The_Effect_of_High_Load_Vs__High_Repetition.21
Autodesk Nastran 2023 参考手册说明书
FILESPEC ............................................................................................................................................................ 13
DISPFILE ............................................................................................................................................................. 11
File Management Directives – Output File Specifications: .............................................................................. 5
BULKDATAFILE .................................................................................................................................................... 7
SRAM 设计介绍2007
Static Read Access Memory (SRAM) DesignAbhinandan Majumdar MS. Computer Engineering am2993@Srinivas Satish MS. Computer Engineering ssn2111@December 10, 2007Final ProjectEE 4321VLSI Circuits Prof. Azeez BhavnagarwalaI DEX1.I TRODUCTIO (1)1.1 Design (1)1.2 SRAM Operation (2)1.3 Applications and Uses (3)2.DESIG (5)2.1 Block Diagram (5)2.2 Decoder (6)2.2.1 2 Input And Gate Design (7)2.2.2 3 Input And Gate Design (11)2.2.3 3x8 Decoder (13)2.2.4 6x64 Decoder (14)2.2.5 Decoder Resizing (15)2.3 SRAM Cell and Array Design (17)2.3.1 Precharge Circuitry (17)2.3.2 SRAM Cell (18)2.3.3 Read Sensing Circuit (19)2.3.4 Write Driver (19)2.3.5 SRAM Array (20)2.3.6 SRAM Cell with Decoder (20)2.3.7 Read Stability (21)2.4 DC Simulation (22)2.4.1 Static Noise Margin (SNM) (21)2.4.2 Cell Read Current (23)2.4.3 Effect of Threshold Voltage (V t) (24)YOUT (27)3.1 Decoder (27)3.1.1 AND2 Gate (27)3.1.2 AND3 Gate (28)3.1.3 3x8 Decoder (29)3.1.4 6x64 Decoder (29)3.2 SRAM (30)3.2.1 Precharge (30)3.2.2 Read Sensing Circuit (31)3.2.3 SRAM 64x64 Array (32)4.RESULTS (35)4.1 Simulation Results (35)4.1.1 Simulation of One SRAM Cell (35)4.1.2 Simulation of 64x64 SRAM Array (36)4.2 DRC & LVS Results (37)5.CO CLUSIO (38)6.REFERE CES (39)1.I TRODUCTIOStatic random access memory (SRAM) is a type of semiconductor memory. The word "static" indicates that the memory retains its contents as long as power remains applied, unlike dynamic RAM (DRAM) that needs to be periodically refreshed.DesignFig 1.1 A six-transistor CMOS SRAM cell.Random access means that locations in the memory can be written to or read from in any order, regardless of the memory location that was last accessed.Each bit in an SRAM is stored on four transistors that form two cross-coupled inverters. This storage cell has two stable states which are used to denote 0 and 1. Two additional access transistors serve to control the access to a storage cell during read and write operations. It thus typically takes six MOSFETs to store one memory bit.Access to the cell is enabled by the word line (WL in figure) which controls the two access transistors M5 and M6 which, in turn, control whether the cell should be connected to the bit lines: BL and BL’. They are used to transfer data for both read and write operations. While it's not strictly necessary to have two bit lines, both the signal and its inverse are typically provided since it improves noise margins.During read accesses, the bit lines are actively driven high and low by the inverters in the SRAM cell. This improves SRAM speed compared to DRAMs—in a DRAM, the bit line is connected to storage capacitors and charge sharing causes the bitline to swing upwardsor downwards. The symmetric structure of SRAMs also allows for differential signaling, which makes small voltage swings more easily detectable. Another difference with DRAM that contributes to making SRAM faster is that commercial chips accept all address bits at a time. By comparison, commodity DRAMs have the address multiplexed in two halves, i.e. higher bits followed by lower bits, over the same package pins in order to keep their size and cost down.The size of an SRAM with m address lines and n data lines is 2m words, or 2m × n bits.1.2. SRAM operationA SRAM cell has three different states it can be in: standby where the circuit is idle, reading when the data has been requested and writing when updating the contents. The three different states work as follows:a) StandbyIf the word line is not asserted, the access transistors M5 and M6 disconnect the cell from the bit lines. The two cross coupled inverters formed by M1 – M4 will continue to reinforce each other as long as they are disconnected from the outside world.b) ReadingAssume that the content of the memory is a 1, stored at Q. The read cycle is started by precharging both the bit lines to a logical 1, then asserting the word line WL, enabling both the access transistors. The second step occurs when the values stored in Q and Q are transferred to the bit lines by leaving BL at its precharged value and discharging BL through M1 and M5 to a logical 0. On the BL side, the transistors M4 and M6 pull the bit line toward VDD, a logical 1. If the content of the memory was a 0, the opposite would happen and BL would be pulled toward 1 and BL toward 0.c) WritingThe start of a write cycle begins by applying the value to be written to the bit lines. If we wish to write a 0, we would apply a 0 to the bit lines, i.e. setting BL to 1 and BL to 0. This is similar to applying a reset pulse to a SR-latch, which causes the flip flop to change state. A 1 is written by inverting the values of the bit lines. WL is then asserted and the value that is to be stored is latched in. Note that the reason this works is that the bit line input-drivers are designed to be much stronger than the relatively weak transistors in the cell itself, so that they can easily override the previous state of the cross-coupledinverters. Careful sizing of the transistors in a SRAM cell is needed to ensure proper operation.1.3. Applications and Usesa) CharacteristicsSRAM is a little more expensive, but faster and significantly less power hungry (especially idle) than DRAM. It is therefore used where either speed or low power, or both, are of prime interest. SRAM is also easier to control (interface to) and generally more truly random access than modern types of DRAM. Due to a more complex internal structure, SRAM is less dense than DRAM and is therefore not used for high-capacity, low-cost applications such as the main memory in personal computers.b) Clock speed and powerThe power consumption of SRAM varies widely depending on how frequently it is accessed; it can be as power-hungry as dynamic RAM, when used at high frequencies, and some ICs can consume many watts at full speed. On the other hand, static RAM used at a somewhat slower pace, such as in applications with moderately clocked microprocessors, draw very little power and can have a nearly negligible power consumption when sitting idle — in the region of a few microwatts.Static RAM exists primarily as:(i) General purpose products•with asynchronous interface, such as the 28 pin 32Kx8 chips (usually named XXC256), and similar products up to 16 Mb per chip•with synchronous interface, usually used for caches and other applications requiring burst transfers, up to 18 Mb (256Kx72) per chip(ii) Integrated on chip•as RAM or cache memory in microcontrollers (usually from around 32 bytes up to 128 kilobytes)•as the primary caches in powerful microprocessors, such as the x86 family, and many others (from 8 KB, up to several megabytes)•on application specific ICs, or ASICs (usually in the order of kilobytes)•in FPGAs and CPLDs (usually in the order of a few kilobytes or less)c) Uses(i) Embedded UseMany categories of industrial and scientific subsystems, automotive electronics, and similar, contains static RAM. Some amounts (kilobytes or less) is also embedded in practically all modern appliances, toys, etc that implements an electronic user interface. Several megabytes may be used in complex products such as digital cameras, cell phones, synthesizers, etc. SRAM in its dual-ported form is sometimes used for realtime digital signal processing circuits.(ii)In computersSRAM is also used in personal computers, workstations, routers and peripheral equipment: internal CPU caches and external burst mode SRAM caches, hard disk buffers, router buffers, etc. LCD screens and printers also normally employ static RAM to hold the image displayed (or to be printed). Small SRAM buffers are also found in CDROM and CDRW drives; usually 256 KB or more are used to buffer track data, which is transferred in blocks instead of as single values. The same applies to cable modems and similar equipment connected to computers. The so called "CMOS RAM" on PC motherboards was originally a battery-powered SRAM chip, but is today more often implemented using EEPROM or Flash.2.DESIG2.1 Block DiagramThere are two major blocks to be designed:•Address decoder: The address decoder takes in the 6 address lines a4:0 coming from the latch, and decodes them to generate 64 wordlines WL0-63 for the SRAM array.•SRAM array: Consists of an array of 64 x 64 bit SRAM cells. In addition to these blocks, the array also contains circuitry that allows data to be written intothe array, and for precharging the bitlines to V DD before the read operation; these circuits are not shown in figure.2.2 DECODERTo construct a 64x64 bit SRAM, we need 6x64 Address Decoder to select one of the word lines of 64 rows, each containing 64 1b SRAM cells. Hence we need to make the decoder logic fastest so as it doesn’t become the bottleneck of our whole design. Hence considering speed and layout issues, we are taking up Domino Logic for all the intermediate nodes being used.For designing a 6x64 Decoder, we can either have three 2x4 decoders in 1st stage and perform ANDING of the corresponding outputs to have a 6x64 decoder logic, or we can have two 3x8. But for the former case, we need 64 three input AND gate and 12 two input AND gate and which is designed through domino logic, while the later design has 64 two input AND gates and 16 three input AND gate, hence considering the space limitations as three input AND gate takes much more area and offer higher gate capacitance, we choose the later design for 6x64 decoder.Fig 2.2: 6x64 Decoder using 2x4 decodersFig 2.2: 6x64 Decoder design using two 3x8 decoders2.2.1 2 Input A D Gate Design – We designed 2 Input AND gate using DominoLogic. Here is the schematic of the designFig 2.3: Schematic Design of AND2 Gatei)Frequency Calculation. We kept input A & B at 1.2V, and saw how fast canit be operated at higher frequency, and we found that it atleast needs 0.4ns or2.5Ghz.Fig 2.4: Frequency Variation for AND2 Gateii)PFET size calculation. We tried to simulate for varying Pfet size and found that we need to keep pfet minimal as well as optimum to charge the bitline faster at a given frequency of 2.5Ghz. We decided upon pfet size to be 715nm so as precharges at a faster rate.Fig 2.5: Pfet width variation for AND2 Gateiii)Sizing of nfets – We try to scale the nfet array so as the propagation delay could be minimized. Increasing the scaling decreases the propagation delay, hence decided upon a = 1.3Fig 2.6: NFET Size variation for NFETiv)Keeper PFET sizing – Keeper PFET is the one whose gate is driven by the output of the inverter, and prevents the voltage drop across the intermediate capacitance to drop below the V M of the inverter during evaluation stage. First graph is that of clock. Second graph shows that if we don’t have any pfet, the output voltage rises by mV. If we connect it to a pfet and increase its size by b*(sum of the width of nfet array), we see the outout to be stable at 0 and randomness decreases by increase in b. Hence we find b = 0.15.Fig 2.7: Keeper PFET sizing for AND2 gatev)Inverter Sizing. Though we should make the nfet stronger than pfet so as the voltage drop across intermediate capacitance is greater than VM of inveter.But making nfet stronger adds delay, so by adding a Keeper Pfet so as to keep the intermediate capacitance charged, we can increase our pfet to have same rise and fall time. Hence we find the beta ratio to be 2.45.Fig 2.8: Inverter size variation for AND2 Gate2.2.2 3 I PUT A D GATE. The ratios which we got for 2 INPUT AND Gate arekept same for 3 INPUT too, but the confusion should we use 2 cascadedAND2 gate for a 3 Input AND or single 3 INPUT AND. Hence we computedthe propagation delay, and found following things. AND2_1 and AND2_2 iscascade 2 AND with changing line in 1st and 2nd AND respectively.Gate High to Low Low to High PropagationDelayAND2 0 1.15ns 0.575nsAND2_1 (cascaded) 0 1.18ns 0.59nsAND2_2 (cascaded) 0 1.19ns 0.595nsAND3 0 1.46ns 0.73nsHence cascaded AND2 would make our design faster but could make it asymmetrical, hence we chose AND3.AND2 (Only one 2 Input AND) AND2_1 (Cascaded 2 Input AND)AND2_2 (Cascaded 2 Input AND) AND3 (3 Input AND)2.2.33x8 DECODER – Here is the schematic for the Decoder.Fig 2.9: 3x8 Decoder SchematicAnd, here is the simulation graph,Fig 2.10: Simulation of 3x8 Decoder2.2.46x64 Decoder – We used two 3x8 decoders and used 2 AND for having the64x6 decoder logic. Here is the schematicFig 2.11: Schematic of 6x64 DecoderWe kept all inputs A1-A5 at 0 and sweeped A0 from 0 to 1.2V, and saw that Y0 dropping out and Y1 rising to 1.2V.Fig 2.12: Propagation Delay at the Critical Path for 6x64 Decoder2.2.5Decoder Resizing.The delay what we got after designing was 5.177ns – 5.025ns = 0.152ns when running at 1Ghz and driving a capacitance of 39.931fF. We computed the end capacitance having the value of gate capacitance as 1fF/um and width capacitance as0.2fF/um. In this case the AND3 nfets have W1 = 1u and rest being size by the ratio1.3, inveter nfet has W2 = 1um, AND2 nfets have W3 = 1u and sized accordingly with ratio 1.3 and inverter has W4 = 1um.To have minimal delay so as to have equal rise time and fall time, we optimized the sizes as follows,For AND3,NFET Array: 2u, 2.6u, 3.38u, 4.395uPFET: 3uKeeper PFET: 800nmInverter: NFET – 3uPFET – 2.9uFor AND2,NFET Array: 5.8u, 7.54u, 9.8uPFET: 3.2uKeeper PFET: 2.2uInverter: NFET – 3uPFET – 2.9uHere’s the critical pathFig 2.13: Schematic of Critical Path in 6x64 DecoderWe obtained a fall and rise time for the four stages as follows 33.94ps, 34,94ps, 33.23ps, 34.99ps. By this, our propagation delay got reduced from 152ps to 89ps (1.594ns – 1.505ns = 89ps). Hence we stick to this sizes.Fig 2.14: Propagation of Critical Path in 6x64 Decoder after Optimization2.3 SRAM cell and array design2.3.1 Precharge circuitryThe schematic of the precharge circuit is shown below. The pfet are of 1um width. This large width of the pfet is required to be able to charge the bitline quickly during the pre-charge phase. The huge width ensures that the bit-line BIT and BIT_B are charged to VDD in half the clock cycle.Fig 2.15: Schematic of Precharge Circuit2.3.2SRAM Cell.Schematic of the cell is shown below. The sizes of the access transistors, inverternfet, pfet widths are as per the ones given in the layout.Fig 2.16: Schematic of SRAM Cell2.3.3 Read Sense CircuitSchematic of the read large sense circuit is shown below. The basic NAND gate is sized with nfet=280nm and pfet width of 560nm a ratio of 4.8:1. This is the required ratio in the 90nm process with channel length=80nm for achieving ideal rise and fall times.Fig 2.17: Schematic of Read Sense Circuit2.3.4 Write driverThe write driver is enabled by a Write_enable line. The schematic is shown below.Fig 2.18: Schematic of Write Circuit2.3.5 The complete SRAM ArrayFollowing is the schematic of 64x64 bit SRAM cellFig 2.19: Schematic of SRAM Array2.3.6 SRAM Array with DecoderHere is the schematic of the complete SRAM with DECODER,Fig 2.20: Schematic of SRAM Array with 6X64 Decoder2.3.7 Read StabilityThis is an important characteristic of the SRAM Cell. During a read-operation one of the bitlines either BIT or BIT_B is discharged though the access transistor and an nfet of the inverter. During this discharge process, a large amount of current flows through node A ( shown below). Read stability is a measure of the potential at node A, this potential should not exceed the switching threshold of the other inverter. If it does then the state of the SRAM has changed. An analogous analysis was done in identifying tradeoffs in Read Current and Static Noise Margin.Following is the READ STABILITY Graph.Fig 2.21: Simulation of Read Stability2.4DC SIMULATIO2.4.1STATIC OISE MARGIHere is the schematic of the SRAM for Static Noise Margin Measurement. We sweep the left voltage and measure the right voltage and do vice versa and find the min edge of the max box that can fit into the butterfly curve.Fig 2.22: Schematic of SRAM Array with 6X64 Decoder(i)HOLD operation. We keep the gate of the pass transistors at GND and getthe following curve. The SNM for this is 0.4604.Fig 2.23: Hold operation(ii)READ - The SNM we got was 0.1616V. The graph is as follows.Fig 2.24: Static Noise Margin estimation of SRAM Cell2.4.2Cell Read CurrentCell read current equals the current that flows through the pass gate nfet connected to the BL draining charge on the BL into the cell ground terminal. The larger the current the faster BL gets discharged and develops a signal for the sensing circuit to detect. Having a very large Read Current flowing through the discharge path from bit line to the ground could result in the exceeding the read stability threshold. This can be avoided by optimally choosing the sizing of the access nfet and the discharge nfet of the respective inverted during a read operation cycle.Fig 2.25: Cell Read Current Simulation2.4.3 Effect of Threshold Voltage (V t )We change Vt by 25mV, 50mV, 100mV and 200mV by adding a –ve voltage to the gate and got following values. Vt Pass nfet Pull down nfet Pfet 25mV 0.1638 0.1626 0.1518 50mV 0.1725 0.1655 0.1483 100mV 0.1900 0.1732 0.1422 200mV 0.2246 0.1778 0.1252Fig 2.26 - Effect of SNM by increasing V t at pass nfetFig 2.27- Effect of SNM on increasing V t at pull down nfetFig 2.28- Effect of increasing V t at one end of pfet and measuring other side.YOUT3.1 DECODER3.1.1 A D2 Gate.Here is the layout of AND2 gate which passes both DRC and LVSFig 3.1- DRC and LVS results for AND2 Gate along with layout.3.1.2 A D3 Gate.Here is the layout of AND3 gate which passes both DRC and LVSFig 3.2- DRC and LVS results for AND3 Gate along with layout.3.1.3 3x8 DECODERHere is the layout of 3x8 Decoder which passes both DRC and LVSFig 3.3- DRC and LVS results for 3x8 Decoder along with layout.3.1.4 6x64 DECODERHere is the layout of 3x8 Decoder which passes both DRC and LVSFig 3.4- DRC and LVS results for 6x64 Decoder along with layout.3.2 SRAM3.2.1 Precharge circuit layoutThe width of the entire precharge circuit layout should be equal to the width between the two bit lines BIT and BIT_B. Below is an image of our layout of this circuit with its DRC and LVS results.Fig 3.5- DRC and LVS results for Precharge Circuit along with layout3.2.2Read Sense Amp CircuitIn the layout of the read circuit, care has to be taken to ensure that it fits exactly in between the two bitlines. The symmetric lateral reflection layout of the SRAM cells adds some degree of complexity, this being due to the fact that now we would have a series of BIT, BIT_B, BIT_B, BIT followed by the same pattern. For a read it is sufficient to sense one of the bit lines, either BIT or BIT_B. Two read sense amps would have to be fit between the two BIT lines. The LVS results and the layout of the Read Sense amp can be found in the image below.Fig 3.6 DRC and LVS results for Read Sense Amplifier along with layout3.2.3SRAM 64 X 64 arrayUsing the SRAM Cell provided from the standard library, we created a symmetrical and laterally inverted 2 X 2 network of SRAM cells. This was done to achieve a good sharing of the power rails and to reduce the bit line noise reduction. Though not done in our layout cross coupling bit lines would reduce the bit line noise to a very good extent.Using an instance of 2 X 2 SRAM cells the entire array of 64 X 32 top half and 64 X 32 bottom halves as shown in the schematic of phase two was laid out. Following this is the insertion of the Read Sense Amplifiers in between the top half and bottom halves of theentire SRAM array layout. To the left of the image below is the layout of the 2 X 2 network of SRAM cells and to the right the 64 X 64 layout of SRAM cells.Fig 3.7- Array of SRAM Cells, 2 X 2 and 64 X 64 arrays.Image below shows the DRC test results:Fig 3.8: DRC results for the 64 X 64 SRAM arrayHere’s the complete layout of SRAM cell with decoder.Fig 3.9: 64 X 64 SRAM array along with 6x64 Decoder4.RESULTS4.1 Simulation Results4.1.1 Simulation for One Cell SRAMWe simulated a single cell SRAM with following schematicFig 4.1 – One Cell SRAM SchematicBelow is a graph showing the Write – 1 Read – 1 Write – 0 simulation on a single SRAM cell.Fig 4.2 – One Cell SRAM Simulation4.1.2Simulation for 64x64 bit SRAM ArrayHere is the schematic used for 64x64 bit SRAM ArrayFig 4.3 –64x64 SRAM Arrayand here are the simulation results, when din<0> = 1, din<1> = 0, and din<2> = 1 with address line as 000000, and clock running at 1 Ghz.Fig 4.4 – Simulation for complete 64x64 SRAM cell Array4.2 DRC and LVS ResultsThe DRC and LVS were checked for each component individually. The following is a summary of the results:Functional Component DRC LVS6 X 64 Decoder Passed PassedPrecharge Passed PassedRead Sense Amp Passed Passed64 X 64 SRAM array Errors ErrorsPlease find all reports to these tests at the following location on/home/user5/fall07/ssn2111/LVS_FinalReports/home/user5/fall07/ssn2111/DRC_FinalReports5.CO CLUSIOAs a SRAM project for EE 4321 VLSI course, we designed 64x64 bit SRAM cell both at the schematic and layout level. We attempted to design the 6x64 decoder using 3x8 decoder using two and three input AND gates using Domino Logic. We could successfully simulate and verify the functionality of the components which we targeted to design. Though we couldn’t successfully pass the DRC and LVS of entire unit because of the primary reason that the unit cell being provided to us failed at DRC and LVS level, but we could successfully pass the DRC and LVS of other individual components including Pre-Charge, Read Sensing Circuit and 6x64 Decoder.The experience on working for such a design oriented project gave us a thorough insight what all critical issues we need to consider while designing a simple unit. This also made us familiar with the different approaches to implement the same design and decide what the tradeoffs between different alternatives are. Also, it made us aware of the critical physical implementation issues which we not only have to consider during actual layout but also during schematic level design. It also gave a hand-on experience upon CAD tools like Cadence, Virtuoso, Spice and Spectre widely used both at industrial and academic level for circuit designing. Overall, it was a nice experience both at learning, practicing and designing a most critical part of processor unit widely used in any Computer Architecture.6.REFERE CES1./wiki/Static_random_access_memory2.Cmos Logic – Uyemura3.CMOS VLSI Design – Weste & Harris4.Static-Noise Margin Analysis of CMOS SRAM Cells EVERT SEEVINCK,SENIOR MEMBER, IEEE, FRANS J. LIST, AND JAN LOHSTROH, MEMBER, IEEE.5.Analyzing Static Noise Margin for Subthreshold SRAM in 65nm CMOS BentonH. Calhoun and Anantha Chandrakasan6.Transistor Sizing for Reliable Domino Logic Design in Dual Threshold VoltageTechnologies by Seong-Ook Jung, Ki-Wook Kim, Sung-Mo (Steve) Kang。
模型超参数 英文标准格式
模型超参数英文标准格式在机器学习和深度学习中,超参数(Hyperparameters)是模型训练过程中设置的参数,其值在训练之前需要手动进行选择或调整。
以下是超参数的英文标准格式:
1. Learning rate:学习率
2. Batch size:批量大小
3. Number of epochs:训练轮数
4. Hidden layer size:隐藏层大小
5. Dropout rate:随机失活率
6. Regularization strength:正则化强度
7. Number of layers:层数
8. Activation function:激活函数
9. Optimization algorithm:优化算法
10. Weight initialization:权重初始化
11. Learning rate decay:学习率衰减
12. Momentum:动量
13. Loss function:损失函数
这些是一些常见的超参数,其英文标准格式在机器学习和深度学习的文献和实践中被广泛使用。
请注意,具体的超参数名称和格式可能会因不同的算法、库或框架而有所变化,但上述列出的超参数是相对通用的,适用于大多数机器学习和深度学习任务。
1/ 1。
斑马技术公司DS8108数字扫描仪产品参考指南说明书
ChatGPT技术训练时需要注意的参数设置
ChatGPT技术训练时需要注意的参数设置ChatGPT是OpenAI推出的一款基于大规模预训练的生成式对话模型,它在各种对话任务中展现出了强大的能力。
然而,对于训练ChatGPT模型来说,参数设置至关重要,它们直接影响模型的质量、稳定性以及对话的适应性。
在本文中,我们将探讨训练ChatGPT时需要注意的参数设置,以帮助您获得最佳的训练结果。
1. 训练数据大小:ChatGPT的训练数据是非常重要的,它对模型的表现有着直接的影响。
较大的训练数据有助于提升模型的生成能力和对话质量。
建议使用尽可能大的对话数据集,以确保模型具备广泛的知识和背景。
同时,还需确保数据质量,避免噪声和错误的标注对模型造成干扰。
2. 训练步数:模型的训练步数也是一个需要关注的关键参数。
训练步数表示模型在整个训练数据集上迭代的次数,过少的训练步数可能导致模型在对话过程中出现回避问题或产生无意义的回答。
因此,建议充分训练模型,确保其在足够的训练步数下收敛。
3. 序列长度限制:为了平衡生成的回答长度和计算资源的消耗,ChatGPT通常会在生成过程中使用一个序列长度限制。
合适的序列长度限制可以帮助模型生成连贯和有意义的对话,而过短或过长都可能导致回答不完整或冗长。
根据具体任务需求和计算资源,选择一个合适的序列长度限制非常重要。
4. 温度参数:温度参数影响了概率分布的平滑程度,对模型生成的多样性和准确性有着直接影响。
较高的温度值会使得模型更加随机和多样化,而较低的温度值则会使得模型更加收敛和确定性。
根据任务需求和对话场景的不同,适当调整温度参数可以获得更符合预期的回答。
5. top-k和top-p采样:top-k和top-p采样是一种用于控制模型生成多样性的技术。
在生成过程中,模型会选择得分最高的前k个或累积概率大于p的词作为候选词,进一步采样生成下一个词。
通过合理设置top-k和top-p参数,可以平衡模型生成的多样性和适应性。
6. 微调参数:针对特定任务的微调是训练ChatGPT模型的一项重要工作。
生成对抗网络的生成模型训练中的超参数优化技巧分享(九)
生成对抗网络的生成模型训练中的超参数优化技巧分享生成对抗网络(GANs)是一种深度学习模型,由两个神经网络组成:生成器和判别器。
生成器试图生成看起来像真实样本的数据,而判别器则试图区分真实数据和生成器生成的假数据。
在生成对抗网络的训练过程中,超参数的选择对模型的性能和收敛速度起着至关重要的作用。
本文将分享一些生成对抗网络的生成模型训练中的超参数优化技巧。
一、学习率调整学习率是深度学习模型中最重要的超参数之一。
在生成对抗网络中,学习率的选择对模型的性能和收敛速度有着直接的影响。
通常情况下,初始的学习率设置为是一个较好的选择。
然后可以尝试不同的学习率调度策略,例如学习率衰减或动态调整学习率的方法,以找到最优的学习率设置。
二、批量大小调整批量大小是另一个重要的超参数,它决定了模型一次更新的样本数量。
在生成对抗网络的训练中,通常使用较大的批量大小来加速模型的训练,但是过大的批量大小可能导致模型收敛不稳定。
因此,需要对批量大小进行调整,找到一个合适的值。
通常情况下,批量大小设置为64或128是一个不错的选择。
三、激活函数选择在生成对抗网络的生成模型中,激活函数的选择也是一个重要的超参数。
常用的激活函数有ReLU、Leaky ReLU和tanh等。
不同的激活函数对模型的训练和生成效果有着不同的影响,因此需要进行合理的选择。
通常情况下,Leaky ReLU在生成对抗网络中的效果较为稳定,但是也可以尝试其他的激活函数,找到最适合当前模型的选择。
四、噪声输入在生成对抗网络的生成模型中,噪声输入是一个非常重要的因素。
噪声输入的大小和分布对模型的生成效果有着直接的影响。
通常情况下,使用均匀分布或正态分布的噪声输入是一个比较常见的选择。
但是也可以尝试其他的噪声输入分布,找到最适合当前模型的选择。
五、正则化方法正则化是在深度学习模型中用来防止过拟合的一种重要技巧。
在生成对抗网络的训练中,正则化方法的选择对模型的泛化能力和生成效果有着重要的影响。
Indradrive 系列 故障代码
Error MessagesF9001 Error internal function call.F9002 Error internal RTOS function callF9003 WatchdogF9004 Hardware trapF8000 Fatal hardware errorF8010 Autom. commutation: Max. motion range when moving back F8011 Commutation offset could not be determinedF8012 Autom. commutation: Max. motion rangeF8013 Automatic commutation: Current too lowF8014 Automatic commutation: OvercurrentF8015 Automatic commutation: TimeoutF8016 Automatic commutation: Iteration without resultF8017 Automatic commutation: Incorrect commutation adjustment F8018 Device overtemperature shutdownF8022 Enc. 1: Enc. signals incorr. (can be cleared in ph. 2) F8023 Error mechanical link of encoder or motor connectionF8025 Overvoltage in power sectionF8027 Safe torque off while drive enabledF8028 Overcurrent in power sectionF8030 Safe stop 1 while drive enabledF8042 Encoder 2 error: Signal amplitude incorrectF8057 Device overload shutdownF8060 Overcurrent in power sectionF8064 Interruption of motor phaseF8067 Synchronization PWM-Timer wrongF8069 +/-15Volt DC errorF8070 +24Volt DC errorF8076 Error in error angle loopF8078 Speed loop error.F8079 Velocity limit value exceededF8091 Power section defectiveF8100 Error when initializing the parameter handlingF8102 Error when initializing power sectionF8118 Invalid power section/firmware combinationF8120 Invalid control section/firmware combinationF8122 Control section defectiveF8129 Incorrect optional module firmwareF8130 Firmware of option 2 of safety technology defectiveF8133 Error when checking interrupting circuitsF8134 SBS: Fatal errorF8135 SMD: Velocity exceededF8140 Fatal CCD error.F8201 Safety command for basic initialization incorrectF8203 Safety technology configuration parameter invalidF8813 Connection error mains chokeF8830 Power section errorF8838 Overcurrent external braking resistorF7010 Safely-limited increment exceededF7011 Safely-monitored position, exceeded in pos. DirectionF7012 Safely-monitored position, exceeded in neg. DirectionF7013 Safely-limited speed exceededF7020 Safe maximum speed exceededF7021 Safely-limited position exceededF7030 Position window Safe stop 2 exceededF7031 Incorrect direction of motionF7040 Validation error parameterized - effective thresholdF7041 Actual position value validation errorF7042 Validation error of safe operation modeF7043 Error of output stage interlockF7050 Time for stopping process exceeded8.3.15 F7051 Safely-monitored deceleration exceeded (159)8.4 Travel Range Errors (F6xxx) (161)8.4.1 Behavior in the Case of Travel Range Errors (161)8.4.2 F6010 PLC Runtime Error (162)8.4.3 F6024 Maximum braking time exceeded (163)8.4.4 F6028 Position limit value exceeded (overflow) (164)8.4.5 F6029 Positive position limit exceeded (164)8.4.6 F6030 Negative position limit exceeded (165)8.4.7 F6034 Emergency-Stop (166)8.4.8 F6042 Both travel range limit switches activated (167)8.4.9 F6043 Positive travel range limit switch activated (167)8.4.10 F6044 Negative travel range limit switch activated (168)8.4.11 F6140 CCD slave error (emergency halt) (169)8.5 Interface Errors (F4xxx) (169)8.5.1 Behavior in the Case of Interface Errors (169)8.5.2 F4001 Sync telegram failure (170)8.5.3 F4002 RTD telegram failure (171)8.5.4 F4003 Invalid communication phase shutdown (172)8.5.5 F4004 Error during phase progression (172)8.5.6 F4005 Error during phase regression (173)8.5.7 F4006 Phase switching without ready signal (173)8.5.8 F4009 Bus failure (173)8.5.9 F4012 Incorrect I/O length (175)8.5.10 F4016 PLC double real-time channel failure (176)8.5.11 F4017 S-III: Incorrect sequence during phase switch (176)8.5.12 F4034 Emergency-Stop (177)8.5.13 F4140 CCD communication error (178)8.6 Non-Fatal Safety Technology Errors (F3xxx) (178)8.6.1 Behavior in the Case of Non-Fatal Safety Technology Errors (178)8.6.2 F3111 Refer. missing when selecting safety related end pos (179)8.6.3 F3112 Safe reference missing (179)8.6.4 F3115 Brake check time interval exceeded (181)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand ControlsI Bosch Rexroth AG VII/XXIITable of ContentsPage8.6.5 F3116 Nominal load torque of holding system exceeded (182)8.6.6 F3117 Actual position values validation error (182)8.6.7 F3122 SBS: System error (183)8.6.8 F3123 SBS: Brake check missing (184)8.6.9 F3130 Error when checking input signals (185)8.6.10 F3131 Error when checking acknowledgment signal (185)8.6.11 F3132 Error when checking diagnostic output signal (186)8.6.12 F3133 Error when checking interrupting circuits (187)8.6.13 F3134 Dynamization time interval incorrect (188)8.6.14 F3135 Dynamization pulse width incorrect (189)8.6.15 F3140 Safety parameters validation error (192)8.6.16 F3141 Selection validation error (192)8.6.17 F3142 Activation time of enabling control exceeded (193)8.6.18 F3143 Safety command for clearing errors incorrect (194)8.6.19 F3144 Incorrect safety configuration (195)8.6.20 F3145 Error when unlocking the safety door (196)8.6.21 F3146 System error channel 2 (197)8.6.22 F3147 System error channel 1 (198)8.6.23 F3150 Safety command for system start incorrect (199)8.6.24 F3151 Safety command for system halt incorrect (200)8.6.25 F3152 Incorrect backup of safety technology data (201)8.6.26 F3160 Communication error of safe communication (202)8.7 Non-Fatal Errors (F2xxx) (202)8.7.1 Behavior in the Case of Non-Fatal Errors (202)8.7.2 F2002 Encoder assignment not allowed for synchronization (203)8.7.3 F2003 Motion step skipped (203)8.7.4 F2004 Error in MotionProfile (204)8.7.5 F2005 Cam table invalid (205)8.7.6 F2006 MMC was removed (206)8.7.7 F2007 Switching to non-initialized operation mode (206)8.7.8 F2008 RL The motor type has changed (207)8.7.9 F2009 PL Load parameter default values (208)8.7.10 F2010 Error when initializing digital I/O (-> S-0-0423) (209)8.7.11 F2011 PLC - Error no. 1 (210)8.7.12 F2012 PLC - Error no. 2 (210)8.7.13 F2013 PLC - Error no. 3 (211)8.7.14 F2014 PLC - Error no. 4 (211)8.7.15 F2018 Device overtemperature shutdown (211)8.7.16 F2019 Motor overtemperature shutdown (212)8.7.17 F2021 Motor temperature monitor defective (213)8.7.18 F2022 Device temperature monitor defective (214)8.7.19 F2025 Drive not ready for control (214)8.7.20 F2026 Undervoltage in power section (215)8.7.21 F2027 Excessive oscillation in DC bus (216)8.7.22 F2028 Excessive deviation (216)8.7.23 F2031 Encoder 1 error: Signal amplitude incorrect (217)VIII/XXII Bosch Rexroth AG | Electric Drivesand ControlsRexroth IndraDrive | Troubleshooting GuideTable of ContentsPage8.7.24 F2032 Validation error during commutation fine adjustment (217)8.7.25 F2033 External power supply X10 error (218)8.7.26 F2036 Excessive position feedback difference (219)8.7.27 F2037 Excessive position command difference (220)8.7.28 F2039 Maximum acceleration exceeded (220)8.7.29 F2040 Device overtemperature 2 shutdown (221)8.7.30 F2042 Encoder 2: Encoder signals incorrect (222)8.7.31 F2043 Measuring encoder: Encoder signals incorrect (222)8.7.32 F2044 External power supply X15 error (223)8.7.33 F2048 Low battery voltage (224)8.7.34 F2050 Overflow of target position preset memory (225)8.7.35 F2051 No sequential block in target position preset memory (225)8.7.36 F2053 Incr. encoder emulator: Pulse frequency too high (226)8.7.37 F2054 Incr. encoder emulator: Hardware error (226)8.7.38 F2055 External power supply dig. I/O error (227)8.7.39 F2057 Target position out of travel range (227)8.7.40 F2058 Internal overflow by positioning input (228)8.7.41 F2059 Incorrect command value direction when positioning (229)8.7.42 F2063 Internal overflow master axis generator (230)8.7.43 F2064 Incorrect cmd value direction master axis generator (230)8.7.44 F2067 Synchronization to master communication incorrect (231)8.7.45 F2068 Brake error (231)8.7.46 F2069 Error when releasing the motor holding brake (232)8.7.47 F2074 Actual pos. value 1 outside absolute encoder window (232)8.7.48 F2075 Actual pos. value 2 outside absolute encoder window (233)8.7.49 F2076 Actual pos. value 3 outside absolute encoder window (234)8.7.50 F2077 Current measurement trim wrong (235)8.7.51 F2086 Error supply module (236)8.7.52 F2087 Module group communication error (236)8.7.53 F2100 Incorrect access to command value memory (237)8.7.54 F2101 It was impossible to address MMC (237)8.7.55 F2102 It was impossible to address I2C memory (238)8.7.56 F2103 It was impossible to address EnDat memory (238)8.7.57 F2104 Commutation offset invalid (239)8.7.58 F2105 It was impossible to address Hiperface memory (239)8.7.59 F2110 Error in non-cyclical data communic. of power section (240)8.7.60 F2120 MMC: Defective or missing, replace (240)8.7.61 F2121 MMC: Incorrect data or file, create correctly (241)8.7.62 F2122 MMC: Incorrect IBF file, correct it (241)8.7.63 F2123 Retain data backup impossible (242)8.7.64 F2124 MMC: Saving too slowly, replace (243)8.7.65 F2130 Error comfort control panel (243)8.7.66 F2140 CCD slave error (243)8.7.67 F2150 MLD motion function block error (244)8.7.68 F2174 Loss of motor encoder reference (244)8.7.69 F2175 Loss of optional encoder reference (245)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand Controls| Bosch Rexroth AG IX/XXIITable of ContentsPage8.7.70 F2176 Loss of measuring encoder reference (246)8.7.71 F2177 Modulo limitation error of motor encoder (246)8.7.72 F2178 Modulo limitation error of optional encoder (247)8.7.73 F2179 Modulo limitation error of measuring encoder (247)8.7.74 F2190 Incorrect Ethernet configuration (248)8.7.75 F2260 Command current limit shutoff (249)8.7.76 F2270 Analog input 1 or 2, wire break (249)8.7.77 F2802 PLL is not synchronized (250)8.7.78 F2814 Undervoltage in mains (250)8.7.79 F2815 Overvoltage in mains (251)8.7.80 F2816 Softstart fault power supply unit (251)8.7.81 F2817 Overvoltage in power section (251)8.7.82 F2818 Phase failure (252)8.7.83 F2819 Mains failure (253)8.7.84 F2820 Braking resistor overload (253)8.7.85 F2821 Error in control of braking resistor (254)8.7.86 F2825 Switch-on threshold braking resistor too low (255)8.7.87 F2833 Ground fault in motor line (255)8.7.88 F2834 Contactor control error (256)8.7.89 F2835 Mains contactor wiring error (256)8.7.90 F2836 DC bus balancing monitor error (257)8.7.91 F2837 Contactor monitoring error (257)8.7.92 F2840 Error supply shutdown (257)8.7.93 F2860 Overcurrent in mains-side power section (258)8.7.94 F2890 Invalid device code (259)8.7.95 F2891 Incorrect interrupt timing (259)8.7.96 F2892 Hardware variant not supported (259)8.8 SERCOS Error Codes / Error Messages of Serial Communication (259)9 Warnings (Exxxx) (263)9.1 Fatal Warnings (E8xxx) (263)9.1.1 Behavior in the Case of Fatal Warnings (263)9.1.2 E8025 Overvoltage in power section (263)9.1.3 E8026 Undervoltage in power section (264)9.1.4 E8027 Safe torque off while drive enabled (265)9.1.5 E8028 Overcurrent in power section (265)9.1.6 E8029 Positive position limit exceeded (266)9.1.7 E8030 Negative position limit exceeded (267)9.1.8 E8034 Emergency-Stop (268)9.1.9 E8040 Torque/force actual value limit active (268)9.1.10 E8041 Current limit active (269)9.1.11 E8042 Both travel range limit switches activated (269)9.1.12 E8043 Positive travel range limit switch activated (270)9.1.13 E8044 Negative travel range limit switch activated (271)9.1.14 E8055 Motor overload, current limit active (271)9.1.15 E8057 Device overload, current limit active (272)X/XXII Bosch Rexroth AG | Electric Drivesand ControlsRexroth IndraDrive | Troubleshooting GuideTable of ContentsPage9.1.16 E8058 Drive system not ready for operation (273)9.1.17 E8260 Torque/force command value limit active (273)9.1.18 E8802 PLL is not synchronized (274)9.1.19 E8814 Undervoltage in mains (275)9.1.20 E8815 Overvoltage in mains (275)9.1.21 E8818 Phase failure (276)9.1.22 E8819 Mains failure (276)9.2 Warnings of Category E4xxx (277)9.2.1 E4001 Double MST failure shutdown (277)9.2.2 E4002 Double MDT failure shutdown (278)9.2.3 E4005 No command value input via master communication (279)9.2.4 E4007 SERCOS III: Consumer connection failed (280)9.2.5 E4008 Invalid addressing command value data container A (280)9.2.6 E4009 Invalid addressing actual value data container A (281)9.2.7 E4010 Slave not scanned or address 0 (281)9.2.8 E4012 Maximum number of CCD slaves exceeded (282)9.2.9 E4013 Incorrect CCD addressing (282)9.2.10 E4014 Incorrect phase switch of CCD slaves (283)9.3 Possible Warnings When Operating Safety Technology (E3xxx) (283)9.3.1 Behavior in Case a Safety Technology Warning Occurs (283)9.3.2 E3100 Error when checking input signals (284)9.3.3 E3101 Error when checking acknowledgment signal (284)9.3.4 E3102 Actual position values validation error (285)9.3.5 E3103 Dynamization failed (285)9.3.6 E3104 Safety parameters validation error (286)9.3.7 E3105 Validation error of safe operation mode (286)9.3.8 E3106 System error safety technology (287)9.3.9 E3107 Safe reference missing (287)9.3.10 E3108 Safely-monitored deceleration exceeded (288)9.3.11 E3110 Time interval of forced dynamization exceeded (289)9.3.12 E3115 Prewarning, end of brake check time interval (289)9.3.13 E3116 Nominal load torque of holding system reached (290)9.4 Non-Fatal Warnings (E2xxx) (290)9.4.1 Behavior in Case a Non-Fatal Warning Occurs (290)9.4.2 E2010 Position control with encoder 2 not possible (291)9.4.3 E2011 PLC - Warning no. 1 (291)9.4.4 E2012 PLC - Warning no. 2 (291)9.4.5 E2013 PLC - Warning no. 3 (292)9.4.6 E2014 PLC - Warning no. 4 (292)9.4.7 E2021 Motor temperature outside of measuring range (292)9.4.8 E2026 Undervoltage in power section (293)9.4.9 E2040 Device overtemperature 2 prewarning (294)9.4.10 E2047 Interpolation velocity = 0 (294)9.4.11 E2048 Interpolation acceleration = 0 (295)9.4.12 E2049 Positioning velocity >= limit value (296)9.4.13 E2050 Device overtemp. Prewarning (297)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand Controls| Bosch Rexroth AG XI/XXIITable of ContentsPage9.4.14 E2051 Motor overtemp. prewarning (298)9.4.15 E2053 Target position out of travel range (298)9.4.16 E2054 Not homed (300)9.4.17 E2055 Feedrate override S-0-0108 = 0 (300)9.4.18 E2056 Torque limit = 0 (301)9.4.19 E2058 Selected positioning block has not been programmed (302)9.4.20 E2059 Velocity command value limit active (302)9.4.21 E2061 Device overload prewarning (303)9.4.22 E2063 Velocity command value > limit value (304)9.4.23 E2064 Target position out of num. range (304)9.4.24 E2069 Holding brake torque too low (305)9.4.25 E2070 Acceleration limit active (306)9.4.26 E2074 Encoder 1: Encoder signals disturbed (306)9.4.27 E2075 Encoder 2: Encoder signals disturbed (307)9.4.28 E2076 Measuring encoder: Encoder signals disturbed (308)9.4.29 E2077 Absolute encoder monitoring, motor encoder (encoder alarm) (308)9.4.30 E2078 Absolute encoder monitoring, opt. encoder (encoder alarm) (309)9.4.31 E2079 Absolute enc. monitoring, measuring encoder (encoder alarm) (309)9.4.32 E2086 Prewarning supply module overload (310)9.4.33 E2092 Internal synchronization defective (310)9.4.34 E2100 Positioning velocity of master axis generator too high (311)9.4.35 E2101 Acceleration of master axis generator is zero (312)9.4.36 E2140 CCD error at node (312)9.4.37 E2270 Analog input 1 or 2, wire break (312)9.4.38 E2802 HW control of braking resistor (313)9.4.39 E2810 Drive system not ready for operation (314)9.4.40 E2814 Undervoltage in mains (314)9.4.41 E2816 Undervoltage in power section (314)9.4.42 E2818 Phase failure (315)9.4.43 E2819 Mains failure (315)9.4.44 E2820 Braking resistor overload prewarning (316)9.4.45 E2829 Not ready for power on (316)。
3GPP TS 36.331 V13.2.0 (2016-06)
3GPP TS 36.331 V13.2.0 (2016-06)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Resource Control (RRC);Protocol specification(Release 13)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.KeywordsUMTS, radio3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationBluetooth® is a Trade Mark of the Bluetooth SIG registered for the benefit of its membersContentsForeword (18)1Scope (19)2References (19)3Definitions, symbols and abbreviations (22)3.1Definitions (22)3.2Abbreviations (24)4General (27)4.1Introduction (27)4.2Architecture (28)4.2.1UE states and state transitions including inter RAT (28)4.2.2Signalling radio bearers (29)4.3Services (30)4.3.1Services provided to upper layers (30)4.3.2Services expected from lower layers (30)4.4Functions (30)5Procedures (32)5.1General (32)5.1.1Introduction (32)5.1.2General requirements (32)5.2System information (33)5.2.1Introduction (33)5.2.1.1General (33)5.2.1.2Scheduling (34)5.2.1.2a Scheduling for NB-IoT (34)5.2.1.3System information validity and notification of changes (35)5.2.1.4Indication of ETWS notification (36)5.2.1.5Indication of CMAS notification (37)5.2.1.6Notification of EAB parameters change (37)5.2.1.7Access Barring parameters change in NB-IoT (37)5.2.2System information acquisition (38)5.2.2.1General (38)5.2.2.2Initiation (38)5.2.2.3System information required by the UE (38)5.2.2.4System information acquisition by the UE (39)5.2.2.5Essential system information missing (42)5.2.2.6Actions upon reception of the MasterInformationBlock message (42)5.2.2.7Actions upon reception of the SystemInformationBlockType1 message (42)5.2.2.8Actions upon reception of SystemInformation messages (44)5.2.2.9Actions upon reception of SystemInformationBlockType2 (44)5.2.2.10Actions upon reception of SystemInformationBlockType3 (45)5.2.2.11Actions upon reception of SystemInformationBlockType4 (45)5.2.2.12Actions upon reception of SystemInformationBlockType5 (45)5.2.2.13Actions upon reception of SystemInformationBlockType6 (45)5.2.2.14Actions upon reception of SystemInformationBlockType7 (45)5.2.2.15Actions upon reception of SystemInformationBlockType8 (45)5.2.2.16Actions upon reception of SystemInformationBlockType9 (46)5.2.2.17Actions upon reception of SystemInformationBlockType10 (46)5.2.2.18Actions upon reception of SystemInformationBlockType11 (46)5.2.2.19Actions upon reception of SystemInformationBlockType12 (47)5.2.2.20Actions upon reception of SystemInformationBlockType13 (48)5.2.2.21Actions upon reception of SystemInformationBlockType14 (48)5.2.2.22Actions upon reception of SystemInformationBlockType15 (48)5.2.2.23Actions upon reception of SystemInformationBlockType16 (48)5.2.2.24Actions upon reception of SystemInformationBlockType17 (48)5.2.2.25Actions upon reception of SystemInformationBlockType18 (48)5.2.2.26Actions upon reception of SystemInformationBlockType19 (49)5.2.3Acquisition of an SI message (49)5.2.3a Acquisition of an SI message by BL UE or UE in CE or a NB-IoT UE (50)5.3Connection control (50)5.3.1Introduction (50)5.3.1.1RRC connection control (50)5.3.1.2Security (52)5.3.1.2a RN security (53)5.3.1.3Connected mode mobility (53)5.3.1.4Connection control in NB-IoT (54)5.3.2Paging (55)5.3.2.1General (55)5.3.2.2Initiation (55)5.3.2.3Reception of the Paging message by the UE (55)5.3.3RRC connection establishment (56)5.3.3.1General (56)5.3.3.1a Conditions for establishing RRC Connection for sidelink communication/ discovery (58)5.3.3.2Initiation (59)5.3.3.3Actions related to transmission of RRCConnectionRequest message (63)5.3.3.3a Actions related to transmission of RRCConnectionResumeRequest message (64)5.3.3.4Reception of the RRCConnectionSetup by the UE (64)5.3.3.4a Reception of the RRCConnectionResume by the UE (66)5.3.3.5Cell re-selection while T300, T302, T303, T305, T306, or T308 is running (68)5.3.3.6T300 expiry (68)5.3.3.7T302, T303, T305, T306, or T308 expiry or stop (69)5.3.3.8Reception of the RRCConnectionReject by the UE (70)5.3.3.9Abortion of RRC connection establishment (71)5.3.3.10Handling of SSAC related parameters (71)5.3.3.11Access barring check (72)5.3.3.12EAB check (73)5.3.3.13Access barring check for ACDC (73)5.3.3.14Access Barring check for NB-IoT (74)5.3.4Initial security activation (75)5.3.4.1General (75)5.3.4.2Initiation (76)5.3.4.3Reception of the SecurityModeCommand by the UE (76)5.3.5RRC connection reconfiguration (77)5.3.5.1General (77)5.3.5.2Initiation (77)5.3.5.3Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by theUE (77)5.3.5.4Reception of an RRCConnectionReconfiguration including the mobilityControlInfo by the UE(handover) (79)5.3.5.5Reconfiguration failure (83)5.3.5.6T304 expiry (handover failure) (83)5.3.5.7Void (84)5.3.5.7a T307 expiry (SCG change failure) (84)5.3.5.8Radio Configuration involving full configuration option (84)5.3.6Counter check (86)5.3.6.1General (86)5.3.6.2Initiation (86)5.3.6.3Reception of the CounterCheck message by the UE (86)5.3.7RRC connection re-establishment (87)5.3.7.1General (87)5.3.7.2Initiation (87)5.3.7.3Actions following cell selection while T311 is running (88)5.3.7.4Actions related to transmission of RRCConnectionReestablishmentRequest message (89)5.3.7.5Reception of the RRCConnectionReestablishment by the UE (89)5.3.7.6T311 expiry (91)5.3.7.7T301 expiry or selected cell no longer suitable (91)5.3.7.8Reception of RRCConnectionReestablishmentReject by the UE (91)5.3.8RRC connection release (92)5.3.8.1General (92)5.3.8.2Initiation (92)5.3.8.3Reception of the RRCConnectionRelease by the UE (92)5.3.8.4T320 expiry (93)5.3.9RRC connection release requested by upper layers (93)5.3.9.1General (93)5.3.9.2Initiation (93)5.3.10Radio resource configuration (93)5.3.10.0General (93)5.3.10.1SRB addition/ modification (94)5.3.10.2DRB release (95)5.3.10.3DRB addition/ modification (95)5.3.10.3a1DC specific DRB addition or reconfiguration (96)5.3.10.3a2LWA specific DRB addition or reconfiguration (98)5.3.10.3a3LWIP specific DRB addition or reconfiguration (98)5.3.10.3a SCell release (99)5.3.10.3b SCell addition/ modification (99)5.3.10.3c PSCell addition or modification (99)5.3.10.4MAC main reconfiguration (99)5.3.10.5Semi-persistent scheduling reconfiguration (100)5.3.10.6Physical channel reconfiguration (100)5.3.10.7Radio Link Failure Timers and Constants reconfiguration (101)5.3.10.8Time domain measurement resource restriction for serving cell (101)5.3.10.9Other configuration (102)5.3.10.10SCG reconfiguration (103)5.3.10.11SCG dedicated resource configuration (104)5.3.10.12Reconfiguration SCG or split DRB by drb-ToAddModList (105)5.3.10.13Neighbour cell information reconfiguration (105)5.3.10.14Void (105)5.3.10.15Sidelink dedicated configuration (105)5.3.10.16T370 expiry (106)5.3.11Radio link failure related actions (107)5.3.11.1Detection of physical layer problems in RRC_CONNECTED (107)5.3.11.2Recovery of physical layer problems (107)5.3.11.3Detection of radio link failure (107)5.3.12UE actions upon leaving RRC_CONNECTED (109)5.3.13UE actions upon PUCCH/ SRS release request (110)5.3.14Proximity indication (110)5.3.14.1General (110)5.3.14.2Initiation (111)5.3.14.3Actions related to transmission of ProximityIndication message (111)5.3.15Void (111)5.4Inter-RAT mobility (111)5.4.1Introduction (111)5.4.2Handover to E-UTRA (112)5.4.2.1General (112)5.4.2.2Initiation (112)5.4.2.3Reception of the RRCConnectionReconfiguration by the UE (112)5.4.2.4Reconfiguration failure (114)5.4.2.5T304 expiry (handover to E-UTRA failure) (114)5.4.3Mobility from E-UTRA (114)5.4.3.1General (114)5.4.3.2Initiation (115)5.4.3.3Reception of the MobilityFromEUTRACommand by the UE (115)5.4.3.4Successful completion of the mobility from E-UTRA (116)5.4.3.5Mobility from E-UTRA failure (117)5.4.4Handover from E-UTRA preparation request (CDMA2000) (117)5.4.4.1General (117)5.4.4.2Initiation (118)5.4.4.3Reception of the HandoverFromEUTRAPreparationRequest by the UE (118)5.4.5UL handover preparation transfer (CDMA2000) (118)5.4.5.1General (118)5.4.5.2Initiation (118)5.4.5.3Actions related to transmission of the ULHandoverPreparationTransfer message (119)5.4.5.4Failure to deliver the ULHandoverPreparationTransfer message (119)5.4.6Inter-RAT cell change order to E-UTRAN (119)5.4.6.1General (119)5.4.6.2Initiation (119)5.4.6.3UE fails to complete an inter-RAT cell change order (119)5.5Measurements (120)5.5.1Introduction (120)5.5.2Measurement configuration (121)5.5.2.1General (121)5.5.2.2Measurement identity removal (122)5.5.2.2a Measurement identity autonomous removal (122)5.5.2.3Measurement identity addition/ modification (123)5.5.2.4Measurement object removal (124)5.5.2.5Measurement object addition/ modification (124)5.5.2.6Reporting configuration removal (126)5.5.2.7Reporting configuration addition/ modification (127)5.5.2.8Quantity configuration (127)5.5.2.9Measurement gap configuration (127)5.5.2.10Discovery signals measurement timing configuration (128)5.5.2.11RSSI measurement timing configuration (128)5.5.3Performing measurements (128)5.5.3.1General (128)5.5.3.2Layer 3 filtering (131)5.5.4Measurement report triggering (131)5.5.4.1General (131)5.5.4.2Event A1 (Serving becomes better than threshold) (135)5.5.4.3Event A2 (Serving becomes worse than threshold) (136)5.5.4.4Event A3 (Neighbour becomes offset better than PCell/ PSCell) (136)5.5.4.5Event A4 (Neighbour becomes better than threshold) (137)5.5.4.6Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better thanthreshold2) (138)5.5.4.6a Event A6 (Neighbour becomes offset better than SCell) (139)5.5.4.7Event B1 (Inter RAT neighbour becomes better than threshold) (139)5.5.4.8Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better thanthreshold2) (140)5.5.4.9Event C1 (CSI-RS resource becomes better than threshold) (141)5.5.4.10Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource) (141)5.5.4.11Event W1 (WLAN becomes better than a threshold) (142)5.5.4.12Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLANoutside WLAN mobility set becomes better than threshold2) (142)5.5.4.13Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold) (143)5.5.5Measurement reporting (144)5.5.6Measurement related actions (148)5.5.6.1Actions upon handover and re-establishment (148)5.5.6.2Speed dependant scaling of measurement related parameters (149)5.5.7Inter-frequency RSTD measurement indication (149)5.5.7.1General (149)5.5.7.2Initiation (150)5.5.7.3Actions related to transmission of InterFreqRSTDMeasurementIndication message (150)5.6Other (150)5.6.0General (150)5.6.1DL information transfer (151)5.6.1.1General (151)5.6.1.2Initiation (151)5.6.1.3Reception of the DLInformationTransfer by the UE (151)5.6.2UL information transfer (151)5.6.2.1General (151)5.6.2.2Initiation (151)5.6.2.3Actions related to transmission of ULInformationTransfer message (152)5.6.2.4Failure to deliver ULInformationTransfer message (152)5.6.3UE capability transfer (152)5.6.3.1General (152)5.6.3.2Initiation (153)5.6.3.3Reception of the UECapabilityEnquiry by the UE (153)5.6.4CSFB to 1x Parameter transfer (157)5.6.4.1General (157)5.6.4.2Initiation (157)5.6.4.3Actions related to transmission of CSFBParametersRequestCDMA2000 message (157)5.6.4.4Reception of the CSFBParametersResponseCDMA2000 message (157)5.6.5UE Information (158)5.6.5.1General (158)5.6.5.2Initiation (158)5.6.5.3Reception of the UEInformationRequest message (158)5.6.6 Logged Measurement Configuration (159)5.6.6.1General (159)5.6.6.2Initiation (160)5.6.6.3Reception of the LoggedMeasurementConfiguration by the UE (160)5.6.6.4T330 expiry (160)5.6.7 Release of Logged Measurement Configuration (160)5.6.7.1General (160)5.6.7.2Initiation (160)5.6.8 Measurements logging (161)5.6.8.1General (161)5.6.8.2Initiation (161)5.6.9In-device coexistence indication (163)5.6.9.1General (163)5.6.9.2Initiation (164)5.6.9.3Actions related to transmission of InDeviceCoexIndication message (164)5.6.10UE Assistance Information (165)5.6.10.1General (165)5.6.10.2Initiation (166)5.6.10.3Actions related to transmission of UEAssistanceInformation message (166)5.6.11 Mobility history information (166)5.6.11.1General (166)5.6.11.2Initiation (166)5.6.12RAN-assisted WLAN interworking (167)5.6.12.1General (167)5.6.12.2Dedicated WLAN offload configuration (167)5.6.12.3WLAN offload RAN evaluation (167)5.6.12.4T350 expiry or stop (167)5.6.12.5Cell selection/ re-selection while T350 is running (168)5.6.13SCG failure information (168)5.6.13.1General (168)5.6.13.2Initiation (168)5.6.13.3Actions related to transmission of SCGFailureInformation message (168)5.6.14LTE-WLAN Aggregation (169)5.6.14.1Introduction (169)5.6.14.2Reception of LWA configuration (169)5.6.14.3Release of LWA configuration (170)5.6.15WLAN connection management (170)5.6.15.1Introduction (170)5.6.15.2WLAN connection status reporting (170)5.6.15.2.1General (170)5.6.15.2.2Initiation (171)5.6.15.2.3Actions related to transmission of WLANConnectionStatusReport message (171)5.6.15.3T351 Expiry (WLAN connection attempt timeout) (171)5.6.15.4WLAN status monitoring (171)5.6.16RAN controlled LTE-WLAN interworking (172)5.6.16.1General (172)5.6.16.2WLAN traffic steering command (172)5.6.17LTE-WLAN aggregation with IPsec tunnel (173)5.6.17.1General (173)5.7Generic error handling (174)5.7.1General (174)5.7.2ASN.1 violation or encoding error (174)5.7.3Field set to a not comprehended value (174)5.7.4Mandatory field missing (174)5.7.5Not comprehended field (176)5.8MBMS (176)5.8.1Introduction (176)5.8.1.1General (176)5.8.1.2Scheduling (176)5.8.1.3MCCH information validity and notification of changes (176)5.8.2MCCH information acquisition (178)5.8.2.1General (178)5.8.2.2Initiation (178)5.8.2.3MCCH information acquisition by the UE (178)5.8.2.4Actions upon reception of the MBSFNAreaConfiguration message (178)5.8.2.5Actions upon reception of the MBMSCountingRequest message (179)5.8.3MBMS PTM radio bearer configuration (179)5.8.3.1General (179)5.8.3.2Initiation (179)5.8.3.3MRB establishment (179)5.8.3.4MRB release (179)5.8.4MBMS Counting Procedure (179)5.8.4.1General (179)5.8.4.2Initiation (180)5.8.4.3Reception of the MBMSCountingRequest message by the UE (180)5.8.5MBMS interest indication (181)5.8.5.1General (181)5.8.5.2Initiation (181)5.8.5.3Determine MBMS frequencies of interest (182)5.8.5.4Actions related to transmission of MBMSInterestIndication message (183)5.8a SC-PTM (183)5.8a.1Introduction (183)5.8a.1.1General (183)5.8a.1.2SC-MCCH scheduling (183)5.8a.1.3SC-MCCH information validity and notification of changes (183)5.8a.1.4Procedures (184)5.8a.2SC-MCCH information acquisition (184)5.8a.2.1General (184)5.8a.2.2Initiation (184)5.8a.2.3SC-MCCH information acquisition by the UE (184)5.8a.2.4Actions upon reception of the SCPTMConfiguration message (185)5.8a.3SC-PTM radio bearer configuration (185)5.8a.3.1General (185)5.8a.3.2Initiation (185)5.8a.3.3SC-MRB establishment (185)5.8a.3.4SC-MRB release (185)5.9RN procedures (186)5.9.1RN reconfiguration (186)5.9.1.1General (186)5.9.1.2Initiation (186)5.9.1.3Reception of the RNReconfiguration by the RN (186)5.10Sidelink (186)5.10.1Introduction (186)5.10.1a Conditions for sidelink communication operation (187)5.10.2Sidelink UE information (188)5.10.2.1General (188)5.10.2.2Initiation (189)5.10.2.3Actions related to transmission of SidelinkUEInformation message (193)5.10.3Sidelink communication monitoring (195)5.10.6Sidelink discovery announcement (198)5.10.6a Sidelink discovery announcement pool selection (201)5.10.6b Sidelink discovery announcement reference carrier selection (201)5.10.7Sidelink synchronisation information transmission (202)5.10.7.1General (202)5.10.7.2Initiation (203)5.10.7.3Transmission of SLSS (204)5.10.7.4Transmission of MasterInformationBlock-SL message (205)5.10.7.5Void (206)5.10.8Sidelink synchronisation reference (206)5.10.8.1General (206)5.10.8.2Selection and reselection of synchronisation reference UE (SyncRef UE) (206)5.10.9Sidelink common control information (207)5.10.9.1General (207)5.10.9.2Actions related to reception of MasterInformationBlock-SL message (207)5.10.10Sidelink relay UE operation (207)5.10.10.1General (207)5.10.10.2AS-conditions for relay related sidelink communication transmission by sidelink relay UE (207)5.10.10.3AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE (208)5.10.10.4Sidelink relay UE threshold conditions (208)5.10.11Sidelink remote UE operation (208)5.10.11.1General (208)5.10.11.2AS-conditions for relay related sidelink communication transmission by sidelink remote UE (208)5.10.11.3AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE (209)5.10.11.4Selection and reselection of sidelink relay UE (209)5.10.11.5Sidelink remote UE threshold conditions (210)6Protocol data units, formats and parameters (tabular & ASN.1) (210)6.1General (210)6.2RRC messages (212)6.2.1General message structure (212)–EUTRA-RRC-Definitions (212)–BCCH-BCH-Message (212)–BCCH-DL-SCH-Message (212)–BCCH-DL-SCH-Message-BR (213)–MCCH-Message (213)–PCCH-Message (213)–DL-CCCH-Message (214)–DL-DCCH-Message (214)–UL-CCCH-Message (214)–UL-DCCH-Message (215)–SC-MCCH-Message (215)6.2.2Message definitions (216)–CounterCheck (216)–CounterCheckResponse (217)–CSFBParametersRequestCDMA2000 (217)–CSFBParametersResponseCDMA2000 (218)–DLInformationTransfer (218)–HandoverFromEUTRAPreparationRequest (CDMA2000) (219)–InDeviceCoexIndication (220)–InterFreqRSTDMeasurementIndication (222)–LoggedMeasurementConfiguration (223)–MasterInformationBlock (225)–MBMSCountingRequest (226)–MBMSCountingResponse (226)–MBMSInterestIndication (227)–MBSFNAreaConfiguration (228)–MeasurementReport (228)–MobilityFromEUTRACommand (229)–Paging (232)–ProximityIndication (233)–RNReconfiguration (234)–RNReconfigurationComplete (234)–RRCConnectionReconfiguration (235)–RRCConnectionReconfigurationComplete (240)–RRCConnectionReestablishment (241)–RRCConnectionReestablishmentComplete (241)–RRCConnectionReestablishmentReject (242)–RRCConnectionReestablishmentRequest (243)–RRCConnectionReject (243)–RRCConnectionRelease (244)–RRCConnectionResume (248)–RRCConnectionResumeComplete (249)–RRCConnectionResumeRequest (250)–RRCConnectionRequest (250)–RRCConnectionSetup (251)–RRCConnectionSetupComplete (252)–SCGFailureInformation (253)–SCPTMConfiguration (254)–SecurityModeCommand (255)–SecurityModeComplete (255)–SecurityModeFailure (256)–SidelinkUEInformation (256)–SystemInformation (258)–SystemInformationBlockType1 (259)–UEAssistanceInformation (264)–UECapabilityEnquiry (265)–UECapabilityInformation (266)–UEInformationRequest (267)–UEInformationResponse (267)–ULHandoverPreparationTransfer (CDMA2000) (273)–ULInformationTransfer (274)–WLANConnectionStatusReport (274)6.3RRC information elements (275)6.3.1System information blocks (275)–SystemInformationBlockType2 (275)–SystemInformationBlockType3 (279)–SystemInformationBlockType4 (282)–SystemInformationBlockType5 (283)–SystemInformationBlockType6 (287)–SystemInformationBlockType7 (289)–SystemInformationBlockType8 (290)–SystemInformationBlockType9 (295)–SystemInformationBlockType10 (295)–SystemInformationBlockType11 (296)–SystemInformationBlockType12 (297)–SystemInformationBlockType13 (297)–SystemInformationBlockType14 (298)–SystemInformationBlockType15 (298)–SystemInformationBlockType16 (299)–SystemInformationBlockType17 (300)–SystemInformationBlockType18 (301)–SystemInformationBlockType19 (301)–SystemInformationBlockType20 (304)6.3.2Radio resource control information elements (304)–AntennaInfo (304)–AntennaInfoUL (306)–CQI-ReportConfig (307)–CQI-ReportPeriodicProcExtId (314)–CrossCarrierSchedulingConfig (314)–CSI-IM-Config (315)–CSI-IM-ConfigId (315)–CSI-RS-Config (317)–CSI-RS-ConfigEMIMO (318)–CSI-RS-ConfigNZP (319)–CSI-RS-ConfigNZPId (320)–CSI-RS-ConfigZP (321)–CSI-RS-ConfigZPId (321)–DMRS-Config (321)–DRB-Identity (322)–EPDCCH-Config (322)–EIMTA-MainConfig (324)–LogicalChannelConfig (325)–LWA-Configuration (326)–LWIP-Configuration (326)–RCLWI-Configuration (327)–MAC-MainConfig (327)–P-C-AndCBSR (332)–PDCCH-ConfigSCell (333)–PDCP-Config (334)–PDSCH-Config (337)–PDSCH-RE-MappingQCL-ConfigId (339)–PHICH-Config (339)–PhysicalConfigDedicated (339)–P-Max (344)–PRACH-Config (344)–PresenceAntennaPort1 (346)–PUCCH-Config (347)–PUSCH-Config (351)–RACH-ConfigCommon (355)–RACH-ConfigDedicated (357)–RadioResourceConfigCommon (358)–RadioResourceConfigDedicated (362)–RLC-Config (367)–RLF-TimersAndConstants (369)–RN-SubframeConfig (370)–SchedulingRequestConfig (371)–SoundingRS-UL-Config (372)–SPS-Config (375)–TDD-Config (376)–TimeAlignmentTimer (377)–TPC-PDCCH-Config (377)–TunnelConfigLWIP (378)–UplinkPowerControl (379)–WLAN-Id-List (382)–WLAN-MobilityConfig (382)6.3.3Security control information elements (382)–NextHopChainingCount (382)–SecurityAlgorithmConfig (383)–ShortMAC-I (383)6.3.4Mobility control information elements (383)–AdditionalSpectrumEmission (383)–ARFCN-ValueCDMA2000 (383)–ARFCN-ValueEUTRA (384)–ARFCN-ValueGERAN (384)–ARFCN-ValueUTRA (384)–BandclassCDMA2000 (384)–BandIndicatorGERAN (385)–CarrierFreqCDMA2000 (385)–CarrierFreqGERAN (385)–CellIndexList (387)–CellReselectionPriority (387)–CellSelectionInfoCE (387)–CellReselectionSubPriority (388)–CSFB-RegistrationParam1XRTT (388)–CellGlobalIdEUTRA (389)–CellGlobalIdUTRA (389)–CellGlobalIdGERAN (390)–CellGlobalIdCDMA2000 (390)–CellSelectionInfoNFreq (391)–CSG-Identity (391)–FreqBandIndicator (391)–MobilityControlInfo (391)–MobilityParametersCDMA2000 (1xRTT) (393)–MobilityStateParameters (394)–MultiBandInfoList (394)–NS-PmaxList (394)–PhysCellId (395)–PhysCellIdRange (395)–PhysCellIdRangeUTRA-FDDList (395)–PhysCellIdCDMA2000 (396)–PhysCellIdGERAN (396)–PhysCellIdUTRA-FDD (396)–PhysCellIdUTRA-TDD (396)–PLMN-Identity (397)–PLMN-IdentityList3 (397)–PreRegistrationInfoHRPD (397)–Q-QualMin (398)–Q-RxLevMin (398)–Q-OffsetRange (398)–Q-OffsetRangeInterRAT (399)–ReselectionThreshold (399)–ReselectionThresholdQ (399)–SCellIndex (399)–ServCellIndex (400)–SpeedStateScaleFactors (400)–SystemInfoListGERAN (400)–SystemTimeInfoCDMA2000 (401)–TrackingAreaCode (401)–T-Reselection (402)–T-ReselectionEUTRA-CE (402)6.3.5Measurement information elements (402)–AllowedMeasBandwidth (402)–CSI-RSRP-Range (402)–Hysteresis (402)–LocationInfo (403)–MBSFN-RSRQ-Range (403)–MeasConfig (404)–MeasDS-Config (405)–MeasGapConfig (406)–MeasId (407)–MeasIdToAddModList (407)–MeasObjectCDMA2000 (408)–MeasObjectEUTRA (408)–MeasObjectGERAN (412)–MeasObjectId (412)–MeasObjectToAddModList (412)–MeasObjectUTRA (413)–ReportConfigEUTRA (422)–ReportConfigId (425)–ReportConfigInterRAT (425)–ReportConfigToAddModList (428)–ReportInterval (429)–RSRP-Range (429)–RSRQ-Range (430)–RSRQ-Type (430)–RS-SINR-Range (430)–RSSI-Range-r13 (431)–TimeToTrigger (431)–UL-DelayConfig (431)–WLAN-CarrierInfo (431)–WLAN-RSSI-Range (432)–WLAN-Status (432)6.3.6Other information elements (433)–AbsoluteTimeInfo (433)–AreaConfiguration (433)–C-RNTI (433)–DedicatedInfoCDMA2000 (434)–DedicatedInfoNAS (434)–FilterCoefficient (434)–LoggingDuration (434)–LoggingInterval (435)–MeasSubframePattern (435)–MMEC (435)–NeighCellConfig (435)–OtherConfig (436)–RAND-CDMA2000 (1xRTT) (437)–RAT-Type (437)–ResumeIdentity (437)–RRC-TransactionIdentifier (438)–S-TMSI (438)–TraceReference (438)–UE-CapabilityRAT-ContainerList (438)–UE-EUTRA-Capability (439)–UE-RadioPagingInfo (469)–UE-TimersAndConstants (469)–VisitedCellInfoList (470)–WLAN-OffloadConfig (470)6.3.7MBMS information elements (472)–MBMS-NotificationConfig (472)–MBMS-ServiceList (473)–MBSFN-AreaId (473)–MBSFN-AreaInfoList (473)–MBSFN-SubframeConfig (474)–PMCH-InfoList (475)6.3.7a SC-PTM information elements (476)–SC-MTCH-InfoList (476)–SCPTM-NeighbourCellList (478)6.3.8Sidelink information elements (478)–SL-CommConfig (478)–SL-CommResourcePool (479)–SL-CP-Len (480)–SL-DiscConfig (481)–SL-DiscResourcePool (483)–SL-DiscTxPowerInfo (485)–SL-GapConfig (485)。
Thermo-calc软件-TCCP用户指南 (有目录索引)
Thermo-Calc®User’s GuideVersion PThermo-Calc Software ABStockholm Technology ParkBjörnnäsvägen 21SE-113 47 Stockholm, SwedenCopyright © 1995-2003 Foundation of Computational ThermodynamicsStockholm, Sweden目录第1部分一般介绍 (12)1.1 计算热力学 (12)1.2 Thermo-Calc软件/数据库/界面包 (12)1.3 致谢 (13)1.4 版本历史 (13)1.5 Thermo-Calc软件包的通用结构 (13)1.6 各类硬件上Thermo-Calc软件包的有效性 (14)1.7 使用Thermo-Calc软件包的好处 (14)第2部分如何成为Thermo-Calc专家 (14)2.1 如何容易地使用本用户指南 (14)2.2 如何安装和维护Thermo-Calc软件包 (16)2.2.1 许可要求 (16)2.2.2 安装程序 (16)2.2.3 维护当前和以前版本 (16)2.2.4 使TCC执行更方便 (16)2.3 如何成为Thermo-Calc专家 (16)2.3.1 从TCSAB与其世界各地的代理获得迅速技术支持 (17)2.3.2 日常使用各种Thermo-Calc功能 (17)2.3.3 以专业的和高质量的标准提交结果 (17)2.3.4 通过各种渠道相互交换经验 (17)第3部分Thermo-Calc软件系统 (17)3.1 Thermo-Calc软件系统的目标 (17)3.2 一些热力学术语的介绍 (18)3.2.1 热力学 (18)3.2.2 体系、组元、相、组成、物种(System, component, phases, constituents and species) (18)3.2.3 结构、亚点阵和位置 (19)3.2.4 成分、构成、位置分数、摩尔分数和浓度(composition, constitution, site fractions, molefractions and concentration) (19)3.2.5 平衡态和状态变量 (19)3.2.6 导出变量 (22)3.2.7 Gibbs相规则 (25)3.2.8 状态的热力学函数 (25)3.2.9 具有多相的体系 (25)3.2.10 不可逆热力学 (26)3.2.11 热力学模型 (26)3.2.12 与各种状态变量有关的Gibbs能 (27)3.2.13 参考态与标准态 (27)3.2.14 溶解度范围 (28)3.2.15 驱动力 (28)3.2.16 化学反应 (28)3.2.17 与平衡常数方法相对的Gibbs能最小化技术 (28)3.2.18 平衡计算 (29)3.3 热力学数据 (30)3.3.1 数据结构 (30)3.3.3 数据估价 (32)3.3.6 数据加密 (33)3.4 用户界面 (34)3.4.1 普通结构 (34)3.4.2 缩写 (34)3.4.3 过程机制(history mechanism) (35)3.4.4 工作目录和目标目录(Working directory and target directory) (35)3.4.5 参数转换为命令 (36)3.4.6 缺省值 (36)3.4.7 不理解的问题 (36)3.4.8 帮助与信息 (36)3.4.9 出错消息 (36)3.4.10 控制符 (36)3.4.11 私人文件 (36)3.4.12 宏工具 (37)3.4.13 模块性 (37)3.5 Thermo-Calc中的模块 (37)3.5.1 基本模块 (37)3.7 Thermo-Calc编程界面 (39)3.7.1 Thermo-Calc作为引肇 (39)3.7.2 Thermo-Calc应用编程界面:TQ和TCAPI (40)3.7.3 在其它软件包中开发Thermo-Calc工具箱 (43)3.7.4 材料性质计算核材料工艺模拟的应用 (43)3.8 Thermo-Calc的功能 (44)3.9 Thermo-Calc应用 (44)第4部分Thermo-Calc数据库描述 (45)4.1 引言 (45)4.2 Thermo-Calc数据库描述形式 (45)第5部分数据库模块(TDB)——用户指南 (55)5.1 引言 (55)5.2 TDB模块中用户界面 (56)5.3 开始 (56)5.3.1 SWITCH-DATABASE (56)5.3.2 LIST-DATABASE ELEMENT (56)5.3.3 DEFINE_ELEMENTS (56)5.3.4 LIST_SYSTEM CONSTITUENT (56)5.3.5 REJECT PHASE (56)5.3.6 RESTORE PHASE (56)5.3.7 GET_DATA (56)5.4 所有TDB监视命令的描述 (56)5.4.1 AMEND_SELACTION (56)5.4.6 DEFINE_SPECIES (58)5.4.7 DEFINE_SYSTEM (58)5.4.8 EXCLUDE_UNUSED_SPECIES (58)5.4.9 EXIT (58)5.4.10 GET_DATA (58)5.4.11 GOTO_MODULE (59)5.4.12 HELP (59)5.4.13 INFORMA TION (59)5.4.14 LIST_DATABASE (60)5.4.15 LIST_SYSTEM (60)5.4.16 MERGE_WITH_DA TABASES (61)5.4.17 NEW_DIRECTORY_FILE (61)5.4.18 REJECT (61)5.4.19 RESTORE (62)5.4.20 SET_AUTO_APPEND_DA TABASE (62)5.4.21 SWITCH_DA TABASE (63)5.5 扩展命令 (64)第6部分数据库模块(TDB)——管理指南 (64)6.1 引言 (64)6.2 TDB模块的初始化 (65)6.3 数据库定义文件语法 (66)6.3.1 ELEMENT (67)6.3.2 SPECIES (67)6.3.3 PHASE (67)6.3.4 CONSTITUENT (67)6.3.5 ADD_CONSTITUENT (68)6.3.6 COMPOUND_PHASE (68)6.3.7 ALLOTROPIC_PHASE (68)6.3.8 TEMPERA TURE_LIMITS (68)6.3.9 DEFINE_SYSTEM_DEFAULT (69)6.3.10 DEFAULT_COMMAND (69)6.3.11 DATABASE_INFORMATION (69)6.3.12 TYPE_DEFINITION (69)6.3.13 FTP_FILE (70)6.3.14 FUNCTION (70)6.3.15 PARAMETER (72)6.3.16 OPTIONS (73)6.3.17 TABLE (73)6.3.18 ASSESSED_SYSTEMS (73)6.3.19 REFERENCE_FILE (74)6.3.20 LIST_OF_REFERENCE (75)6.3.21 CASE与ENDCASE (76)6.3.22 VERSION_DA TA (76)6.5 数据库定义文件实例 (77)6.5.1 例1:一个小的钢数据库 (77)6.5.2 例2:Sb-Sn系个人数据库 (78)第7部分制表模块(TAB) (81)7.1 引言 (81)7.2 一般命令 (81)7.2.1 HELP (81)7.2.2 GOTO_MODULE (81)7.2.3 BACK (82)7.2.4 EXIT (82)7.2.5 PATCH (82)7.3 重要命令 (82)7.3.1 TABULATE_SUBSTANCE (82)7.3.2 TABULATE_REACTION (85)7.3.3 ENTER_REACTION (86)7.3.4 SWITCH_DA TABASE (87)7.3.5 ENTER_FUNCTION (88)7.3.6 TABULATE_DERIV A TIVES (89)7.3.7 LIST_SUBSTANCE (91)7.4 其它命令 (92)7.4.1 SET_ENERGY_UNIT (92)7.4.2 SET_PLOT_FORMAT (92)7.4.3 MACRO_FILE_OPEN (92)7.4.4 SET_INTERACTIVE (93)7.5 绘制表 (93)第8部分平衡计算模块(POL Y) (94)8.1 引言 (94)8.2 开始 (95)8.3 基本热力学 (95)8.3.1 体系与相 (95)8.3.2 组元(Species) (95)8.3.3 状态变量 (96)8.3.4 组分 (97)8.3.5 条件 (98)8.4 不同类型的计算 (98)8.4.1 计算单一平衡 (98)8.4.2 性质图的Steping计算 (99)8.4.3 凝固路径模拟 (99)8.4.4 仲平衡与T0温度模拟 (99)8.4.5 相图的Mapping计算 (101)8.4.6 势图计算 (101)8.4.7 Pourbaix图计算 (101)8.4.8 绘制图 (101)8.5.4 更高阶相图 (104)8.5.5 性质图 (104)8.6 普通命令 (104)8.6.1 HELP (104)8.6.2 INFORMA TION (104)8.6.3 GOTO_MODULE (105)8.6.4 BACK (105)8.6.5 SET_INTERACTIVE (105)8.6.6 EXIT (106)8.7 基本命令 (106)8.7.1 SET_CONDITION (106)8.7.2 RESET_CONDITION (107)8.7.3 LIST_CONDITIONS (107)8.7.4 COMPUTE_EQUILIBRIUM (107)8.7.6 DEFINE_MATERIAL (108)8.7.6 DEFINE_DIAGRAM (111)8.8 保存和读取POL Y数据结构的命令 (112)8.8.1 SA VE_WORKSPACES (112)8.8.2 READ_WORKSPACES (113)8.9 计算与绘图命令 (114)8.9.1 SET_AXIS_V ARIABLE (114)8.9.2 LIST_AXIS_V ARIABLE (114)8.9.3 MAP (114)8.9.4 STEP_WITH_OPTIONS (115)8.9.5 ADD_INITIAL_EQUILIBRIUM (117)8.9.6 POST (118)8.10 其它有帮助的命令 (118)8.10.1 CHANGE_STA TUS (118)8.10.2 LIST_STA TUS (119)8.10.3 COMPUTE_TRANSITION (120)8.10.4 SET_ALL_START_V ALUES (121)8.10.5 SHOW_V ALUE (122)8.10.6 SET_INPUT_AMOUNTS (122)8.10.7 SET_REFERENCE_STA TE (122)8.10.8 ENTER_SYMBOL (123)8.10.9 LIST_SYMBOLS (124)8.10.10 EV ALUATE_FUNCTIONS (124)8.10.11 TABULATE (124)8.11 高级命令 (125)8.11.1 AMEND_STORED_EQUILIBRIA (125)8.11.3 DELETE_INITIAL_EQUILIBRIUM (126)8.11.4 LIST_INITIAL_EQUILIBRIA (126)8.11.5 LOAD_INITIAL_EQUILIBRIUM (126)8.11.10 SELECT_EQUILIBRIUM (128)8.11.11 SET_NUMERICAL_LIMITS (128)8.11.12 SET_START_CONSTITUTION (129)8.11.13 SET_START_V ALUE (129)8.11.14 PATCH (129)8.11.15 RECOVER_START_V ALUE (129)8.11.16 SPECIAL_OPTIONS (129)8.12 水溶液 (132)8.13 排除故障 (133)8.13.1 第一步 (133)8.13.2 第二步 (133)8.13.3 第三步 (133)8.14 频繁提问的问题 (134)8.14.1 程序中为什么只得到半行? (134)8.14.2 在已经保存之后为什么不能绘图? (134)8.14.3 为什么G.T不总是与-S相同? (134)8.14.4 如何获得组元偏焓 (135)8.14.5 为什么H(LIQUID) 是零而HM(LIQUID)不是零 (135)8.14.6 即使石墨是稳定的为什么碳活度小于1? (135)8.14.7 如何获得过剩Gibbs能? (135)8.14.8 当得到交叉结线而不是混溶裂隙时什么是错的? (135)8.14.9 怎么能直接计算最大混溶裂隙? (136)第9部分后处理模块(POST) (136)9.1 引言 (136)9.2 一般命令 (137)9.2.1 HELP (137)9.2.2 BACK (137)9.2.3 EXIT (137)9.3 重要命令 (137)9.3.1 SET_DIAGRAM_AXIS (137)9.3.2 SET_DIAGRAM_TYPE (138)9.3.3 SET_LABEL_CORVE_OPTION (139)9.3.5 MODIFY_LABEL_TEXT (139)9.3.6 SET_PLOT_FORMAT (140)9.3.7 PLOT_DIAGRAM (141)9.3.8 PRINT_DIAGRAM (142)9.3.9 DUMP_DIAGRAM (143)9.3.10 SET_SCALING_STA TUS (144)9.3.11 SET_TITLE (144)9.3.12 LIST_PLOT_SETTINGS (144)9.4 实验数据文件绘图命令 (144)9.4.1 APPEND_EXPERIMENTAL_DA TA (144)9.4.2 MAKE_EXPERIMENTAL_DA TAFILE (145)9.5.3 SET_AXIS_LENGTH (147)9.5.4 SET_AXIS_TEXT_STATUS (147)9.5.5 SET_AXIS_TYPE (147)9.5.6 SET_COLOR (147)9.5.7 SET_CORNER_TEXT (148)9.5.8 SET_FONT (148)9.5.9 SET_INTERACTIVE_MODE (149)9.5.10 SET_PLOT_OPTION (149)9.5.11 SET_PREFIX_SCALING (149)9.5.12 SET_REFERENCE_STA TE (149)9.5.13 SET_TIELINE_STA TE (150)9.5.14 SET_TRUE_MANUAL_SCALING (150)9.5.15 TABULATE (150)9.6 奇特的命令 (150)9.6.1 PATCH_WORKSPACE (150)9.6.2 RESTORE_PHASE_IN_PLOT (150)9.6.3 REINIATE_PLOT_SETTINGS (151)9.6.4 SET_AXIS_PLOT_STATUS (151)9.6.5 SET_PLOT_SIZE (151)9.6.6 SET_RASTER_STATUS (151)9.6.8 SUSPEND_PHASE_IN_PLOT (151)9.7 3D图标是:命令与演示 (151)9.7.1 CREATE_3D_PLOTFILE (153)9.7.2 在Cortona VRML Client阅读器中查看3D图 (154)第10部分一些特殊模块 (155)10.1 引言 (155)10.2 特殊模块生成或使用的文件 (156)10.2.1 POL Y3文件 (156)10.2.2 RCT文件 (156)10.2.3 GES5文件 (156)10.2.4 宏文件 (157)10.3 与特殊模块的交互 (157)10.4 BIN模块 (157)10.4.1 BIN模块的描述 (157)10.4.2 特定BIN模块数据库的结构 (161)10.4.3特定BIN计算的演示实例 (162)10.5 TERN 模块 (162)10.5.1 TERN 模块的描述 (162)10.5.2 特殊TERN模块数据库的结构 (166)10.5.3 TERN模块计算的演示实例 (167)10.6 POT模块 (167)10.7 POURBAIX 模块 (167)10.8 SCHAIL 模块 (167)11.2 热化学 (168)11.2.1 一些术语的定义 (168)11.2.2 元素与物种(Elements and species) (168)11.2.3 大小写模式 (169)11.2.4 相 (169)11.2.5 温度与压力的函数 (169)11.2.6 符号 (170)11.2.7 混溶裂隙 (170)11.3 热力学模型 (170)11.3.1 标准Gibbs能 (171)11.3.2 理想置换模型 (171)11.3.3 规则溶体模型 (171)11.3.4 使用组元而不是元素 (172)11.3.5 亚点阵模型—化合物能量公式 (172)11.3.6 离子液体模型,对具有有序化趋势的液体 (172)11.3.7 缔合模型 (173)11.3.8 准化学模型 (173)11.3.9 对Gibbs能的非化学贡献(如铁磁) (173)11.3.10 既有有序-无序转变的相 (173)11.3.11 CVM方法:关于有序/无序现象 (173)11.3.12 Birch-Murnaghan模型:关于高压贡献 (173)11.3.13 理想气体模型相对非理想气体/气体混合物模型 (173)11.3.14 DHLL和SIT模型:关于稀水溶液 (173)11.3.15 HKF和PITZ模型:对浓水溶液 (173)11.3.16 Flory-Huggins模型:对聚合物 (173)11.4 热力学参数 (173)11.5 数据结构 (175)11.5.1 构造 (175)11.5.2 Gibbs能参考表面 (175)11.5.3 过剩Gibbs能 (175)11.5.4 存储私有文件 (175)11.5.5 加密与不加密数据库 (176)11.6 GES系统的应用程序 (176)11.7 用户界面 (176)11.7.1 模块性和交互性 (177)11.7.2 控制符的使用 (177)11.8 帮助与信息的命令 (177)11.8.1 HELP (177)11.8.2 INFORMATION (177)11.9 改变模块与终止程序命令 (178)11.9.1 GOTO_MODULE (178)11.9.2 BACK (178)11.9.3 EXIT (178)11.10 输入数据命令 (178)11.10.4 ENTER_SYMBOL (180)11.10.5 ENTER_PARAMETER (181)11.11 列出数据的命令 (183)11.11.1 LIST_DATA (183)11.11.2 LIST_PHASE_DA TA (183)11.11.3 LIST_PARAMETER (184)11.11.4 LIST_SYMBOL (185)11.11.5 LIST_CONSTITUENT (185)11.11.6 LIST_STATUS (185)11.12 修改数据命令 (185)11.12.1 AMEND_ELEMENT_DA TA (185)11.12.2 AMEND_PHASE_DESCRIPTION (186)11.12.3 AMEND_SYMBOL (188)11.12.4 AMEND_PARAMETER (189)11.12.5 CHANGE_STATUS (191)11.12.6 PATCH_WORKSPACES (191)11.12.7 SET_R_AND_P_NORM (191)11.13 删除数据的命令 (192)11.13.1 REINITIATE (192)11.13.2 DELETE (192)11.14 存储或读取数据的命令 (192)11.14.1 SA VE_GES_WORKSPACE (192)11.14.2 READ_GES_WORKSPACE (193)11.15 其它命令 (193)11.15.1 SET_INTERACTIVE (193)第12部分优化模块(PARROT) (193)12.1 引言 (193)12.1.1 热力学数据库 (194)12.1.2 优化方法 (194)1 2.1.4 其它优化软件 (195)12.2 开始 (195)12.2.1 试验数据文件:POP文件 (195)12.2.2 图形试验文件:EXP文件 (197)12.2.3 系统定义文件:SETUP文件 (197)12.2.4 工作文件或存储文件:PAR文件 (198)12.2.5 各种文件名与其关系 (198)12.2.6 交互运行PARROT模块 (199)12.2.6.3 绘制中间结果 (199)12.2.6.4 实验数据的选择 (199)12.2.6.6 优化与连续优化 (200)12.2.7 参数修整 (200)12.2.8 交互完成的变化要求编译 (201)12.3 交替模式 (201)12.4 诀窍与处理 (201)12.4.4 参数量 (201)12.5 命令结构 (201)12.5.1 一些项的定义 (201)12.5.2 与其它模块连接的命令 (201)12.5.3 用户界面 (201)12.6 一般命令 (201)12.7 最频繁使用的命令 (202)12.8 其它命令 (203)第13部分编辑-实验模块(ED-EXP) (203)第14部分系统实用模块(SYS) (203)14.1 引言 (203)14.2 一般命令 (203)14.2.1 HELP (203)14.2.2 INFORMA TION (204)14.2.4 BACK (205)14.2.5 EXIT (205)14.2.6 SET_LOG_FILE (205)14.2.7 MACRO+FILE_OPEN (205)14.2.8 SET_PLOT_ENVIRONMENT (206)14.3 Odd命令 (207)14.3.1 SET_INTERACTIVE_MODE (207)14.3.2 SET_COMMAND_UNITS (207)14.3.4 LIST_FREE_WORKSPACE (207)14.3.5 PATCH (207)14.3.6 TRACE (207)14.3.7 STOP_ON_ERROR (208)14.3.8 OPEN_FILE (208)14.3.9 CLOSE_FILE (208)14.3.10 SET_TERMINAL (208)14.3.11 NEWS (208)14.3.12 HP_CALCULATOR (208)14.4 一般信息的显示 (209)第15部分数据绘图语言(DATAPLOT) (215)第1部分一般介绍1.1 计算热力学在近十年内与材料科学与工程相联系的计算机计算与模拟的研究与发展已经为定量设计各种材料产生了革命性的方法,热力学与动力学模型的广泛结合使预测材料成分、各种加工后的结构和性能。
Biorad基因导入电转仪
Table of ContentsSection 1Introduction and Safety Information:The Gene Pulser XcellSystem (1)1.1General Safety Information (1)1.2Electrical Hazards (2)1.3Mechanical Hazards (2)1.4Other Safety Precautions (2)Section 2Unpacking and System Installation (3)2.1Unpacking the System Components (3)2.2Setting up the System (4)2.2.1Setting up the Gene Pulser Xcell Main Unit and Connectingthe ShockPod (Cat. #s 165-2660, 165-2661, 165-2662,165-2666) (4)2.2.2Connecting the PC Module to the Gene Pulser Xcell MainUnit (Cat. #s 165-2660, 165-2662, and 165-2668) (5)2.2.3Connecting the CE Module to the Gene Pulser Xcell MainUnit (Cat. #s 165-2660, 165-2661, and 165-2667) (6)2.2.4ShockPod (Cat. #s 165-2660, 165-2661, 165-2662, and165-2669) (6)Section 3Gene Pulser Xcell Operating Instructions (8)3.1Section Overview (8)3.2Front Panel and Home Screen (9)3.2.1Description of Keypad (9)3.2.2Home Screen (10)3.2.3Help Screens (11)3.3Manual Operation (12)3.3.1Manual Operation (Guide Guide) (12)3.3.2Electroporation using Exponential Decay Pulses (12)3.3.3Electroporation Specifying Time Constant (14)3.3.4Electroporation using Square Wave Pulses (15)3.3.5Results Screens (17)3.3.6Saving a Program from Manual Operation (19)3.3.6A Saving in a Location without a Named User Entry (20)3.3.6B Saving in a Location with a Named User Entry (20)3.4Pre-Set Protocols (21)3.4.1Using a Pre-set Protocol (Quick Guide) (21)3.4.2Electroporation using a Pre-Set Protocol (22)3.4.3Modifying Pre-Set Protocol Parameters (25)3.4.4Saving Changes to Pre-Set Protocols (25)3.5User Protocols (26)3.5.1Using a User Protocol (Quick Guide) (26)3.5.2Creating a New User Name (26)3.5.3Creating a New User Protocol (26)3.5.4Modifying a User Protocol (30)3.5.5Deleting a User Name and a User Protocol (31)3.5.6Renaming a User Name or a User Protocol (33)3.6Last Pulse (34)3.7Optimize Operation (34)3.8Data Management (36)3.9Measurements (39)3.9.1Sample Resistance Measurements (39)3.9.2Calibration and Measurement of Capacitors in theCE Module (40)3.10User Preferences (41)3.10.1Setting the Clock (41)3.10.2Adjusting the Screen Intensity (42)3.10.3Sleep Function Setting (42)3.11The Pulse Trac System (43)3.11.1Pulse Trac System Description (43)3.11.2Pulse Trac Diagnostic Algorithm (44)Section 4Overview of Electroporation Theory (44)4.1Exponential Decay Pulses (45)4.2Square Wave Pulses (45)Section 5Factors Affecting Electroporation:OptimizingElectroporation (48)5.1Cell Growth (48)5.2DNA (49)5.3Electroporation Media (49)5.4Temperature (50)Section 6Electroporation of Bacterial Cells (52)6.1Escherichia coli (52)6.1.1Preparation of Electrocompetent Cells (52)6.1.2Electroporation (53)6.1.3Solutions and Reagents (53)6.2Staphylococcus aureus (54)6.2.1Preparation of Electrocompetent Cells (54)6.2.2Electroporation (54)6.2.3Solutions and Reagents (55)6.3Agrobacterium tumefaciens (56)6.3.1Preparation of Electrocompetent Cells (56)6.3.2Electroporation (56)6.3.3Solutions and Reagents (57)6.4Bacillus cereus (57)6.4.1Preparation of Electrocompetent Cells (57)6.4.2Electroporation (57)6.4.3Solutions and Reagents (58)6.5Pseudomonas aeruginosa (58)6.5.1Preparation of Electrocompetent Cells (58)6.5.2Electroporation (59)6.5.3Solutions and Reagents (59)6.6Streptococcus pyogenes (60)6.6.1Preparation of Electrocompetent Cells (60)6.6.2Electroporation (60)6.6.3Solutions and Reagents (61)6.7Lactobacillus plantarum (61)6.7.1Preparation of Electrocompetent Cells (61)6.7.2Electroporation (61)6.7.3Solutions and Reagents (62)Section 7Electroporation of Fungal Cells (62)7.1Saccaromyces cerevisiae (62)7.1.1Preparation of Electrocompetent Cells (62)7.1.2Electroporation (63)7.1.3Solutions and Reagents (64)7.2Schizosaccharomyces pombe (64)7.2.1Preparation of Electrocompetent Cells (64)7.2.2Electroporation (65)7.2.3Solutions and Reagents (65)7.3Pichia pastoris (65)7.3.1Preparation of Electrocompetent Cells (65)7.3.2Electroporation (66)7.3.3Solutions and Reagents (66)7.4Candida albicans (67)7.4.1Preparation of Electrocompetent Cells (67)7.4.2Electroporation (67)7.4.3Solutions and Reagents (68)7.5Dictyostelium discoideum (68)7.5.1Preparation of Electrocompetent Cells (68)7.5.2Electroporation (69)7.5.3Solutions and Reagents (69)Section 8Mammalian Cells (70)8.1Preparation of Electrocompetent Cells (70)8.1.1Attached Cells (70)8.1.2Suspension Cells (70)8.2Electroporation (70)8.3Solutions and Reagents (71)Section 9References (72)Section 10Specifications and Product Information (75)10.1System Specifications (75)10.2Product Information (76)Section 1The Gene Pulser Xcell™Electroporation SystemThe Gene Pulser Xcell is a pulse generator that uses capacitors to produce controlled exponential or square wave electrical pulses for cell electroporation. The unit is capable of producing pulses of up to 3000 V on a high-voltage circuit, and up to 500 V on a low-voltage circuit. For generating pulses on the high voltage circuit, capacitors of 10, 15, and 25 µF present in the Gene Pulser Xcell main unit are used and generating pulses on the low-voltage circuit requires use of capacitors in the CE Module. Exponential decay (or capacitance discharge) and square wave pulses are the most commonly used types of electrical pulse. Anin-depth discussion of these two waveforms can be found in Section 4.The Gene Pulser Xcell is a modular system, comprising of a main unit and two accessory modules,the CE module and the PC module, in addition to the shocking chamber and a cuvette with incorporated electrodes. The CE Module is recommended for use with the Gene Pulser Xcell main unit for electroporation of most eukaryotic cells, including mammalian cells and plant protoplasts. The CE Module should only be used with low-resistance media (<1000 ohms). For exponential decay pulses, the CE Module provides a means of controlling the capacitance of the circuit by increasing the time constant of the pulse. For square wave pulses, the CE Module provides the large capacitor necessary for delivering a square wave pulse into low resistance media. This module contains a set of capacitors with a functional range between 50 and 3275 µF and selectable in 25 µF increments. For square wave pulses, the CE Module provides the large capacitance, 3275 µF, necessary for delivering a square wave pulse into low resistance media.The PC Module is recommended for the electroporation of bacteria and fungi using exponential decay, as well as in other applications where high-voltage pulses are applied to samples of small volume and high resistance. The PC Module selects resistance of 50 ohms 1000 ohms in 50-ohm increments. The unit is used to control the resistance of the circuit by placing resistors in parallel with the sample, thereby provid-ing a means of reducing the time constant of an exponential decay pulse. This provides an effective means of controlling the time constant when using high-resistance media but has little effect on the time constant when using low-resistance media. The PC Module greatly reduces the likelihood of an arc occurring at high voltage. It is not recommended that the PC module be used for square wave pulses due to the increase in droop of the pulse that can occur (see Section 4).Both the PC Module and CE Module have integral leads that connect to the main unit (see Section 2 for installation) and both units are controlled directly from the user interface on the front panel of the main unit.1.1General Safety InformationThis Bio-Rad instrument is designed and certified to meet the safety requirements of EN61010 and the EMC requirements of EN61326 (for Class A) and conforms to the “Class A” standards for electromagnetic emissions intended for laboratory equipment applications. This instrument is intended for laboratory application only. It is possible that emissions from this product may interfere with some sensitive appliances when placed nearby or in the same circuit as those appliances. The user should be aware of this potential and take appropriate measures to avoid interference.No part of the Gene Pulser Xcell system should be used if obvious external case damage has occurred or the electronic displays are not functioning as described in the manual. This instrument is only to be used with the components provided (or their authorized additions or replacements) including, but not limited to, supplied cables and ShockPod. The operating temperature range for the Gene Pulser Xcell system and its associated components is 0–35°C.1There are no user serviceable parts within the unit. The operator should make no attempt to open any case cover or defeat any safety interlock. This instrument must not be altered or modified in any way. Alteration of this instrument will•Void the manufacturer’s warranty•Void the IEC 1010 safety certification•Create a potential safety hazardBio-Rad is not responsible for any injury or damage caused by the use of this instrument for purposes other than those for which it is intended or by modification of the instrument not performed by Bio-Rad or an authorized agent.1.2Electrical HazardsThe Gene Pulser Xcell produces voltages up to 3,000 volts and is capable of passing very high currents. When charged to maximum voltage, the instrument stores about 400 joules. A certain degree of respect is required for energy levels of this order. System safety features prevent operator access to the recessed input jacks and to the recessed electrode contacts inside the sample chamber. These mechanical interlocks should never be circumvented.The pulse button is active whenever the character space in the lower right corner is flashing. There is high voltage present whenever the pulse button is depressed and “Pulsing” is shown on the LCD display on the front of the instrument. Because of the built-in safety interlock in the ShockPod, no pulse is delivered to the cuvette when the ShockPod lid is opened. If the capacitor has been partially charged but not fired (for example, when the charging cycle has been interrupted before the pulse is delivered), some charge may remain on the internal capacitor. This charge will dissipate over 1–2 minutes. However, the user cannot make contact with any charged electrical components due to the system safety features.1.3Mechanical HazardsThe Gene Pulser Xcell contains a patented arc-protection circuit that dramatically reduces the incidence of arcing in the cuvette when high voltage is delivered into the sample. The unit incorporates a circuit that senses the beginning of an arc and diverts current from the sample within <10 µsec, preventing, or greatly reducing, mechanical, visual, and auditory phenomena at the ShockPod. Should an arc occur, the sample chamber is effective in containing these small discharges, but nonetheless we strongly recommend wearing safety glasses when using the instrument.1.4Other Safety PrecautionsAvoid spilling any liquids onto the apparatus. Use only a paper towel or a cloth wet with either water or alcohol to clean the outside surfaces of the Gene Pulser Xcell.Use only the Bio-Rad cables supplied with the Gene Pulser Xcell.Use the ShockPod only in the assembled condition. Do not attempt to circumvent the protection of the ShockPod or use it while disassembled.Verify the display segments periodically.Read the instruction manual before using the Gene Pulser Xcell Electroporation System. For technical assistance contact your local Bio-Rad office or, in the US, call technical services at 1-800-4BIORAD(1-800-424-6723).2Warning: The Gene Pulser Xcell generates, uses, and radiates radio frequency energy. If it is not used in accordance with the instructions given in this manual, it may cause interference with radio communications. The Gene Pulser Xcell has been tested and found to comply with the limits for Class A computing devices (pursuant to Subpart J of Part 15 of FCC Rules) which provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference. In this case the user will be required, at their expense, to take whatever measure may be required to correct the interference.Section 2Unpacking and System InstallationThe Gene Pulser XCell™ can be purchased as three systems as well as component parts:165-2660Gene Pulser Xcell Total System for eukaryotic and microbial cells, 100–240 V, 50/60 Hz, exponential decay and square wave delivery, includes main unit, CE Module, PCModule, ShockPod, 15 sterile cuvettes (5 each of 0.1, 0.2, and 0.4 cm gap),instruction manual165-2661Gene Pulser Xcell Eukaryotic System, 100/240 V, 50/60 Hz, exponential decay (25–3,275 µF range) and square wave delivery, includes main unit, CE Module,ShockPod, 5 sterile cuvettes (0.4 cm gap), instruction manual165-2662Gene Pulser Xcell Microbial System, 100/240 V, 50/60 Hz, exponential decay and square wave delivery, includes main unit, PC Module, ShockPod, 10 sterile cuvettes(5 each of 0.1 and 0.2 cm gap), instruction manual165-2666Gene Pulser Xcell main unit, 100/240 V, 50/60 Hz165-2667Gene Pulser Xcell CE Module, 25–3,275 µF range controlled by main unit, includes integral leads, 5 sterile cuvettes (0.4 cm gap), instruction manual165-2668Gene Pulser Xcell PC Module, 50–1,000 ohm range controlled by main unit, includes integral leads, 10 sterile cuvettes (5 each of 0.1 and 0.2 cm gap)165-2669Gene Pulser Xcell ShockPod shocking chamber, includes integral leads for connection to Gene Pulser Xcell, Gene Pulser II, or MicroPulser2.1Unpacking the System ComponentsRemove all packing material and connect components on a flat, dry surface near an appropriate electrical outlet.Upon receiving your instrument, please check that all items listed were shipped. If any items are missing or damaged, contact your local Bio-Rad office.3Section 3Gene Pulser Xcell™Operating Instructions3.1 Section OverviewThis section describes the operation of the Gene Pulser Xcell. The following summarizes the organization of this section.Section 3.2 below describes the functions of the keys on the front panel, the Home screen on the LCD display, and the Help functions built into the Gene Pulser Xcell.•The keys on the front panel of the main unit control the Gene Pulser Xcell. Section 3.2.1 describes the uses of these keys.•The Home screen provides easy access to programs built into the Gene Pulser Xcell as well as a direct method of manually entering pulse parameters to electroporate a sample. Section 3.2.2 describes these programs.•On-screen help is built into the software of the Gene Pulser Xcell. This may be accessed from any screen as described in Section 3.2.3.The Gene Pulser Xcell has three modes of operation: manual operation, pre-set protocols, and user protocols.Section 3.3 describes the Manual mode, which may be used to rapidly program the parameters necessary for delivering either an exponential decay or a square wave pulse.•Section 3.3.2 describes delivering an exponential decay pulse.•Section 3.3.3 describes delivering an exponential decay pulse but specifying a time constant rather than a capacitance and resistance value.•Section 3.3.4 describes delivering a square wave pulse.•Section 3.3.6 explains how programmed settings may be saved as user protocols.Section 3.4 describes the Pre-set protocols in which the pulse parameters have been optimized for a number of commonly used bacterial and fungal species and mammalian cell lines.•Pre-set Protocols may be called up and used directly (Section 3.4.2) or may be modified prior to being used (Section 3.4.3).• A modified Pre-set Protocol may be saved as a User Protocol (Section 3.4.4).Section 3.5 describes a custom mode (User Protocols) in which users may store optimized pulse parameters that they use in their own work.•User Protocols may be created in any of four ways:•In the User Protocols menu as a new protocol (Section 3.5.3).•In the User Protocols menu as an edited (modified) program (Section 3.5.4)•In the Manual menu as a new protocol (Section 3.3.4).•In the Pre-set Protocol Menu as a modified protocol (Section 3.4.4).•User Protocols, once created and saved, may be called up and used directly like Pre-set Protocols (Section 3.5.1).3.2 Front Panel and Home Screen3.2.1 Description of the keypadSee Figure 3.1 for a view of the Gene Pulser Xcell front panel.Alpha-numeric keys This array of keys permits entering numbers and letters into the Gene PulserXcell. Pressing the Shift key toggles between alphabetic and numeric input. Totype an alphabetic character, press the Shift key to enter alpha mode, thenpress the key with the appropriate letter. To type an a, press the 2 key once; totype a b, press the 2 key twice; to type a c, press the 2 key three times. To usethe same key twice, for example to type a then b, advance the cursor usingthe Right Arrow Key. The firmware on Gene Pulser Xcell will automaticallychange between alpha and numeric input depending on the parameter beingentered. In Protocol screens and Directory screens where a two-digit entrymust be made, the second digit must be entered within 2 seconds of the firstentry, otherwise the screen will default to the single-digit entry.Home key Returns the user to the Home screen from anywhere in the program.Back key Returns the user one level back in hierarchy toward the Home screen.Help key Displays on-screen help text.Save key Saves User Names and User Protocols.Delete key Removes only the last entry in the field; also used to remove User Name andUser Protocol files.Clear key Removes the entire line of the field.Enter key Indicates that a choice has been made and moves the cursor to the nextlocation.Arrow keys The Up and Down Arrow keys move the cursor up or down one row at a time.Depending on the screen and location of the cursor, the Right and Left Arrowsmay (1) move the cursor right or left one space at a time, (2) toggle forwardand backward one screen when there are multiple screens for the samemenu, or (3) increase or decrease numerical input values.Pulse button:Results in discharging a pulse. During this time “Pulsing” is shown on the LCDdisplay. A tone sounds to indicate that the pulse has been delivered. Whenmultiple pulses are delivered, a tone sounds after the last pulse has beendelivered. The Pulse is discharged to the electrodes if the ShockPod isconnected and the lid is closed. Otherwise, it is discharged safely within theinstrument.3.3 Manual Operation3.3.1 Manual Operation (Quick Guide)•From the Home screen:•Press Enter to select exponential decay;•Press 2, then Enter to select exponential decay but specifying a time constant;•Press 3, then Enter to select square wave.•Use the Up and Down Arrow keys to scroll through the parameter value spaces on the screen.When a parameter value is highlighted, use the keypad to enter a value, then press Enter to accept that value.•When the necessary parameter values have been entered, the Pulse button on the Gene Pulser Xcell is active.•Press the Pulse button to electroporate the sample.•Press the Back key to return to the Protocol Detail screen and to deliver another pulse.3.3.2 Electroporation using Exponential Decay PulsesSee Section 4.1 for a discussion of electroporation using exponential decay pulses.•When the Home screen (Figure 3.2) is selected, the number 1, corresponding to “Exponential protocol” is highlighted as the default choice. Press Enter to view the Protocol Detail Screen. If the number 1 on the Home screen is not highlighted, press 1 or use the Up or Down Arrow keys to highlight “Exponential protocol”, then press Enter to select. The Protocol Detail screen appears (Figure 3.3).•The following combination of parameters may be entered:Capacitance + VoltageCapacitance + Voltage + ResistanceThe three variables may be selected in any order, however, the set voltage will determine whether the high voltage or the low voltage circuit is to be used and will limit the range of the capacitance as indicated in Table 3.1. If a value for the capacitance is chosen that outside the range of the system, this value will default to the closest allowable value.Specifying a resistance value requires that the PC Module be attached. This is always recommended with high resistance media (i.e., >600 ohm) such as water, sucrose, glycerol, sorbitol, or polyethylene glycol. The PC Module places a resistor in parallel with the sample to reduce the resistance of the circuit. In this way, the time constant of a high-resistance sample may be reduced and controlled.•When the necessary parameter values have been specified, a flashing “P” appears in the character space in the lower right corner of the LCD display indicating that the pulse button on the Gene Pulser Xcell is active and that a pulse may be delivered.•Press the Pulse button to deliver a pulse. When the Pulse button is depressed, the LCD display will blank then show “Pulsing”. Upon completion, a tone will sound and the pulse measurements will be displayed on the Protocol Results screen (see Figure 3.8, Section 3.3.5).•Use the Left and Right Arrow keys to toggle between the Protocol Results screen and the last Protocol Detail screen.•With the Protocol Detail screen on the LCD display another pulse can be delivered using the same pulse parameters. To change the pulse conditions, press Enter; the cursor appears in the voltage parameter value. The parameters may be changed as described above.•To save the pulse parameters, see Section 3.3.6.•To review previously delivered pulses, see Section 3.8.3.3.5 Results ScreensAfter delivering a pulse, the LCD displays the results on a Protocol Results screen. This screen shows the results in both graphic and tabular form. Figures 3.6, 3.7, and 3.8 show examples of the results from an exponential decay pulse, an exponential decay pulse in which the time constant was specified, and a square wave pulse, respectively.Results of the last 100 pulses as well as of the pulse parameters are stored in Gene Pulser Xcell memory and are accessible from the Data Management program (Section 3.8).3.4.2 Electroporation using Pre-set ProtocolsThere are nine Pre-set Bacterial Protocols, six Pre-set Fungal Protocols, and 12 Pre-set Mammalian Protocols. These protocols are pre-programmed with the optimal parameters for the given organism. Use the Pre-set Protocols as follows.•From the Home screen, press 4 or use the Up and Down Arrow keys to highlight “Pre-set Protocols”, then press Enter to select and to show the Pre-set Protocols screen (Figure 3.12).•Press 1–3, or use the Up and Down Arrow keys, to highlight Bacterial, Fungal, or Mammalian Pre-set Protocols, then press Enter to select.•Use the alpha-numeric keypad or the Up and Down Arrow keys to scroll through the list of names.For the Bacterial and Mammalian Pre-set Protocols, use the Right and Left Arrow keys to toggle between the two screens. When the number corresponding to the desired name is highlighted, press Enter to select and to view the Protocol Detail Screen showing the electroporation parameters for that protocol. A flashing “P” in the character space in the lower right corner of the LCD display indicates that the Pulse button is active.•For example, from the Pre-set Protocols screen, press 3 to highlight “Mammalian”, then press Enter to select and to bring up the first Pre-set Mammalian Protocols screen with the names of six pre-set mammalian protocols (Figure 3.13). Press the Right and Left Arrow keys to togglebetween the two Mammalian Pre-set Protocols screens. Use the alpha-numeric keypad or the Up and Down Arrow keys to scroll through the list of names. When the desired name on theMammalian Pre-set Protocols screen is highlighted,press Enter to select that protocol and toview the Protocol Detail Screen showing the electroporation parameters for that protocol. Forexample, from the Mammalian Pre-set Protocols screen, press 1, then Enter to bring up theProtocol Detail Screen for CHO cells in a 2 mm cuvette (Figure 3.14).•Press the Pulse button to deliver a pulse. When the Pulse button is depressed, the LCD display will blank then show “Pulsing”. Upon completion, a tone will sound and the pulse measurements will be displayed on the Protocol Results screen (see Section 3.3.5).•Use the Left and Right Arrow keys to toggle between the Protocol Results screen and the last Protocol Detail screen.•With the Protocol Detail screen on the LCD display another pulse can be delivered using the same pulse parameters. To change the pulse conditions, press Enter; the cursorappears in the voltage parameter value. The parameters may be changed as described in Section 3.4.3.•To review previously delivered pulses, see Section 3.8.3.4.3 Modifying Pre-set Protocol ParametersThe parameters for a Pre-set protocol may be changed as follows.•From the Protocol Detail screen, press the Up or Down Arrow keys to highlight the value for one of the parameter settings (voltage, capacitance, or resistance for exponential decay pulses;voltage or time constant for time constant mode; pulse length, voltage, number of pulses, or pulse interval for square wave pulses). (Note: the waveform cannot be changed in the Pre-set Protocols Mode.) When the desired parameter is selected, use the alpha-numeric keypad to input the new value.Alternatively, use the Right and Left Arrow keys to incrementally increase or decrease, respectively, the parameter value. Use the Delete or Clear keys to correct entries. When the correct value has been specified, press Enter. If a value outside the limits of the Gene Pulser Xcell is selected, the value in the field will default to the closest permitted value. Use the Up and Down Arrow keys to select other parameter values to be changed, then use the alpha-numeric keypad or the Left and Right Arrow keys to enter the desired value.• A pulse may be delivered when appropriate parameters have been entered in the Protocol Detail screen and the character space at the lower right of the LCD display is flashing “P”.•To return to the last Protocol Detail screen, press the Back key or the Left Arrow key. Another pulse may be delivered using the same parameters shown on the LCD display. To return to the Protocol Results Screen, press the Right Arrow key. (Note: Returning to the Protocol Detail Screen returns to the modified parameters. To return to the Pre-set Protocol, press the Back key again to return to the Pre-set Protocols screen. This will remove any changes made.)•To change the pulse conditions, with the Protocol Detail screen on the LCD display, press Enter;the cursor appears in the voltage parameter value. The parameters may be changed as described above.•To review previously delivered pulses, see Section 3.8.3.4.4 Saving Changes to Pre-set ProtocolsChanges to a Pre-set Protocol may be saved as a User Protocol as follows:•Change the Pre-set Protocol as described in Section 3.4.3.•With the Protocol Detail screen open, press Save.•The first User Directory screen will appear (Figure 3.9); the second line will read “Choose location for protocol”.•Use the Right and Left Arrow keys to toggle between the two User Directory screens. Press 1–12 or use the Up and Down Arrow keys to highlight the User Name under which to store the protocol.Press Enter to select the User Name. The User Protocols screen will appear (Figure 3.10); the second line will read “Choose location for protocol”. If it is necessary to create a new User Name, seeSection 3.5.2.•Use the Right and Left Arrow keys to toggle between the two User Protocols screens. Press 1–12 or use the Up and Down Arrow keys to highlight a location for the new protocol. A protocol may be stored in a position without an entry (see Section 3.3.6A) or in a position with an entry (seeSection 3.3.6B). If necessary, delete a User Protocol as described in Section 3.5.5.•To use the saved protocol, press Enter to view the Protocol Detail screen. Press the Pulse button to deliver a pulse.。
IBM Cognos 软件开发工具包版本 11.0.0 混搭服务开发人员指南说明书
Java samples..............................................................................................................................................11 Java sample file locations.................................................................................................................... 11 Running the Java samples................................................................................................................... 12
Chapter 2. Overview of the Mashup Service............................................................ 7
Programming interfaces...............................................................................................................................7 Identifying reports....................................................................................................................................... 8 Output formats.............................................................................................................................................9 Sample programs.......................................................................................................................................10
sovits train参数
sovits train参数全文共四篇示例,供读者参考第一篇示例:1. batch_size:batch_size参数是指每次输入给模型的数据样本数量。
在训练神经网络模型时,通常会将大量的数据分为小批次进行训练,以提高训练效率和减少内存使用。
较大的batch_size可以加快训练速度,但可能会增加模型的训练时间和资源消耗。
较小的batch_size可以提高模型的收敛性和泛化能力。
2. epochs:epochs参数定义了模型在训练集上的训练次数。
每个epoch会将整个训练集输入给模型进行训练,直到模型收敛。
增加epoch可以提高模型的性能和泛化能力,但也可能导致过拟合。
通常会根据模型的训练情况来调整epochs的数量。
3. learning_rate:learning_rate参数定义了模型在训练过程中的学习速率。
它控制了模型在每一次迭代中更新参数的幅度。
较小的learning_rate可以使模型更加稳定,但可能需要更多的训练时间。
较大的learning_rate可以加快模型的收敛速度,但也可能导致模型不稳定。
通常需要对learning_rate进行调整以获得最佳的性能。
4. optimizer:optimizer参数定义了模型在训练过程中使用的优化器。
优化器负责计算并更新模型的参数,以使模型的损失函数最小化。
常用的优化器包括SGD、Adam、RMSprop等。
不同的优化器有不同的性能和收敛速度,用户可以根据自己的需求选择合适的优化器。
5. loss_function:loss_function参数定义了模型在训练过程中使用的损失函数。
损失函数用于衡量模型预测结果与真实标签之间的差异。
常用的损失函数包括均方误差(MSE)、交叉熵(Cross Entropy)等。
选择合适的损失函数可以使模型更好地拟合数据和提高性能。
6. validation_split:validation_split参数定义了在训练过程中用于验证模型性能的数据集的比例。
torchvision v2.mixup用法 -回复
torchvision v2.mixup用法-回复如何使用torchvision v2.mixup。
torchvision是一款基于PyTorch的机器学习库,它提供了一些实用的工具和函数,用于方便地处理图像数据。
其中一个较新的功能是v2.mixup,它是用于数据增强的一种技术,可以有效提升模型的泛化能力和鲁棒性。
本文将详细介绍如何使用torchvision v2.mixup来增强数据集。
第一步:安装和导入torchvision库要使用torchvision v2.mixup,首先需要安装torchvision库。
可以通过以下命令安装最新版本:pip install torchvision安装完成后,在项目中导入torchvision库:pythonimport torchvisionimport torchvision.transforms as transforms第二步:准备数据集在应用v2.mixup之前,需要准备一个适合的数据集。
在本文中,我们将以CIFAR-10数据集为例,该数据集是一个常用的图像分类任务基准数据集。
首先,我们需要从torchvision中加载CIFAR-10数据集:pythontrainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=None)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=None)上述代码中,train=True表示加载训练集,train=False表示加载测试集。
下载和转换数据集可能需要一些时间,但只需要执行一次。
第三步:定义数据增强方法在使用v2.mixup之前,我们先定义一些数据增强方法。
UVM1.1应用指南及源代码分析_20111211版
6.2. 强大的config .............................................................................................94
6.3. 聚合config变量 .........................................................................................98
写这本书,只是想把自己会的一点东西完全的落于纸上。在努力学习 UVM 的 过程中,自己花费了很多时间和精力。我只想把学习的心得记录下来,希望能够给 后来的人以启发。如果这本书能够给一个人带来一点点的帮助,那么我的努力就不 算是白费。
这本书的前半部分(第 1 到第 9 章)介绍了 UVM 的使用,其用户群较为广泛;
8.2. 搭建一个简单的register model...............................................................129
8.3. 复杂的register model...............................................................................137
函数索引609xvi图目录图11uvm在数字电路设计中的位置3图12uvm对systemverilog的封装4图13简单验证平台5图14uvm验证平台的树形结构6图15实际验证平台7图16packbytes和unpackbytes14图17uvm验证平台中的agent181图21完整的uvm树35图22uvm中常用类的继承关系37图31uvm中的常用phase47图32uvm中所有的phase50图33两个driver位于同一domain57图34两个driver位于不同的domain58图41穿梭的transaction60图51defaultsequence的设置与启动77图52sequencer与driver之间的通信80图53virtualsequence的使用85图61半全局变量93图71monitor与scoreboard的通信104图72使用public成员变量实现通信105图73put操作106图74get操作106xvii图75transport操作107图76component在端口通信中的作用109图77connect关系的建立110图78port与imp的连接111图79portexport与imp的连接115图710使用fifo连接component122图81uvmregfield和uvmreg126图82使用registermodel读取寄存器的流程128图83uvmregfield
生成对抗网络的超参数调优技巧分享
生成对抗网络(GAN)是一种深度学习模型,由生成器和判别器两部分组成。
生成器负责生成与真实数据相似的假数据,而判别器则负责将真假数据进行区分。
生成对抗网络被广泛应用于图像生成、视频生成、自然语言处理等领域,并取得了很好的效果。
然而,在实际应用中,很多人都会遇到一个问题,那就是如何调整生成对抗网络的超参数以获得更好的表现。
本文将分享一些生成对抗网络的超参数调优技巧。
首先,我们来谈谈学习率。
学习率是深度学习中一个非常重要的超参数,它决定了模型参数在每一轮迭代中的更新步长。
对于生成对抗网络来说,学习率的选择尤为重要。
通常来说,我们可以先使用一个较大的学习率进行训练,然后逐渐减小学习率,直到模型收敛。
这种方法可以帮助我们快速找到一个较好的局部最优解。
另外,我们还可以尝试使用自适应学习率算法,如Adam、RMSprop等,来自动调整学习率。
这些算法能够根据每个参数的梯度大小来自适应地调整学习率,从而加速模型的收敛。
其次,我们来讨论一下生成对抗网络中的损失函数。
在生成对抗网络中,生成器和判别器的损失函数通常是对抗性的。
对于生成器来说,它希望生成的假数据能够欺骗判别器,因此它的损失函数可以选择生成的假数据被判别为真实数据的概率的负对数似然。
而对于判别器来说,它希望能够正确地区分真假数据,因此它的损失函数可以选择真实数据被判别为真实数据的概率的负对数似然与假数据被判别为真实数据的概率的负对数似然的和。
此外,我们还可以尝试使用其他的损失函数,如Wasserstein距离、Hinge损失等,来替代传统的对抗性损失函数,从而提升模型的性能。
接下来,我们来谈谈正则化方法。
正则化是一种用来防止模型过拟合的技术。
在生成对抗网络中,由于生成器和判别器的复杂性较高,很容易发生过拟合现象。
因此,我们可以尝试使用一些正则化方法来减小模型的复杂度,如L1正则化、L2正则化、Dropout等。
这些正则化方法能够帮助我们提高模型的泛化能力,从而降低模型在测试集上的误差。
深度学习中的超参数调优技巧
深度学习(Deep Learning)是一种模拟人脑神经系统运行的机器学习方法,已经在各个领域取得了重大的突破。
然而,深度学习的模型通常具有大量的参数,而这些参数的选择直接影响着模型的性能和泛化能力。
因此,在深度学习中,我们需要进行超参数调优,以达到更好的效果和更高的准确率。
超参数是指在训练深度学习模型时需要手动设置的参数,例如学习率、批大小、权重衰减、迭代次数等。
合理的超参数选择可以显著提高模型的性能,从而达到更好的预测结果。
首先,一种常用的超参数调优技巧是网格搜索(Grid Search)。
网格搜索是一种穷举搜索的方法,通过在给定超参数范围内进行组合,来找到最佳的超参数组合。
虽然网格搜索方法可以保证找到最优解,但是计算复杂度较高,尤其当超参数数量较多时。
为了降低计算复杂度,我们可以使用随机搜索(Random Search)方法来进行超参数调优。
随机搜索是从给定的超参数空间中随机选择超参数组合进行训练和验证,可以显著减少计算量。
虽然随机搜索方法没有网格搜索那样保证找到最优解的能力,但是通常能够找到较好的超参数组合。
除了网格搜索和随机搜索,贝叶斯优化(Bayesian Optimization)也是一种常用的超参数调优方法。
贝叶斯优化通过建立高斯过程模型来对超参数空间进行建模和采样,并通过评估不同超参数组合的预测性能,来选择下一个待评估的超参数组合。
贝叶斯优化方法通常能够在有限的评估次数内找到较好的超参数组合。
除了上述提及的超参数调优技巧,还有一些其他的方法可以进一步优化深度学习模型的性能。
例如,使用自适应学习率算法,如Adagrad、Adam等,这些算法可以根据模型表现来自动调整学习率。
此外,还可以引入正则化方法来缓解过拟合问题,例如L1正则化和L2正则化等。
此外,还可以通过集成学习(Ensemble Learning)来提高深度学习模型的性能。
集成学习是通过训练多个独立的模型并将它们的预测结果进行组合,来提高模型的准确性和泛化能力。
生成对抗网络的超参数调优技巧分享(Ⅱ)
生成对抗网络(GAN)作为一种深度学习模型,已经在图像生成、风格迁移等领域取得了非常好的效果。
然而,要训练一个高质量的GAN模型并不容易,其中一个重要的挑战是对超参数进行有效的调优。
本文将分享一些有效的超参数调优技巧,帮助读者更好地训练自己的GAN模型。
首先,GAN模型中最重要的超参数之一就是学习率。
学习率决定了模型参数在每一次更新中的调整幅度,过大的学习率可能导致模型无法收敛,而过小的学习率则会使训练速度过慢。
通常来说,可以先尝试使用一些经典的学习率值,比如或,然后根据模型在验证集上的表现来进行调整。
此外,还可以尝试使用自适应学习率算法,比如Adam算法,来自动调整学习率,这样能够更好地适应不同的数据分布和模型参数。
另一个关键的超参数是批量大小。
在训练GAN模型时,通常需要分别调整生成器和判别器的批量大小。
较小的批量大小可以帮助模型更快地收敛,但同时也容易导致模型陷入局部最优解。
而较大的批量大小则可以提高训练速度,但也容易使模型不稳定。
因此,需要根据实际情况来选择合适的批量大小。
通常来说,可以先尝试一些较小的批量大小,比如16或32,然后根据模型的表现来进行调整。
此外,正则化也是调优GAN模型的关键技巧之一。
由于GAN模型的训练过程中容易出现梯度消失和梯度爆炸的问题,因此需要采取一些正则化的手段来防止模型过拟合。
常用的正则化手段包括L1正则化、L2正则化和Dropout等。
这些方法可以帮助模型更加稳定地训练,同时也可以提高模型的泛化能力。
需要注意的是,正则化的强度也是一个重要的超参数,需要根据实际情况来进行调整。
此外,对抗训练中的损失函数和优化器的选择也会对模型的性能产生影响。
在选择损失函数时,需要根据具体的任务来选择合适的损失函数,比如对抗损失、重建损失等。
在选择优化器时,通常可以尝试一些经典的优化器,比如SGD、Adam 等,然后根据模型在验证集上的表现来进行调整。
最后,超参数的搜索和调优通常是一个非常耗时和困难的过程。
pytorch超分辨率损失函数
pytorch超分辨率损失函数【原创版】目录一、什么是超分辨率损失函数二、超分辨率损失函数的应用场景三、PyTorch 中的超分辨率损失函数四、超分辨率损失函数的优点与局限性正文一、什么是超分辨率损失函数超分辨率损失函数是一种在计算机视觉任务中,用于衡量模型输出的超分辨率图像与原始高分辨率图像之间差距的损失函数。
在超分辨率任务中,模型需要根据输入的低分辨率图像生成高分辨率图像,因此需要一个合适的损失函数来评估生成图像的质量。
二、超分辨率损失函数的应用场景超分辨率损失函数主要应用于以下场景:1.图像超分辨率:将低分辨率图像提升为高分辨率图像,例如将224x224 像素的图像提升为 512x512 像素的图像。
2.视频超分辨率:将低分辨率视频提升为高分辨率视频,例如将320x240 像素的视频提升为 720x480 像素的视频。
三、PyTorch 中的超分辨率损失函数在 PyTorch 中,常用的超分辨率损失函数有以下几种:1.L1 损失(L1 Loss):又称为绝对值损失(Absolute Value Loss),计算方式为预测值与真实值之间的绝对值之和。
L1 损失对于预测值与真实值之间的差距较小的情况,其梯度变化比均方误差(MSE)更平滑,因此可以在训练时更加稳定。
2.均方误差(Mean Squared Error,MSE):计算方式为预测值与真实值之间的平方差的平均值。
MSE 损失函数在训练过程中容易受到噪声影响,导致模型不稳定,但在图像超分辨率任务中仍然被广泛应用。
3.结构相似性(Structure Similarity Index,SSIM):SSIM 是一种衡量两个图像结构相似性的指标,其值范围为 -1 到 1,值越接近 1 表示两个图像越相似。
SSIM 损失函数可以用于衡量生成图像与原始图像之间的结构相似性。
4.对抗性损失(Adversarial Loss):在生成对抗网络(GAN)中,对抗性损失用于衡量生成器和判别器之间的博弈。
higherhrnet损失函数
higherhrnet损失函数HighHRnet(高分辨率人体姿态估计网络)是一个用于高效准确地估计人体姿态的神经网络模型。
为了使HighHRnet更加准确,必须选择一个合适的损失函数。
这篇文章将解释HighHRnet的损失函数,以帮助你更好地理解高分辨率人体姿态估计网络的工作原理。
HighHRnet的损失函数包括四个部分。
1.关键点坐标损失关键点坐标损失是HighHRnet的主要损失函数。
它用于计算预测坐标和真实坐标之间的欧几里得距离。
这个损失函数的目标是最小化预测坐标和真实坐标之间的距离,使预测的关键点与真实的关键点尽可能相似。
对于每个关键点的坐标,如果预测的坐标与真实的坐标之间的距离超过了一个给定的阈值,那么就会产生损失,这个阈值通常设置在5个像素。
关键点可见性损失用于处理人体姿态中关键点可见性的问题。
由于某些关键点可能在某些图像中被遮挡或不完全可见,因此需要一种方法来处理这种情况。
关键点可见性损失考虑了关键点可见性这个因素,并根据关键点的可见状态增加或减少了损失。
如果一个关键点是可见的,则会计算关键点坐标损失。
如果关键点是不可见的,则只会产生一个很小的损失。
这个损失函数的目标是使网络能够正确地处理关键点可见性的问题。
3.姿态置信度损失姿态置信度损失用于控制HighHRnet对不同姿态的估计置信度。
它衡量了不同姿态之间的相似度,并将更高的损失分配给那些相似度较低的姿态。
这个损失函数的目标是使HighHRnet更加准确地分配置信度,并且能够正确地处理不同姿态之间的关系。
4.偏差损失偏差损失用于消除HighHRnet预测结果中的偏差。
这个损失函数通过计算预测结果和真实结果之间的偏差来实现。
如果预测结果和真实结果之间的偏差较大,则会产生更大的损失。
这个损失函数的目标是使HighHRnet的预测结果更加准确,并消除预测结果中的偏差。
综上所述,HighHRnet的损失函数是由四个部分组成的,并且每个部分都有特定的目标,可以帮助HighHRnet更加准确地估计人体姿态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
513Journal of Strength and Conditioning Research,2004,18(3),513–517᭧2004National Strength &Conditioning AssociationT HE E FFECT OF H IGH -L OAD VS .H IGH -R EPETITION T RAINING ON E NDURANCE P ERFORMANCEW ILLIAM P.E BBEN ,1A LAN G.K INDLER ,2K ERRI A.C HIRDON ,1N INA C.J ENKINS ,1A ARON J.P OLICHNOWSKI ,1AND A LEXANDER V.N G 11Department of Physical Therapy,Marquette University,Milwaukee,Wisconsin 53201;2Department of Athletics and Recreational Sports,Marquette University,Milwaukee,Wisconsin 53201.A BSTRACT .Ebben,W.P.,A.G.Kindler,K.A.Chirdon,N.C.Jen-kins,A.J.Polichnowski,and A.V.Ng.The effect of high-load vs.high-repetition training on endurance performance.J.Strength Cond.Res.18(3):513–517.2004.—The purpose of this study was to compare the effects of high-load (H-load)periodized resistance training and high-repetition (H-rep)reverse step loading period-ized resistance training on endurance performance.Twenty-six female university rowers (age ϭ20Ϯ1year)were randomly assigned to H-load (5novice,8varsity)or H-rep (7novice,6varsity)groups.Subjects were pre-and posttested using a 2,000-m rowing ergometer test.Outcome variables included V˙O 2peak,time to test completion,total power,average power per stroke,total number of strokes,stroke rate,and body mass.Subjects trained for 8weeks using identical exercises.Varsity rowers who performed H-load training demonstrated greater improvement compared with those who performed H-rep training.Novice row-ers who performed H-rep training demonstrated greater im-provement compared with those who performed H-load training.High-load periodized training appears to be more effective for athletes with advanced training status,and H-rep reverse step loading periodized training is more effective for those who are relatively untrained.K EY W ORDS .aerobic,strength,crew,rowing,periodizationI NTRODUCTIONImproved endurance performance apparently requires increased aerobic capacity and strength.For anaerobic sports,the role of high-load (H-load)resistance training for improving strength and athletic performance is well es-tablished.Some evidence suggests that H-load resistance training may improve aerobic performance as well (11–13,15,23,24).However,high-repetition (H-rep)resis-tance training may be best for muscle endurance (1,2)and aerobic or endurance sports (4).Questions remain about whether H-load or H-rep resistance training is the best method of training for endurance sports,with few studies comparing the benefits of these types of training for female athletes or rowing (3,7,22).High-load resistance training is useful for improving endurance performance.In training studies using 3sets of 5repetition maximum (RM)or 3sets of 6RM,H-load resistance training improved cycle ergometer perfor-mance and leg strength with no change in muscle cross-sectional area or V ˙O 2(11)and running economy (15),re-spectively.Running economy,muscular power,and 5-km running performance can also be enhanced with the addition of explosive strength training,sprint training,and plyomet-rics,with no concurrent change in V˙O 2max (24).Resis-tance training with loads of 85–100%of 1RM performedwith rapid actions improves endurance performance (23).It is possible that H-load resistance training and high-speed muscle actions each play a role in endurance per-formance (11,13,15,23,24).While evidence suggests that H-load resistance training improves endurance per-formance,questions remain about the potential effective-ness of H-rep resistance training.Research evaluating the effect of H-rep resistance training is limited.Reverse step loading,characterized by decreasing loads and increasing repetitions throughout the periodized program,has been recommended for en-durance athletes (2).Other sources recommend training with sets of 12–40repetitions for improving muscular en-durance (1,2).Successful rowing performance requires high aerobic capacity (5,8,9,19,29)and strength (14,25,27).Both strength and aerobic capacity of rowers can be improved when resistance training is performed concurrently with conditioning (3).Research evaluating resistance training for rowers has compared traditional resistance training protocols to other training methods,such as partner re-sistance exercises or modified proprioceptive neuromus-cular facilitation trunk strengthening patterns,focusing on their effect on functional rowing performance (7,22).No significant differences were observed between training groups in either study (7,22).No previous research has compared the effectiveness of H-load versus H-rep resis-tance training for endurance sports such as rowing.The purpose of this study was to compare the effects of a per-iodized H-load resistance training program and an H-rep reverse step loading periodized resistance training pro-gram on 2,000-meter rowing ergometer performance mea-sures of female collegiate rowers.This study also evalu-ated the response of varsity and novice rowers to each program design variation.M ETHODSExperimental Approach to The ProblemThis study was designed to determine the effects of 8weeks of high-load traditionally periodized training com-pared with a reverse step loading periodized resistance training program.Independent variables in this study in-cluded sets,repetition scheme,load (volume)and orga-nization of the sets,repetition,and volume over time (3).Time to test completion was the primary sport-specific performance variable.We measured strength associated variables,total power and average power per stroke,total number of strokes,and stroke rate to gain insight into how performance may have changed as the result of a particular resistance protocol.Because aerobic capacity is514E BBEN,K INDLER,C HIRDON ET AL.Table1.Resistance training exercises performed by all subjects.Monday Wednesday FridayPower pullSquatSeated rowStiff leg dead liftResisted back extension with twist Lat pull-down Dumbbell squat jumpsWalking lungeHorizontal dumbbell rowShoulder raises–3planesPush pressResisted lateralflexionPower pullDeadliftHorizontalϩ20degrees dumbbell rowSingle leg deadliftBench pressResisted back extensionTable 2.Periodized programs for the H-load and H-repgroups.*Week Reps Sets ExercisesHigh load group(traditional periodization)123456781212101087653333333366666666High repetition group(reverse step loading periodization)1234567815202022252830322222222266666666*H-loadϭhigh load traditional periodization;H-repϭhighrepetition reverse step loading;repsϭrepetitions.an important performance determinant in rowing we alsomeasured V˙O2peak.All dependent variables were as-sessed prior to and after the training protocols.SubjectsSubjects included26female rowers who were part of the Marquette University crew team.Historically,these row-ers have placed in the top2to83percent in meets with national class or international participation.During the 2002spring season,these athletes recorded an average top45%finish,averaging boats and all competitions. Thirty-one novice and varsity female university rowers (ageϭ20Ϯ1year)were originally randomly assigned in a balanced(i.e.,ϳequal novice and varsity)fashion to H-load or H-rep groups.Not all subjects completed all(i.e., pre-and post-)testing or training procedures because of illness,injury,or non-compliance.Thus,13rowers were in each of the H-load(5novice,8varsity)and H-rep(7 novice,6varsity)training groups.Mean age was20Ϯ1.0years,mean height was170Ϯ6.0cm,and mean weight was71Ϯ7.0kg.There were no group differences in age,height,or body mass between rowers in H-load and H-rep pared with var-sity rowers,novice rowers were younger(noviceϭ18Ϯ1.0years;varsityϭ21Ϯ1.0years;pϽ0.001).All rowersgave signed approved informed consent prior to the study. Research approval was obtained from the Marquette Uni-versity Office of Research Compliance.All subjects were experienced in performing resistance training using ex-ercises similar to those used in the training study and had previously performed a combination of H-load and H-rep resistance training microcycled on a weekly basis.All subjects performed rowing ergometer training prior to and during the study as part of their normal off-season training.Training ProtocolsAs described above,subjects were randomly assigned to either an H-load or an H-rep resistance training protocol. All subjects performed identical resistance training ex-ercises as described in Table1.The H-load training group performed a traditionally periodized program with sets and repetitions ranging from3sets of12repetitions dur-ing week1,to3sets of5repetitions by week8.The H-rep training group performed a reverse step loading per-iodized program(4)with a set and repetition scheme ranging from2sets of15repetitions during week1,to2 sets of32repetitions by week8.Table2outlines the per-iodized program for each group.Total training volume was greater for the H-rep group because of the high rep-etitions associated with this type of training.The average training volume for the8-week training cycle was105,003 kg for the H-rep subjects and84,744kg for the H-load subjects.All subjects trained3times a week for thefirst 6weeks and twice a week for the last2weeks.The re-duced training volume during thefinal2weeks served as an unloading phase,which is thought to be especially im-portant for the H-rep reverse step loading group.Subjects trained at approximately80and100%of their RM,de-pending on the training day and exercises.Subjects con-tinued with their dry-land conditioning,in preparation for their competitive season,throughout the course of the study.Testing ProtocolsSubjects were tested pre-and posttraining on a Concept II rowing ergometer(Morrisville,VT)using a2,000-meter rowing test(10,26).In a recent independent study we have shown high reliability for the Concept II ergometer over the same time period as this study(Nϭ6)for strength and power variables(intraclass correlation co-efficient[ICC]rangeϭ0.89–0.99),similar to what has been reported previously(26).After a5-minute warm up, subjects were instructed to row a2,000-m time trial at ‘‘race pace.’’All subjects were given verbal encourage-ment.V˙O2was measured continuously during the test by automated open circuit spirometry(SensorMedics,Yorba Linda,CA)calibrated prior to testing with gases of known concentration.Peak V˙O2was the highest V˙O2for any30-s time interval.Time to test completion,total power,av-erage power per stroke,total number of strokes,stroke rate,peak heart rate,and RQ were also measured or cal-culated during the test.H IGH -L OAD V ERSUS H IGH -R EPETITION R ESISTANCE T RAINING 515Table 3.Baseline pretraining performance characteristics of 13high load (H-load)and 13high repetition (H-rep)trained female rowers during a 2,000-m rowing ergometer performance test.Data are mean ϮSD.*H-loadNH-loadV H-repN H-repV Protocol P AbilityP P ϫA P Time (s)Power (w)Strokes Stroke ratePower per stroke (w)502Ϯ2840,977Ϯ6,034230Ϯ2228Ϯ2179Ϯ29477Ϯ2046,281Ϯ7,220223Ϯ2128Ϯ3208Ϯ25513Ϯ2537,089Ϯ4,683222Ϯ1726Ϯ2167Ϯ22475Ϯ1947,485Ϯ5,165226Ϯ1729Ϯ2211Ϯ250.660.580.740.570.680.0020.0030.820.140.0020.450.290.480.280.46V˙O 2pk (ml·kg Ϫ1·min Ϫ1)41Ϯ544Ϯ538Ϯ244Ϯ30.450.0060.47RQ pkHeart rate pk (b·min Ϫ1)1.02Ϯ0.04187Ϯ61.02Ϯ0.03190Ϯ61.03Ϯ0.01192Ϯ51.01Ϯ0.02189Ϯ130.820.570.510.930.380.35*Strokes ϭtotal number of strokes;Stroke rate ϭstrokes per minute;pk ϭpeak;H-loadN ϭhigh load trained novice;H-loadV ϭhigh load trained varsity;H-repN ϭhigh repetition trained novice;H-repV ϭhigh-repetition trained varsity;Protocol P ϭprotocol main effect probability;Ability P ϭability main effect probability;P ϫA P ϭProtocol by ability interaction probability.Table 4.Posttraining performance change (post-minus pretraining)characteristics of 13high load (H-load)and 13high repetition (H-rep)trained female rowers during a 2,000-m rowing ergometer performance test.Data are mean ϮSD.*H-loadNH-loadV H-repN H-repV Protocol P AbilityP P ϫA P Time (s)Power (w)Strokes Stroke ratePower per stroke (w)Ϫ10Ϯ64,315Ϯ4,13411Ϯ172Ϯ211Ϯ4Ϫ7Ϯ82,099Ϯ3,9450Ϯ141Ϯ210Ϯ10Ϫ15Ϯ62,796Ϯ3,371Ϫ3Ϯ160Ϯ216Ϯ7Ϫ4Ϯ61,112Ϯ3,3190Ϯ150Ϯ25Ϯ80.740.420.270.190.960.020.210.570.290.090.100.860.320.470.15V˙O 2pk (ml·kg Ϫ1·min Ϫ1)RQ pkHeart rate pk (b·min Ϫ1)Ϫ3Ϯ30.01Ϯ0.032Ϯ4Ϫ1Ϯ30.00Ϯ0.041Ϯ6Ϫ1Ϯ3Ϫ0.02Ϯ0.06Ϫ1Ϯ2Ϫ2Ϯ40.01Ϯ0.042Ϯ40.750.590.740.520.560.640.350.270.36*Strokes ϭtotal number of strokes;Stroke rate ϭstrokes per minute;pk ϭpeak;H-loadN ϭhigh load trained novice;H-loadV ϭhigh load trained varsity;H-repN ϭhigh repetition trained novice;H-repV ϭhigh-repetition trained varsity;Protocol P ϭprotocol main effect probability;Ability P ϭability main effect probability;P ϫA P ϭProtocol by ability interaction probability.F IGURE 1.Improvement in rowing performance time(baseline pretraining minus posttraining measures)after H-rep and H-load training in novice and varsity rowers.H-repN ϭhigh-repetition–trained novice;H-repV ϭhigh-repetition–trained varsity;H-loadN ϭhigh-load–trained novice;H-loadV ϭhigh-load–trained varsity.All training groups hadsignificantly faster posttraining times.Data are mean ϮSD.The training protocol by ability interaction was p ϭ0.1.Statistical AnalysesBaseline pretraining performance characteristics were analyzed by 2-factor (protocol,ability)analysis of vari-ance (ANOVA).Changes as the result of training (time)within groups were analyzed by paired t -tests.Changes in performance after training between groups were first computed as posttraining minus the baseline values for each dependent variable.These delta values were then analyzed by 2-factor (protocol,ability)ANOVA.Data are presented as mean ϮSD .Significance was provisionally set at p Յ0.05;however,data are also discussed based on exact p values.R ESULTSResults are described as baseline pre-and posttraining test measures of performance time,power,stroke perfor-mance,and V˙O 2peak.Pre-and posttest results are de-scribed in tables 3and 4,respectively,and figure 1.The pretest showed no difference in 2,000m perfor-mance time between H-load and H-rep groups.As ex-pected,the novice rowers were slower than the varsity rowers (novice ϭ509Ϯ26s,varsity ϭ476Ϯ19s,p ϭ0.002).There was no difference in pretest power output (W)between H-load and H-rep training groups.There were no differences in any group in the total number of strokes or the stroke rate during the performance test.The av-erage power per stroke was similar for the H-load and H-rep training groups.However,compared with the varsity rowers,the novice rowers produced less power (novice ϭ38,709Ϯ5,405W;varsity ϭ46,797Ϯ6,222W;p ϭ0.003)516E BBEN,K INDLER,C HIRDON ET AL.and less power per stroke(noviceϭ172Ϯ25W per stroke;varsityϭ209Ϯ24W per stroke;pϭ0.002), which was consistent with performance time.Thus,var-sity rowers had faster ergometer times and greater pow-er,but similar number of strokes compared with the nov-ice rowers.There was no initial difference in V˙O2peak betweenthe H-load and H-rep training groups,nor were there dif-ferences in the RQ peak or heart rate peak during the performance tests.However,the novice rowers had a sig-nificantly lower V˙O2peak than the varsity rowers(noviceϭ39.3Ϯ4ml·kgϪ1·minϪ1;varsityϭ44.4Ϯ4 ml·kgϪ1·minϪ1;pϭ0.006).Both H-load and H-rep groups improved their perfor-mance times after training(pϽ0.001).The novice rowers had a greater increase in performance(i.e.,decreased time)than the varsity rowers.The protocol by ability(i.e., novice or varsity)interaction suggested a greater positive effect of H-rep training on the novice rowers and H-load training on the varsity rowers.All rowers increased their posttest power output com-pared to pretest measures(pϭ0.003)with no group dif-ferences.There was no change in total strokes(pϭ0.82) or stroke rate(pϭ0.22)after training in any group com-pared to pretest performance measures.However,the av-erage power per stroke was increased significantly in all rowers regardless of training protocol.There was a ten-dency for increased power per stroke for the novice row-ers.The V˙O2peak significantly improved in all rowers(pϽ0.001)after training,but there were no significant group differences between training protocol or ability. The RQ peak did not change overall from pretest to post-test.The peak heart rate attained during the posttest per-formance increased slightly(ϳ1b·minϪ1)though signifi-cantly(pϽ0.001)with no group differences.D ISCUSSIONTo our knowledge,this is thefirst training study to com-pare H-rep and H-load resistance training and its effect on endurance performance.Findings demonstrate that H-load is as effective as H-rep resistance training in im-proving rowing performance in female rowers.In addi-tion,H-load resistance training was more effective for the more highly trained(e.g.,varsity),and H-rep resistance training was more effective for the less highly trained (e.g.,novice)rowers.The H-load and H-rep training groups started from a similar pretraining performance baseline.Both H-load and H-rep training resulted in improved performance. Previous studies have demonstrated improved endurance performance times(13,16,24,25),as well as improved strength in endurance tests(14),as a result of high-load resistance training programs.Not surprisingly,improved strength results in improved rowing performance time,as both are correlated(14,18).In this study,the novice row-ers improved to a greater degree and responded more to the H-rep training compared to H-load training.This finding offers some support to previous recommendations for H-rep resistance training for improving muscular or athletic endurance(1,2,4).On the other hand,varsity rowers tended towards greater improvement in rowing time with H-load training.Thesefindings are consistent with the theory that pretraining status dictates the mag-nitude of potential adaptation(17,21)and that periodized training with adequate loads may result in optimal ad-aptations for those with a higher pretraining status(16).Improved rowing performance was likely the result ofincreased power per stroke in both the H-load and H-reptraining groups.Stroke frequency remained unchangedfrom pre-to posttest and was not altered by training.Since the rowers attempted to perform the pre-and post-tests at a cadence similar to training and competitiverowing,it appears that increased power associated withresistance training was not accrued at the expense ofstroke frequency and rowing specificity.Predictably,novice rowers had slower performancetimes,produced less power,and were less aerobicallyfit(V˙O2peak)than varsity rowers.Rowing ergometer testshave been preferred over treadmills to measure V˙O2inrowers because of specificity,and greater maximal V˙O2 has been measured in rowers on rowing ergometers com-pared to treadmills(26,28).In addition,both graded and6-minute rowing ergometer tests(similar to those per-formed in the present study)have been shown to producesimilar peak V˙O2(20).Despite previousfindings(28,33),true maximal oxygen uptake values may not have beenmeasured in the present study as evidenced by the rela-tively low peak RQ(Ͻ1.1)and heart rates(ϳ190b·minϪ1) recorded.Discrepancies with previous studies may be due to differences in the experience of the athletes studied. Regardless of whether or not maximal V˙O2changed with training,peak V˙O2did increase with concurrent resis-tance training,as previously reported(3).The ability to perform at a higher V˙O2can be associated with improved performance.Thus,an increased V˙O2peak may also con-tribute to the increase in rowing performance.Because peak V˙O2increased to a similar degree after training and group differences still persisted,the increase in peak V˙O2 cannot explain all the differences in performance associ-ated with H-rep or H-load.It is interesting to note that previous studies by Johnston et al.(15)and Paavolainen et al.(24)showed improved aerobic performance with no increase in V˙O2max,demonstrating that an increased maximal oxygen uptake may not be a prerequisite for in-creased endurance performance.Most evidence suggests that resistance training ad-aptations are similar between genders and are typified by musclefiber hypertrophy,an increase in the percent-age of type IIfibers,and a decrease in IIbfibers(30,31). Like men,women are capable of increased dynamic strength after4to8weeks of resistance training(30). However,it is difficult to generalize thefindings of the present study to men because,compared with male sub-jects,female subjects have previously demonstrated some differences in the time course adaptation of musclefibers, such as fastfiber hypertrophy rates that are2times greater than slowfibers(32).Additionally,female type I fibers are largest,compared to males whose type IIafi-bers are largest,before resistance training(6).It is dif-ficult to interpret how these gender specific differences in the time course of adaptations may have differentially af-fected the test groups in this study.Finally,consistent with thefindings of Johnston et al.(15),there was no statistically significant change in body mass for either training group,further demonstrating that resistance training does not result in significant weight gain for women.H IGH-L OAD V ERSUS H IGH-R EPETITION R ESISTANCE T RAINING517P RACTICAL A PPLICATIONSPeriodized resistance training improves endurance per-formance in women crew athletes.Athletes with higher pretraining status may experience greater benefit in en-durance performance from periodized H-load resistance training.Athletes with lower pretraining status may ben-efit more from H-rep resistance training.R EFERENCES1.A NDERSON,T.Effects of three resistance training programs onmuscular strength and absolute and relative endurance.Res.Q.Exer.Sport.53:1–7.1982.2.B AECHLE,T.,R.E.E ARLE,AND D.W ATHEN.Resistance train-ing.In:Essentials of Strength Training and Conditioning(2nd ed).T.R.Baechle and R.W.Earle,eds.Champaign,IL:Human Kinetics,1999.pp.395–426.3.B ELL,G.J.,S.R.P ETERSEN,H.A.Q UINNEY,AND H.A.W ENGER.Sequencing of endurance and high-velocity strength training.Can.J.Sport Sci.13:214–219.1988.4.B OMPA,T.O.Periodization Training for Sports.Champaign,IL:Human Kinetics,1999.5.C OSGROVE,M.J.,J.W ILSON,D.W ATT,AND S.F.G RANT.Therelationship between selected physiological variables of rowers and rowing performance as determined by a2000m ergometer test.J.Sports Sci.17:845–852.1999.6.D ESCHENES,M.R.,AND W.J.K RAEMER.Performance and phys-iologic adaptations to resistance training.Am.J.Phys.Med.Rehabil.81(Suppl):S3–S16.2002.7.G ALILEE-B ELFER, A.The Effect of Modified PNF TrunkStrengthening on Functional Performance in Female Rowers.Master’s thesis,University of Oregon,Eugene,1999.8.G ILLIES,E.M.,AND G.J.B ELL.The relationship of physical andphysiological parameters to2000m simulated rowing perfor-mance.Sports Med.Training Rehabil.9:277–288.2000.9.H AGERMAN,F.C.,G.R.H AGERMAN,AND T.C.M ICKELSON.Phys-iological profiles of elite rowers.Physician Sports Med.7:74–77.1979.10.H AHN,A.,P.B OURDON,AND R.T ANNER.Protocols for the phys-iological assessment of rowers.In:Physiological Tests for Elite Athletes.C.J.Gore,ed.Champaign,IL:Human Kinetics,2000.pp.311–326.11.H ICKSON,R.C.,B.A.D VORAK,E.M.G OROSTIAGA,T.T.K UROWS-KI,AND C.F OSTER.Potential for strength and endurance train-ing to amplify endurance performance.J.Appl.Physiol.65: 2285–2290.1988.12.H ICKSON,R.C.,K.H IDAKA,AND C.F OSTER.Skeletal musclefiber type,resistance training,and strength-related perfor-mance.Med.Sci.Sports Exerc.26:593–598.1994.13.H UCZEL,H.A.,AND D.H.C LARKE.A comparison of strength andmuscle endurance in strength-trained and untrained women.Eur.J.Appl.Physiol.Occup.Physiol.64:467–470.1992.14.J ENSEN,R.L.,P.S.F REEDSON,AND J.H AMILL.The predictionof power and efficiency during near-maximal rowing.Eur.J.Appl.Physiol.Occup.Physiol.73:98–104.1996.15.J OHNSTON,R.E.,T.J.Q UINN,R.K ERTZER,AND N.B.V ROMAN.Strength training female distance runners:Impact on running economy.J.Strength Conditioning Res.11:224–229.1997. 16.K RAEMER,W.J.A series of studies—The physiological basisfor strength training in American football:Fact over philoso-phy.J.Strength Conditioning Res.11:131–142.1997.17.K RAEMER,W.J.,AND A.C.F RY.Strength testing:Developmentand evaluation of methodology.In:.Physiological Assessment of Human Fitness.P.J.Maud and C.Foster,eds.Champaign,IL: Human Kinetics,1995.pp.115–138.18.K RAMER,J.F.,A.L EGER,D.H.P ATERSON,AND A.M ORROW.Rowing performance and selected descriptive,field,and labo-ratory variables.Can.J.Appl.Physiol.19:174–184.1994. 19.L ARSSON,L.Morphological muscle characteristics in rowers.Can.J.Appl.Physiol.5:239–244.1980.20.M AHLER,parison of6-min‘‘all-out’’and incrementalexercise tests in elite oarsmen.Med.Sci.Sports Exerc.15:567–571.1984.21.N EWTON,R.U.AND W.J.K RAEMER.Developing explosive mus-cular power:Implications for a mixed methods training strat-egy.Strength Cond.16:20–31.1994.22.N EYKOVA,S.,AND D.D ONTCHEV.Razvivane na skorostno-sil-ovite vazmozhnosti na mladi grebtsi.(Development of the speed and strength possibilities of young rowers.).V aprosi na Fiziceskata Kultura6:41–43.1987.23.O STERAS,H.,H.H ELGERUD,AND J.H OFF.Effects of aerobicendurance performance from muscular strength and power training.Corpus Psyche et Societas6:29–44.1999.24.P AAVOLAINEN,L.,K.H AKKINEN,I.H AMALAINEN,A.N UMMELA,AND H.R USKO.Explosive-strength training improves5-km running time by improving running economy and muscle pow-er.J.Appl.Physiol.86:1527–1533.1999.25.P YKE,F.S.Isokinetic strength and maximal oxygen uptake oftrained oarsmen.Can.J.Appl.Sport Sci.4:277–279.1979. 26.S CHABORT,E.J.,J.A.H AWLEY,W.G.H OPKINS,AND H.B LUM.High reliability of well-trained rowers on a rowing ergometer.J.Sports Sci.17:627–632.1999.27.S ECHER,N.H.Isometric rowing strength and inexperiencedoarsmen.Med.Sci.Sports Exerc.7:280–283.1975.28.S ECHER,N.H.The physiology of rowing.J.Sports Sci.1:23–53.1983.29.S ECHER,N.H.,O.V AAGE,AND R.C.J ACKSON.Rowing perfor-mance and maximal aerobic power of oarsmen.Scand.J.Sports Sci.4:9–11.1982.30.S TARON,R.S.,D.L.K ARAPONDO,W.J.K RAEMER,A.C.F RY,S.E.G ORDON,J.A.F ALKEL, F.C.H AGERMANN,AND R.S.H IKIDA.Skeletal muscle adaptations during early phase of heavy-resis-tance training in men and women.J.Appl.Physiol.76:1247–1255.1994.31.S TARON,R.S.,M.J.L EONARDI,D.L.K ARAPONDO,E.S.M ALICKY,J.E.F ALKEL,F.C.H AGERMAN,AND R.S.H IKIDA.Strength and skeletal muscle adaptations in heavy resistance-trained wom-en after detraining and retraining.J.Appl.Physiol.70:631–640.1991.32.S TARON,R.S.,T.E.M URRAY,R.M.G ILDERS,F.C.H AGERMAN,R.S.H IKIDA,AND K.E.R AGG.Influence of resistance training on serum lipid and lipoprotein concentrations in young men and women.J.Strength Cond.Res.14:37–44.2000.33.S TROMME,S.B,F.I NGJER,AND H.D.M EEN.Assessment of max-imal aerobic power in specifically trained athletes.J.Appl.Phy-siol.42:833–837.1977.AcknowledgmentsThis article is dedicated to Alan Kindler,Marquette University rowing coach,who died on September6,2002,at the age of29. He redefined strength for all of us.Address correspondence to William Ebben,webben70@ .。