院,广州510006;中国石化大连石油化工研究院,大连116000【正文语种】中文【中图分类】O643.32基于硫酸根自由基)的水污染控制技术是近年来发展起来的高级氧化技术(AOTs)[1-3]. 的标准氧化还原电位E0在 2.5~3.1 V之间,甚至高于·OH ( E0=2.8 V). 目前,产生的方式主要是在光催化[4-6]、热[7]、活性炭[8]、过渡金属[9-10]及离子(Fe2+、Ag+等)[11-13]等条件下,活化过硫酸盐或过二硫酸盐. 其中,通过光催化法活化过硫酸盐的研究近来受到广泛关注, 该操作方式相对简单且易于实现. 但传统的TiO2光催化剂禁带较宽(3.2 eV),只能利用紫外光[14]. 因此,研究和开发可见光响应的、高效的新型过硫酸盐活化材料是当前的研究热点.近年来,一种新型的、可见光下响应的非金属材料石墨相氮化碳(g-C3N4),由于禁带宽度(约2.7 eV) 较窄、化学稳定性好、制备方法简便等优点受到广泛关注[15-16]. g-C3N4在可见光下可以催化H2O2、O3等氧化剂生成·OH[17-18],但是利用g-C3N4活化过硫酸盐未见报道. 本文以尿素为前驱体,采用直接加热法制备了g-C3N4纳米片催化剂,并采用透射电子显微镜(TEM)、X-射线衍射(XRD)和紫外-可见漫反射光谱(UV-Vis DRS)对催化剂进行表征. 以罗丹明B(RhB)为降解对象,考察了在可见光下g-C3N4活化过硫酸钠降解RhB的效果,并对降解过程中的影响因素如g-C3N4与过硫酸钠的质量浓度、自由基捕捉、反应过程中过硫酸钠的质量浓度滴定和g-C3N4催化剂的重复利用进行了考察.1.1 试剂与仪器尿素、三乙醇胺(AR,广州化学试剂厂);过硫酸钠(AR,SIGMA-ALDRICH,Co.Ltd.);硫酸(AR,天津市百世化工有限公司);硫酸亚铁、硫酸铈铵(AR,阿拉丁试剂(上海)有限公司);亚硝酸钠、叔丁醇(AR,天津市大茂化学试剂厂);无水乙醇、甲醇(色谱纯,天津市科密欧化学试剂厂).马弗炉(天津市中环实验电炉有限公司);电子分析天平(JA103,上海市海康电子仪器厂);智能恒温磁力搅拌器(ZNCL,河南省爱博特科技有限公司);循环水真空泵(SHZ-D,河南省予华仪器有限公司);可见分光光度计(V5000,上海元析仪器有限公司);雷磁自动电位滴定仪(ZDJ-4A,上海仪电科学仪器股份有限公司);有机微孔滤膜(0.45 μm,天津市津腾实验设备有限公司);氙灯(GXH500W,北京纽比特科技有限公司).1.2 实验方法1.2.1 g-C3N4催化剂的制备将10 g尿素加入到半封闭的瓷坩埚中,并放入马弗炉中以15 ℃/min的速率升温到550 ℃反应2 h,得到黄色产物通过乙醇和去离子水各冲洗2次,烘干备用.1.2.2 表征方法采用透射电子显微镜(JEOL, JEM-2100HR)观察催化剂的形貌(加速电压为120 kV);采用X-射线衍射仪(Bruker, D8 Advance)分析催化剂的晶体结构(Cu靶Kα射线,=0.154 18 nm,扫描范围10°~60°,扫描速度6.0°/min);采用紫外-可见漫反射仪(Hitachi, U-3010)测试催化剂对光的吸收;采用红外光谱仪(Nicolet 6700)测定样品官能团的特征(扫描波长范围为 4 000~550 cm-1).1.2.3 可见光下g-C3N4活化过硫酸钠降解RhB 将氙灯置于冷凝管中组成可见光灯管,利用冷凝套管中循环流动的NaNO2溶液(1 mol/L)滤除紫外光,提供可见光. RhB溶液的初始ρ(RhB)为10 mg/L, 过硫酸钠Na2S2O8(200 mg/L)和RhB的质量比为20∶1. ρ(g-C3N4)为0.2 g/L. 加入g-C3N4后先吸附30 min,然后再加入Na2S2O8,立即打开可见光灯管,开始计时,间隔一定时间取样并稀释1倍,立即于552 nm波长处测其吸光度.1.2.4 Na2S2O8与g-C3N4的质量浓度对可见光下活化Na2S2O8降解RhB的影响在可见光/g-C3N4/Na2S2O8条件下,保持其他实验条件和参数不变,ρ(g-C3N4)分别为1、2、4 g/L,考察不同催化剂用量对可见光下活化Na2S2O8降解RhB的影响;保持ρ(g-C3N4)为2 g/L,改变Na2S2O8和RhB的质量比为10∶1、20∶1、40∶1和60∶1,考察ρ(Na2S2O8)对可见光中活化Na2S2O8降解RhB的影响.1.2.5 ρ(Na2S2O8)的变化反应过程中采用滴定法测定ρ(Na2S2O8),具体过程和原理如下:在反应后的样品中加入20 mL 2 mol/L的H2SO4溶液和5 mL 0.1 mol/L FeSO4溶液,放入冰箱暂时保存,以去离子水为空白对照. 然后用标准的硫酸铈铵溶液滴定反应剩余的Fe2+,从而计算出反应液中过硫酸根离子的质量浓度(g/L):.2.1 g-C3N4的表征g-C3N4呈现出数十微米长宽的纳米片状结构(图1),纳米片的中心颜色较浅,边缘颜色较深,说明在其边缘存在卷曲和褶皱. 这种片状结构将会为过硫酸钠的活化反应提供较多的活性位点.产物在2θ为13.1°和27.5°的位置有2个明显的特征衍射峰(图2). 其中27.5°处的衍射峰最强,是芳香化合物的层间堆积特征峰,说明g-C3N4具有类似石墨的层状结构. 另一个衍射峰出现在13.1°的位置,该峰是3-s-三嗪结构类物质的特征峰. g-C3N4的吸收边带大约为450 nm(图3),通过Kubelka-Munk函数可以计算出g-C3N4的禁带宽度为2.7 eV.2.2 影响RhB降解效果的因素2.2.1 可见光下g-C3N4活化Na2S2O8降解RhB 可见光下g-C3N4活化Na2S2O8降解RhB的效果如图4所示,在60 min内,Na2S2O8在可见光下(Na2S2O8/Vis)对RhB的降解率为47.2%;无光照时,Na2S2O8/g-C3N4过程对RhB的降解率为80.4%. 而在可见光下,g-C3N4活化Na2S2O8对RhB的降解率在30 min就达到了91.7%. 说明g-C3N4在可见光下对Na2S2O8具有一定的活化作用.其活化机理可推测为:g-C3N4在可见光下,价带电子激发至导带形成光生电子-空穴对,Na2S2O8溶于有机污水中发生电离,电离出的S2O82-扩散到g-C3N4催化剂表面并捕获光生电子,产生硫酸根自由基,或通过进一步反应形成羟基自由基(·OH)来降解RhB.2.2.2 ρ(g-C3N4)对降解RhB的影响随着催化剂g-C3N4质量浓度的增加,活化Na2S2O8降解RhB的效果就越明显(图5). 在4 g/L催化剂g-C3N4、降解30 min时,RhB的质量浓度从10 mg/L降低至0.433 mg/L,降解率达95.67%. 这是因为g-C3N4的用量越多,在可见光激发下为S2O82-提供更多的光生电子,从而促进RhB的降解.2.2.3 ρ(Na2S2O8)对降解RhB效果的影响通过改变Na2S2O8与RhB的质量比为10∶1、20∶1、40∶1和60∶1,考察ρ(Na2S2O8)对降解RhB效果的影响(图6). 随着ρ(Na2S2O8)的增加,RhB的降解速率明显加快. 当Na2S2O8与RhB 的质量比增加到40∶1时,再增加ρ(Na2S2O8)的,对RhB的降解速率影响不明显.2.3 降解过程中ρ(Na2S2O8)的变化为进一步证实可见光下g-C3N4对ρ(Na2S2O8)的活化作用,对降解反应过程中的ρ(Na2S2O8)的变化进行了滴定和比较(图7). 在Na2S2O8/可见光降解过程中,ρ(Na2S2O8)的变化不大,说明可见光对Na2S2O8没有活化作用;而在Na2S2O8/g-C3N4/可见光过程中,ρ(Na2S2O8)不断降低,说明g-C3N4在可见光下可以活化Na2S2O8.2.4 催化剂g-C3N4的重复利用效果催化剂的稳定性是催化剂另一个需考虑的重要因素. g-C3N4催化剂在可见光下活化Na2S2O8的稳定性是通过循环使用催化剂4次降解RhB来考察,g-C3N4催化剂经过1~4次循环使用后,30 min内对RhB的去除率分别为91.7%、90.9%、90.7%和91.8%,催化剂的循环稳定性较好.g-C3N4在可见光照条件下对Na2S2O8具有一定的活化作用,30 min 对RhB的降解率达到了91.7%. 并且随着g-C3N4和Na2S2O8的质量浓度的增加,RhB的降解率也增加. 通过对Na2S2O8/g-C3N4/可见光降解RhB过程中的ρ(Na2S2O8)的测定,证实了g-C3N4在可见光下对Na2S2O8的活化作用. 催化剂g-C3N4经过4次循环使用后,30 min内对RhB的去除率非常稳定,展现出较好的稳定性.【相关文献】[1] HORI H,YAMAMOTO A,HAYAKAWA E,et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J]. Environmental Science & Technology,2005,39(7):2383-2388.[2] WALDEMER R H,TRATNYEK P G,JOHNSON R L,et al. Oxidation of chlorinated ethenesby heat-activated persulfate: kinetics and products[J]. Environmental Science & Technology,2007,41(3):1010-1015.[3] LIANG S H,KAO C M,KUO Y C,et al. Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater[J]. Journal of Hazardous Materials,2011,185(2):1162-1168.[4] GAO Y,GAO N,DENG Y,et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water[J]. Chemical Engineering Journal,2012,195/196:248-253.[5] SHI Y J,LI Y C,HUANG Y H. Application of UV/persulfate oxidation process for mineralization of 2,2,3,3-tetrafluoro-1-propanol[J]. Journal of the Taiwan Institute of Chemical Engineers,2013,44(2):287-290.[6] HAZIME R,NGUYEN Q H,FERRONATO C,et al. Comparative study of imazalil degradation in three systems: UV/TiO2,UV/K2S2O8,and UV/TiO2/K2S2O8[J]. Applied Catalysis B: Environmental,2014,144(1):286-291.[7] YANG S Y,WANG P,YANG X,et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat,UV and anions with common oxidants:persulfate,peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials,2010,179(1/2/3):552-558.[8] 杨鑫. 活性炭催化过二硫酸盐降解水中难生化有机污染物[D]. 青岛:中国海洋大学,2011.[9] 赵进英. 零价铁/过硫酸钠体系产生硫酸根自由基氧化降解氯酚的研究[D]. 大连:大连理工大学,2010.[10] 梁云海. 铜氧化物活化过硫酸盐处理水中芳环有机污染物的研究[D]. 广州:华南理工大学,2013.[11]MARCHESI M,ARAVENA R,SRA K S,et al. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe2+ activated persulfate[J]. Science of the Total Environment,2012,433:318-322.[12]RASTOGI A,AL-ABED S R,DIONYSIOU D D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B Environmental,2009,85(3/4):171-179.[13]SIHYUN D, JEONGHWAN J, YOUNGHOON J,et al. Application of a peroxymonosulfate/cobalt (PMS/Co(II)) system to treat diesel-contaminated soil[J]. Chemosphere,2009,77(8):1127-1131.[14]WANG Y,HONG C S. Effect of hydrogen peroxide,periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions[J]. WaterResearch,1999,33(9):2031-2036.[15] 孟雅丽. g- C3N4的合成及其光催化研究[D]. 大连:大连理工大学,2011.[16] 楚增勇,原博,颜廷楠. g-C3N4光催化性能的研究进展[J]. 无机材料学报,2014,29(8):785-794. CHUZ Y,YUAN B,YAN T N. Recent progressin photocatalysis materials[J]. Journal of Inorganic Materials,2014,29(8):785-794.[17]LIAO G,ZHU D,LI L,et al. Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation[J]. Journal of Hazardous Materials,2014,280:531-535. [18]WANG Y,IBAD M F,KOSSLICK H,et al. Synthesis and comparative study of the photocatalytic performance of hierarchically porous polymeric carbon nitrides[J]. Microporous & Mesoporous Materials,2015,211:182-191.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of Molecular Catalysis A:Chemical266(2007)158–165Enhanced photocatalytic degradation of4-chlorophenolby Zr4+doped nano TiO2N.Venkatachalam,M.Palanichamy,Banumathi Arabindoo,V.Murugesan∗Department of Chemistry,Anna University,Chennai25,IndiaReceived14September2006;accepted24October2006Available online7November2006AbstractZr4+doped nano titania was prepared by sol–gel method using titanium(IV)isopropoxide and zirconium nitrate as precursors.The materials were characterized by XRD,BET,UV–vis,FT-IR,SEM-EDX and TEM techniques.The nanoparticles of pure TiO2contained both anatase and rutile phases together but Zr4+doped TiO2gave anatase phase only.The framework substitution of Zr4+in TiO2was established by XRD,SEM-EDX and FT-IR techniques.The band gap value of Zr4+doped TiO2was higher than the parent nano TiO2.TEM observations confirmed the nanocrystalline nature of Zr4+doped TiO2.The presence of dopants therefore could suppress the growth of TiO2grains,increase the surface area,decrease the anatase–rutile phase transformation and accelerate the surface hydroxylation.These properties resulted higher photocatalytic activity for Zr4+ doped nano TiO2than undoped nano TiO2.The presence of anatase type structure in TiO2with high crystallinity and high phase stability,even after annealing at800◦C substantially indicated that the dopants might inhibit densification and crystallite growth by providing dissimilar boundaries. The photocatalytic activity in the degradation of4-chlorophenol was found to be higher for Zr4+doped TiO2than both nano TiO2and commercial TiO2(Degussa P25).The experimental parameters such as initial concentration of4-chlorophenol,catalyst loading,pH and light intensity were optimized for maximum degradation efficiency.©2006Elsevier B.V.All rights reserved.Keywords:Nano TiO2;Metal doping;Anatase phase;4-Chlorophenol;Mineralization1.Introduction4-Chlorophenol(4-CP),a known toxic and non-biodegrad-able organic compound,is present in the wastewater of pulp and paper,dyestuff,pharmaceutical and agrochemical indus-tries.This compound is currently removed from the wastewater by conventional treatment methods such as biological treatment, chlorination and adsorption.However,the biological process usually requires considerably long treatment period to break down4-CP,thus leading to unacceptable level in thefinal effluent [1].Chlorination poses another problem since it often generates carcinogenic by-products.Granular activated carbon adsorption is the other commercialized process but the spent carbon needs to be disposed safely[2].Semiconductor mediated photocat-alytic oxidation has been accepted as a promising alternative ∗Corresponding author.Tel.:+914422203144;fax:+914422200660/22350397.E-mail address:v murugu@(V.Murugesan).to the conventional methods because most of the pollutants can be completely mineralized to CO2with suitable catalysts in the presence of UV light illumination.Among the semiconductors employed,TiO2is proved to be a good photocatalyst because of its high photosensitivity,non-toxicity,easy availability,strong oxidizing power and long-term stability[3–5].Despite the positive attributes of TiO2,the main drawback associated with its use is that most of the activated charge car-riers will undergo recombination before reaching the surface to interact with adsorbed molecules.In fact,90%of the gen-erated carriers are lost within nanosecond of their generation, leading to low photoactivity of TiO2.To circumvent the lim-itation,numbers of strategies have been proposed to improve the light absorption features and lengthen the carrier life time characteristics of the photocatalysts[6–8].The influence of transition metal ions on the photoactivity of pure TiO2has been studied with the aim to improve the effi-ciency of the photocatalytic process.It has been hypothesized that the incorporation of transition metal ions on titania increases the rate of photocatalytic oxidation due to the electron scaveng-1381-1169/$–see front matter©2006Elsevier B.V.All rights reserved. doi:10.1016/j.molcata.2006.10.051N.Venkatachalam et al./Journal of Molecular Catalysis A:Chemical266(2007)158–165159ing effect of the metal ions on the surface of TiO2.Most of the metal doped TiO2were prepared by co-precipitation or incipi-ent wet impregnation method[9].Substitution of metal ions in the bulk TiO2crystallites is not likely to occur in the impreg-nation method and at the best substitution may take place on the surface of TiO2.In the co-precipitation method,post heat processing of mixed metal hydroxides yields metal doped TiO2. This high temperature and long time heating may separate out the dopant metal ion into respective metal oxide and in many cases it segregates on the surface of TiO2[10].Mechanochemical doping,hydrothermal crystallization and metal organic vapor deposition are the other methods that have been reported for the preparation of metal doped -parison of the results reported in the literature for doped TiO2 samples is difficult since the preparation methods of the photo-catalysts are usually different[11,12].It has been shown that the photocatalytic activity of TiO2can be influenced by its crystal structure,surface area,size distribution,porosity,band gap and surface hydroxyl group density.Most of the studies have been focused on the preparation of nanosized TiO2with a view to improve the light absorption capacity.Additionally,the small size of TiO2particles can make indirect band electron transition and thus increase the generation rate of electrons and holes.Recently,sol–gel method is proved to be a novel technique for the preparation of nanocrystalline TiO2.It has been demon-strated that the physiochemical and electrochemical properties of TiO2can be modified to improve its efficiency by sol–gel method.Since this method is a solution process,it has all the advantages of wet chemical process such as control of stoichiom-etry,doping of desired amount of transition metal ions,andfine dispersion of the dopant and titanium source.Generally,par-ticle size is an important parameter for photocatalysis since it directly impacts the specific surface area of a catalyst.With a small particle size,the number of active surface sites increases and so does the surface charge carrier transfer rate in photo-catalysis[13–16].The physiochemical properties of Zr4+doped nano TiO2and correlation of these properties in the photocat-alytic activity of TiO2for4-chlorophenol(4-CP)degradation are presented in this manuscript.2.Experimental2.1.Materials and methodsAll the chemicals were obtained from Merck(India)and used as such without further purification.The commercially avail-able TiO2(Degussa P25)was obtained from Degussa Chemical, Germany.The typical synthesis procedure for nano TiO2and metal doped nano TiO2is as follows:titanium(IV)isopropox-ide,glacial acetic acid and water were maintained in a molar ratio 1:10:350.Titanium(IV)isopropoxide(18.6ml)was hydrolyzed using35.8ml glacial acetic acid at0◦C.To this solution395ml water was added drop wise under vigorous stirring for1h and continued the stirring for further5h until a clear solution of TiO2nanocrystals was formed.The prepared solution was kept in the dark for nucleation process for24h.After the period,the solution was placed in an oven at a temperature of70◦C for a period of12h for the gelation process.The gel was then dried at100◦C and subsequently the catalyst was crushed intofine powder and calcined in a muffle furnace at500◦C for5h.In the preparation of Zr4+doped TiO2,requisite amount of zirconium nitrate(0.3,0.5,0.7,1.0,2.0and3.0mol%)was dissolved in 395ml water and the above procedure was adopted as such. 2.2.Catalyst characterization and analytical methodThe XRD patterns were recorded on a PANAalytical X pert PRO X-ray diffractometer using Cu K␣radiation as the X-ray source.The diffractograms were recorded in the2θrange10–80◦in steps of0.02◦with a count time of20s at each point.The average crystallite size of anatase and rutile phases was determined according to the Scherrer equation using the full width at half maximum(FWHM)data of each phase after correcting the instrumental broadening.The spe-cific surface area(BET method),specific pore volume and average pore diameter(BJH method)of the samples were determined by nitrogen adsorption–desorption isotherms using Quantochrome Autosorb1sorption analyzer.The calcined sam-ples were outgassed at250◦C under vacuum(10−5mbar)for 3h prior to adsorption experiments.The particle size and mor-phology of nano TiO2and Zr4+doped TiO2were observed using transmission electron microscope(TEM)(JEOL3010)and scan-ning electron microscope(SEM)(Stereo scan LEO440).The emission spectra of the catalyst samples were recorded using spectrofluorometer(Horiba Fluromax-2)at the excitation wave-length of290nm.UV–vis absorption spectra of the catalyst samples were recorded using UV–vis spectrophotometer(Shi-madzu2601).FT-IR spectra of the samples were recorded on a FI-IR spectrometer(Nicolet Avatar360).The extent of4-CP degradation was monitored using UV–vis spectrophotometer (Shimadzu1601)and high performance liquid chromatograph (HPLC)(Shimadzu LC10ATVP series equipped with UV–vis detector).The intermediates were identified using gas chromato-graph coupled with mass spectrometer(GC–MS)(Perkin-Elmer Clarus500).The extent of mineralization was determined usinga total organic carbon analyzer(TOC)(Shimadzu V CPN).2.3.Adsorption studyPrior to photocatalytic experiments,adsorption of4-CP on the catalyst surface was carried out by mixing100ml of aqueous solution of4-CP(250mg/l)with afixed weight of the catalyst (200mg)at pH5.Aliquots were withdrawn at specific time intervals and the change in4-CP concentration was measured by HPLC.The extent of equilibrium adsorption was determined from the decrease in4-CP concentration.From the adsorption experiments,the percentage of4-CP adsorbed on the catalyst surface was determined from the following equation:%of4-CP adsorbed=C0−C t×100where C0is the initial concentration of4-CP and C t is the concentration of4-CP after t minutes.160N.Venkatachalam et al./Journal of Molecular Catalysis A:Chemical 266(2007)158–1652.4.Photocatalytic studiesThe cylindrical photochemical reactor was made up of quartz glass with a dimension of 30cm ×3cm (height ×diameter).The top portion of the reactor has ports for sampling,gas purging and gas outlet.The aqueous 4-CP solution containing appro-priate quantity of either nano TiO 2or Zr 4+doped TiO 2was taken in the quartz reactor and subjected to aeration for thor-ough mixing.The set-up was placed inside the reactor which was 6.5cm away from the lamps.The lamp housing consisted of low-pressure mercury lamps (8×8W)emitting 365nm with polished anodized aluminium reflectors and black cover to pre-vent UV leakage.The photocatalytic degradation was carried out with 100ml aqueous 4-CP solution (250mg/l)and 200mg nano TiO 2or Zr 4+doped TiO 2photocatalyst.The experiments were performed at room temperature and the pH of reaction mixture was kept at 5.Prior to irradiation,the slurry was aer-ated for 30min to reach adsorption equilibrium followed by UV irradiation.Adequate aliquots of the sample were with-drawn after periodic interval of irradiation and analyzed after centrifugation.Since optimization of reaction variables will maximize the degradation efficiency,reaction parameters like initial 4-CP concentration,catalyst loading and solution pH were optimized.3.Results and discussion3.1.Physiochemical characterizationThe XRD patterns of nano TiO 2and Zr 4+doped nano TiO 2are shown in Fig.1.Though the patterns of nano TiO 2calcined at 500◦C correspond to both anatase and rutile forms (Fig.1a),anatase phase is the predominating one.The XRD patterns of 1mol%Zr 4+doped TiO 2indicate complete absence of rutile phase (Fig.1b).The doped TiO 2samples devoid of amorphous structures.It can be seen that increase of calcination tempera-ture from 400to 600◦C,the peak intensity of anatase increases and the width of (101)plane at 2θ=25.3◦becomes narrow.TheFig.1.XRD patterns of TiO 2calcined at 500◦C (a)nano TiO 2and (b)1mol%Zr 4+doped TiO 2.rutile phase starts appearing at 500◦C for pure nano TiO 2but the rutile peaks appear only at 700◦C for Zr 4+doped TiO 2.Thus,the dopant is expected to play a significant control on the selec-tive crystallization of anatase phase during the sol–gel process [17,18].The close examination of XRD patterns of both nano TiO 2and Zr 4+doped TiO 2illustrates the existence of splitting of peaks at 62.79◦,68.77◦,70.33◦and 75.09◦(2θ).The average particle size was estimated by applying the Scherrer formula on the anatase (101)and rutile (110)diffraction peaks (the most intense peak for each phase):D =Kλwhere D is the crystal size of the catalyst,λthe X-ray wave-length (1.54˚A),βthe full width at half maximum (FWHM)of the catalyst,K =0.89and θis the diffraction angle.An aver-age crystal size from 6to 12nm (Table 1)was obtained for Zr 4+doped TiO 2samples.As a result of calcination,there is enhanced intensity for all the patterns compared to uncalcined TiO 2.Hence,there might be condensation of free defective OH groups to form TiO 2with high percentage crystallinity.The diffraction patterns of Zr 4+doped TiO 2(up to 5mol%)calcined at 500◦C show typical peaks of TiO 2nanocrystalline anatase phase without any detectable dopant related peaks.Hence,the dopant may be occupied either interstitial positions or substi-tutional sites of the TiO 2crystal structure.The nanocrystalline anatase structure for Zr 4+doped TiO 2was confirmed by (101),(004),(200),(105)and (211)diffraction peaks.Since Zr 4+is more electropositive than Ti 4+,the electronic cloud in each TiO 2nanoparticle might be loosely held,thus favoring forma-tion of less dense anatase phase.In other words,the tight packing arrangements required for rutile phase formation is fully sup-pressed by the addition of zirconium nitrate in water which enhances the polarity of water,thus facilitating the formation of anatase phase only.The entry of Zr 4+in the lattice of TiO 2prevents interconversion of anatase to rutile during calcination.Since Zr 4+is larger in size and more electropositive character than Ti 4+,the lattice can exhibit better bonding property and thus higher thermal stability than pure TiO 2.However,5mol%Zr 4+doped TiO 2(Fig.2)did not give any peak corresponding to ZrO 2and better existence of peak splitting in anatase phase.Hence,it might be amorphous or below the detectability limit of XRD but the intensity of anatase peaks decreased and the splitting of anatase peaks were well resolved.This is due to the forma-tion of nanosize particles in the range undetectable by XRD in addition to those that are detectable.The formation of TiO 2particles of size less than even 4nm is also evident from TEM analysis.Table 1presents the textural properties of nano TiO 2and Zr 4+doped TiO 2.It can be seen that the specific surface area shifts towards lower values at higher calcination temperatures.The surface area of the catalysts increased with increase of Zr 4+content.This increase may be due to Zr 4+present on the surface of TiO 2which inhibits densification and crystalline growth of TiO 2nanoparticles by providing dissimilar boundaries.Fig.3illustrates the pore size distribution curve calculated from the desorption branch of nitrogen adsorption isotherm by BJHN.Venkatachalam et al./Journal of Molecular Catalysis A:Chemical 266(2007)158–165161Table 1Textural and structural properties of nano TiO 2and Zr 4+doped nano TiO 2CatalystSpecific surface area a (m 2/g)Pore diameter b (nm)Particle size c (nm)Band gap energy d (eV)4-CP adsorbed (%)Nano TiO 266 3.618–20 3.2114.20.5mol%Zr 4+-TiO 280 4.312–15 3.2318.31.0mol%Zr 4+-TiO 295 4.88–12 3.2726.82.0mol%Zr 4+-TiO 2125 5.26–12 3.2929.63.0mol%Zr 4+-TiO 2133 5.64–10 3.3134.25.0mol%Zr 4+-TiO 21395.14–123.3137.4a BET surface area calculated from the linear portion of the BET plot in the relative pressure range of p /p 0=0.05–0.35.b Average pore diameter estimated using adsorption branch of the isotherm.c Particle size obtained from TEM pictures.dBandgap energy (eV)calculated using the formula BG =1240/λ.Fig.2.XRD patterns of 5mol%Zr 4+doped TiO 2calcined at 500◦C.method and the corresponding nitrogen adsorption–desorption isotherm of 3mol%Zr 4+doped TiO 2powder calcined at 500◦C for 5h.The sharp decline in the desorption curve is indicative of mesoporosity while the hysteresis (type IV)between the two curves demonstrates that there is a diffusion bottle neckpossi-Fig.3.Nitrogen adsorption–desorption isotherms and the corresponding pore size distribution curve calculated from desorption branch of the nitrogen isotherm (inset)of 3mol%Zr 4+doped TiO 2calcined at 500◦C.bly caused by the non-uniform pore size of TiO 2[19].The pore size distribution graph reveals pore size range of 3–8nm with an average pore diameter of 9.5nm.These pores can allow rapid diffusion of 4-CP molecules during photocatalytic reaction.Zr 4+doped TiO 2(3mol%)calcined at 500◦C exhibits higher specific surface area (133m 2/g),than that of TiO 2(50m 2/g)(Degussa P25).SEM micrograph of calcined (500◦C)1mol%Zr 4+doped TiO 2is shown in Fig.4.It is observed that the doped nano TiO 2particles are spherical with an average grain size of 10–12nm,which is consistent with the XRD results.The EDX data of pure and Zr 4+doped TiO 2are shown in Figs.5and 6.Nano TiO 2shows a peak around 0.2kev and another intense peak appears at 4.5kev.The intense peak is assigned to TiO 2in the bulk form and the less intense peak is assigned to surface TiO 2.The EDX patterns of Zr 4+doped TiO 2are shown in Fig.6.The peaks due to TiO 2appear at the same position as shown in Fig.5.The peaks due to Zr 4+are not clearly distinct in 1mol%Zr 4+doped TiO 2whereas one of the Zr 4+peaks appears intense in the case of 3mol%Zr 4+doped TiO 2which may be assigned to bulk Zr 4+.The less intense peak of Zr 4+is assigned to Zr 4+in the TiO 2lattices.Figs.7and 8are the TEM pictures and the corresponding histogram (particle size distribution)of 1mol%Zr 4+doped TiO 2,both are proven the nanocrystalline nature of doped TiO 2.Fig.4.SEM picture of 3mol%Zr 4+doped TiO 2calcined at 500◦C.162N.Venkatachalam et al./Journal of Molecular Catalysis A:Chemical 266(2007)158–165Fig.5.EDX patterns of pure nano TiO 2calcined at 500◦C.FT-IR spectra of nano and Zr 4+doped TiO 2show peaks corresponding to the stretching vibrations of O–H and bend-ing vibrations of adsorbed water molecules around 3350–3450and 1620–1635cm −1,respectively.The low intensity of these peaks with increase in the calcinations temperature is indicat-ing the removal of large portion of adsorbed water from TiO 2(not shown in figure).Fig.9shows a broad intense band below 1200cm −1which is due to Ti–O–Ti vibration.In addition,the surface hydroxyl groups in TiO 2increase with increase of Zr 4+loading,which is not only favor the trapping of electrons to enhance the separation efficiency of electron–hole pair but also form surface free radical (•OH)to enhance the photocatalytic degradation of 4-CP [20].Fig.6.EDX patterns of Zr 4+doped TiO 2calcined at 500◦C:(a)1mol%Zr 4+doped TiO 2and (b)3mol%Zr 4+doped TiO 2.Fig.7.TEM picture of 3mol%Zr 4+doped TiO 2calcined at 500◦C.Fig.8.Particle size distribution histogram of 3mol%Zr 4+doped TiO 2calcined at 500◦C.Fig.9.FT-IR spectra of nano TiO 2and Zr 4+doped TiO 2calcined at 500◦C:(a)nano TiO 2,(b)0.5mol%Zr 4+doped TiO 2,(c)1mol%Zr 4+doped TiO 2and (d)3mol%Zr 4+doped TiO 2.N.Venkatachalam et al./Journal of Molecular Catalysis A:Chemical266(2007)158–165163Fig.10.UV–vis absorption spectra of nano TiO2and Zr4+doped TiO2calcined at500◦C:(a)nano TiO2,(b)1mol%Zr4+doped TiO2and(c)3mol%Zr4+ doped TiO2.UV–vis absorption spectra of nano and Zr4+doped TiO2are shown in Fig.10.The absorption spectrum of nano TiO2con-sists of a single and broad intense absorption around400nm due to charge-transfer from the valence band(mainly formed by 2p orbitals of the oxide anions)to the conduction band(mainly formed by3d t2g orbitals of the Ti4+cations)[21].Pure nano TiO2shows its absorption in the longer wavelength region than Zr4+doped TiO2.Hence,there is sufficient decrease in the par-ticle size and increase in the band gap value due to Zr4+doping. Furthermore,zirconium is in the+4oxidation state and the valence band of TiO2consists of only the O(2p)band.This O(2p)band is stabilized more on Zr4+doping since it is more electropositive than Ti4+.Hence,there is an increase in the band gap of TiO2[22].3.2.Optimization of reaction variables in the degradationof4-CP3.2.1.Effect of initial4-CP concentrationThe influence of initial4-CP concentration on degradation rate was studied from50to300mg/l at a constant TiO2loading of200mg and a solution pH of5.The volume of4-CP solution was100ml.It was observed that the degradation rate increased with increase in concentration of4-CP up to250mg/l and then decreased.The degradation followed pseudo-first-order kinetics at low4-CP concentration,which is in accordance with our ear-lier reports[23].The UVλmax value of4-CP is280nm.Hence, the absorption of UV light by the pollutant dominated at higher concentrations.The screening effect dominated at concentra-tions higher than250mg/l and hence degradation efficiency decreased.We have observed such type of screening effect in the degradation of dyes and pesticides in our earlier reports[23]. Furthermore,the formation of•OH radicals is constant for a given amount of the catalyst and hence the available•OH radi-cals are insufficient for4-CP degradation at higher concentration [23].3.2.2.Effect of catalyst dosageA series of experiments were carried out to optimize the cat-alyst loading by varying the amount of nano TiO2from100to 500mg in100ml4-CP solution of concentration250mg/l.The rate of degradation increased linearly with increase in catalyst loading up to200mg and then decreased due to increase in tur-bidity of the solution,which interfere light transmission into the solution.The low degradation rate at higher catalyst loading may also due to deactivation of activated molecules by collision with ground state molecules of titania[24].3.2.3.Effect of solution pHSolution pH is an important variable in the evaluation of aqueous phase mediated photocatalytic degradation reactions. It influences adsorption and dissociation of the substrate,cata-lyst surface charge,oxidation potential of the valence band and other physiochemical properties.The role of pH on the rate of photocatalytic degradation was attempted under optimum con-centration of4-CP(250mg/l)and TiO2(200mg)by varying the initial pH values from4to9.It is reported that the zero point charge(pH zpc)of TiO2is6.9[5].The rate of degradation in the acidic pH range(at5)was found to be higher than the alkaline pH.The high degradation rate in the acidic pH is due to enhanced adsorption of4-CP on the surface of TiO2that carries positive charge.In addition,minimization of electron–hole recombina-tion in the acidic pH is also an additional important factor for the enhanced degradation of4-CP.In the alkaline pH(at9)both 4-CP and surface of TiO2carry negative charge and hence the degradation rate was found to be less[25].3.2.4.Effect of light intensityThe effect of light intensity was investigated from16to64W. The results revealed that the degradation rate increased with increase in the light intensity up to64W.Electron–hole recombi-nation is a commonly encountered problem in photocatalysis.In addition,excitation of every catalyst particle by light irradiation at any instant cannot be possible.But the probability of excitation can be increased by increasing the intensity of incident light.It also increases the reexcitation of recombined electrons.Hence, increase in the degradation rate was observed with increase in the intensity of incident light.The mineralization of4-CP was studied with lamps of wavelength365and254nm over TiO2 and compared their efficiency.Though the mineralization rates apparently appeared to be nearly equal for both the lamps,the mineralization rate at365nm is slightly higher than at254nm. Since the band gap excitation of electrons in TiO2with254nm can promote electrons to the conduction band with high kinetic energy,they can reach the solid–liquid interface easily,suppress-ing electron–hole recombination in comparison to365nm.The observation of low rate for254nm is therefore unexpected.This can be accounted by considering partial absorption and wasting of the light of254nm by4-CP itself.Generally,the pollutants should possess negligible absorption close to the wavelength of irradiation source.Hence,the entire light of irradiation at 254nm in the reactor is not used for the excitation of TiO2parti-cles because of the intervening4-CP molecules as well as those adsorbed on TiO2particles.Hence,absorption and wasting of164N.Venkatachalam et al./Journal of Molecular Catalysis A:Chemical 266(2007)158–165light at 254nm by 4-CP might be the actual cause for less rate of degradation than at 365nm.3.3.Mineralization studiesThe extent of degradation and mineralization of 4-CP was followed by UV–vis spectroscopy,HPLC and TOC pounds like hydroquinone and hydroxyhydroquinone were the predominant intermediates identified by GC–MS during the photocatalytic degradation of 4-CP,in which hydroquinone existed for longer period during the photocatalytic degradation of 4-CP.This may be due to the fact that hydroquinone in acidic medium can exist in equilibrium with quinone as shown in thefollowing equation:Thus,the released electron can neutralize the holes of TiO 2.The electron in the conduction band can also be easily trapped by quinone to form hydroquinone.Hence,the mineralization of hydroquinone by photocatalytic degradation is rather diffi-cult.The decreasing trend in TOC against irradiation time in the degradation of 4-CP using Zr 4+doped TiO 2,nano TiO 2and TiO 2(Degussa P25)are depicted in Fig.11.The TOC removal effi-ciency of TiO 2(Degussa P25)and nano TiO 2is lower than that of Zr 4+doped TiO 2.Under identical experimental conditions,min-eralization of 4-CP required 300min with 3mol%Zr 4+doped TiO 2,420min with nano TiO 2and 480min with TiO 2(Degussa P25).The experimental results revealed that dopant in TiO 2play significant role in the enhancement of photocatalytic activity.The experimental results also confirmed that the optimum dop-ing molar ratio of Zr 4+ion and TiO 2is found to be 3:97and above this ratio,the structural and textural parameters of TiO 2are affected.The entry of Zr 4+into the lattice of TiO 2cre-ates charge compensating anion vacancy in the lattice points of TiO 2which may enhance the adsorption of 4-CP.In addition,the expected enhanced Lewis acidity of thecatalyst is also anparison of photocatalytic mineralization of nano TiO 2and Zr 4+doped TiO 2(experimental conditions:initial concentration of 4-CP =250mg/l,volume of 4-CP =100ml,solution pH 5and catalystdosage =200mg).Fig.12.Fluorescent emission spectra of nano TiO 2and Zr 4+doped TiO 2cal-cined at 500◦C.important contributing factor for Zr 4+doped TiO 2.The Lewis acid sites act as electron traps and also act as effective adsorption sites to enhance the rate of photocatalytic degradation of 4-CP [26].SEM observations also gave convincing evidence for the presence of zirconium on the surface of TiO 2.Further,the dopantion Zr 4+with ionic radius (0.79˚A)closer to Ti 4+(0.75˚A)can either isomorphously substituted or interstitially introduced into the matrix of TiO 2to produce oxygen vacancies which accelerate the transition and nanocrystallite growth of anatase TiO 2.The fluorescent emission spectra of Zr 4+doped TiO 2(Fig.12)also give convincing evidence for the oxygen vacancy in TiO 2.Since the excitation was carried out under equal adsorption conditions at 290nm,decrease in emission intensity was observed with Zr 4+doped TiO 2samples compared to pure nano TiO 2.The decrease in emission intensity may also due to the introduction of new defect sites such as oxide ion vacancy.The oxide ion vacancy can trap an electron in the following pathway.The ionized oxy-gen vacancy level is poised to trap rapidly the photogenerated conduction band electron which subsequently interacts with a valence band hole either radiatively or non-radiatively:V 0o +e −CB →V 0(electron trapping in shallow traps)V 0+h +VB →V 0o +hν(radiative recombination)During the sol–gel synthesis of metal doped TiO 2,high water ratio was kept to enhance the nucleophilic attack of water on titanium(IV)isopropoxide and to suppress fast condensation of titanium(IV)isopropoxide species to yield TiO 2nanocrystals.In addition,the presence of residual alkoxy groups can signifi-cantly reduce the rate of crystallization of TiO 2which favored the formation of less dense anatase phase exclusively [27].Fur-thermore,among the two main kinds of crystalline TiO 2,anatase has been confirmed to possess high photocatalytic activity in the photodegradation of most pollutants in water and air,while the photocatalytic activity of rutile is still indistinct.Many reports have shown that the rutile form of TiO 2is a poor photocatalyst [28–30].The reasons for this could be attributed that the adsorp-。

相关文档
最新文档