难点15三角函数的图象和性质
三角函数的图像与性质 难点训练(答案)
三角函数的图象和性质三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来.本节主要帮助考生掌握图象和性质并会灵活运用.●难点磁场(★★★★)已知α、β为锐角,且x (α+β-2π)>0,试证不等式f (x )=)sin cos ()sin cos (αββα+x x <2对一切非零实数都成立.●案例探究[例1]设z 1=m +(2-m 2)i ,z 2=cos θ+(λ+sin θ)i ,其中m ,λ,θ∈R ,已知z 1=2z 2,求λ的取值范围.命题意图:本题主要考查三角函数的性质,考查考生的综合分析问题的能力和等价转化思想的运用,属★★★★★级题目.知识依托:主要依据等价转化的思想和二次函数在给定区间上的最值问题来解决. 错解分析:考生不易运用等价转化的思想方法来解决问题.技巧与方法:对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题.[例2]如右图,一滑雪运动员自h =50m 高处A 点滑至O 点,由于运动员的技巧(不计阻力),在O 点保持速率v 0不为,并以倾角θ起跳,落至B 点,令OB =L ,试问,α=30°时,L 的最大值为多少?当L 取最大值时,θ为多大?命题意图:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.属★★★★★级题目.知识依托:主要依据三角函数知识来解决实际问题.错解分析:考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活. 技巧与方法:首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题.本难点所涉及的问题及解决的方法主要有:1.考查三角函数的图象和性质的基础题目,此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用.2.三角函数与其他知识相结合的综合题目,此类题目要求考生具有较强的分析能力和逻辑思维能力.在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.3.三角函数与实际问题的综合应用.此类题目要求考生具有较强的知识迁移能力和数学建模能力,要注意数形结合思想在解题中的应用.●歼灭难点训练一、选择题1.(★★★★)函数y =-x ·cos x 的部分图象是( )2.(★★★★)函数f (x )=cos2x +sin(2π+x )是( ) A.非奇非偶函数B.仅有最小值的奇函数C.仅有最大值的偶函数D.既有最大值又有最小值的偶函数 二、填空题3.(★★★★)函数f (x )=(31)|cos x |在[-π,π]上的单调减区间为_________. 4.(★★★★★)设ω>0,若函数f (x )=2sin ωx 在[-4,3ππ,]上单调递增,则ω的取值范围是_________.三、解答题5.(★★★★)设二次函数f (x )=x 2+bx +c (b ,c ∈R ),已知不论α、β为何实数恒有f (sin α)≥0和f (2+cos β)≤0.(1)求证:b +c =-1;(2)求证c ≥3;(3)若函数f (sin α)的最大值为8,求b ,c 的值.6.(★★★★★)用一块长为a ,宽为b (a >b )的矩形木板,在二面角为α的墙角处围出一个直三棱柱的谷仓,试问应怎样围才能使谷仓的容积最大?并求出谷仓容积的最大值.7.(★★★★★)有一块半径为R ,中心角为45°的扇形铁皮材料,为了获取面积最大的矩形铁皮,工人师傅常让矩形的一边在扇形的半径上,然后作其最大内接矩形,试问:工人师傅是怎样选择矩形的四点的?并求出最大面积值.8.(★★★★)设-6π≤x ≤4π,求函数y =log 2(1+sin x )+log 2(1-sin x )的最大值和最小值.9.(★★★★★)是否存在实数a ,使得函数y =sin 2x +a ·cos x +85a -23在闭区间[0,2π]上的最大值是1?若存在,求出对应的a 值;若不存在,试说明理由.。
三角函数图像与性质知识点总结
三角函数图像与性质知识点总结函数图像与性质知识点总结函数图像与性质知识点总结一、一、三角函数图象的性质三角函数图象的性质11..““五点法五点法””描图描图(1)(1)yy==sinsinxx的图象在的图象在[0,2[0,2ππ]]上的五个关键点的坐标为上的五个关键点的坐标为,,11((π,π,,-π,-11(2(2π,π,0)0)(2)(2)yy==coscosxx的图象在的图象在[0,2[0,2ππ]]上的五个关键点的坐标为上的五个关键点的坐标为(0,1)(0,1),,,,00,,((π,-π,-1)1),,,,00,,(2(2π,π,1)1)2.2.三角函数的图象和性质三角函数的图象和性质函数函数性质性质yy==sinsinxxyy==coscosxxyy==tantanxx定义域定义域RRRR{{xx||xx≠≠kkπ+π+ππ22,,kk∈∈ZZ}}图象图象值域值域[[--1,1]1,1][[--1,1]1,1]RR对称性对称性对称轴:对称轴:xx==kkπ+π+ππ22((kk∈∈ZZ));;对称中心:对称中心:((kkπ,π,0)(0)(kk∈∈ZZ))对称轴:对称轴:xx==kkππ((kk∈∈ZZ))对称中心:对称中心:((kkπ+π+ππ22,,0)(0)(kk∈∈ZZ))对称中心:对称中心:,,00((kk∈∈ZZ))周期周期22ππ22ππππ单调性单调性单调增区间单调增区间__[2[2kkππ--ππ22,,22kkπ+π+ππ22](](kk∈∈ZZ));;单33ππ22](](kk+π+ππ22,,22kkπ+π+[2[2kkπ调减区间单调减区间.∈∈ZZ))单调增区间单调增区间[2[2kkπ-π,π-π,22kkππ](](kk∈∈ZZ));;单调减区间单调减区间[2[2kkπ,π,22kkπ+π+ππ](](kk∈∈ZZ))单调增区间单调增区间((kkπ-π-ππ22,,kkπ+π+ππ22)()(kk∈∈ZZ))奇偶性奇偶性奇函数奇函数偶函数偶函数奇函数奇函数3.3.一般地对于函数一般地对于函数ff((xx)),如果存在一个非零的,如果存在一个非零的常数常数TT,使得当,使得当xx取定义域内的每取定义域内的每一个值时,都有一个值时,都有ff((xx++TT))==ff((xx)),那么函数,那么函数ff((xx))就叫做周期函数,非零常数就叫做周期函数,非零常数TT叫叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期((函数的周函数的周期一般指最小正周期期一般指最小正周期))4.4.求三角函数值域求三角函数值域((最值最值))的方法:的方法:(1)(1)利用利用sinsinxx、、coscosxx的有界性;的有界性;关于正、余弦函数的有界性关于正、余弦函数的有界性由于正余弦函数的值域都是由于正余弦函数的值域都是[[--1,1]1,1],因此对于,因此对于??xx∈∈RR,恒有-,恒有-11≤≤sinsinxx≤≤11,-,-11≤≤coscosxx≤≤11,所以,所以11叫做叫做yy==sinsinxx,,yy==coscosxx 的上确界,-的上确界,-11叫做叫做yy==sinsinxx,,yy==coscosxx的下确的下确界界..(2)(2)形式复杂的函数应化为形式复杂的函数应化为yy=的形式逐步分析的形式逐步kk++φφ))++sin(ωωxxAAsin(=分析ωωxx++φφ的范的范围,根据正弦函数单调性写出函数的值域;围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对含参数的最值问题,要讨论参数对最值的影响最值的影响..(3)(3)换元法:把换元法:把sinsinxx或或coscosxx看作一个整体,可化为求函数在区间上的值域看作一个整体,可化为求函数在区间上的值域((最值最值))问题.问题.利用换元法求三角函数最值时注意三角函数有界性,如:利用换元法求三角函数最值时注意三角函数有界性,如:yy==sinsin22xx --4sin4sinxx++55,令,令tt==sinsinxx(|(|tt||≤≤1)1),则,则yy==((tt--2)2)22++11≥≥11,解法错误,解法错误..5.5.求三角函数的单调区间时,应先把函数式化成形如求三角函数的单调区间时,应先把函数式化成形如yy==AAsin(sin(ωωxx++φφ)()(ωω0)0)的形式,再的形式,再根据基本三角函数的单调区间,求出根据基本三角函数的单调区间,求出xx所在的区间所在的区间..应特别注意,应应特别注意,应在函数的定义域内考虑在函数的定义域内考虑..注意区分下列两题的单调增区间不同注意区分下列两题的单调增区间不同;;利用换元法求复利用换元法求复合函数的单调区间合函数的单调区间((要注意要注意xx系数的正负号系数的正负号))(1)(1)yy==--ππ44;;(2)(2)yy==--22xx..66、、yy==主要的图象求其解析式的问题,BB++φφ))++AAsin(sin(ωωxx从以下四个方面来考的图象求其解析式的问题,主要从以下四个方面来考虑:虑:①①AA的确定:根据图象的最高点和最低点,即的确定:根据图象的最高点和最低点,即AA==最高点-最低点最高点-最低点22;;②②BB的确定:根据图象的最高点和最低点,即的确定:根据图象的最高点和最低点,即BB==最高点+最低点最高点+最低点22;;③③ωω的确定:结合图象,先求出周期,然后由的确定:结合图象,先求出周期,然后由TT==22ππωω((ωω0)0)来确定来确定ωω;;④④φφ的确定:把图像上的点的坐标带入解析式的确定:把图像上的点的坐标带入解析式yy==AAsin(sin(ωωxx++φφ))++BB,然后根据,然后根据φ的范围确定φφ的范围确定φ即可,例如由函数即可,例如由函数yy==AAsin(sin(ωωxx++φφ))++KK最开始与最开始与xx轴的交点轴的交点((最靠近原点最靠近原点))的横坐标为-的横坐标为-φφωω((即令即令ωωxx ++φφ==00,,xx=-=-φφωω))确定确定φφ..二、二、三角函数的伸缩变化三角函数的伸缩变化先先平移后伸缩平移后伸缩的图象的图象向左(0)或向右(0)平移个单位长度得得的图象的图象横的图象坐标伸长(01)1到原来的纵坐标不变得得的图象纵坐标伸长(1)或缩短(01)的图象的图象为原来的倍横坐标不变得得的得得的图象.图象.先伸缩后平移先伸缩后平移的图象的图象纵坐标伸长或缩短为原来的倍(横坐标不变)得得的图象的图象横坐标伸长或缩短到原来的纵坐标不变得得的图象的图象向左或向右平移个单位得得的图象的图象向上或向下平移个单位长度得..的图象.的图象.得。
数学必修4——三角函数的图像与性质
数学必修4——三⾓函数的图像与性质数学必修4——三⾓函数的图像与性质⼀. 教学内容:三⾓函数的图像与性质⼆. 教学⽬标:了解正弦函数、余弦函数、正切函数的图像和性质,会⽤“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
三. 知识要点:1. 正弦函数、余弦函数、正切函数的图像2. 三⾓函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是的递增区间是,3. 函数最⼤值是,最⼩值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中⼼。
4. 由y=sinx的图象变换出y=sin(ωx+)的图象⼀般有两个途径,只有区别开这两个途径,才能灵活地进⾏图象变换。
利⽤图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.⽆论哪种变形,请切记每⼀个变换总是对字母x⽽⾔,即图象变换要看“变量”起多⼤变化,⽽不是“⾓变化”多少。
途径⼀:先平移变换再周期变换(伸缩变换)先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得到y=sin(ωx+)的图象。
途径⼆:先周期变换(伸缩变换)再平移变换。
先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0,平移个单位,便得到y=sin(ωx+)的图象。
5. 对称轴与对称中⼼:的对称轴为,对称中⼼为;的对称轴为,对称中⼼为;对于和来说,对称中⼼与零点相联系,对称轴与最值点相联系。
6. 五点法作y=Asin(ωx+)的简图:五点法是设X=ωx+,由X取0、、π、、2π来求相应的x值及对应的y值,再描点作图。
【典型例题】例1. 把函数y=cos(x+)的图象向左平移个单位,所得的函数为偶函数,则的最⼩值是()A. B. C. D.解:先写出向左平移4个单位后的解析式,再利⽤偶函数的性质求解。
三角函数的图像和性质
(ω>0)的最小正周期为π,则函数 ( π B.关于直线x= 对称 8 π D.关于点8 ,0对称 )
π 2π 解析:∵f(x)=sin ωx+4 的最小正周期为π,∴ ω =π,ω=2, π π π 3π ∴f(x)=sin 2x+4 .当x= 时,2x+ = ,∴A、C错误;当x 4 4 4
[即时应用] 求函数 y=cos x+sin
2
π x|x|≤ 4的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
2.求三角函数单调区间的 2 种方法 (1)代换法: 就是将比较复杂的三角函数含自变量的代 数式整体当作一个角 u(或 t),利用基本三角函数的单调性 列不等式求解. (2)图象法:画出三角函数的正、余弦曲线,结合图象 求它的单调区间.
[演练冲关] π 1.最小正周期为π且图象关于直线x= 对称的函数是( 3
π π B,因为sin2×3-6 =sin
π =1,所以选B. 2
答案:B
2.函数
π y=cos4-2x的单调减区间为____________. π π y=cos4-2x=cos2x-4 得
解析:由
π 2kπ≤2x- ≤2kπ+π(k∈Z), 4 π 5π 解得 kπ+ ≤x≤kπ+ (k∈Z). 8 8
π π π π 3 在 3,2 上单调递减知, = ,∴ω= . 2ω 3 2
高考难点三角函数的图象和性质难点详解
三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来.本节主要帮助考生掌握图象和性质并会灵活运用.命题意图:本题主要考查三角函数的性质,考查考生的综合分析问题的能力和等价转化思想的运用,属★★★★★级题目.知识依托:主要依据等价转化的思想和二次函数在给定区间上的最值问题来解决.错解分析:考生不易运用等价转化的思想方法来解决问题.技巧与方法:对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题.[例2]如右图,一滑雪运动员自h=50m高处A点滑至O点,由于运动员的技巧(不计阻力),在O点保持速率v0不为,并以倾角θ起跳,落至B点,令OB=L,试问,α=30°时,L的最大值为多少?当L取最大值时,θ为多大?命题意图:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.属★★★★★级题目.知识依托:主要依据三角函数知识来解决实际问题.错解分析:考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活.技巧与方法:首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题.解:由已知条件列出从O点飞出后的运动方程:命题意图:本题以应用题的形式考查备考中的热点题型,要求考生把所学的三角函数知识与实际问题结合起来分析、思考,充分体现了“以能力立意”的命题原则.属★★★★级题目.知识依托:依据图象正确写出解析式.错解分析:不易准确判断所给图象所属的三角函数式的各个特定系数和字母.技巧与方法:数形结合的思想,以及运用待定系数法确定函数的解析式.解:(1)由图示,这段时间的最大温差是30-10=20(℃);(2)图中从6时到14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象.命题意图:本题以应用题的形式考查备考中的热点题型,要求考生把所学的三角函数知识与实际问题结合起来分析、思考,充分体现了“以能力立意”的命题原则.属★★★★级题目.知识依托:依据图象正确写出解析式.错解分析:不易准确判断所给图象所属的三角函数式的各个特定系数和字母.技巧与方法:数形结合的思想,以及运用待定系数法确定函数的解析式.解:(1)由图示,这段时间的最大温差是30-10=20(℃);(2)图中从6时到14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象.●锦囊妙计本难点所涉及的问题及解决的方法主要有:1.考查三角函数的图象和性质的基础题目,此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用.2.三角函数与其他知识相结合的综合题目,此类题目要求考生具有较强的分析能力和逻辑思维能力.在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.3.三角函数与实际问题的综合应用.此类题目要求考生具有较强的知识迁移能力和数学建模能力,要注意数形结合思想在解题中的应用.●歼灭难点训练一、选择题1.(★★★★)函数y=-x·cos x的部分图象是( )友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
高考数学重难点解析 三角函数的图像及性质
三角函数的图像与性质【考纲说明】1.能画出y=sin x, y=cos x, y=tan x 的图像,了解三角函数的周期性;2.借助图像理解正弦函数、余弦函数在[0,2π],正切函数在(-π/2,π/2)上的性质(如单调性、最大和最 小值、周期性、图像与x 轴交点等);3.结合具体实例,了解)sin(ϕω+=x y 的实际意义;【知识梳理】一、三角函数的图像与性质1 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性 奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦在[]()2,2k k k πππ-∈Z 上在,22k k ππππ⎛⎫-+⎪⎝⎭函 数性 质2、函数B x A y ++=)sin(ϕω),(其中00>>ωA 的性质振幅:A ;最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ; 其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
二、三角函数图像的变换1、五点法作y=Asin (ωx+ϕ)的简图: 五点取法是设t=ωx+ϕ,由t 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图。
五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).2、三角函数的图像变换三角函数的图象变换有振幅变换、周期变换和相位变换等. 由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象。
三角函数的图像与性质(名师经典总结)
三角函数的图像与性质(正弦、余弦、正切)【知识点1】函数y =sin x ,y =cos x ,y =tan x 的图象性质题型1:定义域例1:求下列函数的定义域(1)xx y cos 2cos 1+=; (2)x y 2sin = 2lg(4)x -题型2:值域 例2:求下列函数值域 (1))3π2,6π(,sin 2-∈=x x y (2)y=2sin(2x-3π),x 5,46ππ⎡⎤∈⎢⎥⎣⎦(3) )3π,2π(),3π2cos(2-∈+=x x y(4)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合题型3:周期例3:求下列函数的周期: (1)f(x)=2sin2x (2)y=cos(123x π-) (3)y=tan(2x 4π-) (4)y=sin x 例4: 若函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,则自然数k 的值为______.例5:若)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,则ϖ=________.例6:使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为【 】A .π25B .π45C .πD .π23例7:设函数f(x)=2sin(25x ππ+),若对于任意的x R ∈,都有f(1x )2()()f x f x ≤≤成立,则12x x -的最小值是A.4B.2C.1D.12题型4:奇偶性 例8:函数y =sin (x +2π)(x ∈[-2π,2π])是【 】A.增函数B.减函数C.偶函数D.奇函数例9:判断下列函数的奇偶性 (1)y=xsin(x π+) (2)y=cos 1sin x x+例10:已知函数f(x)=x 3cosx+1,若f(a)=11,则f(-a)=________ 题型5:单调性例11:函数y =21log sin(2x +4π)的单调递减区间是【 】 A.(k π-4π,k π](k ∈Z ) B.(k π-8π,k π+8π](k ∈Z ) C.(k π-83π,k π+8π](k ∈ D.(k π+8π,k π+83π](k ∈Z )例12:.求1cos()3412logx y π+=的单调区间例13:求下列函数的单调增区间(1))3π21cos(-=x y ; (2) ]0,π[),6π2sin(2-∈+=x x y ;(3))23πsin(2x y -=例14:(1)求函数y=2sin(2x-3π)的单调递减区间。
难点攻略:三角函数的图象与性质
难点攻略:三角函数的图象与性质作者:陈菊仙来源:《数学金刊·高考版》2013年第10期三角函数的图象和性质是高考的传统必考内容,也是每年高考的热点. 三角函数的图象与性质(包括三角函数的定义域、值域、奇偶性、单调性和周期性)是三角函数的核心内容,是解决实际问题的工具.笔者特别研究了2013年三角函数部分的考题,发现除了经典的常考问题,较往年也有较大的变化和创新——越来越多的体现新课改、风格新颖的问题,试题难度也由以前的中低档开始加深难度,更突出与其他知识结合、体现对实际背景问题的迁移能力的考查.重点难点重点:三角函数y=sinx,y=cosx,y=tanx的定义域、值域(最值)、周期性、奇偶性、对称性及单调性;函数y=Asin(ωx+φ)+k的模型(图象变换、性质)及应用.难点:三角函数线、图象变换及三角函数的图象与性质的灵活运用,与其他知识结合的综合问题.方法突破1. 基本思路灵活运用三角函数y=sinx,y=cosx,y=tanx的图象和性质. 掌握两种作图方法:“五点法”和变换法(平移、对称、伸缩),注意数形结合、整体思想在解题中的运用,以及对于选择题的解题技巧的运用.2. 基本策略(1)求三角函数的定义域实际上是解简单的三角不等式,可借助三角函数线或三角函数的图象来求解.(2)求解涉及三角函数的值域(最值):①利用有界性;②转化为y=Asin(ωx+φ)+k的形式再根据图象或者单调性求解;③运用换元法:令sinx=t(或cosx=t),根据角度的取值范围来确定t的取值范围;④对于含参数问题,以及对以上知识的逆用.(3)求形如y=Asin(ωx+φ)+k的三角函数的单调区间、对称中心(轴),通常运用整体的思想,将ωx+φ整体代换.(4)确定y=Asin(ωx+φ)+k(A>0,ω>0)的解析式的步骤:A,k取决于函数的最大(小)值;ω取决于周期;求φ可用特殊点代入法,但注意尽量选最值点代入,当代入的值是零点的时候要注意0,π,2π的区别.。
三角函数图像与性质
题型 2 利用三角函数图象求解析式 已知函数 f(x)=2sin(ωx+φ)ω>0,|φ|≤π2的部分图象如 图所示,将函数 f(x)的图象向左平移1π2个单位长度后,所得 图象与函数 y=g(x)的图象重合,则( )
A.g(x)=2sin2x+π3 C.g(x)=2sin2x
B.g(x)=2sin2x+π6 D.g(x)=2sin2x-π3
解析 根据函数 f(x)=2sin(ωx+φ)ω>0,|φ|≤π2的部分
图象,可得34T=34·2ωπ=23π+1π2,∴ω=2,利用 f-1π2=0,
可得ቤተ መጻሕፍቲ ባይዱ
ω·-1π2
+
φ
=
2·-1π2
+
φ
=
0
,
∴
φ
=
π 6
,
故
f(x) =
2sin2x+π6,将函数 f(x)的图象向左平移1π2个单位长度后,
所得图象与函数 y=g(x)的图象重合,故 g(x)=2sin2x+π6+π6
热点题型分析
热点1 三角函数的概念、诱导公式及同角三角函数的 基本关系
【方法结论】 1.利用三角函数的定义时应注意三角函数值仅与终边 位置有关,与终边上点的位置无关. 2.应用诱导公式时要弄清三角函数在各个象限的符号, 利用同角三角函数的关系化简时要遵循一定的原则,如切化 弦、化异为同、化高为低、化繁为简等.
解法二:因为 C2:y=sin2x+23π=cos2x+23π-π2= cos2x+π6,把 C1:y=cosx 图象上各点的横坐标向左平移π6个 单位得到 y=cosx+π6,再把 y=cosx+π6图象上各点的横坐 标变为原来的12得到 C2.故选 D.
【误区警示】 变换前后,函数的名称要一致,若不一致,应先利用诱 导公式转化为同名函数.如本题易错点有二:一是不改变函 数名直接伸缩,平移而出错;二是解法一中先伸缩后平移的 改变量出错.
高考数学难点突破_难点15__三角函数的图象和性质
高考数学难点突破_难点15__三角函数的图象和性质首先,我们从正弦函数和余弦函数的图象开始讲解。
正弦函数的图象是一条连续的波浪线,其中最高点和最低点分别是1和-1,它在原点处与x轴相交。
余弦函数的图象与正弦函数相似,最高点和最低点也是1和-1、但是,余弦函数在原点处最低点,与x轴相交,而在最高点之后和最低点之前,它与x轴需要再次相交。
接下来,我们来看正切函数和余切函数的图象。
正切函数的图象是一个周期为π的波浪线,它在原点处有一个垂直渐近线,与x轴相交。
余切函数的图象与正切函数相似,但它在原点处有一个水平渐近线,与y轴相交。
此外,我们还可以根据周期、对称轴和图象的极值来判断函数的图象。
对于正弦函数和余弦函数来说,它们的图象是关于y轴对称的,并且有一个周期为2π。
对于正切函数和余切函数来说,它们的图象是关于原点对称的,并且有一个周期为π。
在了解了三角函数的图象之后,我们接下来来看几个重要的性质。
首先是函数的奇偶性。
正弦函数是奇函数,即sin(-x)=-sin(x);余弦函数是偶函数,即cos(-x)=cos(x);正切函数是奇函数,即tan(-x)=-tan(x);余切函数是奇函数,即cot(-x)=-cot(x)。
其次是函数的同号性。
在第一象限,所有的三角函数的值都是正的;在第二象限,只有正弦函数的值是正的;在第三象限,只有正切函数的值是正的;在第四象限,只有余切函数的值是正的。
最后,我们来看一下函数的增减性和极值。
对于正弦函数来说,在(0,π/2)区间上是增函数,在(π/2,π)区间上是减函数,在(π,3π/2)区间上是增函数,在(3π/2,2π)区间上是减函数。
对于余弦函数来说,情况与正弦函数相反。
对于正切函数来说,在(0,π/4)和(π/2,3π/4)区间上是增函数,在(π/4,π/2)和(3π/4,π)区间上是减函数。
对于余切函数来说,情况与正切函数相反。
在解决涉及三角函数的问题时,可以运用三角函数的图象和性质,进行数据的分析和判断。
三角函数的图象与性质
三角函数的图象与性质教学目标1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质.2.熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、态度,并会用“五点法”画出函数y=sin(ωx+φ)的图象。
3.理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.重点难点重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题.难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度.教学过程三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻.【要点复习】一.y=sinx的图象和性质:1.图象:列表后描点,用平滑曲线相连得到y=sinx,x∈[0,2π]的图象y=sinx,x∈R时的完整的图象.由此可见,画出y=sinx 的图象关键是首先要画出y=sinx 在[0,2π]内的图象.而y=sinx 在[0,2π]的图象有这样五个点很重要:(0,0),(2π,1),(π,0),(32π,-1),(2π,0);其中(0,0), (π,0),(2π,0)是轴上的点,(2π,1), (32π,-1)分别是函数图象的最高、最低点.所以这五个点是确定y=sinx 图象的基本点.因此,代数描点法也可简称为“五点法”,以后再画y=sinx 图象时,就可直接使用五点法了.2.性质:(1)定义域:x ∈R .(2)值域:y ∈[-1,1], ∴y=sinx 是有界函数。
(3)周期性:正弦函数y=sinx 是周期函数.2π是它的最小正周期,2k π(k ∈Z ,k =0)都是它的周期.(4)单调性:从图象上可以看出正弦函数在整个实数域上不是增函数,也不是减函数,但具有增减区间。
专题15 三角函数的图象与性质(核心素养练习)(解析版)
专题十五 三角函数的图象与性质 核心素养练习一、核心素养聚焦考点一 逻辑推理-—三角函数奇偶性与周期性的综合运用例题13.定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3等于( )A .-12 B.12 C .-32 D.32【答案】D【解析】f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-π=f ⎝ ⎛⎭⎪⎫2π3=f ⎝ ⎛⎭⎪⎫2π3-π=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.考点二 数学运算-求三角函数的值域例题14、函数y =cos 2x +sin x ,x ∈R 的值域为________.【答案】⎣⎢⎡⎦⎥⎤-1,54【解析】y =cos 2x +sin x =1-sin 2x +sin x =-⎝⎛⎭⎪⎫sin x -122+54.因为-1≤sin x ≤1,所以-1≤y ≤54,所以函数y =cos 2x +sin x ,x ∈R 的值域为⎣⎢⎡⎦⎥⎤-1,54。
考点三 直观想象-利用三角函数图象解三角不等式 例题15.函数y =2sin x -1的定义域为________.【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6+2k π≤x ≤5π6+2k π,k ∈Z【解析】由2sin x -1≥0得sin x ≥12, 画出y =sin x 的图象和直线y =12.可知sin x ≥12的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6+2k π≤x ≤5π6+2k π,k ∈Z .二、学业质量测评一、选择题1.(2012·全国高一课时练习)若函数[]cos cos ,0,2y x x x π=+∈的大致图像是( )A .B .C .D .【答案】D【解析】30,2232,0222x y cosx cosx cosx x x πππππ⎧⎪⎪=+=⎨⎪<<⎪⎩或,cos y x =在[0,)2π为减函数,在3(2π,2]π为增函数,并且函数值都大于等于0,只有D 符合,故答案为:D2.(2018·全国高一课时练习)函数sin 2y x =-,x ∈R 是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数【答案】A【解析】设()sin2,y f x x ==- 则()()()sin2sin2,f x x x f x -=--==- 故函数函数sin2y x =-,x R ∈是奇函数,由2,2T ππ== 故函数sin2y x =-,x R ∈是最小正周期为π的奇函数. 故选A.3.(2018·全国高一课时练习)函数2cos 1y x =+的定义域是( )A .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】D【解析】由2cos 1x +⩾0得1cos 2x -,∴222233k x k ππππ-+,k ∈Z. 故选D.4.(2012·全国高一课时练习)下列函数中,周期为π,且在[,]42ππ上为减函数的是( )A .sin()2y x π=+ B .cos()2y x π=+ C .cos(2)2y x π=+ D .sin(22)y x π=+【答案】D【解析】由题意得,函数的周期为π,只有C,D 满足题意,对于函数cos(2)sin 22y x x π=+=-在[,]42ππ上为增函数, 函数sin(2)cos 22y x x π=+=在[,]42ππ上为减函数,故选D. 5.(2018·全国高一课时练习)函数2sin(2)3y x π=+的图像 ( )A .关于y 轴对称B .关于直线6x π=对称C .关于点(0,0)对称D .关于点(,0)6π-对称 【答案】D 【解析】当0x =时,2sin33y π==0,且无法取到最值,选项A ,C 错误;当6x π=时,2sin 333y ππ⎛⎫=+=⎪⎝⎭0,且无法取到最值,选项B 错误; 当6x π=-时,2sin 033y ππ⎛⎫=-+= ⎪⎝⎭,函数值为0,关于点,06π⎛⎫- ⎪⎝⎭中心对称; 本题选择D 选项.6.(2016·全国课时练习)下列不等式中正确的是( ) A .3π2πtantan55> B .tan 4tan 3>C .tan 281tan 665︒>︒D .13π12πtan tan 45⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】3πtan05<,2πtan 05>,所以A 选项错误;因为π33π,π4π22<<<<,所以tan 30,tan 40<>,故B 选项正确;()()tan 281tan 79,tan 665tan 55︒=-︒︒=-︒,正切函数tan y x=在ππ,22⎛⎫-⎪⎝⎭上单调递增,所以tan 281tan 665︒<︒,C 选项错误; 13ππtan πtan 3πtan 444⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12π2πtan tan 2π55⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭2πtan 5⎛⎫- ⎪⎝⎭ ,正切函数tan y x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以 13π12πtan tan 45⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 错误.7.(2016·全国课时练习)函数()πtan 23f x x ⎛⎫=+⎪⎝⎭,则( ) A .函数的最小正周期为π,且在5ππ,1212⎛⎫-⎪⎝⎭上是增函数 B .函数的最小正周期为π2,且在5ππ,1212⎛⎫-⎪⎝⎭上是减函数 C .函数的最小正周期为π,且在π7π,1212⎛⎫⎪⎝⎭上是减函数 D .函数的最小正周期为π2,且在π7π,1212⎛⎫ ⎪⎝⎭上是增函数 【答案】D【解析】对于函数()πtan 23f x x ⎛⎫=+⎪⎝⎭,因为πππtan 2223f x x ⎡⎤⎛⎫⎛⎫+=++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()ππtan π2tan 233x x f x ⎛⎫⎛⎫++=+= ⎪ ⎪⎝⎭⎝⎭,所以它的最小正周期为π2,当π7π,1212x ⎛⎫∈ ⎪⎝⎭时,ππ3π2,322x ⎛⎫+∈ ⎪⎝⎭,函数()πtan 23f x x ⎛⎫=+ ⎪⎝⎭单调递增,故选D.8.(2016·全国课时练习)若3tan 1x <≤-,则x 的取值集合为( )A .ππ2π,2π,34k k k ⎛⎫--∈ ⎪⎝⎭Z B .π3π2π+,2π+,24k k k ⎛⎫∈ ⎪⎝⎭Z C .πππ,π,34k k k ⎛⎤--∈ ⎥⎝⎦Z D .πππ,π+,34k k k ⎛⎤-∈ ⎥⎝⎦Z 【答案】C【解析】在ππ,22⎛⎫-⎪⎝⎭这个周期内,3tan 1x <≤-所对应的区间是ππ,34⎛⎤-- ⎥⎝⎦,故在R 上,3tan 1x -≤-的解集为πππ,π,34k k k ⎛⎤--∈ ⎥⎝⎦Z .9.(2016·全国课时练习)函数2cos sin 1y x x =+-的值域为( )A .11,44⎡⎤-⎢⎥⎣⎦ B .10,4⎡⎤⎢⎥⎣⎦ C .12,4⎡⎤-⎢⎥⎣⎦ D .11,4⎡⎤-⎢⎥⎣⎦【答案】C【解析】222211cos sin 11sin sin 1sin sin sin 24y x x x x x x x ⎛⎫=+-=-+-=-+=--+ ⎪⎝⎭,当sin 1x =-时,min 2;y =-当1sin 2x =时,max 14y =.所以值域为12,4⎡⎤-⎢⎥⎣⎦. 10.(2016·全国课时练习)下列关系式中正确的是( )A .sin11sin168cos77︒<︒<︒B .sin168sin11cos77︒<︒<︒C .sin11cos77sin168︒<︒<︒D .sin168cos77sin11︒<︒<︒ 【答案】A【解析】∵()sin168sin 18012sin12︒=︒-︒=︒,()cos77cos 9013sin13︒=︒-︒=︒, 由正弦函数的单调性得sin11sin12sin13︒<︒<︒,即sin11sin168cos77︒<︒<︒.11.(2016·全国课时练习)当ππ44x -≤≤时,函数()π2sin 4f x x ⎛⎫=+ ⎪⎝⎭有 ( )A .最大值为1,最小值为1-B .最大值为2,最小值为1-C .最大值为2,最小值为2-D .最大值为2,最小值为0 【答案】D 【解析】∵ππ44x -≤≤,∴ππ042x ≤+≤. ∴π02sin 24x ⎛⎫≤+≤ ⎪⎝⎭,函数()f x 有最小值0,最大值2. 12.(2016·全国课时练习)要得到函数[]3sin ,0,2πy x x =-∈的图象,只需将函数[]3sin ,0,2πy x x =∈的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线y x =对称 【答案】B【解析】由于()y f x =与()y f x =-的图象关于x 轴对称,所以要得到函数3sin ,y x =-[]0,2πx ∈的图象,只需将函数[]3sin ,0,2πy x x =∈的图象关于x 轴对称.二、填空题13.(2018·浙江省诸暨市牌头中学高一课时练习)函数()23s 34f x in x cosx =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 【答案】1【解析】化简三角函数的解析式, 可得()22311cos 3cos 344f x x x x x =-+-=-+= 23(cos 1x -+, 由[0,]2x π∈,可得cos [0,1]x ∈,当3cos x =时,函数()f x 取得最大值1. 14.(2016·辽宁高一课时练习(文))①函数y =cos (23x +2π)是奇函数; ②存在实数α,使得sin α+cos α=2;③若α、β是第一象限角且α<β,则tan α<tan β;④x =8π是函数y =sin (2x +54π)的一条对称轴方程; ⑤函数y =tan (2x +3π)的图象关于点(12π,0)成中心对称图形.其中正确命题的序号为__________. 【答案】①④⑤【解析】①函数22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭,而2sin 3y x =-是奇函数,故函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数,故①正确;②因为sinx ,cosx 不能同时取最大值1,所以不存在实数x 使sinx+cosx=2成立,故②错误.③令 α=3π,β=136π,则3tanβ=tan 136π=tan 6π3tanα>tanβ,故③不成立. ④把x=8π代入函数5sin 24y x π⎛⎫=+⎪⎝⎭,得y=-1,为函数的最小值,故x =8π是函数5sin 24y x π⎛⎫=+ ⎪⎝⎭的一条对称轴,故④正确;⑤因为y=tan (2x+3π)图象的对称中心在图象上,而点(12π,0)在图象上,所以⑤成立 15.(2016·全国课时练习)函数cos y x =在区间[]π,a -上为增函数,则a 的取值范围是________. 【答案】(]π,0-【解析】因为cos y x =在[]π,0-上是增函数,在[]0,π上是减函数, 所以只有π0a -<≤时满足条件,故(]π,0a ∈-.16.(2012·全国高一课时练习)函数y =√log 12tanx 的定义域是______.【答案】{x |k π<x ≤k π+π4,k ∈Z} 【解析】要使函数有意义,必须log 12tan x ≥0, ∴0<tan x ≤1,∴k π<x ≤k π+π4,k ∈Z ,∴该函数的定义域是{x |k π<x ≤k π+π4,k ∈Z}.三、解答题17.(2019·全国高一课时练习)已知函数f (x )=2sin (2x 6π-)+a ,a 为常数 (1)求函数f (x )的最小正周期;(2)若x ∈[0,2π]时,f (x )的最小值为﹣2,求a 的值. 【答案】(1)π;(2)a =-1. 【解析】(1)∵f (x )=2sin (2x 6π-)+a , ∴f (x )的最小正周期T 22π==π. (2)当x ∈[0,2π]时,2x 6π-∈[6π-,56π],故当2x 66ππ-=-时,函数f (x )取得最小值,即sin (6π-)12=-, ∴f (x )取得最小值为﹣1+a =﹣2, ∴a =﹣1.18.(2018·全国高一课时练习)已知函数f(x)2)4x π+(1)求函数f(x)的最小正周期和单调递减区间; (2)在所给坐标系中画出函数f(x)在区间4[,]33ππ上的图象(只作图不写过程).【答案】(1)π.,5,,88k k k Zππππ⎡⎤++∈⎢⎥⎣⎦(2)见解析【解析】(1)T==π.令2kπ+≤2x+≤2kπ+π,k∈Z,则2kπ+≤2x≤2kπ+π,k∈Z,得kπ+≤x≤kπ+π,k∈Z,∴函数f(x)的单调递减区间为,k∈Z.(2)列表:2x+ππ2ππxf(x)=sin0-0描点连线得图象如图:19.(2016·全国课时练习)判断下列函数的奇偶性:(1)()sin cos f x x x =+;(2)()1cos cos 1f x x x =-- 【答案】(1)偶函数 (2)既是奇函数又是偶函数【解析】(1)函数的定义域为R ,()()()()sin cos sin cos f x x x x x f x -=-+-=+=, 所以此函数是偶函数.(2)由1cos 0x -≥且cos 10x -≥,得cos 1x =,从而2πx k =,k ∈Z , 此时()0f x =,故该函数既是奇函数又是偶函数.20.(2016·全国课时练习)比较下列各组数的大小.(1)cos870,cos890︒︒;(2)37π49πsin ,sin 63⎛⎫-⎪⎝⎭. 【答案】(1)cos870cos890︒>︒(2)37π49πsin sin 63⎛⎫-< ⎪⎝⎭【解析】(1)()cos870cos 2360150cos150.︒=⨯︒+︒=︒()cos890cos 2360170cos170.︒=⨯︒+︒=︒∵余弦函数cos y x =在[]0,180︒︒上是减函数, ∴cos150cos170︒>︒,即cos870cos890︒>︒.(2)37πππ49πππsin sin 6πsin ,sin sin 16πsin ,666333⎛⎫⎛⎫⎛⎫⎛⎫-=--=-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ∵正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上是增函数, ∴ππsin sin 63⎛⎫-< ⎪⎝⎭,即37π49πsin sin 63⎛⎫-< ⎪⎝⎭. 21.(2012·全国高一课时练习)已知函数f (x )=2a sin 23x π⎛⎫- ⎪⎝⎭+b 的定义域为0,2π⎡⎤⎢⎥⎣⎦,函数最大值为1,最小值为-5,求a 和b 的值.【答案】a =12-3b =-23+3,或a =-12+3,b =19-3【解析】∵0≤x ≤2π,∴-3π≤2x -3π≤23π. ∴-32≤sin 23x π⎛⎫- ⎪⎝⎭≤1.若a >0,则21{35a b a b +=-+=-,解得1263{23123a b =-=-+,若a <0,则25{31a b a b +=-+=,解得1263{193a b =-+=-综上可知,a =12-3,b =-23+3a =-12+3b =19-322.(2018·全国高一课时练习)已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:x6π-3π 56π 43π 116π73π 176πy1- 1 3 1 1- 1 3(1)根据表格提供的数据求函数()f x 的一个解析式; (2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m = 恰有两个不同的解,求实数m 的取值范围.【答案】(1)()2sin 13f x x π⎛⎫=-+ ⎪⎝⎭(2))31,3 【解析】(1)绘制函数图象如图所示:设()f x 的最小正周期为T ,得11266T πππ=-=.由2T πω=得1ω=. 又31B A B A +=⎧⎨-=-⎩解得21A B =⎧⎨=⎩, 令5262k ππωφπ⋅+=+,即5262k ππφπ+=+,k Z ∈, 据此可得:23k πϕπ=-,又2πφ<,令0k =可得3πφ=-.所以函数的解析式为()213f x sin x π⎛⎫=-+ ⎪⎝⎭. (2)因为函数()213y f kx sin kx π⎛⎫==-+ ⎪⎝⎭的周期为23π,又0k >,所以3k =. 令33t x π=-,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,33t ππ⎡⎤∈-⎢⎥⎣⎦. sint s =在2,33ππ⎡⎤-⎢⎥⎣⎦上有两个不同的解的条件是3s ⎫∈⎪⎪⎣⎭, 所以方程()f kx m =在0,3x π⎡⎤∈⎢⎥⎣⎦时恰好有两个不同的解的条件是)31,3m ⎡∈⎣, 即实数m 的取值范围是)31,3.。
三角函数的图像与性质知识点归纳
1●高考明方向1.能画出y =sin x ,y =cos x ,y =tan x 的图象, 了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、 最大值和最小值,图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.★备考知考情三角函数的周期性、单调性、最值等是高考的热点,题型既有选择题、填空题、又有解答题,难度属中低档,如2014课标全国Ⅱ14、北京14等;常与三角恒等变换交汇命题,在考查三角函数性质的同时,又考查三角恒等变换的方法与技巧,注重考查函数方程、转化化归等思想方法.《名师一号》P552二、例题分析: (一)三角函数的定义域和值域 例1.(1)《名师一号》P56 对点自测3函数y =lg(sin x )+ cos x -12的定义域为____________解析 要使函数有意义必须有⎩⎪⎨⎪⎧ sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π (k ∈Z).∴2k π<x ≤π3+2k π,k ∈Z.∴函数的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.3例1.(2)《名师一号》P56 高频考点 例1(1) 函数y =sin x -cos x 的定义域为________.解:(1)要使函数有意义,必须有sin x -cos x ≥0,即sin x ≥cos x ,同一坐标系中作出y =sin x ,y =cos x ,x ∈[0,2π]的图象如图所示.结合图象及正、余弦函数的周期是2π知,函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+54π,k ∈Z .注意:《名师一号》P56 高频考点 例1 规律方法 (1)求三角函数的定义域实质就是解三角不等式(组). 一般可用三角函数的图象或三角函数线确定 三角不等式的解.4例2.(1)《名师一号》P56 对点自测4函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1-3解:∵0≤x ≤9,∴-π3≤π6x -π3≤7π6.∴sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.∴y ∈[-3,2],∴y max +y min =2- 3. 注意:《名师一号》P56 高频考点 例1 规律方法2 求三角函数的值域的常用方法之一: 利用sin x 和cos x 的值域(图像)直接求;例2.(2)8月月考第17题(1)17.(满分12分)已知函数22()3cos 2cos sin sin f x x x x x =++.5(I )当[0,]2x π∈时,求()f x 的值域;222()3cos 2cos sin sin 12cos sin 2f x x x x x x x =++=++………2分)2x =++ …………3分……4分即()f x 的值域为2]+. …………………6分注意:《名师一号》P56 高频考点 例1 规律方法2 求三角函数的值域的常用方法之二: 化为求sin()=++y A x b ωϕ的值域 如:①sin cos y a x b x =+合一变换6sin()y A x ϕ=+②22sin sin cos cos y a x b x x c x =++sin 2cos2y d x e x f =++sin(2)y A x b ϕ=++ 注意弦函数的有界性!变式:《名师一号》P58 特色专题 典例1若函数f (x )=a sin x -b cos x 在x =π3处有最小值-2,则常数a ,b 的值是( )A .a =-1,b = 3B .a =1,b =-3C .a =3,b =-1D .a =-3,b =1解:函数f (x )=a sin x -b cos x 的最小值为-a 2+b 2. f (x )=a 2+b 2sin(x -φ)⎝⎛⎭⎪⎫其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,降幂 合一变换7则⎩⎨⎧-a 2+b 2=-2,f ⎝ ⎛⎭⎪⎫π3=32a -12b =-2,解得⎩⎨⎧a =-3,b =1.【名师点评】 解答本题的两个关键:①引进辅助角,将原式化为三角函数的基本形式; ②利用正弦函数取最值的方法建立方程组.例2.(3)《名师一号》P56 高频考点 例1(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解:∵x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1.又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝ ⎛⎭⎪⎫sin x -142+78. ∴当sin x =14时,y min =78;当sin x =-12或sin x =1时,y max =2.8注意:《名师一号》P56 高频考点 例1 规律方法2 求三角函数的值域的常用方法之三:把sin x 或cos x 看作一个整体,转换成二次函数求值域.练习: (补充)(1)求函数22tan 1()tan 1x f x x -=+的值域【答案】[)1,1-(2)求函数22sin 1()0,sin 22x f x x x π+⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭的值域【答案】)+∞92222sin 13sin cos ()sin 22sin cos 3tan 1113tan 2tan 2tan 0,tan 0211()23tan 32tan x x x f x x x xx x x x x x f x x xπ++==+⎛⎫==+ ⎪⎝⎭⎛⎫∈∴> ⎪⎝⎭≥=注意:求三角函数的值域的常用方法之三:求三角函数的值域的常用方法: 化为求代数函数的值域注意约束条件----三角函数自身的值域!例2.(4)(补充)求函数()sin cos sin cos =+-f x x x x x 的值域【答案】12⎡⎤-+⎢⎥⎣⎦注意:求三角函数的值域的常用方法之四:10《名师一号》P56 问题探究 问题3 如何求三角函数的值域或最值?③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(或最值). 利用22sin cos 1x x +=转化为二次函数在指定区间 上的值域问题变式:求函数()sin cos sin cos +=+f x x x x x 的值域例2.(5)详见 第一章 第二讲函数值域 7.数形结合法: 例7(2)《名师一号》P14 问题探究 问题(6)当一个函数图象可作时,通过图象可求其值域和最值;或利用函数所表示的几何意义,借助于几何方法求出函数的值域.(补充)如两点间距离、直线斜率等等求函数4sin 12cos 4+=-x y x 的值域11解:()114sin sin 4422cos 2cos 2⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭==--x x y x x 可视作单位圆外一点12,4⎛⎫- ⎪⎝⎭P 与圆221+=x y 上的点()cos ,sin x x 所连线段斜率的2倍,设过点12,4⎛⎫- ⎪⎝⎭P 的点的直线方程为()12+=-y k x 即1204---=kx y k1=解得34=-k 或512=k答案:35,26⎡⎤-⎢⎥⎣⎦注意:求三角函数的值域的常用方法之五: 数形结合法练习:求函数[]cos 10,sin 2-=∈-x y x x π的值域12答案:40,3⎡⎤⎢⎥⎣⎦变式:求函数cos 1,sin 222-⎡⎤=∈-⎢⎥-⎣⎦x y x x ππ的值域答案:10,2⎡⎤⎢⎥⎣⎦拓展:8月月考第16题函数22)24()2cos x x xf x x xπ+++=+的最大值是M ,最小值是m ,则M m +的值是 .22222)2sin cos 2sin 4()12cos 2cos 2cos x x xx x x x x x f x x x x x x x π+++++++===++++,记2sin ()2cos x xg x x x+=+,则()g x 是奇函数且()1()f x g x =+,所以()f x 的最大值是max 1()M g x =+,13 最小值是min 1()m g x =+,因为()g x 是奇函数, 所以max min ()()0g x g x +=,所以max min 1()1()2M m g x g x +=+++=.(三)三角函数的周期性、奇偶性、对称性 例1.(1)《名师一号》P56 对点自测5设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( )A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数D.最小正周期为π2的偶函数答案 B例1.(2)《名师一号》P57 高频考点 例3(2)(2014·新课标全国卷Ⅰ)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解:由于y =cos|2x |=cos2x ,所以该函数的周期为2π2=π;由函14数y =|cos x |的图象易知其周期为π;函数y =cos ⎝⎛⎭⎫2x +π6的周期为2π2=π;函数y =tan ⎝⎛⎭⎫2x -π4的周期为π2,故最小正周期为π的函数是①②③,故选A.注意:《名师一号》P56 问题探究 问题1 如何求三角函数的周期? (1)利用周期函数的定义. (2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|, y =tan(ωx +φ)的最小正周期为π|ω|.例1.(3)《名师一号》P58 特色专题 典例2函数f(x)=sin ⎝⎛⎭⎫ωx +π3+sin ωx(ω>0)相邻两对称轴之间的距离为2,则ω=________【规范解答】 相邻两对称轴之间的距离为2,即T =4.f(x)=sin ⎝⎛⎭⎫ωx +π3+sin ωx =12sin ωx +32cos ωx +sin ωx =32sin ωx15+32cos ωx =3sin ⎝⎛⎭⎫ωx +π6,又因为f(x)相邻两条对称轴之间的距离为2,所以T =4,所以2πω=4,即ω=π2.注意:【名师点评】 函数f(x)=A sin (ωx +φ),f(x)=A cos (ωx +φ)图象上一个最高点和它相邻的最低点的横坐标之差的绝对值是函数的半周期π|ω|,纵坐标之差的绝对值是2A .在解决由三角函数图象确定函数解析式的问题时,要注意使用好函数图象显示出来的函数性质、函数图象上特殊点的坐标及两个坐标轴交点的坐标等.练习:《加加练》P3 第11题例2.(1)《名师一号》P57 高频考点 例3(1)(1)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2 B.2π3 C.3π2 D.5π3解: (1)∵f (x )=sin x +φ3是偶函数,∴f (0)=±1.16∴sin φ3=±1,∴φ3=k π+π2(k ∈Z).∴φ=3k π+3π2(k ∈Z).又∵φ∈[0,2π],∴当k =0时,φ=3π2.故选C.变式:若函数f (x )=sin x +φ3(φ∈[0,2π])是奇函数,则φ=?例2.(2)《名师一号》P57 高频考点 例3(3)(3)如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2解:(3)由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π =3cos ⎝⎛⎭⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z. ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.注意:【规律方法】(1)若f(x)=A sin(ωx+φ)为偶函数,则当x=0时,f(x)取得最大或最小值,若f(x)=A sin(ωx+φ)为奇函数,则当x=0时,f(x)=0.(2)对于函数y=A sin(ωx+φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x=x0或点(x0,0)是否是函数的对称轴或对称中心时,可通过检验f(x0)的值进行判断.《名师一号》P56 问题探究问题4如何确定三角函数的对称轴与对称中心?若f(x)=A sin(ωx+φ)为偶函数,则当x=0时,f(x)取得最大值或最小值.若f(x)=A sin(ωx+φ)为奇函数,则当x=0时,f(x)=0.如果求f(x)的对称轴,只需令ωx+φ=π2+kπ(k∈Z),求x.(补充)结果写成直线方程!如果求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z)即可.(补充)结果写点坐标!同理对于y=A cos(ωx+φ),可求其对称轴与对称中心,对于y=A tan(ωx+φ)可求出对称中心.1718练习1:《名师一号》P58 特色专题 典例3已知f(x)=sin x +3cos x(x ∈R),函数y =f (x +φ)⎝⎛⎭⎫|φ|≤π2为偶函数,则φ的值为________.【规范解答】 先求出f (x +φ)的解析式,然后求解.∵f (x )=sin x +3cos x =2sin ⎝⎛⎭⎫x +π3. ∴f (x +φ)=2sin ⎝⎛⎭⎫x +φ+π3. ∵函数f (x +φ)为偶函数,∴φ+π3=π2+k π,k ∈Z ,即φ=π6+k π(k ∈Z).又∵|φ|≤π2,∴φ=π6.练习2:《计时双基练》P247 第3题(四)三角函数的单调性 例1.(1)《名师一号》P56 对点自测6下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )19A .y =sin ⎝⎛⎭⎫2x +π2B .y =cos ⎝⎛⎭⎫2x +π2C .y =sin ⎝⎛⎭⎫x +π2D .y =cos ⎝⎛⎭⎫x +π2解析 由函数的周期为π,可排除C ,D.又函数在⎣⎡⎦⎤π4,π2上为减函数,排除B ,故选A.练习1:《计时双基练》P247 第7题函数y cos x π⎛⎫=- ⎪⎝⎭24的单调递减区间为练习2:《加加练》P1 第11题(2)《名师一号》P57 高频考点 例2已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性.20解:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx )+2=2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0.从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎣⎡⎦⎤π8,π2上单调递减.注意:《名师一号》P56 问题探究 问题2 如何求三角函数的单调区间?(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”.(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式21求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.例2.《名师一号》P58 特色专题 典例4(2014·全国大纲卷)若函数f (x )=cos2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2是减函数,则a 的取值范围是________.【规范解答】 先化简,再用换元法求解.f (x )=cos2x +a sin x =1-2sin 2x +a sin x .令t =sin x ,∵x ∈⎝⎛⎭⎫π6,π2,∴t ∈⎝⎛⎭⎫12,1.∴g (t )=1-2t 2+at =-2t 2+at +1⎝⎛⎭⎫12<t <1,由题意知-a 2×(-2)≤12,∴a ≤2. ∴a 的取值范围为(-∞,2].22 课后作业一、计时双基练P247 基础1-11、课本P56变式思考1二、计时双基练P247培优1-4课本P56变式思考2、3预习 第五节练习:1、设函数f (x )=2sin(2πx +5π).若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1 D. 12分析:∵f (x )的最大值为2,最小值为-2,∴对∀x ∈R ,-2≤f (x )≤2.取到最值时x =2π+k π,|x 1-x 2|取最小值,即f (x 1)为最小值,f (x 2)为最大值且(x 1,f (x 1)),(x 2,f (x 2))为相邻的最小(大)值点,即半个周期.解析:f (x )的周期T =4,|x 1-x 2|min =2T =2. 故选B.232、为了使函数)0(sin >=ωωx y 在区间]1,0[上至少出现50次最大值,求ω的最小值。
最全三角函数的图像与性质知识点总结
三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质函数 y =sin xy =cos x图 象定义域R R值域[-1,1] [-1,1]单调性递增区间:2,2()22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦递减区间:32,2()22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦递增区间:[2k π-π,2k π] (k ∈Z )递减区间:[2k π,2k π+π] (k ∈Z ) 最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max =1;x =2k π+π(k ∈Z ) 时,y min =-1奇偶性 奇函数 偶函数对称性 对称中心:(k π,0)(k ∈Z )(含原点)对称中心:(k π+π2,0)(k ∈Z )二、正切函数的图象与性质 定义域 {|,}2x x k k Z ππ≠+∈值域 R单调性 递增区间(,)()22k k k Z ππππ-+∈奇偶性奇函数对称性对称中心:(,0)()2k k Z π∈(含原点)最小正周期 π三、三角函数图像的平移变换和伸缩变换1. 由x y sin =的图象得到)sin(ϕω+=x A y (0,0A ω>>)的图象x y sin =方法一:先平移后伸缩方法二:先伸缩后平移 操作 向左平移φ个单位横坐标变为原来的1ω倍结果 )sin(ϕ+=x yx y ωsin =操作 横坐标变为原来的1ω倍向左平移ϕω个单位结果 )sin(ϕω+=x y操作 纵坐标变为原来的A 倍结果)sin(ϕω+=x A y注意:对称轴:x =k π+π2,k ∈Z对称轴:x =k π,k ∈Z (含y 轴)最小正周期 2π 2π定要注意平移与伸缩的先后顺序,否则会出现错误。
2. )sin(ϕω+=x A y (0,0A ω>>)的性质(1)定义域、值域、单调性、最值、对称性:将ϕω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当ϕ取特殊值时,这些复合函数才具备奇偶性:)sin(ϕω+=x A y ,当πϕk =时为奇函数,当2ππϕ±=k 时为偶函数; (3)最小正周期:ωπ2=T3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义(1) A 称为振幅;(2)2T πω=称为周期;(3)1f T=称为频率;(4)x ωϕ+称为相位; (5)ϕ称为初相(6)ω称为圆频率.。
三角函数的图像与性质
2
y=sin2x图象由y=sinx图象(纵标不变), 1 横标缩短 而得。 2
y=si nx
y=si n2x
2π O x
横标伸长2倍而得。
1 y=sin 2 x图象由y=sinx图象(纵标不变),
返回目录
π 例2:如何由y=sinx 的图象得到y=3sin(2x+ 3
)
方法1:y=sinx
纵向伸长3倍
返回目录
2.求函数 y=sin4x+2 3 sinxcosx-cos4x 的最小正周期和最小值, 并写出该函数在 [0, ] 上的单调增区间. 解: ∵ y=sin4x+2 3 sinxcosx-cos4x =(sin2x-cos2x)(sin2x+cos2x)+ 3 sin2x = 3 sin2x-cos2x
2 2
(
2
k ,
2
k )( k z )
递增
递减
x 2k
2
y , k z 时, m ax 1
y , k z 时,m in 1
x 2 k , k z 时,y m a x 1
最值
奇偶性
x 2k
2
x 2k , k z
纵向伸长3倍
y=3sinx
y
方法2: y=sinx - O 6 纵向伸长3倍 y=3sinx 1 横向缩短 2 y=3sin2x π 左移 6 y=3sin(2x+π ) 3
π 3 π y=3sin(x+ 3 ) 1 横向缩短 2 π y=3sin(2x+ ) 3
左移
y=3sinx
高中数学高三三角函数的图象和性质【教案】
高三一轮(理) 3.3 三角函数的图象和性质【教学目标】1.能画出y=sin x,y=cos x,y=tan x的图象,了解函数的周期性2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。
【重点难点】1。
教学重点:函数y=sin x,y=cos x,y=tan x的图象和性质; 2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】了解理解掌握函数y=sin x,y=cos x,y=tan x的图象和性质√[考纲传真] 1。
能画出y=sin x,y=cos x,y=tan x的图象,了解函数的周期性 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。
真题再现学生通过对高考真题的解决,发现自己对知识的掌握情况。
通过对考纲的解读和分析.让学生明确考试要求,做到有的放矢2.【2014上海】 函数 的最小正周期是________ 【解析】由题意13.(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎢⎡⎦⎥⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎪⎫π2=f ⎝⎛⎭⎪⎪⎫2π3=-f ⎝ ⎛⎭⎪⎪⎫π6,则f (x )的最小正周期为________.典例 (1)(2015·四川)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A.y =cos ⎝⎛⎭⎪⎪⎫2x +π2B.y =sin ⎝⎛⎭⎪⎪⎫2x +π2C.y =sin 2x +cos 2xD.y =sin x +cos x学生通过对高考真题的解决,感受高考题的考察视角。
(2)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象 如图所示,则f (x )的单调递减区间为()A.⎝⎛⎭⎪⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎪⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎪⎪⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z .故选D.∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,解析 (1)选项A中,y =cos ⎝⎛⎭⎪⎪⎫2x +π2=-sin 2x ,符合题意.6.(2016高考新课标1)已知函数为的零点,为 图像的对称轴, 且在单调,则的最大值为( )数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.知识点3 三角函数的图象和性质y=sin x y=cos x y=tan xR R x≠kπ+错误!,k [-1,1][-1,1]R增区间:错误!,减区间:错误!增区间:[2kπ-π,2kπ],减区间:[2kπ,2kπ+π],递增区间kπ-错误!,kπ+∈Z奇函数偶函数奇函数(kπ,0),k ∈Z 错误!,k∈Zkπ2,0,k∈Z在解题中注意引导学生自主分析和解决问题,教师及时和解题效率.学必求其心得,业必贵于专精。
最全三角函数的图像与性质知识点总结
三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质函数 y =sin x y =cos x图 象定义域 R R 值域[-1,1][-1,1]单调性递增区间:2,2()22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦递减区间:32,2()22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦递增区间:[2k π-π,2k π] (k ∈Z ) 递减区间:[2k π,2k π+π] (k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max =1;x =2k π+π(k ∈Z ) 时,y min =-1奇偶性奇函数偶函数对称性对称中心:(k π,0)(k ∈Z )(含原点)对称轴:x =k π+π2,k ∈Z对称中心:(k π+π2,0)(k ∈Z )对称轴:x =k π,k ∈Z (含y 轴)最小正周期2π2π二、正切函数的图象与性质 定义域 {|,}2x x k k Z ππ≠+∈值域 R单调性 递增区间(,)()22k k k Z ππππ-+∈奇偶性奇函数对称性 对称中心:(,0)()2k k Z π∈(含原点)最小正周期 π三、三角函数图像的平移变换和伸缩变换1. 由x y sin =的图象得到)sin(ϕω+=x A y (0,0A ω>>)的图象x y sin =方法一:先平移后伸缩 方法二:先伸缩后平移 操作 向左平移φ个单位横坐标变为原来的1ω倍结果 )sin(ϕ+=x yx y ωsin =操作 横坐标变为原来的1ω倍向左平移ϕω个单位结果 )sin(ϕω+=x y操作 纵坐标变为原来的A 倍结果)sin(ϕω+=x A y注意:x 要注意平移与伸缩的先后顺序,否则会出现错误。
2. )sin(ϕω+=x A y (0,0A ω>>)的性质(1)定义域、值域、单调性、最值、对称性:将ϕω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当ϕ取特殊值时,这些复合函数才具备奇偶性:)sin(ϕω+=x A y ,当πϕk =时为奇函数,当2ππϕ±=k 时为偶函数; (3)最小正周期:ωπ2=T3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义(1) A 称为振幅;(2)2T πω=称为周期;(3)1f T=称为频率;(4)x ωϕ+称为相位; (5)ϕ称为初相(6)ω称为圆频率.如有侵权请联系告知删除,感谢你们的配合!。
三角函数的图像与性质(学生版)
一部分,则 f(π2)=________.
15.(精选考题·江苏)设定义在区间0,π2 上的函数 y=6cosx 的图象与 y=5tanx 的图象交于点 P,过点
P 作 x 轴的垂线,垂足为 P1,直线 PP1 与函数 y=sinx 的图象交于点 P2,则线段 P1P2 的长为________.
第7页共8页
时,求 x0 的值.
17.求当函数 y=sin2x+acosx-12a-32的最大值为 1 时 a 的值. 分析:先通过变形化为关于 cosx 的二次函数,配方后,根据函数式的特点,对 a 进行分类讨论.
第8页共8页
题型九:三角函数的图像变换
三角函数的图像与性质(学生版)
例 9:试述如何由 y= 1 sin(2x+ π )的图象得到 y=sinx 的图象
3
3
变试题:(1)指出将 y sin x 的图象变换为 y 1 cos(2x ) 1的图象的变换过程;
2
3
(2)指出将 y sin x 的图象变换为 y 3sin(2x ) 1的图象的变换过程. 6
三角函数的图像与性质(学生版)
三、解答题 15.据市场调查,某种商品一年内每件出厂价在 6 千元的基础上,按月呈 f(x)=Asin(ωx+φ)+B 的模型波 动(x 为月份),已知 3 月份达到最高价 8 千元,7 月份价格最低为 4 千元,该商品每件的售价为 g(x)(x 为月 份),且满足 g(x)=f(x-2)+2.(1)分别写出该商品每件的出厂价函数 f(x)、售价函数 g(x)的解析式;(2)问哪 几个月能盈利?
2
2
图;
法二:图像变换法
先将 y=sinx 的图象向左平移 个单位,再将图象上各点的横坐标变为原来的 1 倍(ω>0),最后将图
高中数学知识点精讲精析 三角函数的图像与性质
1.3.2 三角函数的图像与性质一、三角函数的性质1. 几何法作图第一步:列表.首先在单位圆中画出正弦线和余弦线.在直角坐标系的x 轴上任取一点,以为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成几等份,过圆上的各分点作x 轴的垂线,可以得到对应于角,,,…,2π的正弦线及余弦线(这等价于描点法中的列表).第二步:描点.我们把x 轴上从0到2π这一段分成几等份,把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点.第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.将y=sinx 的图象向左平移即得y=cosx 的图象2.用五点法作正弦函数和余弦函数的简图(描点法)(1)正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (,1) (π,0) (,-1) (2π,0) 1O 1O 6,0π3π2π2π2π23π(2)余弦函数y=cosx x ∈[0,2π]的图象中,五个关键点是:(0,1) (,0) (π,-1) (,0) (2π,1)3. 正弦函数的性质(1)定义域:正弦函数、余弦函数的定义域都是实数集R分别记作: y =sin x ,x ∈R y =cos x ,x ∈R(2)值域正弦函数、余弦函数的值域都是[-1,1].其中正弦函数y =sin x ,x ∈R①当且仅当x =+2k π,k ∈Z 时,取得最大值1.②当且仅当x =-+2k π,k ∈Z 时,取得最小值-1.而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1.②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.(3)周期性正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.函数及函数(其中A ,为常数,且)的周期(4)奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称(5)单调性 正弦函数在每一个闭区间[-+2k π,+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[+2k π,+2k π](k ∈Z )上都是减函数,其值从1减小到-1.余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.二、正切函数的图象和性质1. 正切函数图象的作法在的区间作出它的图象2π23π2π2πR x ),x sin(A y ∈+=ϕωR x ),x cos(A y ∈+=ϕωωφ0,0A >≠ωωπ2T =2π2π2π23π⎪⎭⎫ ⎝⎛-2,2ππ,且的图象,称“正切曲线”正切函数的性质: 1. 定义域: 2. 值域:R3. 当时,当时4. 周期性:5. 奇偶性:奇函数6. 单调性:在开区间内,函数单调递增h(mm)与时间t(s)之间的函数关系如图所示(1)求该函数的周期;(2)求t =10s 时钟摆的高度.【解析】R x x y ∈=tan ()z k k x ∈+≠ππ2⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππz k k k x ∈⎪⎭⎫ ⎝⎛+∈2,πππ0>y z k k k x ∈⎪⎭⎫ ⎝⎛-∈πππ,20<y π=T ()x x tan tan -=-z k k k ∈⎪⎭⎫ ⎝⎛++-ππππ2,2解:(1)由图象知,周期为1.5s(2)故高度为20mm.2. 利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:;【解析】(1)解:作出正弦函数y=sinx ,x ∈[0,2π]的图象:由图形可以得到,满足条件的x 的集合为:(2)解:作出余弦函数y=cosx ,x ∈[0,2π]的图象:3. 求使下列函数取得最大值的自变量x 的集合,并说出最大值是什么.(1)y =cos x +1,x ∈R ;(2)y =sin2x ,x ∈R .【解析】解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取得最大值的x 的集合{x |x =2k π,k ∈Z }.函数y =cos x +1,x ∈R 的最大值是1+1=2.(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且使函数y =sin Z ,Z ∈R 取得最大值的Z 的集合是{Z |Z =+2k π,k ∈Z }由2x =Z =+2k π,得x =+k π即使函数y =sin2x ,x ∈R 取得最大值的x 的集合是{x |x =+k π,k ∈Z }.函数y =sin2x ,x ∈R 的最大值是1.4. 求下列函数的定义域:(1)y = (2)y=【解析】(10)(16 1.5)(1)20f f f =+⨯==21sin )1(≥x 21cos )2(≤x Z k k k ∈⎥⎦⎤⎢⎣⎡++,265,26ππππ2π2π4π4π11sin x +x cos解:(1)由1+sin x ≠0,得sin x ≠-1即x ≠+2k π(k ∈Z )∴原函数的定义域为{x |x ≠+2k π,k ∈Z }(2)由cos x ≥0得-+2k π≤x ≤+2k π(k ∈Z )∴原函数的定义域为[-+2k π,+2k π](k ∈Z )5. (1)函数y =sin(x +)在什么区间上是增函数?(2)函数y =3sin(-2x )在什么区间上是减函数?【解析】解:(1)函数y =sin x 在下列区间上是增函数:2k π-<x <2k π+(k ∈Z )∴函数y =sin(x +)为增函数,当且仅当2k π-<x +<2k π+即2k π-<x <2k π+(k ∈Z )为所求.(2)∵y =3sin(-2x )=-3sin(2x -)由2k π-≤2x -≤2k π+得k π-≤x ≤k π+(k ∈Z )为所求.或:令u =-2x ,则u 是x 的减函数又∵y =sin u在[2k π-,2k π+](k ∈Z )上为增函数,∴原函数y =3sin(-2x )在区间[2k π-,2k π+]上递减.设2k π-≤-2x ≤2k π+解得k π-≤x ≤k π+(k ∈Z )∴原函数y =3sin(-2x )在[k π-,k π+](k ∈Z )上单调递减.23π23π2π2π2π2π4π3π2π2π4π2π4π2π3π4π3π3π2π3π2π12π125π3π2π2π3π2π2π2π3π2π12π125π3π12π125π6. 求函数的定义域、值域,并指出它的周期性、奇偶性、单调性. 【解析】由得, 所求定义域为 值域为R ,周期,是非奇非偶函数在区间上是增函数.7. 观察正切曲线写出满足下列条件的x 的值的范围:tanx >0.【解析】画出y =tanx 在(-,)上的图象,不难看出在此区间上满足tanx >0的x 的范围为:0<x <结合周期性,可知在x ∈R ,且x ≠k π+上满足的x 的取值范围为(k π,k π+)(k ∈Z ) ⎪⎭⎫ ⎝⎛-=33tan πx y 233πππ+≠-k x 1853ππ+≠k x ∴⎭⎬⎫⎩⎨⎧∈+≠∈z k k x R x x ,1853,|ππ且3π=T ()z k k k ∈⎪⎭⎫ ⎝⎛+-1853,183ππππ2π2π2π2π2π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点15 三角函数的图象和性质三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来.本节主要帮助考生掌握图象和性质并会灵活运用.●难点磁场(★★★★)已知α、β为锐角,且x (α+β-2π)>0,试证不等式f (x )=)sin cos ()sin cos (αββα+x x <2对一切非零实数都成立.●案例探究[例1]设z 1=m +(2-m 2)i ,z 2=cos θ+(λ+sin θ)i ,其中m ,λ,θ∈R ,已知z 1=2z 2,求λ的取值范围.命题意图:本题主要考查三角函数的性质,考查考生的综合分析问题的能力和等价转化思想的运用,属★★★★★级题目.知识依托:主要依据等价转化的思想和二次函数在给定区间上的最值问题来解决. 错解分析:考生不易运用等价转化的思想方法来解决问题. 技巧与方法:对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题.解法一:∵z 1=2z 2,∴m +(2-m 2)i =2cos θ+(2λ+2sin θ)i ,∴⎩⎨⎧+=-=θλθsin 222cos 22m m ∴λ=1-2cos 2θ-sin θ=2sin 2θ-sin θ-1=2(sin θ-41)2-89. 当sin θ=41时λ取最小值-89,当sin θ=-1时,λ取最大值2. 解法二:∵z 1=2z 2 ∴⎩⎨⎧+=-=θλθsin 222cos 22m m ∴⎪⎪⎩⎪⎪⎨⎧--==222sin 2cos 2λθθm m , ∴4)22(4222λ--+m m =1. ∴m 4-(3-4λ)m 2+4λ2-8λ=0,设t =m 2,则0≤t ≤4,令f (t )=t 2-(3-4λ)t +4λ2-8λ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤-≤≥∆0)4(0)0(424300f f λ或f (0)·f (4)≤0 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥≤≤≤≤--≥0220434589λλλλλ或或∴-89≤λ≤0或0≤λ≤2. ∴λ的取值范围是[-89,2].[例2]如右图,一滑雪运动员自h =50m 高处A 点滑至O 点,由于运动员的技巧(不计阻力),在O 点保持速率v 0不为,并以倾角θ起跳,落至B 点,令OB =L ,试问,α=30°时,L 的最大值为多少?当L 取最大值时,θ为多大?命题意图:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.属★★★★★级题目.知识依托:主要依据三角函数知识来解决实际问题.错解分析:考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活. 技巧与方法:首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题.解:由已知条件列出从O 点飞出后的运动方程:⎪⎩⎪⎨⎧-=-=-==20021sin 4sin cos cos gt v L h t v L S θαθα 由①②整理得:v 0cos θ=.21sin sin ,cos 0gt t L v t L +-=αθα ∴v 02+gL sin α=41g 2t 2+22t L ≥2222412tL t g ⋅=gL运动员从A 点滑至O 点,机械守恒有:mgh =21mv 02, ∴v 02=2gh ,∴L ≤)sin 1(2)sin 1(20αα-=-g ghg v =200(m)即L max =200(m),又41g 2t 2=22222t L t h S =+. ① ②∴θααcos 22cos cos ,20⋅====gL gh t v L S g L t 得cos θ=cos α,∴θ=α=30°∴L 最大值为200米,当L 最大时,起跳仰角为30°.[例3]如下图,某地一天从6时到14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b . (1)求这段时间的最大温差. (2)写出这段曲线的函数解析式.命题意图:本题以应用题的形式考查备考中的热点题型,要求考生把所学的三角函数知识与实际问题结合起来分析、思考,充分体现了“以能力立意”的命题原则.属★★★★级题目.知识依托:依据图象正确写出解析式.错解分析:不易准确判断所给图象所属的三角函数式的各个特定系数和字母. 技巧与方法:数形结合的思想,以及运用待定系数法确定函数的解析式. 解:(1)由图示,这段时间的最大温差是30-10=20(℃);(2)图中从6时到14时的图象是函数y =A sin(ωx +φ)+b 的半个周期的图象.∴ωπ221⋅=14-6,解得ω=8π,由图示A =21(30-10)=10,b =21(30+10)=20,这时y =10sin(8πx +φ)+20,将x =6,y =10代入上式可取φ=43π.综上所求的解析式为y =10sin(8πx +43π)+20,x ∈[6,14]. ●锦囊妙计本难点所涉及的问题及解决的方法主要有: 1.考查三角函数的图象和性质的基础题目,此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用.2.三角函数与其他知识相结合的综合题目,此类题目要求考生具有较强的分析能力和逻辑思维能力.在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.3.三角函数与实际问题的综合应用.此类题目要求考生具有较强的知识迁移能力和数学建模能力,要注意数形结合思想在解题中的应用.●歼灭难点训练 一、选择题1.(★★★★)函数y =-x ·cos x 的部分图象是( )2.(★★★★)函数f (x )=cos2x +sin(2π+x )是( ) A.非奇非偶函数 B.仅有最小值的奇函数C.仅有最大值的偶函数D.既有最大值又有最小值的偶函数二、填空题3.(★★★★)函数f (x )=(31)|cos x |在[-π,π]上的单调减区间为_________. 4.(★★★★★)设ω>0,若函数f (x )=2sin ωx 在[-4,3ππ,]上单调递增,则ω的取值范围是_________.三、解答题5.(★★★★)设二次函数f (x )=x 2+bx +c (b ,c ∈R ),已知不论α、β为何实数恒有f (sin α)≥0和f (2+cos β)≤0.(1)求证:b +c =-1; (2)求证c ≥3;(3)若函数f (sin α)的最大值为8,求b ,c 的值.6.(★★★★★)用一块长为a ,宽为b (a >b )的矩形木板,在二面角为α的墙角处围出一个直三棱柱的谷仓,试问应怎样围才能使谷仓的容积最大?并求出谷仓容积的最大值.7.(★★★★★)有一块半径为R ,中心角为45°的扇形铁皮材料,为了获取面积最大的矩形铁皮,工人师傅常让矩形的一边在扇形的半径上,然后作其最大内接矩形,试问:工人师傅是怎样选择矩形的四点的?并求出最大面积值.8.(★★★★)设-6π≤x ≤4π,求函数y =log 2(1+sin x )+log 2(1-sin x )的最大值和最小值.9.(★★★★★)是否存在实数a ,使得函数y =sin 2x +a ·cos x +85a -23在闭区间[0,2π]上的最大值是1?若存在,求出对应的a 值;若不存在,试说明理由.参考答案难点磁场证明:若x >0,则α+β>2π∵α、β为锐角,∴0<2π-α<β<2π;0<2π-β<2π,∴0<sin(2π-α)<sin β.0<sin(2π-β)<sin α,∴0<cos α<sin β,0<cos β<sin α,∴0<βsin cos α<1,0<αβsin cos <1,∴f (x )在(0,+∞)上单调递减,∴f (x )<f (0)=2.若x <0,α+β<2π,∵α、β为锐角,0<β<2π-α<2π,0<α<2π-β<2π,0<sin β<sin(2π-α),∴sin β<cosα,0<sin α<sin(2π-β),∴sin α<cos β,∴βαsin cos >1, αβsin cos >1,∵f (x )在(-∞,0)上单调递增,∴f (x )<f (0)=2,∴结论成立.歼灭难点训练一、1.解析:函数y =-x cos x 是奇函数,图象不可能是A 和C ,又当x ∈(0, 2π)时, y <0.答案:D2.解析:f (x )=cos2x +sin(2π+x )=2cos 2x -1+cos x =2[(cos x +81)2212-]-1. 答案:D二、3.解:在[-π,π]上,y =|cos x |的单调递增区间是[-2π,0]及[2π,π].而f (x )依|cos x |取值的递增而递减,故[-2π,0]及[2π,π]为f (x )的递减区间. 4.解:由-2π≤ωx ≤2π,得f (x )的递增区间为[-ωπ2,ωπ2],由题设得.230,23: 4232],2,2[]4,3[≤ω<∴≤ω⎪⎪⎩⎪⎪⎨⎧π≥ωππ-≤ωπ-∴ωπωπ-⊆ππ-解得 三、5.解:(1)∵-1≤sin α≤1且f (sin α)≥0恒成立,∴f (1)≥0∵1≤2+cos β≤3,且f (2+cos β)≤0恒成立.∴f (1)≤0. 从而知f (1)=0∴b +c +1=0.(2)由f (2+cos β)≤0,知f (3)≤0,∴9+3b +c ≤0.又因为b +c =-1,∴c ≥3. (3)∵f (sin α)=sin 2α+(-1-c )sin α+c =(sin α-21c +)2+c -()21(c +)2,当sin α=-1时,[f (sin α)]max =8,由⎩⎨⎧=++=+-0181c b c b 解得b =-4,c =3.6.解:如图,设矩形木板的长边AB 着地,并设OA =x ,OB =y ,则a 2=x 2+y 2-2xy cos α≥2xy -2xy cos α=2xy (1-cos α).∵0<α<π,∴1-cos α>0,∴xy ≤)cos 1(22α-a (当且仅当x =y 时取“=”号),故此时谷仓的容积的最大值V 1=(21xy sin α)b =2cos 41)cos 1(4sin 22αααb a b a =-.同理,若木板短边着地时,谷仓的容积V 的最大值V 2=41ab 2cos 2α, ∵a >b ,∴V 1>V 2从而当木板的长边着地,并且谷仓的底面是以a 为底边的等腰三角形时,谷仓的容积最大,其最大值为41a 2b cos 2α. 7.解:如下图,扇形AOB 的内接矩形是MNPQ ,连OP ,则OP =R ,设∠AOP =θ,则∠QOP =45°-θ,NP =R sin θ,在△PQO 中,︒=θ-︒135sin )45sin(RPQ ,∴PQ =2R sin(45°-θ).S 矩形MNPQ =QP ·NP =2R 2sin θsin(45°-θ)=22R 2·[cos(2θ-45°)-22]≤212-R 2,当且仅当cos(2θ-45°)=1,即θ=22.5°时,S 矩形MNPQ 的值最大且最大值为212-R 2.工人师傅是这样选点的,记扇形为AOB ,以扇形一半径OA 为一边,在扇形上作角AOP 且使∠AOP =22.5°,P 为边与扇形弧的交点,自P 作PN ⊥OA 于N ,PQ ∥OA 交OB 于Q ,并作OM ⊥OA 于M ,则矩形MNPQ 为面积最大的矩形,面积最大值为212-R 2. 8.解:∵在[-4,6ππ]上,1+sin x >0和1-sin x >0恒成立,∴原函数可化为y = log 2(1-sin 2x )=log 2cos 2x ,又cos x >0在[-4,6ππ]上恒成立,∴原函数即是y =2log 2cos x ,在x ∈[ -4,6ππ]上,22≤cos x ≤1. ∴log 222≤log 2cos x ≤log 21,即-1≤y ≤0,也就是在x ∈[-4,6ππ]上,y max =0,y mi n =-1.).(51212185,0cos ,0,02).(0423121854,2cos ,20,120),(2132012385,1cos ,2,12.1cos 0,20.21854)2(cos 2385cos cos 1:.9max 2max max 222舍去时则当即若舍去或时则当即若舍去时则当即时若时当解>=⇒=-==<<<-==⇒=-+==≤≤≤≤<=⇒=-+==>>≤≤π≤≤-++--=-++-=a a y x a a a a a a y a x a a a a a y x a a x x a a a x a x a x y综合上述知,存在23=a 符合题设.。