中考数学复习指导:浅谈中考数学规律探究题的解题方法(pdf)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈中考数学规律探究题的解题方法

新课标核心要求:用代数式表示数量关系及所反映的规律,发展学生的抽象思维能力。根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。它体现了“特殊到一般”数学思想方法,考察了学生的分析,解决问题的能力,观察、联想、归纳能力,以及探究能力和创新能力,题型可涉及填空,选择或解答,它是近几年中考试题的命题热点。

一、数式规律探究

通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:

1、一般地,常用字母n为正整数,从1开始。

2、在数据中,分清奇偶,记住常用表达式。

正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…

偶数…2n-2,2n,2n+2…

3、熟记常用的规律

正方形数:1、4、9、16...... n2三角形数:1、3、6、10……

(1)

2

n n+

折痕数:1、3、7、15……2n-1正整数和:1+2+3+4+…n=

(1)

2

n n+

数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:

1、观察法

找数学规律的题目,都会涉及到一个或者几个变化的量.所谓找规律,多数情况下,是指变量的变化规律.所以,抓住了变量,就等于抓住了解决问题的关键.而这些变量通常按照一定的顺序给出,揭示的规律,常常观察包含着事物的序列号与变量的关系.

例1:观察下列等式:①1×1

2

=1-

1

2

②2×

2

3

=2-

2

3

③3×

3

4

=3-

3

4

④4×4

5

=4-

4

5

……猜想第几个等式为(用含n的式子表示)

分析:将等式竖排:

①1×1

2

=1-

1

2

观察相应位置上变化的数字与序列号

②2×2

3

=2-

2

3

的对应关系(注意分清正整数的奇偶)

③3×3

4

=3-

3

4

易观察出结果为:

④4×4

5

=4-

4

5

1

n

n+

=n-

1

n

n+

例2:探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么

32009的个位数字是。

分析:这类问题,主要是通过观察末位数字,找出其循环节共几位,然后用指数除以循环节的位数,结果余几,就和第几个数的末位数字相同,易得出本

题结果为:3

2、函数法

数学规律,多数是函数的解析式.函数的解析式里常常包含着数学运算,所以,要求把变量和序列号放在一起,做一些计算,是解答找规律题的好途径.

例3、将一正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成更小的正三角形…,如此继续下去,结果如下表:

则a n= (用含n的代数式表示)

分析:对结果数据做求差处理(相邻两数求差,大数减小数)

正三角形个数:4、7、10、13 第一次求差结果相等,用一次函数y=kx+b

第一次求差: 3 3 3 代入(1、4)(2、7)解之得:y=3x+1

∴a n=3n+1

例4:有一组数:1、2、5、10、17、26……请观察这组数的构成规律,用你发现的规律确定第8个数为。

分析:对这组数据做求差处理:原数1 2 5 10 17 26

第一次求差:1 3 5 7 9

第二次求差:2 2 2 2

第二次求差结果相等,同二次函数y=ax2+bx+c 代入(1、1)(2、2)(3、5)解之得y= x2-2x+2=(x-1)2+1 ∴当=8时,y=50

练习:

1、观察下列等式:1×3=12+2×1;2×4=22+2×2;3×5=32+2×3……请将

你猜想到的规律用含自然数n(n≥1)的代数式表示出来:。

2、已知:2+2

3

=22×

2

3

;3+

3

8

=32×

3

8

;4+

4

15

=42×

4

15

;5+

5

24

=52×

5

24

…,若

10+b

a

=102×

b

a

符合前面式子的规律,则a+b= 。

3、观察下列等式:9-1=8;16-4=12;25-9=16;36-16=20……设n(n≥1)表示正

整数,用关于n的等式表示这个规律为。

4、下列一组按规律排列的数:1,2,4,8,16……第2010个数是。

5、观察下列等式:71=7,72=49,73=343,74=2041……由此可判断7100的个位数字是。

6、小说《达·芬奇密码》中的一个故事里出现了一串神密排列的数:1,1,2,3,5,8……则这列数的第8个数是。

二、图形规律探究

由结构类似,多少和位置不同的几何图案的图形个数之间也有一定的规律可寻,并且还可以由一个通用的代数式来表示。这种探索图形结构成元素的规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律,再用函数法、观察法解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题。

拆图法

探索发现有关图形所具有的规律性或不变性的问题,它往往给出了一组变化了的图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律

例5.如图,由若干火柴棒摆成的正方形,第①图用了4根火柴,第②图用了7根火柴棒,第③图用了10根火柴棒,依次类推,第⑩图用根火柴棒,摆第n个图时,要用根火柴棒。

相关文档
最新文档