15年高考真题——理科数学(新课标I卷)

合集下载

2015年全国卷1(理科数学)含答案

2015年全国卷1(理科数学)含答案

绝密★启用前2015年普通高等学校招生全国统一考试理科数学(全国Ⅰ卷)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设复数z 满足=i ,则|z |=【A 】 (A )1 (B(C(D )2(2)sin20°cos 10°-con 160°sin10°=【D 】 (A ) (B (C ) (D ) (3)设命题P :n N ,>,则P 为【C 】(A )n N , > (B ) n N , ≤ (C )n N , ≤ (D ) n N , =(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为【A 】 (A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知M (x 0,y 0)是双曲线C :上的一点,F 1、F 2是C 上的两个焦点,若<0,则y 0的取值范围是【A 】1+z1z-12-12∃∈2n 2n⌝∀∈2n 2n ∃∈2n 2n∀∈2n 2n ∃∈2n 2n2212x y -=12MF MF ⋅(A )()(B )()(C )(,) (D )() (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有【B 】(A )14斛 (B )22斛 (C )36斛 (D )66斛(7)设D 为ABC 所在平面内一点,则【A 】(A ) (B )(C ) (D )(8)函数f (x )=的部分图像如图所示,则f (x )的单调递减区间为【D 】(A )(),k (b )(),k(C )(),k (D )(),k3-33BC CD =1433AD AB AC =-+1433AD AB AC=-4133AD AB AC =+4133AD AB AC =-(9)执行右面的程序框图,如果输入的t =0.01,则输出的n =【C 】 (A )5 (B )6 (C )7 (D )8(10)的展开式中,的系数为【C 】(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体, 该几何体三视图中的正视图和俯视图如图所示.若该几何体的 表面积为16 + 20,则r =【B 】 (A )1 (B )2 (C )4 (D )812.设函数f (x )=e x(2x -1)-ax +a ,其中a 1,若存在唯一的 整数x 0,使得f (x 0)0,则a 的取值范围是【D 】25()x x y ++52x y π2rr正视图俯视图r2rA .[,1)B . [)C . [)D . [,1)第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若函数f (x )=xln (x)为偶函数,则a = 1 .(14)一个圆经过椭圆的三个顶点,且圆心在x 轴上,则该圆的标准方程为.(15)若x ,y 满足约束条件,则的最大值为 3 .(16)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,(Ⅰ)求{a n }的通项公式: (Ⅱ)设,求数列}的前n 项和解:(I )由,可知可得即由于可得又,解得32e -33,24e -33,24e 32e 22325()24x y ±+=10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩yx 2243n n n a a S +=+211124 3.n n n a a S ++++=+221112()4n n n n a a a a a +++-+-=2211112()()()n n n n n n a a a a a a a a +++++=-=+-0n a >1 2.n n a a +-=2111243a a a +=+111()3a a =-=舍去,所以是首相为3,公差为2的等差数列,通项公式为(II )由设数列的前n 项和为,则(18)如图,四边形ABCD 为菱形,∠ABC =120°, E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD , DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC(2)求直线AE 与直线CF 所成角的余弦值解:(I )连结BD ,设BDAC=G ,连结EG ,FG ,EF.在菱形ABCD 中不妨设GB=1.由ABC=120°,可得AG=GC=.由 BE 平面ABCD, AB=BC 可知AE=EC. 又AE EC ,所以EG=,且EG AC.在Rt EBG 中,可得BE=故DF=.在Rt FDG 中,可得FG=. 在直角梯形BDFE 中,由BD=2,BE=,DF=,{}n a 2 1.n a n =+21n a n =+111111().(21)(23)22123n n b a a n n n n +===-++++{}n b n T 12n nT b b b =+++1111111()()()()235572123.3(23)n n n n ⎡⎤=-+-++-⎢⎥++⎣⎦=+∠3⊥⊥3⊥∆222∆62222ABCFED可得FE=.从而又因为所以平面(I )如图,以G 为坐标原点,分别以GB ,GC 的方向为x 轴,y 轴正方向,为单位长,建立空间直角坐标系G-xyz.由(I )可得所以 故所以直线AE 与直线CF 所成直角的余弦值为.(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.2222,EG FG EF EG FG +=⊥所以,.ACFG G EG AFC =⊥可得平面EG AEC ⊂平面AEC AFC ⊥平面GB(0(10(10),(02A E F C --,,,(132),(1AE CF ==-,,cos ,3AE CF AE CF AE CF ⋅==-⋅3-)2-)2-)(y i))(y i -)46.6 56.3 6.8289.81469108.8表中w i =, ,=(Ⅰ)根据散点图判断,y =a +bx 与y =c +哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(i ) 年宣传费x =49时,年销售量及年利润的预报值是多少?(ii )年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v =u 的斜率和截距的最小二乘估计分别为:解: (I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程类型。

2015年全国高考数学(理科)新课标1卷真题及答案

2015年全国高考数学(理科)新课标1卷真题及答案

2015年全国高考数学(理科)新课标1卷真题及答案绝密★启封并使用完毕前试题类型:A 2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

=i,则|z|=(1)设复数z满足1+z-1z(A)1 (B2(C3(D)2 (2)sin20°cos10°-con160°sin10°=(A)3(B)3(C)1-(D)122(3)设命题P:∃n∈N,2n>2n,则⌝P为堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A.14斛 B.22斛 C.36斛 D.66斛(7)设D 为ABC 所在平面内一点CD BC 3=,则(A )AC AB AD 3431+-= (B) AC AB AD 3431-= (C )AC AB AD 3134+= (D) AC AB AD 3134-=(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Zππ-+∈(C) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)25()++的展开式中,52x y的系数x x y为(A)10 (B)20 (C)30(D)60(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

2015年新课标1卷理科数学高考真题与答案

2015年新课标1卷理科数学高考真题与答案

掌门1对1教育 高考真题绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设复数z 满足1+z1z-=i ,则|z |=(A )1 (B (C D )2 (2)sin 20°cos 10°-con 160°sin 10°=(A )B (C )12- (D )12(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N , 2n >2n (B )∃ n ∈N , 2n ≤2n (C )∀n ∈N , 2n ≤2n (D )∃ n ∈N , 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若12MF MF ⋅u u u u r u u u u r<0,则y 0的取值围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233) (6)《九章算术》是我国古代容极为丰富的数学名著,书中有如下问题:“今有委米依垣角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛(7)设D 为ABC 所在平面一点3BC CD =u u u r u u u r,则(A ) 1433AD AB AC =-+u u u r u u ur u u u r (B ) 1433AD AB AC =-u u u r u u u r u u u r(C ) 4133AD AB AC =+u u u r u u u r u u u r (D ) 4133AD AB AC =-u u u r u u u r u u u r(8)函数f (x )=的部分图像如图所示,则f (x )的单调递减区间为(A )(),k (b )(),k(C )(),k (D )(),k(9)执行右面的程序框图,如果输入的t =0.01,则输出的n = (A )5 (B )6 (C )7 (D )8(10)25()x x y ++的展开式中,52x y 的系数为(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体, (12)该几何体三视图中的正视图和俯视图如图所示.若该几何体的 (13)表面积为16 + 20π,则r = (A )1 (B )2 (C )4 (D )812.设函数f (x )=e x (2x -1)-ax +a ,其中a 1,若存在唯一的 整数x 0,使得f (x 0)0,则a 的取值围是( )A .[32e -,1)B . [33,24e -)C . [33,24e )D . [32e ,1)第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若函数f (x )=xln (x +2a x +)为偶函数,则a =(14)一个圆经过椭圆的三个顶点,且圆心在x 轴上,则该圆的标准方2rr正视图俯视图r2r程为 .(15)若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .(16)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值围是 .三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,(Ⅰ)求{a n }的通项公式: (Ⅱ)设,求数列}的前n 项和(18)如图,四边形ABCD 为菱形,∠ABC =120°, E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC(2)求直线AE 与直线CF 所成角的余弦值(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x ry u rw u r11x +∑(x 1-x r )211x +∑(w 1-w u r )211x +∑(x 1-x r )(y-y u r )11x +∑(w 1-w u r )(y -y u r )46.6 56.3 6.8289.8 1.6 1469108.8表中w 1 x 1, ,w u r =18111x w +∑A B C FED年宣传费(千元)年销售量(Ⅰ)根据散点图判断,y =a +bx 与y =c +哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(i ) 年宣传费x =49时,年销售量及年利润的预报值是多少? (ii ) 年宣传费x 为何值时,年利率的预报值最大? 附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:···121()(),()niii ni i u u v v v u u u βαβ==--==--∑∑(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y =kx +a (a >0)交于M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.(21)(本小题满分12分)已知函数f (x )=31,()ln 4x ax g x x ++=-(Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)(本题满分10分)选修4-1:几何证明选讲如图,AB 是☉O 的直径,AC 是☉O 的切线,BC 交☉O 于点E(I ) 若D 为AC 的中点,证明:DE 是☉O 的切线; (II ) 若OA CE ,求∠ACB 的大小.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中.直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (I ) 求1C ,2C 的极坐标方程; (II ) 若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求△C 2MN 的面积(24)(本小题满分10分)选修4—5:不等式选讲已知函数=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值围2a 243n n n a S +=+2015年普通高等学校招生全国统一考试 理科数学试题答案A 卷选择题答案 一、 选择题(1)A (2)D (3)C (4)A (5)A (6)B (7)A (8)D (9)C (10)C (11)B (12)D A 、B 卷非选择题答案 二、填空题(13)1 (14) 22325()24x y ±+= (15)3(16)二、解答题(17)解:(I )由2243n n n a a S +=+,可知211124 3.n n n a a S ++++=+ 可得221112()4n n n n a a a a a +++-+-= 即2211112()()()n n n n n n a a a a a a a a +++++=-=+-由于0n a >可得1 2.n n a a +-=又2111243a a a +=+,解得111()3a a =-=舍去,所以{}n a 是首相为3,公差为2的等差数列,通项公式为2 1.n a n =+ (II )由21n a n =+111111().(21)(23)22123n n b a a n n n n +===-++++ 设数列{}n b 的前n 项和为n T ,则12n n T b b b =+++L1111111()()()()235572123.3(23)n n n n ⎡⎤=-+-++-⎢⎥++⎣⎦=+L(18)解:(I )连结BD ,设BD I AC=G ,连结EG ,FG ,EF.在菱形ABCD 中不妨设GB=1.由∠ABC=120°, 可得AG=GC=3.由BE ⊥平面ABCD, AB=BC 可知AE=EC.又AE ⊥EC ,所以EG=3,且EG ⊥AC.在Rt ∆EBG 中, 可得BE=2故DF=22.在Rt ∆FDG 中,可得FG=62. 在直角梯形BDFE 中,由BD=2,BE=2,DF=22, 可得FE=322.从而222,EG FG EF EG FG +=⊥所以 又,.AC FG G EG AFC =⊥I 可得平面因为EG AEC ⊂平面 所以平面AEC AFC ⊥平面(III ) 如图,以G 为坐标原点,分别以GB ,GC 的方向为x 轴,y 轴正方向,GB u u u r为单位长,建立空间直角坐标系G-xyz.由(I )可得2(03,0),(102),(10(03,0)A E F C --,,,,,,所以232),(3,AE CF ==-u u u r u u u r ,,故3cos ,AE CF AE CF AE CF ⋅==⋅u u u r u u u ru u u r u u u r u u ur u u u r 所以直线AE 与直线CF 3.(19)解:(I )由散点图可以判断,y c =+适宜作为年销售量y 关于年宣传费x 的回归方程类型。

2015年高考理科数学全国卷(新课标I卷)含答案(解析版)

2015年高考理科数学全国卷(新课标I卷)含答案(解析版)

4 1 AB AC 3 3
4 1 AB AC 3 3
1 1 1 4 试题分析:由题知 AD AC CD AC BC AC ( AC AB) = AB AC ,故选 A. 3 3 3 3
考点:平面向量运算
(8) 函数 f ( x) = cos( x ) 的部分图像如图所示,则 f ( x) 的单调递减区间为 (A)( ),k (b)( ),k
考点:函数的奇偶性
(14)一个圆经过椭圆
x2 y 2 1 的三个顶点,且圆心在 x 轴上,则该圆的标准方程为 16 4

3 25 【答案】 ( x )2 y 2 2 4
【解析】
3 试题分析:设圆心为( a ,0) ,则半径为 4 | a | ,则 (4 | a |) 2 | a | 2 2 2 ,解得 a ,故圆的 2 3 25 方程为 ( x )2 y 2 .学科网 2 4
【解析】 试题分析: (Ⅰ)先用数列第 n 项与前 n 项和的关系求出数列{ an }的递推公式,可以判断数列{ an }是等差
数列,利用等差数列的通项公式即可写出数列{ an }的通项公式; (Ⅱ)根据(Ⅰ)数列{ bn }的通项公式, 再用拆项消去法求其前 n 项和. 学科网
试题解析: (Ⅰ)当 n 1 时, a12 2a1 4S1 3 4a1 +3 ,因为 an 0 ,所以 a1 =3,
考点:数列前 n 项和与第 n 项的关系;等差数列定义与通项公式;拆项消去法
(18)如图, ,四边形 ABCD 为菱形,∠ABC=120°,E,F 是平面 ABCD 同一侧的两点,BE⊥平 面 ABCD,DF⊥平面 ABCD,BE=2DF,AE⊥EC。 (1)证明:平面 AEC⊥平面 AFC (2)求直线 AE 与直线 CF 所成角的余弦值

2015年全国高考理科数学试题及答案

2015年全国高考理科数学试题及答案

绝密★启封并使用完毕前试题类型:A 2015年普通高等学校招生全国统一考试(全国卷1)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z满足1+z1z-=i,则|z|=(A)1 (B2(C3(D)2 (2)sin20°cos10°-con160°sin10°=(A)3(B3(C)12-(D)12(3)设命题P:∃n∈N,2n>2n,则⌝P为(A)∀n∈N, 2n>2n(B)∃ n∈N, 2n≤2n(C)∀n∈N, 2n≤2n(D)∃ n∈N, 2n=2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B)0.432 (C)0.36 (D)0.312(5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF <,则0y 的取值范围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C )4133AD AB AC =+ (D) 4133AD AB AC =-(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A)13(,),44k k k Z ππ-+∈ (B) 13(2,2),44k k k Z ππ-+∈ (C) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A )5 (B )6 (C )7 (D )8(10)25()x x y ++的展开式中,52x y 的系数为(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

2015年高考真题——理科数学(新课标Ⅰ卷)Word版含解析(答案)

2015年高考真题——理科数学(新课标Ⅰ卷)Word版含解析(答案)

绝密★启封并使用完毕前试题类型:A一.选择题:1-5 ADCAA 6-10 BADCC 11.12 BD 二、填空题:13. 1 14.22325()24x y ±+= 15.3 16.) 三.解答题:17. 【解析】试题分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.试题解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3, 当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +; (Ⅱ)由(Ⅰ)知,n b =1111()(21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++ =1111111[()()()]235572123n n -+-++-++ =11646n -+. 考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法 18.∴222EG FG EF +=,∴EG ⊥FG ,∵AC∩FG=G ,∴EG ⊥平面AFC , ∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC . ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (00),E(1,0,,F (-1,0,C (00),∴AE =(1,CF =(-1,) (10)分故cos ,||||AE CF AE CF AE CF ∙<>==.所以直线AE 与CF 所成的角的余弦值为3. ……12分 考点:空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力 19.y=+分∴y关于x的回归方程为 100.6考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20.【解析】试题分析:(Ⅰ)先求出M,N的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而=+代入曲线C的方程整理成关于x的一元二次方程,设出M,N的坐不求思想即将y kx a标和P点坐标,利用设而不求思想,将直线PM,PN的斜率之和用a表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a处的切线方程为y a x -=-0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. ……5分 (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a +. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意. ……12分考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力21.【解析】试题分析:(Ⅰ)先利用导数的几何意义列出关于切点的方程组,解出切点坐标与对应的a 值;(Ⅱ)根据对数函数的图像与性质将x 分为1,1,01x x x >=<<研究()h x 的零点个数,若零点不容易求解,则对a 再分类讨论. 试题解析:(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==-. 因此,当34a =-时,x 轴是曲线()y f x =的切线. ……5分(Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,+∞)无零点. 当x =1时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===,故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h fg f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时,()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.…10分综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点. ……12分考点:利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想22.选修4-1:几何证明选讲考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理23.【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积.试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ|MN|=1ρ-2ρ因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12.考点:直角坐标方程与极坐标互化;直线与圆的位置关系24. 【解析】试题分析:(Ⅰ)利用零点分析法将不等式f (x )>1化为一元一次不等式组来解;(Ⅱ)将()f x 化为分段函数,求出()f x 与x 轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于a 的不等式,即可解出a 的取值范围.考点:含绝对值不等式解法;分段函数;一元二次不等式解法。

2015年全国Ⅰ卷高考理科数学试题及答案

2015年全国Ⅰ卷高考理科数学试题及答案

2015年全国Ⅰ卷高考理科数学试题及答案注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设复数z 满足1+z1z-=i ,则|z|=(A )1 (B (C (D )2【解析】1+1zi z =-可得1(1)(1)1(1)(1)i i i z i i i i ---===++-,故可得||1z =,选择A.【点评】本题考查复数的运算。

该题目在 高二数学(理)强化提高班 课程讲座 第四章 复数 第02讲 模的运算部分做了专题讲解,高考原题与讲义中给出的题目只是数字不同,考查的知识点及解题方法完全相同。

(2)sin20°cos10°-cos160°sin10°=(A ) (B (C )12- (D )12【解析】本题三角函数公式,故可得1sin 20cos10-cos160sin10=sin 20cos10-cos 180-20sin10=sin 20cos10+cos 20sin10=sin 20+10=sin 30=2。

()(),选择D.【点评】本题考查三角函数公式。

该题目在数学(理)强化提高班 课程讲座 第八章 三角函数 第01讲 三角函数(一)部分做了专题讲解,高考原题与讲义中给出的题目只是数字不同,考查的知识点及解题方法完全相同。

(3)设命题P :∃n ∈N ,2n >2n,则⌝P 为(A )∀n ∈N, 2n >2n(B )∃ n ∈N, 2n ≤2n(C )∀n ∈N, 2n ≤2n(D )∃ n ∈N, 2n =2n【解析】本题考查命题的否定,条件和结论都需要否定,因此选择C.【点评】本题考查命题的否定。

2015高考数学理科全国一卷及详解答案

2015高考数学理科全国一卷及详解答案

2015高考数学理科全国一卷及详解答案理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

=i,则|z|=(1)设复数z满足1+z-1z(A)1 (B2(C3(D)2 (2)sin20°cos10°-con160°sin10°=(A)3(B)3(C)1-(D)2内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C )4133AD AB AC =+ (D) 4133AD AB AC =- (8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x的单调递减区间为 (A)13(,),44k k k Z ππ-+∈ (B) 13(2,2),44k k k Z ππ-+∈ (C) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A )5 (B )6 (C )7 (D )8(10)25++的展开式中,52x y的系数为x x y()(A)10 (B)20 (C)30 (D)60 (11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

15年高考真题——理科数学(新课标I卷)

15年高考真题——理科数学(新课标I卷)

2015年普通高等学校招生全国统一考试新课标I 卷数学(理科)一.选择题:本大题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足11zi z+=-,则||z =( ) (A )1 (B(C(D )2 2.0sin 20cos10cos160sin10-=( ) (A)BC )12-(D )123.设命题p :n N ∃∈,22n n >,则p ⌝为( ) (A )n N ∀∈,22n n > (B )n N ∃∈,22n n ≤ (C )n N ∀∈,22n n ≤ (D )n N ∃∈,22n n = 4.投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.3125.已知()00,M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( ) (A)() (B)()(C)()- (D)()-6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图),米堆为一个圆锥的四分之一,米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7.设D 为ABC ∆所在平面内一点3BC CD =,则( ) (A )1433AD AB AC =-+ (B )1433AD AB AC =- (C )4133AD AB AC =+ (D )4133AD AB AC =-8.函数()()cos f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )()13,44k k k Z ππ⎛⎫-+∈ ⎪⎝⎭54141yxO(B )()132,244k k k Z ππ⎛⎫-+∈ ⎪⎝⎭(C )()13,44k k k Z ⎛⎫-+∈ ⎪⎝⎭ (D )()132,244k k k Z ⎛⎫-+∈ ⎪⎝⎭9.执行右面的程序框图,如果输入的0.01t =,则输出的n = ( ) (A )5 (B )6 (C )7 (D )810.()52x x y ++的展开式中,52x y 的系数为( ) (A )10 (B )20 (C )30 (D )6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

2015年新课标全国卷Ⅰ高考数学(理科)试题及答案(完整版)

2015年新课标全国卷Ⅰ高考数学(理科)试题及答案(完整版)

2015 年新课标全国卷Ⅰ高考数学 (理科) 试 题及答案(完整版)第Ⅰ卷 一.选择题:共 12 小题,每小题 5 分,共 60 分。

在每个小题给出的四个选项中,只有一项 是符合题目要求的一项。

5.4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公 益活动的概率7.执行下图的程序框图,若输入的 a,b,k 分别为 1,2,3,则输出的 M=9.不等式组的解集记为 D.有下面四个命题:其中真命题是第Ⅱ卷 本卷包括必考题和选考题两个部分。

第(13)题-第(21)题为必考题,每个考生都必须作 答。

第(22)题-第(24)题为选考题,考生根据要求作答。

二.填空题:本大题共四小题,每小题 5 分。

14.甲、乙、丙三位同学被问到是否去过 A,B,C 三个城市时, 甲说:我去过的城市比乙多,但没去过 B 城市; 乙说:我没去过 C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .2015 年大学生就业的形势越来越严峻,大学生就业不如自己创业,没资金,没 经验, 没背景, 我们如何才能实现创业的梦想呢! 给你推荐一位非常优秀的老师, 网上老火了,还帮助了很多普通人实现了梦想,百度---振远老师 QQ 2909079022 希望能帮到你!15.三.解答题:解答应写出文字说明,证明过程或演算步骤。

18. (本小题满分 12 分)从某企业的某种产品中抽取 500 件, 测量这些产品的一项质量指标值, 由测量结果得如下频率分布直方图:(i)利用该正态分布,求 P(187.8<Z<212.2); (ii)某用户从该企业购买了 100 件这种产品,记 X 表示这 100 件产品中质量指标值为于区 间(187.8,212.2)的产品件数,利用(i)的结果,求 EX.(Ⅰ) 求 a3+b3 的最小值; (Ⅱ)是否存在 a,b,使得 2a+3b=6?并说明理由2015 年最新普通高等学校招生全国统一考试(课标 I 文科卷) 数学(文科) 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 在每小题给出的四个选项中,只有 一项是符合题目要求的。

2015高考数学理科全国一卷及详解答案

2015高考数学理科全国一卷及详解答案

理科数学注意事项:1。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页.2。

答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效.4。

考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z满足1+z1z-=i,则|z|=(A)1 ((C(D)2 (2)sin20°cos10°—con160°sin10°=(A)(B)12- (D)12(3)设命题P:∃n∈N,2n〉2n,则⌝P为(A)∀n∈N,2n>2n(B)∃ n∈N,2n≤2n(C)∀n∈N, 2n≤2n (D)∃ n∈N,2n=2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0。

6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B )0.432 (C )0。

36 (D)0。

312(5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF <,则0y 的取值范围是(A )(-33,33) (B )(—36,36) (C )(223-,223) (D )(233-,233)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛 B 。

22斛 C.36斛 D 。

66斛(7)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C)4133AD AB AC =+ (D ) 4133AD AB AC =-(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A)13(,),44k k k Z ππ-+∈ (B) 13(2,2),44k k k Z ππ-+∈ (C ) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A )5 (B)6 (C )7 (D )8(10)25()x x y ++的展开式中,52x y 的系数为(A )10 (B)20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =(A )1(B)2(C )4 (D)812. 设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A.3[,1)2e - B. 33[,)24e - C. 33[,)24e D. 3[,1)2e第II 卷本卷包括必考题和选考题两部分。

精编2015年高考真题理科高中数学新课标ⅰ卷试卷和答案

精编2015年高考真题理科高中数学新课标ⅰ卷试卷和答案

绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

=i,则|z|=(1)设复数z满足1+z1z(A)1 (B(C)(D)2【答案】A(2)sin20°cos10°-con160°sin10°=(A ) (B (C )12- (D )12【答案】D【解析】原式=sin20°cos10°+cos20°sin10°=sin30°=12,故选D.(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n【答案】C【解析】p ⌝:2,2n n N n ∀∈≤,故选C.(4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A )0.648 (B )0.432(C )0.36(D )0.312【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.(5)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF ∙2MF <0,则y 0的取值范围是(A )(-3,3(B )(-66)(C )(3-,3) (D )(【答案】A(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年普通高等学校招生全国统一考试新课标I 卷数学(理科)一.选择题:本大题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足11zi z+=-,则||z =( ) (A )1 (B(C(D )2 2.0sin 20cos10cos160sin10-=( ) (A)BC )12-(D )123.设命题p :n N ∃∈,22n n >,则p ⌝为( ) (A )n N ∀∈,22n n > (B )n N ∃∈,22n n ≤ (C )n N ∀∈,22n n ≤ (D )n N ∃∈,22n n = 4.投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.3125.已知()00,M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( ) (A)() (B)()(C)()- (D)()-6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图),米堆为一个圆锥的四分之一,米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7.设D 为ABC ∆所在平面内一点3BC CD = ,则( ) (A )1433AD AB AC =-+(B )1433AD AB AC =- (C )4133AD AB AC =+ (D )4133AD AB AC =- 8.函数()()cos f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )()13,44k k k Z ππ⎛⎫-+∈ ⎪⎝⎭54141yxO(B )()132,244k k k Z ππ⎛⎫-+∈ ⎪⎝⎭(C )()13,44k k k Z ⎛⎫-+∈ ⎪⎝⎭ (D )()132,244k k k Z ⎛⎫-+∈ ⎪⎝⎭9.执行右面的程序框图,如果输入的0.01t =,则输出的n = ( ) (A )5 (B )6 (C )7 (D )810.()52x x y ++的展开式中,52x y 的系数为( ) (A )10 (B )20 (C )30 (D )6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )812.设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是( ) (A )3,12e ⎡⎫-⎪⎢⎣⎭ (B )33,24e ⎡⎫-⎪⎢⎣⎭(C )33,24e ⎡⎫⎪⎢⎣⎭ (D )3,12e ⎡⎫⎪⎢⎣⎭二.填空题:本大题共4小题,每小题5分。

13.若函数()(ln f x x x =为偶函数,则a =______。

14.一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为_____________。

15.若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为__________。

16.在平面四边形ABCD 中,已知075A B C ∠=∠=∠=,2BC =,则AB 的取值范围是___________。

三.解答题:解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)n S 为数列{}n a 的前n 项和,已知0n a >,2243n n n a a S +=+。

俯视图正视图⑴求{}n a 的通项公式;⑵设11n n n b a a +=,求数列{}n b 的前n 项和。

18.(本小题满分12分)如图,四边形ABCD 为菱形,0120ABC ∠=,,E F 是平面ABCD 同侧两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥。

⑴证明:平面AEC ⊥平面AFC ;⑵求直线AE 与直线CF 所成角的余弦值。

19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量()1,2,,8i y i = 数据作了初步处理,得到下面的散点图及一些统计量的值。

表中i w =8118i i w w ==∑。

⑴根据散点图判断,y a bx =+与y c =+个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由);⑵根据⑴的判断结果及表中数据,建立y 关于x 的回归方程;⑶已知这种产品的年利率z 与,x y 的关系为0.2z y x =-。

根据⑵的结果回答下列问题:①年宣传费49x =时,年销售量及年利润的预报值是多少?②年宣传费x 为何值时,年利率的预报值最大?(附:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:()()()121=niii ni i u u v v u uβ==---∑∑, =v u αβ-) 20.(本小题满分12分) 在直角坐标系xOy 中,曲线C :24x y =与直线()0y kx a a =+>交于,M N 两点。

⑴当0k =时,分别求C 在点M 和N 处的切线方程;⑵y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由。

FEDCBA21.(本小题满分12分)已知函数()314f x x ax =++,()ln g x x =-。

⑴当a 为何值时,x 轴为曲线()y f x =的切线;⑵用{}min ,m n 表示,m n 中的最小值,设函数()()(){}()min ,0h x f x g x x => ,讨论()h x 零点的个数。

请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,做答时请写清题号。

22.(本小题满分10分)如图,AB 是⊙O 的直径,AC是⊙O 的切线,BC 交⊙O 于E 。

⑴若D 为AC 的中点,证明:DE 是⊙O 的切线;⑵若OA =,求A C B ∠的大小。

23.(本小题满分10分)在直角坐标系xOy 中,直线1C :2x =-,圆2C :()()22121x y -+-=。

以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系。

⑴求1C ,2C 的极坐标方程;⑵若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为,M N ,求2C MN ∆的面积。

24.(本小题满分10分)已知函数()()|1|2||0f x x x a a =+-->。

⑴当1a =时,求不等式()1f x >的解集;⑵若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围。

2015年普通高校招生全国统考数学试卷新课标I 卷解答一.ADCAA BADCC BD二.13.1;14.2232524x y ⎛⎫±+= ⎪⎝⎭;15.3;16.17.解:⑴由题2111124343a a S a +=+=+,因为0n a >,所以13a =。

当2n ≥时,2211224n n n n n a a a a a --+--=,即()()()1112n n n n n n a a a a a a ---+-=+,因为0n a >,所以12n n a a --=,所以数列{}n a 是首项为3,公差为2的等差数列,所以21n a n =+;⑵由⑴得()()1111212322123n b n n n n ⎛⎫==- ⎪++++⎝⎭,所以数列{}n b 的前n 项和为12111111111235572123646n b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎣⎦ 。

D BA18.解:⑴连BD ,设BD AC G = ,连,,EG FG EF 。

在菱形ABCD 中,设1GB =,易得AG GC ==BE ⊥平面ABCD ,AB BC =可知AE EC =。

又AE EC ⊥,故EG =,EG ⊥AC 。

在Rt EBG ∆中,可得BE,故DF =。

在Rt FDG ∆中,可得FG =。

在直角梯形BDFE中,易得EF =,故222EG FG EF +=,因此EG FG ⊥。

又FG AC G = ,故EG ⊥平面AFC 。

因EG ⊂平面AEC ,故平面AEC ⊥平面AFC ;⑵如图,以G 为坐标原点,分别以,GB GC 的方向为,x y 轴正方向,||GB为单位长度,建立空间直角坐标系G xyz -。

由⑴可得()0,A,(E,()F -,()C,故(AE =,()1,CF =-,因此cos ,3||||AE CF AE CF AE CF ⋅==-。

所以直线AE 与CF。

19.解:⑴由散点图可以判断,y c =+y 关于年宣传费用x 的回归方程类型;⑵令w =,先建立y 关于w 的回归方程。

因 ()()()81821108.8=6816iii i i w w y y dw w==--==-∑∑,故 56368 6.8100.6c y dw =-=-⨯= ,所以y 关于x 的回归方程为100.6y =+⑶①由⑵知,当49x =时,年销售量y 的预报值100.6576.6y =+=,年利润z的预报值576.60.24966.32z=⨯-= ; ②由⑵知,年利润z的预报值(0.2100.620.12zx x =+-=-+,当6.8=即46.24x =时,z取得最大值。

故宣传费用为46.24千元时,年利润预报值最大。

20.解:⑴由题设可得()M a,()N a -,或()M a -,()N a 。

z yxGFEDCBA因12y x'=,故24xy=在x=C在()a处的切线方程为y a x-=-,y a--=;24xy=在x=-C在()a-处的切线方程为y a x-=+,y a++=。

故所求切线方程为0y a--=y a++=;⑵存在符合题意的点,证明如下:设()0,P b为符合题意得点,()11,M x y,()22,N x y,直线,PM PN的斜率分别为12,k k。

相关文档
最新文档