流体力学绪论

合集下载

流体力学2020_01_绪论-雨课堂

流体力学2020_01_绪论-雨课堂

第一章绪论人类生活在一个被大气包围的星球上,而这颗星球表面的3/4又被广阔的海洋覆盖,我们的生活一刻也离不开流体。

流体力学在工业和日常生活中都有着广泛的应用,例如:飞行器、舰船、港口、石油平台、桥梁、水库、城市给排水管网、化工机械、动力设备、医疗设备等的设计需要流体力学;气象、海况和洪水的预报需要流体力学;大气、海洋、湖泊、河流和地下水中环境污染的防治也需要流体力学。

因此,掌握一定的流体力学知识和方法实在是有必要的。

本章内容提要:1)什么是流体?什么是流体力学?2)流体力学的研究方法;3)流体的主要物理性质;4)流体质点的概念和连续介质模型(或连续介质假定)。

连续介质假定是整个流体力学的基石之一,务必深入理解。

1.1 流体力学的研究对象和任务流体力学属于力学的一个重要分支,它是研究流体在各种力的作用下的平衡(静止)和运动规律的一门科学。

Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid statics) and the subsequent effects of the fluid upon the boundaries, which may be either solid surfaces or interfaces with other fluid (Frank M. White).传统上,流体力学的研究对象包括液体(liquid)和气体(gas),二者统称为流体。

近年来,等离子体也被纳入流体力学的研究范畴,因此等离子体在某些情况下也被视为流体。

本书将要讨论的流体限于液体和气体。

此外,在流体力学研究中,通常从形态上将物体分为固体(solid)和流体(fluid)两类。

流体力学研究的是流体中大量分子的宏观运动规律,而不是具体的分子运动,属于宏观力学的范畴。

这一点在本章第3节中将具体讨论。

第1章 流体力学绪论 矿山流体机械

第1章 流体力学绪论 矿山流体机械

第一节 流体力学概述 流体力学发展简史
第一阶段(16世纪以前):流体力学形成的萌芽阶段 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力
学成为一门独立学科的基础阶段 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个
方向发展——欧拉、伯努利 第四阶段(19世纪末以来)流体力学飞跃发展
第一篇 流体力学基础
流体力学是研究流体运动和平衡规律及 其应用的科学,是力学的一个重要分支。
流体力学研究的对象——液体和气体。来自流体力学的研究内容:1、关于流体平衡的规律,它研究流体处于静止 (或相对平衡)状态时,作用于流体上的各种力 之间的关系,这一部分称为流体静力学;
2、关于流体运动的规律,它研究流体在运动状态 时,作用于流体上的力与运动要素之间的关系, 以及流体的运动特征与能量转换等,这一部分称 为流体动力学。
第三阶段(18世纪中叶-19世纪末)流体力学沿着
两个方向发展——欧拉(理论)、伯努利(实验)
工程技术快速发展,提出很多经验公式
1769年 谢才——谢才公式(计算流速、流量)
1895年 曼宁——曼宁公式(计算谢才系数)
1732年 比托——比托管(测流速)
1797年 文丘里——文丘里管(测流量)
理论
流体力学在煤矿中的应用
矿山通风、排水、压气,水力采煤、 重力选矿,气力、水力运输,采煤机、 支架、机床设备的液压系统等。
第1章 绪论
本章学习目标:
掌握液体和气体流动性的区别; 掌握流体密度和重度的概念及计算; 掌握流体的压缩性和膨胀性特点; 掌握牛顿黏性定律及黏性的度量方法。
流体力学发展简史 流体力学的研究方法 流体的主要物理性质
矿山流体机械
龙岩学院物理与机电工程学院 陈虹微

(完整版)流体力学重点概念总结

(完整版)流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。

它的大小与作用面积成比例。

剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。

单位:kg/m3 。

重度:指单位体积流体的重量。

单位: N/m3 。

流体的密度、重度均随压力和温度而变化。

流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。

静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。

流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。

流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。

任何一种流体都具有粘滞性。

牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。

τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。

动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。

2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。

静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。

流体力学基础知识

流体力学基础知识
流体力学基础知识 流体力学基础知识
目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充

流体力学基础知识

流体力学基础知识

第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。

其单位是牛顿,N。

单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。

其单位是N/kg。

2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。

3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。

4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。

其单位为N/(㎡·s),以符号Pa·s表示。

运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。

国际单位制单位㎡/s。

动力黏度μ与运动黏度ν的关系:μ=ν·ρ。

5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。

毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。

6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。

(P12,还需看看书,了解什么是以上三种模型!)。

第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。

2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。

两水头中的压强P必须采用相对压强表示。

b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。

3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

(完整版)流体力学

(完整版)流体力学

第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。

分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V)压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变Ev=dp/(dρ/ρ)(低速流动气体不可压缩)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。

质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动.第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程 =0 流体平衡微分方程重力场下的简化:dρ=—ρdW=—ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;不可压缩流体静压强基本公式z+p/ρg=C不可压缩流体静压强分布规律 p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强—当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。

流体力学全部总结

流体力学全部总结

(二)图解法
适用范围:规则受压平面上的静水总压力及其作用点的求解 原理:静水总压力大小等于压强分布图的体积,其作用 线通过压强分布图的形心,该作用线与受压面的交点便 是总压力的作用点(压心D)。
液体作用在曲面上的总压力
一、曲面上的总压力 • 水平分力Px
Px dPx hdAz hc Az pc AZ
z1
p1 g

u12 2g
z2
p2 g

u2 2 2g
上式被称为理想流体元流伯诺里方程 ,该式由瑞士物理学家 D.Bernoulli于1738年首先推出,称伯诺里方程 。
应用条件:恒定流 不可压缩流体 质量力仅重力 微小流束(元流)
三、理想流体元流伯诺里方程的物理意义与几何意义
几何意义
p x p y p z pn
X
流体平衡微分方程 (欧拉平衡方程)
1 p x 1 p y 1 p z
Y Z
0 0 0
物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量
力分量彼此相等。压强沿轴向的变化率( p , p , p )等于该轴向单位体积上的 x y z 质量力的分量(X, Y, Z)。
u x x

u y y

u z z
0
适用范围:理想流体恒定流的不可压缩流体流动。
二、恒定总流连续性方程
取一段总流,过流断面面积为A1和A2;总流中 任取元流,过流断面面积分别为dA1和dA2,流速为 恒定流时流管形状与位置不随时间改变; u1和u2
考虑到: 不可能有流体经流管侧面流进或流出; 流体是连续介质,元流内部不存在空隙;
第三节 连续性方程

高等流体力学

高等流体力学

概念第一章绪论连续介质:但流体力学研究的是流体的宏观运动,不以分子作为流动的基本单元,而是以流体质点为基本单元,把流场看做是由无数流体质点组成的连续体。

流体质点:流场中一个体积很小并可以忽略其几何尺寸,但与分子相比,这个体积可容纳足够多的分子数目的流体元,有一个稳定的平均特性,即满足大数定律理想流体:忽略流体黏性的流体,即μ=0.可压缩流体与不可压缩流体:简单地讲,密度为常数的流体为不可压缩流体,如水、石油及低速流动的气体。

反之,密度不为常数的流体为可压缩流体。

牛顿流体与非牛顿流体:根据流体流动时切应力与流速梯度之间的关系,即牛顿内摩擦定律。

凡是符合牛顿内摩擦定律的成为牛顿流体,如水、空气、石油等。

否则为非牛顿流体,如污泥、泥石流、生物流体、高分子溶液等动力粘度与运动粘度:动力粘度又成为动力黏度系数,动力黏度是流体固有的属性。

运动粘度又称为运动粘性系数,运动黏性系数则取决于流体的运动状态体积力与表面力:体积力亦称质量力,是一种非接触力,即外立场对流体的作用,且外立场作用于流体每一质点上,如重力、惯性力、离心力。

表面力是一种表面接触力,指流体与流体之间或流体与物体之间的相互作用,主要指压力、切应力、阻力等定常流与非定常流:又称恒定流与非恒定流。

若流场中流体质点的所有运动要素均不随时间变化,则这种流动称为定常流;反之只要有一个运动要素随时间变化则为非定常流大气层分为5层:对流层、同温层、中间层、电离层及外逸层第二章流体运动学描述流体质点的位置、速度及加速度的两种方法,即拉格朗日法和欧拉法质点导数:亦称随体导数,表示流体质点的物理量对时间的变化率,亦即跟随流体质点求导数那布拉P9流体质点的运动轨迹称为迹线流线:此曲线上任一点的切线方向就是该点流速方向依照一定次序经过流场中某一固定点的各个质点连线称为脉线,也叫序线。

流体线:在流场中任意指定的一段线,该段线在运动过程中始终保持由原来那些规定的质点所组成。

1 流体力学绪论

1 流体力学绪论
或密度变化,这一现象称为流体的可压缩性。
体积压缩系数 Coefficient of Volume Compressibility
当流体温度不变时,单位压力变化所引起的体积
变化率。单位为Pa-1。
p
dV V dp
压缩性和膨胀性
体积弹性模量 Bulk Modulus of Elasticity
体积压缩系数的倒数。
液体与气体的异同
液体与气体的共同点:
两者均具有易流动性,即在任何微小切应力作用下都 会发生变形或流动,故二者统称为流体。
液体与气体的区别:
➢ 气体易于压缩;而液体难于压缩。 ➢ 液体有一定的体积,存在自由液面;气体能充满任
意形状的容器,无一定体积,不存在自由液面。
流体力学的研究内容
研究内容: 建立描述流体运动的基本方程,确定流体流 经(flow in)各种通道或绕流(flow around )不同物体时流动参数的分布规律,探求能 量转换及各种损失的计算方法,并解决流体 与限制其流动的固体壁之间的相互作用问题 。
g
比容 Specific Volume 单位质量流体所占据的空间体积。m3/kg
v 1
惯性
相对密度 Relative Density
某 均 质 流 体 的 质 量 与 标 准 大 气 压 下 4℃ 同 体 积纯水的质量之比。
V wV w
比重 Specific Gravity 某均质流体的重量与标准大气压下4℃同体积
1St=100cSt=0.01m2/s
粘性
公式的推广 任意两层间
F A u
y
非线性速度分布
F A du
dy
流体的黏性实验
du 速度梯度 dy
粘性

流体力学_龙天渝_绪论

流体力学_龙天渝_绪论

第一章绪论一、学习导引1.主要概念质量力,表面力,粘性,粘滞力,压缩系数,热障系数。

注:(1)绝大多数流动问题中质量力仅是重力。

其单位质量力F在直角坐标系内习惯选取为:F =(0,0,-g)(2)粘性时流动介质自身的物理属性,而粘滞力是流体在产生剪切流动时该属性的表现。

2.主要公式牛顿剪切公式:或二、难点分析1.用欧拉观点描述流体流动,在对控制体内流体进行表面力受力分析时,应包括所有各个可能的表面的受力。

这些表面可能是自由面或与周围流体或面壁的接触面。

2.牛顿剪切公式反映的应力与变形率的关系仅仅在牛顿流体作所谓的纯剪切运动时才成立,对于一般的流动则是广义牛顿公式。

三、习题详解例1-1. 一底面积为40cm×45cm,高1cm的木块,质量为5kg,沿着涂有润滑油的斜面等速向下运动。

已知速度v=1/s,δ=1mm,求润滑油的动力粘滞系数。

解:设木块所受的摩擦力为T。

∵木块均匀下滑,∴T - Gsinα=0T=Gsinα=5×9.8×5/13=18.8N又有牛顿剪切公式得:μ=Tδ/(Av)=18.8×0.001/(0.40×0.45×1)=0.105Pa·S例1-2. 一圆锥体绕其铅直中心轴等速旋转,椎体与固定壁间的距离δ=1mm,全部为润滑油(μ=0.1Pa·S)充满。

当旋角速度ω=16s-1, 椎体底部半径R=0.3m,高H=0.5m时,求作用于圆锥的阻力矩。

解:设圆锥体表面微元圆台表面积为ds,所受切应力为dT,阻力矩为dM。

ds=2πr(H2+R2)1/2dh由牛顿剪切公式:dT=μ×ds×du/dy=μ×ds×ωr/δdM=dT×rr=Rh/H圆锥体所受阻力矩M:M==0.5(πμω/δ) (H2+R2)1/2 R3=0.5π×0.1×16/0.001×(0.52+0.32)1/2×0.33=39.6N·m。

(完整版)流体力学 第一章 流体力学绪论

(完整版)流体力学 第一章 流体力学绪论

第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。

研究对象:流体,包括液体和气体。

2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。

4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。

•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。

•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。

流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。

5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。

这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。

6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。

这样的微团,称为流体质点。

流体微团:宏观上足够大,微观上足够小。

流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。

7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。

例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。

流体力学基础(绪论) 流体的定义、流体力学的任务及其发展简史

流体力学基础(绪论) 流体的定义、流体力学的任务及其发展简史
❖ 建立连续介质模型的意义
可用连续函数描述流体的运动,用高等数学的方法和原理求解流体力 学的问题。
体的力学模型(连续介质模型)
❖ 注意
稀薄气体动力学问题,连续介质模型不再适用(分子间距大)。
12
第一章 绪论
§1.3 流体的主要物理性质
❖ 惯性
密度
lim m
V 0 V
9
第一章 绪论
§1.1 流体的定义、流体力学的任务及其发展简史
❖ 流体力学发展简史
第四阶段(19世纪末以来)流体力学飞跃发展 理论分析与试验研究相结合 量纲分析和相似性原理起重要作用
1883年 雷诺——雷诺实验(判断流态) 1903年 普朗特——边界层概念(绕流运动) 1933-1934年 尼古拉兹——尼古拉兹实验(确定阻力系数) ❖ 侧重于工程应用的流体力学称为工程流体力学 ❖ 侧重于理论分析的流体力学称为理论流体力学
8
第一章 绪论
§1.1 流体的定义、流体力学的任务及其发展简史
❖ 流体力学发展简史
第三阶段(18世纪中叶-19世纪末)沿着两个方向发展——理论、实验 经验公式: 1769年 谢才——谢才公式(计算流速、流量) 1895年 曼宁——曼宁公式(计算谢才系数) 1732年 比托——比托管(测流速) 1797年 文丘里——文丘里管(测流量) 理论:1823年纳维,1845年斯托克斯分别提出粘性流体运动方程组 (N-S方程)
7
第一章 绪论
§1.1 流体的定义、流体力学的任务及其发展简史
❖ 流体力学发展简史
第三阶段(18世纪中叶-19世纪末)沿着两个方向发展——理论、实 验
工程技术快速发展,一些土木工程师,根据实际工程的需要,凭借实 地观察和室内试验,建立实用的经验公式,以解决实际工程问题。这 些成果被总结成以实际液体为对象的重实用的水力学。代表人物有皮 托(H.Pitot)、谢才(A.de Chezy)、达西(H.Darcy)等。 提出很多经验公式:

西北工大875流体力学讲义1-第一章绪论(基本概念及参数)

西北工大875流体力学讲义1-第一章绪论(基本概念及参数)

西北工大875流体力学讲义第一章绪论(基本概念及参数)第一节流体的连续介质模型流体是由无数分子构成的,实质是不连续的,为了能够应用高等数学连续函数来描述流的运动规律,将本来不连续的流体看成是有没有间隙的流体微团(质点)构成的。

在连续性介质假设之下,流体的各种参数都可以看成空间和时间的单值连续函数:在宏观上,流体微团足够小,以至于其体积可以忽略不计。

在微观上要足够大,使得所包容的流体分子的平均物理属性有意义。

当流体流动所涉及到的物体的尺寸能够和分子的平均自由行程和脂分子间的距离相比拟时,流体的连续介质模型不再适用。

第二节作用在流体的力作用在流体上的力有两类:一类是某重力场作用的结果,称为质量力,也称体积力,其大小流体的质量(体积)成正比。

重力场中的重力是质量力,在用动静法来研究有关问题时虚加在流体质点上的惯性力也是质量力。

单位流体的质量力可表示为:其单位为加速度单位:m/s2。

另一类是表面力,是分离体以外的其他物体通过分离体的表面作用在分离体上的力。

一个是剪切应力,一个是法向应力。

在液体与异相物质接触的自由表面上还有表面张力,它是一种特殊类型的表面力,它不是接触面以外物质的作用结果,而恰恰是由液体内的分子对处于表面层的分子的吸引而产生的。

液体自由表面上单位长度的流体线所受到的拉力称为表面张力系数,记作σ,单位是N/m。

液体与固体壁面接触时,在液体表面与固壁面的交界处作液体表面的切面,此切面与固壁面在液体内部所夹的角度θ称为接触角。

当液体表面发生弯曲时,液体内部的压强p与外部的流体介质的压强p0之差与曲面的两个主曲率半径R1 和R2有关:此式称为拉普拉斯表面张力方程。

第三节流体的粘性流体粘性:流体流动时流体质点发生相对滑移产生摩擦力的性质,称为流体的黏性。

动力粘度:流体的粘性大小可用流体的动力粘度来表示,即牛顿内摩擦定律中的比例系数。

上式即为牛顿内摩擦定律,该式表明,各层流间的切向应力和速度梯度成正比,比例系数为流体的动力粘度。

《流体力学》课件-(第1章 绪论)

《流体力学》课件-(第1章 绪论)

流体力学
流体
强调水是主要研究对象 比较偏重于工程应用 土建类专业常用
力学
宏观力学分支 遵循三大守恒原 理
水力学

力学
§1.1.1 流体力学的任务和研究对象
二、研究对象 流体 指具有流动性的物体,包括气体和 液体二大类。
流动性
•即 任 一 微 小 剪
切力都能使流体 发生连续的变形

流体的共性特征
基本特征:具有明显的流动性;气体的流动性大于液体。 流体只能承受压力,不能承受拉力,在即使是很小剪切力
二. 表面力 是指作用在所研究的流体表面上的力,它是相邻流 体之间或固体壁面与流体之间相互作用的结果。 它的大小与流体的表面积成正比; 方向可分解为切向和法向。
• 设 面 积 为 ΔA 的 流 体
nFLeabharlann 面元,法向为 n ,指 向表面力受体外侧, 所受表面力为 ΔF ,则 应力
F f n lim A0 A
第一阶段:古典流体力学阶段 奠基人是瑞士数学家伯努利(Bernoulli,D.)和他的 亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了著 名的伯努利方程,欧拉于1755年建立了理想流体运动微分 方 程 , 以 后 纳 维 (Navier,C .H.) 和 斯 托 克 斯 (Stokes , G.G.)建立了粘性流体运动微分方程。拉格朗日 (Lagrange)、拉普拉斯(Laplace)和高斯(Gosse)等人, 将欧拉和伯努利所开创的新兴的流体动力学推向完美的分 析高度。
第1章 绪论 第2章 流体静力学 第3章 一元流体动力学理论基础 第4章 流动阻力与能量损失 第5章 孔口、管嘴出流和有压管流 第6章 量纲分析与相似原理
第一章 绪论

流体力学第1章绪论1

流体力学第1章绪论1
作出了杰出的贡献。1957年获中 国科学院自然科学一等奖,1979 年获美国加州理工学院杰出校友
奖,1985年获国家科技进步奖特 等奖。1989年获小罗克维尔奖章 和世界级科学与工程名人称号,
1991年被国务院、中央军委授予 “国家杰出贡献科学家”荣誉称
号和一级英模奖章。
以周培源、钱学森为代表的中国科学家在湍流理论、 空 气动力学等许多领域中作出了基础性、开创性的贡献。
90年代以后,科研人员研制开发了气动性能 更优良的未来型汽车,阻力系数仅为0.137。
机翼升力 人们的直观印象是空气从下面冲击着鸟的 翅膀,把鸟托在空中。
19世纪初流体力学环流理论彻底改变了人们的传 统观念。
脱体涡量与机翼环量大小相等方向相反
足球运动的香蕉球现象可以帮助理解环流理论:
旋转的球带动空气形成环流,一侧气流加速,另一 侧减速,形成压差力,使足球拐弯,称为马格努斯 效应。
混沌理论是非线性科学的重要基础,已成功地应 用于分形学甚至用于解释生命和社会学现象。
三、流体力学与工程技术
流体力学也是众多应用科学和工程技术的基础。 由于空气动力学的发展,人类研制出3倍声速的战斗机。
F-15
卡门、泰勒等众多科学家奠定了近代流体力学基础。
他阐明激波内部结构(1910); 对大气湍流和湍流扩散作了研究 (1915,1921,1932);得出同 轴两转动圆轴间流动的失稳条件 (1923),在研究原子弹爆炸中 提出强爆炸的自模拟理论(1946, 1950);指出在液滴中起主要作 用的是表面张力而不是粘性力 (1959)等
最早的高尔夫球(皮革已龟裂)
后来发现表面有很多划痕的旧球反而飞得更远。
这个谜直到20世纪建立流体力学边界层理论后才解开。

流体力学

流体力学

1 绪论 —壁面无滑移条件 壁面无滑移条件
湍 流 区
层 流 区
1 绪论 —壁面无滑移条件 壁面无滑移条件
du Ωr τ =µ =µ dy h
dM = (τ dA) r
2πµΩ R 3 πµΩR 4 M = ∫ dM = ∫0 r dr = 2h h
r
1 绪论 —声速和 声速和Mach数 声速和 数
• 量纲一致性
1 p0 = p + ρV 2 + ρ gZ 2
1 2 S = S0 + V0t + gt 2
∆p Q = CV SG
0.5
1 绪论 —流体的基本概念 流体的基本概念
• 流体力学求解什么? 流体力学求解什么? 流体力学的研究实质是通过试验或理论的方法, 流体力学的研究实质是通过试验或理论的方法,寻找流体性质 的流场时空分布,而不是研究单个微元(颗粒)的实际运动规律。 的流场时空分布,而不是研究单个微元(颗粒)的实际运动规律。 1. 2. Euler法 法 用于场的计算,强调不同瞬时流场中每一点的性质变化。 用于场的计算,强调不同瞬时流场中每一点的性质变化。 Lagrange法 法 用于物体的计算,强调不同瞬时物体性质或运动状态变化。 用于物体的计算,强调不同瞬时物体性质或运动状态变化。 速度场是流体流动最重要的参数场。求解了速度场就相当于求解了流场。 速度场是流体流动最重要的参数场。求解了速度场就相当于求解了流场。
流体力学
王建文
流体力学
高尔夫球运动起源 世纪的苏格兰。 于15世纪的苏格兰。 世纪的苏格兰
流体力学
流体力学
流体力学
1 绪论 —流体力学 流体力学
• 流体力学是关于流体(运动的或静止的)的科学。 流体力学是关于流体(运动的或静止的)的科学。 • 流体:气体和液体。 流体:气体和液体。 • 流体力学是理论和实验相结合的学科。 流体力学是理论和实验相结合的学科。 • 流体力学属于力学的分支。 流体力学属于力学的分支。 • 流体力学处理实际问题的困难在于:几何结构和黏度。 流体力学处理实际问题的困难在于:几何结构和黏度。 • 工程中流体流动的空间是各种各样的、不规则的。 工程中流体流动的空间是各种各样的、不规则的。 • 黏度是使流体呈现湍流的原因。 黏度是使流体呈现湍流的原因。

流体力学第二版-李玉柱、范明顺

流体力学第二版-李玉柱、范明顺

水银在玻璃管中下降的高度 H = 错误!未找到引用源。
第二章 流体静力学
2-1 解:已知液体所受质量力的 x 向分量为 –a ,z 向分量为-g。 液体平衡方程为
dp (adx gdz) ……………………(1)
考虑等压方面 dP=0, 由式(1)得
adx gdz 0 ……………………(2)
P 1 g 0 hc1 A 1 g 0
h1 bh1 2 sin 600
=
1 1 1 9.8 800 N 4.5 103 N o 2 sin 60
bh2 1 P2 pc 2 A2 ( g 0 h1 g 0 h1 g h2 ) 2 sin 60o
=
(2)对 B 点取矩,有
MB P 1(
其中
h2 h /3 h /2 h /3 1 o ) P2 1 2 o P 2 2 2 o o sin 60 sin 60 sin 60 sin 60
P21 g 0 h1
故作用力矩
bh2 h bh2 18.1103 N , P22 g 2 22.6 103 N o o sin 60 2 sin 60
Px g hC Ax g
H (bH ) 2
3 9.8 1000 1 3 N 44.1103 N 2
8
铅直向下的垂向作用力(设压力体 abca 的体积为 V )
4
0.98 105 9.8 1000 0.5 1.5 4.9 103 Pa 93.1103 pa 93.1kPa
液面的相对压强
p0 pabs 0 pa 93.1103 9.8 104 Pa 4900Pa
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学内容:基础部分 1、 基本概念 2、 流体静力学 3、 流体动力学基础
研究应用: 航空、宇航:空气和飞行器的相互作用 造船、航海:船舶的各方面(阻力、推进、稳定性操作
) 水力和动力机械:设计水轮机、气轮机、水泵的叶片 液压传动:液压油的流动、控制阀
二、流体力学的分类和发展概况
分类:
液体力学(水为代表)
气体力学(空气动力学,以音速为单位)
不可压缩流体力学(液体力学、低速气体力学)
流 体力学
绪论
一、流体力学的研究对象和应用 二、流体力学的分类和发展概况 三、流体的连续性和易变形性
一、流体力学的研究对象和应用
流体力学:是研究流体运动的平衡规律以及 流体和固体之间相互作用的一门学科。
研究对象:流体----------------液体和气体
研究任务:从宏观的角度来研究由于外界原因引起的 流体的平衡或运动的规律。
可压缩流体力学(高速空气动力学----超音速空气动力学)
无粘性流体力学
பைடு நூலகம்
粘性流体力学
发展:P1
三、流体的连续性和易变形性
1、连续性:
在流体力学中把流体看作为由无穷多的一个紧挨着一个的 连续介质。则其速度、密度、压力为空间坐标和时间坐标的连 续函数。(对于稀薄气体连续性假设不适用)
2、易变形性:
流体和固体的区别在于它的易变形性,或易流动性。因为物 体形状的改变仅具有很小的抵抗能力。
一般的流体静止时不能承受任何剪应力。不管剪应力怎样小, 只要有足够的时间,便产生任意大的变形。只要剪应力存在, 流体就不会静止。(流体的运动就是流体的剪切变形)
由于流体具有流动性,所以才能保持绝对静止液体液面的绝 对水平,不会有任何微小的误差。
相关文档
最新文档