北京中国人民大学附属外国语中学数学分式解答题章末练习卷(Word版 含解析)
七年级上册北京中国人民大学附属外国语中学数学期末试卷章末练习卷(Word版 含解析)
七年级上册北京中国人民大学附属外国语中学数学期末试卷章末练习卷(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.2.如图,直线EF、CD相交于点O,OA⊥OB,OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=30°,请直接写出∠BOD的度数;(3)观察(1)(2)的结果,猜想∠AOE和∠BOD的数量关系,并说明理由.【答案】(1)∵∠AOE+∠AOF=180°,∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC= ∠AOF=70°,∴∠EOD=∠FOC=70°;∵OA⊥OB, ∴∠AOB=90°∵∠BOE=∠AOB-∠AOE=50°,∴∠BOD=∠EOD-∠BOE=20°;(2)∵∠AOE+∠AOF=180°,∠AOE=30°,∴∠AOF=150°;又∵OC平分∠AOF,∴∠FOC= ∠AOF=75°,∴∠EOD=∠FOC=75°;∵∠BOE=∠AOB-∠AOE=60°,∴∠BOD=∠EOD-∠BOE=15°;(3)从(1)(2)的结果中能看出∠BOD= ∠AOE,理由如下:∵∠AOE+∠AOF=180°,∴∠AOF=180°-∠AOE;又∵OC平分∠AOF,∴∠FOC= ∠AOF=90°- ∠AOE,∴∠EOD=∠FOC=90°- ∠AOE;∵OA⊥OB, ∴∠AOB=90°∵∠BOE=∠AOB-∠AOE=90°-∠AOE,∴∠BOD=∠EOD-∠BOE=(90°- ∠AOE)-(90°-∠AOE)= ∠AOE;∴∠BOD= ∠AOE;【解析】【分析】(1)根据平角的定义得出∠AOF=140°,根据角平分线的定义得出∠FOC= ∠AOF=70°,根据对顶角相等得出∠EOD=∠FOC=70°,根据垂直的定义得出∠AOB=90°,然后根据角的和差,由∠BOE=∠AOB-∠AOE ,∠BOD=∠EOD-∠BOE 即可算出答案;(2)根据平角的定义得出∠AOF=150°,根据角平分线的定义得出∠FOC= ∠AOF=75°,根据对顶角相等得出∠EOD=∠FOC=75°,然后根据角的和差,由∠BOE=∠AOB-∠AOE ,∠BOD=∠EOD-∠BOE 即可算出答案;(3)从(1)(2)的结果中能看出∠BOD= ∠AOE,理由如下:根据平角的定义得出∠AOF=180°-∠AOE;根据角平分线的定义得出∠FOC= ∠AOF=90°- ∠AOE,根据对顶角相等得出∠EOD=∠FOC=90°- ∠AOE;然后根据角的和差,由∠BOE=∠AOB-∠AOE=90°-∠AOE,∠BOD=∠EOD-∠BOE=(90°- ∠AOE)-(90°-∠AOE)= ∠AOE得出结论。
北京中国人民大学附属外国语中学数学全等三角形章末练习卷(Word版 含解析)
北京中国人民大学附属外国语中学数学全等三角形章末练习卷(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O P''、P' P''交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°.【详解】解:如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O 、P' 交OB、OA于M、N,由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB ,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°. 故答案为30°.【点睛】 本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.3.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.4.如图,点A,B,C在同一直线上,△ABD和△BCE都是等边三角形,AE,CD分别与BD,BE交于点F,G,连接FG,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE≌△DBC,则有∠BAE=∠BDC,AE=CD,从而可证到△ABF≌△DBG,则有AF=DG,BF=BG,由∠FBG=60°可得△BFG是等边三角形,证得∠BFG=∠DBA=60°,则有FG∥AC,由∠CDB≠30°,可判断AD与CD的位置关系.【详解】∵△ABD和△BCE都是等边三角形,∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°.∵点A、B、C在同一直线上,∴∠DBE=180°﹣60°﹣60°=60°,∴∠ABE=∠DBC=120°.在△ABE和△DBC中,∵BD BAABE DBCBE BC∠∠=⎧⎪=⎨⎪=⎩,∴△ABE≌△DBC,∴∠BAE=∠BDC,∴AE=CD,∴①正确;在△ABF和△DBG中,60BAF BDGAB DBABF DBG∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF≌△DBG,∴AF=DG,BF=BG.∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;∵AE=CD,AF=DG,∴EF=CG;∴③正确;∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE≌△DBC是解题的关键.5.如图,在等腰直角三角形ABC中,90ACB∠=︒,4AC BC==,D为BC中点,E为AC边上一动点,连接DE,以DE为边并在DE的右侧作等边DEF∆,连接BF,则BF的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.6.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.7.如图,已知30AOB ∠=︒,点P 在边OA 上,14OD DP ==,点E ,F 在边OB 上,PE PF =.若6EF =,则OF 的长为____.【答案】18【解析】【分析】由30°角我们经常想到作垂线,那么我们可以作DM 垂直于OA 于M ,作PN 垂直于OB 于点N ,证明△PMD ≌△PND ,进而求出DF 长度,从而求出OF 的长度.【详解】如图所示,作DM 垂直于OA 于M ,作PN 垂直于OB 于点N.∵∠AOB=30°,∠DMO=90°,PD=DO=14,∴DM=7,∠NPO=60°,∠DPO=30°,∴∠NPD=∠DPO=30°,∵DP=DP ,∠PND=∠PMD=90°,∴△PND ≌△PMD ,∴ND=7,∵EF=6,∴DF=ND-NF=7-3=4,∴OF=DF+OD=14+4=18.【点睛】本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键.8.如图,在Rt △ABC 中,∠C =30°,将△ABC 绕点B 旋转α(0<α<60°)到△A′BC′,边AC 和边A′C′相交于点P ,边AC 和边BC′相交于Q.当△BPQ 为等腰三角形时,则α=__________.【答案】20°或40°【解析】【分析】过B作BD⊥AC于D,过B作BE⊥A'C'于E,根据旋转可得△ABC≌△A'BC',则BD=BE,进而得到BP平分∠A'PC,再根据∠C=∠C'=30°,∠BQC=∠PQC',可得∠CBQ=∠C'PQ=θ,即可得出∠BPQ=12(180°-∠C'PQ)=90°-12θ,分三种情况讨论,利用三角形内角和等于180°,即可得到关于θ的方程,进而得到结果.【详解】如图,过B作BD⊥AC于D,过B作BE⊥A'C'于E,由旋转可得,△ABC≌△A'BC',则BD=BE,∴BP平分∠A'PC,又∵∠C=∠C'=30°,∠BQC=∠PQC',∴∠CBQ=∠C'PQ=θ,∴∠BPQ=12(180°-∠C'PQ)=90°-12θ,分三种情况:①如图所示,当PB=PQ时,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,∵∠BPQ+∠PBQ+∠PQB=180°,∴90°-12θ+2×(30°+θ)=180°,解得θ=20°;②如图所示,当BP=BQ时,∠BPQ=∠BQP,即90°-12θ=30°+θ,解得θ=40°;③当QP=QB时,∠QPB=∠QBP=90°-12θ,又∵∠BQP=30°+θ,∴∠BPQ+∠PBQ+∠BQP=2(90°-12θ)+30°+θ=210°>180°(不合题意),故答案为:20°或40°.【点睛】本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP平分∠A'PC,解题时注意分类思想的运用.9.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t 当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.10.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.二、八年级数学轴对称三角形选择题(难) 11.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,按此规律作下去,若11A B O α∠=,则1010A B O ∠=( )A .102aB .92aC .20aD .18a 【答案】B【解析】【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.【详解】解:1212B A B B =,11A B O α∠=,2212A B O α∴∠=, 同理332111222A B O αα∠=⨯=, 44312A B O α∠=, 112n n n A B O α-∴∠=, 101092A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.12.如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2 B.3 C.4 D.5【答案】C【解析】以O点为圆心,OA为半径作圆与x轴有两交点,这两点显然符合题意.以A点为圆心,OA为半径作圆与x轴交与两点(O点除外).以OA中点为圆心OA长一半为半径作圆与x 轴有一交点.共4个点符合,13.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④B.①④③②C.①④②③D.②①④③【答案】B【解析】【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.14.如图,△ABC中,AB=AC,且∠ABC=60°,D为△ABC内一点,且DA=DB,E为△ABC外一点,BE=AB,且∠EBD=∠CBD,连DE,CE. 下列结论:①∠DAC=∠DBC;②BE⊥AC ;③∠DEB=30°. 其中正确的是()A.①... B.①③... C.② ... D.①②③【答案】B【解析】【分析】连接DC,证ACD BCD DAC DBC∠∠≅=得出①,再证BED BCD≅,得出BED BCD30∠∠==︒;其它两个条件运用假设成立推出答案即可.【详解】解:证明:连接DC,∵△ABC是等边三角形,∴AB=BC=AC,∠ACB=60°,∵DB=DA,DC=DC,在△ACD与△BCD中,AB BCDB DADC DC=⎧⎪=⎨⎪=⎩,∴△ACD≌△BCD (SSS),由此得出结论①正确;∴∠BCD=∠ACD=1302ACB∠=︒∵BE=AB,∴BE=BC,∵∠DBE=∠DBC,BD=BD,在△BED与△BCD中,BE BCDBE DBCBD BD=⎧⎪∠=∠⎨⎪=⎩,∴△BED≌△BCD (SAS),∴∠DEB=∠BCD=30°.由此得出结论③正确;∵EC ∥AD ,∴∠DAC=∠ECA ,∵∠DBE=∠DBC ,∠DAC=∠DBC ,∴设∠ECA=∠DBC=∠DBE=∠1,∵BE=BA ,∴BE=BC ,∴∠BCE=∠BEC=60°+∠1,在△BCE 中三角和为180°,∴2∠1+2(60°+∠1)=180°∴∠1=15°,∴∠CBE=30,这时BE 是AC 边上的中垂线,结论②才正确.因此若要结论②正确,需要添加条件EC ∥AD.故答案为:B.【点睛】本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.15.如图,ABC ∆中,AB 的垂直平分线DG 交ACB ∠的平分线CD 于点D ,过D 作DE AC ⊥于点E ,若10AC =,4CB =,则AE =( )A .7B .6C .3D .2【答案】C【解析】【分析】 连接BD 、AD,过点D 作DF ⊥CB 于点F ,利用角平分线及线段垂直平分线的性质可求出BD=AD ,DE=DF ,依据HL 定理可判断出Rt △AED ≌Rt △BFD ,根据全等三角形的性质即可得出BF=AE ,再运用AAS 定理可证得Rt △CED ≌Rt △CFD ,证出CE=CF ,设AE 的长度为x ,根据CE=CF 列方程求解即可.【详解】如图, 连接BD 、AD,过点D 作DF⊥CB 于点F.的平分线CD于点D,DE⊥AC,DF⊥BC,∵AB的垂直平分线DG交ACB∴BD=AD,DE=DF.∴Rt△AED≌Rt△BFD.∴BF=AE.又∵∠ECD=∠FCD,∠CED=∠CFD,CA=CA,∴Rt△CED≌Rt△CFD,∴CE=CF,设AE的长度为x,则CE=10-x,CF=CB+BF= CB+AE= 4+x,∴可列方程10-x=4+x,x=3,∴AE=3;故选C.【点睛】本题涉及到线段垂直平分线及角平分线的性质,直角三角形全等的判定定理及性质,解答此题的关键是作出辅助线,构造出直角三角形解答.16.如图,四边形ABCD中,∠C=,∠B=∠D=,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为().A.B.C.D.【答案】D【解析】【分析】【详解】作点A关于直线BC和直线CD的对称点G和H,连接GH,交BC、CD于点E、F,连接AE、AF,则此时△AEF的周长最小,由四边形的内角和为360°可知,∠BAD=360°-90°-90°-50°=130°,即∠1+∠2+∠3=130°①,由作图可知,∠1=∠G,∠3=∠H,△AGH的内角和为180°,则2(∠1+∠3)+ ∠2=180°②,又①②联立方程组,解得∠2=80°.故选D.考点:轴对称的应用;路径最短问题.17.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;【详解】①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,故①正确;由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°∴△CQB≌△CPA(ASA),∴AP=BQ,故②正确;∵△CQB≌△CPA,∴PC=PQ,且∠PCQ=60°∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故③正确,∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,∴PD≠CD,∴DE≠DP,故④DE=DP错误;∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,∴∠AOE=120°,故⑤正确,故选C.【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.18.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】由点A、B的坐标可得到2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴2,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC 是等腰三角形的C 点有1个;②若BC=AB ,以B 为圆心,BA 为半径画弧与x 轴有2个交点,即满足△ABC 是等腰三角形的C 点有2个;③若CA=CB ,作AB 的垂直平分线与x 轴有1个交点,即满足△ABC 是等腰三角形的C 点有1个;综上所述:点C 在x 轴上,△ABC 是等腰三角形,符合条件的点C 共有4个.故选D .【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.19.如图,已知,点A (0,0)、B (43,0)、C (0,4),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…则第2017个等边三角形的边长等于( )A .201532 B .201632 C3 D .201932【答案】A【解析】【分析】【详解】根据锐角三函数的性质,由OB=3OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A 1AB=60°,进而可得∠CAA 1=30°,∠CA 1O=90°,因此可推导出∠A 2A 1B=30°,同理得到∠CA 2B 1=∠CA 3B 2=∠CA 4B 3=90°,∠A 2A 1B=∠A 3A 2B 2=∠A 4A 3B 3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA 1=OCcos ∠CAA 1=3B1A2=1232⨯,以此类推,可知第2017个等边三角形的边长为:2017201513()4322⨯=.故选A.【点睛】此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.20.如图所示,在四边ABCD中,∠BAD=120°,∠B=∠D=90°,若在BC和CD上分别找一点M,使得△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.110°B.120°C.140°D.150°【答案】B【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=180°-120°=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选B.【点睛】此题主要考查了平面内最短路线问题求法,以及三角形的外角的性质和垂直平分线的性质等知识的综合应用,根据轴对称的性质,得出M,N的位置是解题的关键.。
北京大学附属中学数学分式解答题单元测试题(Word版 含解析)
一、八年级数学分式解答题压轴题(难)1.已知分式 A =2344(1)11a a a a a -++-÷-- (1)化简这个分式;(2)当 a >2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B ,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和.【答案】(1)22a a +-;(2)原分式值变小了,见解析;(3)11 【解析】【分析】(1)根据分式混合运算顺序和运算法则化简即可得;(2)根据题意列出算式2622a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a 的范围判断结果与0的大小即可得;(3)由24122a A a a +==+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】 解:(1)A=2344(1)11a a a a a -++-÷-- =221311(2)a a a a ---⨯-- =2(2)(2)11(2)a a a a a +--⨯-- =22a a +-; (2)变小了,理由如下: ∵22a A a +=-, ∴62a B a +=+, ∴261622(2)(2)a a A B a a a a ++-=-=-+-+; ∵2a >,∴20a ->,24a +>,∴0A B ->,∴分式的值变小了;(3)∵A 是整数,a 是整数, 则24122a A a a +==+--, ∴21a -=±、2±、4±, ∵1a ≠,∴a 的值可能为:3、0、4、6、-2;∴3046(2)11++++-=;∴符合条件的所有a 值的和为11.【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.2.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,12x x +≥= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭∵12x x --≥= ∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.3.小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的m 倍,两人在同起点,同时出发,结果小强先到目的地n 分钟.①当3m =,6n =时,求小强跑了多少分钟?②小明的跑步速度为_______米/分(直接用含m n ,的式子表示).【答案】(1)小强的速度为80米/分,小明的速度为300米/分;(2)①小强跑的时间为3分;②1000(1)m mn-. 【解析】【分析】 (1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;(2)①设小明的速度为y 米/分,由m =3,n =6,根据小明的时间-小强的时间=6列方程解答;②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.【详解】(1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分, 根据题意得:1200x =4500220x +. 解得:x =80.经检验,x =80是原方程的根,且符合题意.∴x+220=300.答:小强的速度为80米/分,小明的速度为300米/分.(2)①设小明的速度为y 米/分,∵m =3,n =6, ∴1000100063y y -=,解之得10009y =. 经检验,10009y =是原方程的解,且符合题意, ∴小强跑的时间为:10001000(3)39÷⨯=(分) ②小强跑的时间:1n m -分钟,小明跑的时间:11n mn n m m +=--分钟, 小明的跑步速度为: 1000(1)10001mn m m mn -÷=-分. 故答案为:1000(1)m mn-. 【点睛】 此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.4.一件工程,甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做 20 天,剩下的工程再由甲、乙两队合作 60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为 8.6 万元,乙队每天的施工费用为 5.4 万元,工程预算的施工费用为 1000 万元,若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?【答案】(1)甲、乙两队单独完成这项工程分别需120天、180天(2)工程预算的施工费用不够用,需追加预算8万元【解析】试题分析:(1)首先表示出甲、乙两队需要的天数,进而利用由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成得出等式求出答案;(2)首先求出两队合作需要的天数,进而求出答案.试题解析:解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意,得201160()12233x x x++=,解得:x=180.经检验,x=180是原方程的根,∴23x=23×180=120,答:甲、乙两队单独完成这项工程分别需120天和180天;(2)设甲、乙两队合作完成这项工程需要y天,则有11()1120180y+=,解得y=72.需要施工费用:72×(8.6+5.4)=1008(万元).∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元.点睛:此题主要考查了分式方程的应用以及一元一次方程的应用,正确得出等量关系是解题关键.5.八年级某同学在“五一”小长假中,随父母驾车去蜀南竹海观光旅游.去时走高等级公路,全程90千米;返回时,走高速公路,全程120千米.返回时的平均速度是去时平均速度的1.6倍,所用时间比去时少用了18分钟.求返回时的平均速度是多少千米每小时?【答案】返回时的平均速度是80千米/小时.【解析】分析:根据题意,设去时的平均速度是x千米/小时,找到等量关系:返回时所用时间比去时少用了18分钟,列分式方程求解即可.详解:设去时的平均速度是x千米/小时.由题:90120181.660x x =+ 解得:50x = 检验:50x =是原方程的解.并且,当50x =时,1.680x =,符合题意.答:返回时的平均速度是80千米/小时.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,根据等量关系列方程解答.6.探索:(1)如果32311x m x x -=+++,则m=_______; (2)如果53522x m x x -=+++,则m=_________; 总结:如果ax b m a x c x c +=+++(其中a 、b 、c 为常数),则m=________; (3)利用上述结论解决:若代数式431x x --的值为整数,求满足条件的整数x 的值. 【答案】(1)-5;(2)-13 ; b -ac ;(3)0或2【解析】试题解析: ()323(1)55133.1111x x m x x x x -+-==-=+++++ 5.m ∴=-()535(2)1313255.2222x x m x x x x -+-==-=+++++ 13.m ∴=-总结:().ax b a x c b ac b ac m a a x c x c x c x c+++--==+=+++++ .m b ac ∴=-()434(1)1134.111x x x x x --+==+--- 又∵代数式431x x --的值为整数, 11x ∴-为整数, 11x ∴-=或11x -=-2x ∴=或 0.7.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价25%后的售价为1.25元,则该商品在甲商场的原价为 元;(2)乙商场定价有两种方案:方案①将该商品提价20%;方案②将该商品提价1元。
北京中国人民大学附属外国语中学小升初数学期末试卷章末练习卷(Word版 含解析)
北京中国人民大学附属外国语中学小升初数学期末试卷章末练习卷(Word版含解析)一、选择题1.6时15分,钟面上时针和分针的夹角是()。
A.直角B.锐角C.钝角2.水果店运来150千克梨,苹果比梨多运来13,苹果比梨多多少千克?正确的算式是()。
A.11503⨯B.115013⎛⎫⨯+⎪⎝⎭C.115013⎛⎫÷+⎪⎝⎭3.一个三角形三内角的度数的比为2∶2∶3,这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形4.小胖有88枚邮票,比小亚邮票枚数的一半多2枚。
小亚有多少枚邮票?解:设小亚有x枚邮票。
下列方程错误的是()。
A.x÷2-2=88 B.x÷2+2=88 C.88-x÷2=2 D.x÷2=88-25.下面的立体图形,从正面、上面、右面看到的形状完全相同的是()。
A.B.C.6.下面说法错误的是()。
A.两种量相对应的两个数的比值-定,这两种量之间就是正比例关系。
B.同一幅地图,图上距离和实际距离之间成正比例关系。
C.如果两种相关联的量相对应的两个数的乘积一定,它们之间就是反比例关系。
D.两种相关联的量之间,不一定存在正比例或反比例关系。
7.一个长方形的长是8厘米,宽是5厘米,以它的长为轴旋转一周,能够形成一个()。
A.长方体B.正方体C.圆锥D.圆柱8.某市出租车收费标准如下表,根据表格描述,()的说法是正确的。
里程收费2千米(含2千米)以内 6.00元(起步价)2千米以上,每增加1千米 1.50元A.该市出租车所行的里程与所需费用成正比例B.该市出租车所行的里程与所需费用成反比例C.该市出租车所行里程在2千米以上,所行的里程与所需费用成正比例D.该市出租车所行里程在2千米以上,所行的里程与所需费用成反比例9.(3分)将一张正方形纸连续对折3次后展开,其中一份占这张正方形纸的.()A. B. C. D.无法确定二、填空题10.地球上海洋的面积大约是三亿六千一百万平方千米,写作________平方千米,省略亿后面的尾数约是________亿平方千米。
北京中国人民大学附属外国语中学数学分式填空选择章末练习卷(Word版 含解析)
北京中国人民大学附属外国语中学数学分式填空选择章末练习卷(Word 版 含解析)一、八年级数学分式填空题(难)1.对实数a 、b ,定义运算☆如下:a ☆b=(,0){(,0)b b a a b a a a b a ->≠≤≠,例如:2☆3=2﹣3=18,则计算:[2☆(﹣4)]☆1=_____. 【答案】16 【解析】 【分析】判断算式a ☆b 中,a 与b 的大小,转化为对应的幂运算即可求得答案. 【详解】 由题意可得: [2☆(﹣4)]☆1 =2﹣4☆1 =116☆1 =(116)﹣1=16, 故答案为:16. 【点睛】本题考查了新定义运算、负整数指数幂,弄清题意,理解新定义运算的规则是解决此类题目的关键.2.已知:x 满足方程11200620061x x =--,则代数式2004200620052007x x -+的值是_____. 【答案】20052007- 【解析】因为11200620061x x =--,则200420062005200520062006001120072007x x x x x x x --=⇒=⇒=⇒=---+ . 故答案:20052007-.3.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y +.【答案】1 【解析】解:原式=222()xy x y x y x y ++⋅++=xy +2x +2y ,方程组:30233x y x y +=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩,当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.4.当m= __________ 时,关于x 的分式方程231062x m x x x +++=--+没有实数解. 【答案】4或-6 【解析】 【分析】先将分式方程化为整式方程,根据方程231062x m x x x +++=--+没有实数解会产生增根判断增根是x=3或x=-2,再把增根x=3或x=-2代入整式方程即可求出m 的值. 【详解】解:方程231062x m x x x +++=--+变形为310(3)(2)2x m x x x +++=-++, 方程两边同时乘以(3)(2)x x -+去分母得:x+m+3+x-3=0; 整理得:2x+m=0∵关于x 的分式方程231062x m x x x +++=--+没有实数解. ∴分式方程有增根x=3或x=-2.把x=3和x=-2分别代入2x+m=0中 得m=-6或m=4. 【点睛】分式方程无解问题或增根问题可按如下步骤进行:①根据最简公分母确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.但也要注意,有时分式方程转化成的整式方程本身没有实数根,也是导致分式方程没有实数根的一种情况,所以要考虑全面,免得漏解.5.已知关于x 的方程4433x mm x x---=--无解,则m=________. 【答案】-3或1 【解析】 【分析】分式方程去分母转化为整式方程()348m x m +=+,分两种情况:(1)()348m x m +=+无实数根,(2)整式方程()348m x m +=+的根是原方程的增根,分别求解即可. 【详解】去分母得:()()434x x m m ---+=-, 整理得()348m x m +=+,由于原方程无解,故有以下两种情况:(1)()348m x m +=+无实数根,即30m +=且480m +≠, 解得3m =-;(2)整式方程()348m x m +=+的根是原方程的增根,即4833m m +=+,解得1m =; 故答案为:3m =-或1m =.【点睛】此题考查了分式方程无解的条件,分式方程无解,有两种情况,①整式方程本身无解;②整式方程有解,但使得分式方程的最简公分母为零(即为增根).6.阅读材料:方程1111123x x x x -=-+--的解为x=1,方程1111134x x x x -=----的解为x=2,方程11111245x x x x -=-----的解为3,x =,根据你发现的方程的规律,写出解是x=n 的对应方程为____________________.【答案】11112112x n x n x n x n -=--+-+----【解析】 【分析】观察方程左边第二项的分母分别是x ,x-1,x-2,可知解是x=n 的对应方程左边第二项的分母是x-(n-1),其它分母的情况对照与此分母的关系可分别写出. 【详解】解:解是x=n 的对应方程为11112112x n x n x n x n -=--+-+----.【点睛】本题考查根据分式方程解的规律来写分式方程,观察所给的材料信息时,要注意从特殊形式到一般形式的规律与特征.7.化简:(1221121x xx x x ++÷=--+)_____.【答案】11x x -+. 【解析】 【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果. 【详解】(1+1x 1-)÷22x x x 2x 1+-+ =22x x 2x 1x 1x x -+⨯-+ =()2x x 1x 1x x 1-⨯-+ =x 1x 1-+, 故答案为x 1x 1-+. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.8.若关于x 的分式方程3x x --2=3m x -有增根,则增根为________,m =________. 【答案】x =3 3 【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m 的值. 【详解】方程两边都乘(x-3),得 x-2(x-3)=m , ∵原方程有增根,∴最简公分母x-3=0,即增根是x=3, 把x=3代入整式方程,得m=3, 故答案为x=3,3.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9.当x 取_____时,分式1111xx x+--有意义.【答案】x≠0且x≠±1分析:要想使分式有意义,那么分式的分母就不能为0,据此列出关于x 的不等式组,解不等式组即可求得x 的取值范围.详解:由题意可知,只有当:0101101x x x xx x ⎧⎪⎪≠⎪⎪-≠⎨⎪+⎪-≠⎪-⎪⎩时,原分式才有意义,解得:011x x x ≠⎧⎪≠±⎨⎪≠-⎩,即当x ≠0且x ≠±1时,原分式有意义. 故答案为:x ≠0且x ≠±1.点睛:本题主要考查了分式有意义的条件,要求掌握.对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得字母的取值即可. 本题的难点在于,题中是一个繁分式,需一层一层分析,x 是1x的分母,所以x ≠0; x ﹣1x 是11x x x +-的分母,所以x ﹣1x≠0;1﹣11x x x +-又是整个分式的分母,因此1﹣11xx x+-≠0.繁分式的有关知识超出初中教材大纲要求,只在竞赛中出现.10.若关于x 的方程233x m x x =+--无解.则m =________. 【答案】3 【解析】 【分析】先去分母得到整式方程x=2(x-3)+m ,整理得x+m=6,由于关于x 的方程233x mx x =+--无解,则x-3=0,即x=3,然后把x=3代入x+m=6即可求出m 的值. 【详解】去分母得x=2(x−3)+m , 整理得x+m=6, ∵关于x 的方程233x mx x =+--无解. ∴x−3=0,即x=3, ∴3+m=6, ∴m=3. 故答案为:3.此题考查分式方程的解,解题关键在于利用方程无解进行解答.二、八年级数学分式解答题压轴题(难)11.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米. (2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中ab ).现在有两种施工改造方案:方案一:前12S 米的道路由甲工程队改造,后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少 【解析】 【分析】(1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论. 【详解】(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x=+, 解得:150x =,检验,当150x =时,()300x x +≠, ∴原分式方程的解为:150x =,30180x +=,答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s sa b s t a b ab+=+=, 方案二所用时间为2t ,则221122t a t b s +=,22st a b=+,∴22()22()a b a b S S S ab a b ab a b +--=++, ∵ab ,00a b >>,,∴()20a b ->, ∴202a b S S ab a b+->+,即:12t t >, ∴方案二所用的时间少. 【点睛】本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.12.某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x 小时,乙单独完成需要y 小时,丙单独完成需要z 小时.(1)求甲单独完成的时间是乙丙合作完成时间的几倍?(2)若甲单独完成的时间是乙丙合作完成时间的a 倍,乙单独完成的时间是甲丙合作完成时间的b 倍,丙单独完成的时间是甲乙合作完成时间的c 倍,求111111a b c +++++的值.【答案】(1)甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)1 【解析】分析:(1)先求出乙丙合作完成时间,再用甲单独完成的时间除以乙丙合作完成时间即可求解;(2)根据“甲单独作完成的天数为乙丙合作完成天数的a 倍”,可得x =11ayz+,运用比例的基本性质、等式的性质及分式的基本性质可得11a +=yz xy yz xz ++;同理,根据“乙单独作完成的天数为甲、丙合作完成天数的b 倍”,可得11b +=xz xy yz xz ++;根据“丙单独作完成的天数为甲、乙合作完成天数的c 倍”,可得11c +=xy xy yz xz++,将它们分别代入所求代数式,即可得出结果. 详解:(1)x ÷[1÷(1y +1z)] =x ÷[1÷y zyz+] =x ÷yzy z+ =xy xz yz+.答:甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍; (2)由题意得x =11ayz +①,y =11bx z+②,z =11cx y +③.由①得a =x y +x z ,∴a +1=x y +x z +1,∴11a +=11x x y z++=yz xy yz xz ++;同理,由②得11b +=xz xy yz xz++; 由③得11c +=xy xy yz xz++; ∴111111a b c +++++=yz xy yz xz +++xz xy yz xz +++xy xy yz xz ++=xy yz xz xy yz xz++++=1. 点睛:本题主要考查分式方程在工程问题中的应用及代数式求值.工程问题的基本关系式为:工作总量=工作效率×工作时间.注意两人合作的工作效率等于两人单独作的工作效率之和.本题难点在于将列出的方程变形,用含有x 、y 、z 的代数式分别表示11a +、11b +、11c +的值.13.(1)请你写出五个正的真分数,____,____,____,____,____,给每个分数的分子和分母加上同一个正数得到五个新分数:____,____,____,_____,____. (2)比较原来每个分数与对应新分数的大小,可以得出下面的结论: 一个真分数是a b (a 、b 均为正数),给其分子分母同加一个正数m ,得a m b m ++,则两个分数的大小关系是a mb m ++_____ab. (3)请你用文字叙述(2)中结论的含义: (4)你能用图形的面积说明这个结论吗?(5)解决问题:如图1,有一个长宽不等的长方形绿地,现给绿地四周铺一条宽相等的路,问原来的长方形与现在铺过小路后的长方形是否相似?为什么?(6)这个结论可以解释生活中的许多现象,解决许多生活与数学中的问题.请你再提出一个类似的数学问题,或举出一个生活中与此结论相关例子.【答案】(1)12;14;16;18;19;23;25;27;29;15;(2)>;(3)给一个正的真分数的分子、分母同加一个正数,得到的新分数大于原来的分数;(4)答案见解析;(5)不相似,理由见解析;(6)答案见解析. 【解析】 【分析】(1)小于1的数叫做真分数;(2)根据实例易得规律;(3)抓住新分数大于原分数即可;(4)根据图形进行分析解答;(5)利用相关规律解决问题即可;(6)结合生活中的现象进行解答. 【详解】 解:(1)12、14、16、18、19,23、25、27、29、15;(2)a m ab m b+>+; (3)给一个正的真分数的分子、分母同加一个正数,得到的新分数大于原来的分数; (4)思路1:如图2所示,由a b <,得12s s s s +>+,即ab bm ab am +>+,()().a b m b a m +=+,可推出a m ab m b+>+; 思路2:构造两个面积为1的长方形(如图3),将它们分成两部分,比较右侧的两个长方形面积可以发现:1a b a b b --=,1a m b a b m b m+--=++,因为a 、b 、0m >,且a b <, 故1a b -1a m b m +>-+,即a m ab m b+>+ (5)不相似.因为两个长方形长与宽的比值不相等; (6)数学问题举例:①若ab是假分数,会有怎样的结论?②a、b不是正数,或不全是正数,情况如何?【点睛】本题实际考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.14.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克;(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【答案】(1)该商店第一次购进水果100千克;(2)每千克水果的标价至少是15元.【解析】【分析】(1)首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:(1000÷第一次购进水果的重量 +2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【详解】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(1000x+2)×2x=2400整理,可得:2000+4x=2400,解得x=100.经检验,x=100是原方程的解.答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则(100+100×2﹣20)×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350,解得x≥15,∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点睛】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.15.某商家用1200元购进了一批T恤,上市后很快售完,商家又用2800元购进了第二批这种T恤,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批T恤是多少件?(2)若两批T恤按相同的标价销售,最后剩下20件按八折优惠卖出,如果希望两批T恤全部售完的利润率不低于16%(不考虑其它因素),那么每件T恤的标价至少是多少元?【答案】(1)商家购进的第一批恤是40件;(2)每件恤的标价至少40元.【解析】【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了5元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【详解】(1)解:设购进的第一批恤是x件.由题意,得1200280052x x=-解得x=40.经检验,x=40是所列方程的解.所以商家购进的第一批恤是40件.(2)设每件的标价是y元由题意,(40+40×2-20)y+0.8×20y≥(1200+2800)(1+16%)解得y≥40.即每件恤的标价至少40元.【点睛】本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是弄清题意并找出题中的数量关系并列出方程.。
北京中国人民大学附属外国语中学数学全等三角形章末练习卷(Word版 含解析)
北京中国人民大学附属外国语中学数学全等三角形章末练习卷(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.【答案】5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭【解析】【分析】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.【详解】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;∴D (0,5);②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,∴P (0,4);③作OA 的垂直平分线交y 轴于C ,则AC =OC ,由勾股定理得:OC =AC =()2212OC +-,∴OC =54, ∴C (0,54); 故答案为:5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.3.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.【答案】30【解析】【分析】根据轴对称得出OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,求出△COD 是等边三角形,即可得出答案.【详解】解:如图示:连接OC ,OD ,∵点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,∴OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,∵OP=5cm ,∴12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,∵△PEF 的周长是5cm ,∴PE+EF+PF=CE+EF+FD=CD=5cm ,∴CD=OD=OD=5cm ,∴△OCD 是等边三角形,∴11122230 AOB AOP BOP COP DOP COD,故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.4.如图,点P是AOB∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线OB上的动点,PN PM MN++的最小值是5 cm,则AOB∠的度数是__________.【答案】30°【解析】试题解析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠AOB=30°.5.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.6.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
北京中国人民大学附属外国语中学七年级下册数学期末试卷章末练习卷(Word版 含解析)
北京中国人民大学附属外国语中学七年级下册数学期末试卷章末练习卷(Word版 含解析)一、解答题1.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.2.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)3.已知//AB CD ,点E 在AB 与CD 之间. (1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.4.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;5.已知AB ∥CD ,∠ABE 与∠CDE 的角分线相交于点F .(1)如图1,若BM 、DM 分别是∠ABF 和∠CDF 的角平分线,且∠BED =100°,求∠M 的度数;(2)如图2,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,∠BED =α°,求∠M 的度数;(3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,请直接写出∠M 与∠BED 之间的数量关系二、解答题6.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF ∠的度数是否发生变化?请说明你的结论.7.如图1,E 点在BC 上,∠A =∠D ,AB ∥CD . (1)直接写出∠ACB 和∠BED 的数量关系 ;(2)如图2,BG 平分∠ABE ,与∠CDE 的邻补角∠EDF 的平分线交于H 点.若∠E 比∠H 大60°,求∠E ;(3)保持(2)中所求的∠E 不变,如图3,BM 平分∠ABE 的邻补角∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不变,请求值;若改变,请说理由.8.课题学习:平行线的“等角转化”功能. 阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求∠BAC +∠B +∠C 的度数. (1)阅读并补充下面推理过程 解:过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C = 又∵∠EAB +∠BAC +∠DAC =180° ∴∠B +∠BAC +∠C =180° 解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC ,∠B ,∠C “凑”在一起,得出角之间的关系,使问题得以解决. 方法运用:(2)如图2,已知AB ∥ED ,求∠B +∠BCD +∠D 的度数.(提示:过点C 作CF ∥AB ) 深化拓展:(3)如图3,已知AB ∥CD ,点C 在点D 的右侧,∠ADC =70°,点B 在点A 的左侧,∠ABC =60°,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求∠BED 的度数.9.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.10.如图所示,已知//AM BN ,点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C 、D ,且60CBD ∠=︒(1)求A ∠的度数.(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使ACB ABD =∠∠时,求ABC ∠的度数.三、解答题11.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.12.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.(1)当∠A 为70°时, ∵∠ACD -∠ABD =∠______ ∴∠ACD -∠ABD =______°∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线 ∴∠A 1CD -∠A 1BD =12(∠ACD -∠ABD )∴∠A 1=______°;(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系______;(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230度,则∠F =______.(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q -∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值. 13.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.14.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.15.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °; ②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、解答题1.(1)PB′⊥QC′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB′∥QC′ 【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O ,过O 作OE ∥AB ,根解析:(1)PB ′⊥QC ′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB ′∥QC ′ 【分析】(1)求出旋转10秒时,∠BPB ′和∠CQC ′的度数,设PB ′与QC ′交于O ,过O 作OE ∥AB ,根据平行线的性质求得∠POE 和∠QOE 的度数,进而得结论;(2)分三种情况:①当0<t ≤15时,②当15<t ≤30时,③当30<t <45时,根据平行线的性质,得出角的关系,列出t 的方程便可求得旋转时间. 【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB ′=10°×12=120°,∠CQC ′=3°×10=30°, 过O 作OE ∥AB , ∵AB ∥CD , ∴AB ∥OE ∥CD ,∴∠POE =180°﹣∠BPB ′=60°,∠QOE =∠CQC ′=30°, ∴∠POQ =90°, ∴PB ′⊥QC ′, 故答案为:PB ′⊥QC ′;(2)①当0<t ≤15时,如图,则∠BPB ′=12t °,∠CQC ′=45°+3t °, ∵AB ∥CD ,PB ′∥QC ′, ∴∠BPB ′=∠PEC =∠CQC ′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.2.(1)见解析;(2)55°;(3) 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数. 【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒,55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒; ②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=,1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD ∠的度数为1118022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.3.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD . 【分析】(1)图1中,过点E 作EG ∥AB ,则∠BEG=∠ABE ,根据AB ∥CD ,EG ∥AB ,所以CD ∥EG ,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED =360°-2∠BFD . 【分析】(1)图1中,过点E 作EG ∥AB ,则∠BEG =∠ABE ,根据AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG =∠CDE ,进而可得∠BED =∠ABE +∠CDE ;(2)图2中,根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF 平分∠ABE ,所以∠ABE =2∠ABF ,因为DF 平分∠CDE ,所以∠CDE =2∠CDF ,∠BED =360°-2(∠ABF +∠CDF ),由(1)得:因为AB ∥CD ,所以∠BFD =∠ABF +∠CDF ,所以∠BED =360°-2∠BFD .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.4.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.5.(1)65°;(2);(3)2n ∠M+∠BED=360°【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+解析:(1)65°;(2)3606α︒-︒;(3)2n ∠M +∠BED =360° 【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE +∠CDE =260°,再利用角平分线的定义得到∠ABF +∠CDF =130°,从而得到∠BFD 的度数,再根据角平分线的定义和三角形外角的性质可求∠M 的度数;(2)先由已知得到∠ABE =6∠ABM ,∠CDE =6∠CDM ,由(1)得∠ABE +∠CDE =360°-∠BED ,∠M =∠ABM +∠CDM ,等量代换即可求解;(3)由(2)的方法可得到2n ∠M +∠BED =360°.【详解】解:(1)如图1,作//EG AB ,//FH AB ,连结MF ,//AB CD ,//////EG AB FH CD ∴,ABF BFH ∴∠=∠,CDF DFH ∠=∠,180ABE BEG ∠+∠=︒,180GED CDE ∠+∠=︒, 360ABE BEG GED CDE ∴∠+∠+∠+∠=︒,100BED BEG DEG ∠=∠+∠=︒,260ABE CDE ∴∠+∠=︒,ABE ∠和CDE ∠的角平分线相交于E ,130ABF CDF ∴∠+∠=︒,130BFD BFH DFH ∴∠=∠+∠=︒, BM 、DM 分别是ABF ∠和CDF ∠的角平分线,12MBF ABF ∴∠=∠,12MDF CDF ∠=∠, 65MBF MDF ∴∠+∠=︒,1306565BMD ∴∠=︒-︒=︒;(2)如图1,13ABM ABF ∠=∠,13CDM CDF ∠=∠, 3ABF ABM ∴∠=∠,3CDF CDM ∠=∠,ABE ∠与CDE ∠两个角的角平分线相交于点F ,6ABE ABM ∴∠=∠,6CDE CDM ∠=∠,66360ABM CDM BED ∴∠+∠+∠=︒,BMD ABM CDM ∠=∠+∠,6360BMD BED ∴∠+∠=︒,3606BMD α︒-︒∴∠=; (3)由(2)结论可得,22360n ABM n CDM E ∠+∠+∠=︒,M ABM CDM ∠=∠+∠, 则2360n M BED ∠+∠=︒.【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.二、解答题6.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m 及n ,从而可求得∠MOC=∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-= ∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠ ∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠MOC =∠OCQ =2x∵∠AON =360゜-90゜—(180゜-2x )=90゜+2x ,OD 平分∠AON∴∠DON =45゜+x∵∠MOE =∠DON =45゜+x∴∠COE =∠MOE -∠MOC =45゜+x -2x =45゜-x∴∠OEF =∠COE +∠OCF =45゜-x +x =45゜当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜当20゜<α<90゜时,如图∵CF平分∠OCQ∴∠OCF=∠QCF设∠OCF=∠QCF=x则∠OCQ=2x∵MN∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜综上所述,∠EOF的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.7.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE交AB于点F,根据AB//CD可得∠DFB=∠D,则∠DFB=∠A,可得AC//DF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论;(2)如图2,作EM //CD ,HN //CD ,根据AB //CD ,可得AB //EM //HN //CD ,根据平行线的性质得角之间的关系,再根据∠DEB 比∠DHB 大60°,列出等式即可求∠DEB 的度数; (3)如图3,过点E 作ES //CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求∠PBM 的度数.【详解】解:(1)如图1,延长DE 交AB 于点F ,//AB CD ,DFB D ∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠, ∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠,∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠1=⨯︒802=︒.40【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【详解】解:(1)过点A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案为:∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =60°,∠ADC =70°,∴∠ABE =12∠ABC =30°,∠CDE =12∠ADC =35°,∴∠BED =∠BEF +∠DEF =30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算. 9.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.10.(1);(2)不变化,,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1)60A ∠=;(2)不变化,2APB ADB ∠=∠,理由见解析;(3)30ABC ∠=【分析】(1)结合题意,根据角平分线的性质,得ABN ∠;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得APB PBN ∠=∠,ADB DBN ∠=∠;结合角平分线性质,得2APB ADB ∠=∠,即可完成求解;(3)根据平行线的性质,得ACB CBN ∠=∠;结合ACB ABD =∠∠,推导得ABC DBN ∠=∠;再结合(1)的结论计算,即可得到答案.【详解】(1)∵BC ,BD 分别评分ABP ∠和PBN ∠, ∴1122CBP ABP DBP PBN ∠=∠∠=∠,, ∴2ABN CBD ∠=∠又∵60CBD ∠=,∴120ABN ∠=∵//AM BN ,∴180A ABN ∠+∠=∴60A ∠=;(2)∵//AM BN ,∴APB PBN ∠=∠,ADB DBN ∠=∠又∵BD 平分PBN ∠∴2PBN DBN ∠=∠,∴2APB ADB ∠=∠;∴APB ∠与ADB ∠之间的数量关系保持不变;(3)∵//AD BN ,∴ACB CBN ∠=∠又∵ACB ABD =∠∠,∴CBN ABD ∠=∠,∵ABC CBN ABD DBN ∠+∠=∠+∠∴ABC DBN ∠=∠由(1)可得60CBD ∠=,120ABN ∠= ∴()112060302ABC ∠=⨯-=. 【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.三、解答题11.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE;[变式思考]相等,理由如下:证明:∵AF为∠BAG的角平分线,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD为AB边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,证明:∵C、A、G三点共线 AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.12.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠A n(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=1(∠ACD-∠ABD)2∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,故答案为:∠A=2∠A n.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=1(∠A+∠D)-90°,2∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=1∠BAC,2∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=12(∠AEC+∠ACE)=12∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-12∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.13.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1)EAF EDG AED∠+∠=∠,证明见解析;(2)证明见解析;(3)80EKD∠=︒.【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.14.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.15.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∠BED;∴∠F=12(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∠BED=360°-2(∠ABF+∠CDF ),由①得:∠BFD=∠ABF+∠CDF ,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。
北京中国人民大学附属外国语中学数学有理数章末练习卷(Word版 含解析)
2.如图,已知数轴上点 A 表示的数为-3,B 是数轴上位于点 A 右侧一点,且 AB=12.动点 P 从点 A 出发,以每秒 2 个单位长度的速度沿数轴向点 B 方向匀速运动,设运动时间为 t 秒.
(1)数轴上点 B 表示的数为________;点 P 表示的数为________(用含 t 的代数式表示). (2)动点 Q 从点 B 出发,以每秒 1 个单位长度的速度沿数轴向点 A 方向匀速运动;点 P、点 Q 同时出发,当点 P 与点 Q 重合后,点 P 马上改变方向,与点 Q 继续向点 A 方向匀 速运动(点 P、点 Q 在运动过程中,速度始终保持不变);当点 P 到达 A 点时,P、Q 停止 运动.设运动时间为 t 秒. ①当点 P 与点 Q 重合时,求 t 的值,并求出此时点 P 表示的数. ②当点 P 是线段 AQ 的三等分点时,求 t 的值. 【答案】 (1)9;-3+2t (2)解:①根据题意,得:(1+2)t=12, 解得:t=4, ∴ -3+2t=-3+2×4=5, 答:当 t=4 时,点 P 与点 Q 重合,此时点 P 表示的数为 5; ②P 与 Q 重合前:
(1)AC=________cm,BC=________cm; (2)当 t=________秒时,点 P 与点 Q 第一次重合;当 t=________秒时,点 P 与点 Q 第二 次重合; (3)当 t 为何值时,AP=PQ? 【答案】 (1)9;3
北京中国人民大学附属外国语中学数学代数式章末练习卷(Word版 含解析)
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;3.在一个m(m≥3,m为整数)位的正整数中,若从左到右第n(n≤m,n为正整数)位上的数字与从右到左第n位上的数字之和都等于同一个常数k(k为正整数),则称这样的数为“对称等和数”.例如在正整数3186中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”,其中k=12.(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位上的数字为s(1≤s≤9,s为整数),百位上的数字为t(0≤t≤9,t为整数),是整数,求这个四位“对称等和数”;(2)已知数A,数B,数C都是三位“对称等和数”.A= (1≤a≤9,a为整数),设数B 十位上的数字为x(0≤x≤9,x为整数),数C十位上的数字为y(0≤y≤9,y为整数),若A+B+C=1800,求证:y=﹣x+15.【答案】(1)解:设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b 为整数),由题意得:s+b=t+a=4,∴b=4﹣s,a=4﹣t,∵四位数为能被11整除,∴ =1000s+100t+10a+b,=1000s+100t+10(4﹣t)+4﹣s,=999s+90t+44,=1001s+88t+44+2t﹣2s,=11(91s+8t+4)+2(t﹣s),∵91s+8t+4是整数,∴2(t﹣s)是11的倍数,即t﹣s是11的倍数,∵1≤s≤9,∴﹣9≤﹣s≤﹣1,∵0≤t≤9,∴﹣9≤t﹣s≤8,∴t﹣s只能为0,即t=s,∵是整数,4﹣s≥0,4﹣t≥0,∴s=t=2或s=t=4,当s=t=2时,a=b=2,当s=t=4时,a=b=0,综上所述,这个四位“对称等和数”有2个,分别是:2222,4400(2)解:证法一:证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),∴2a=1+5,a=3,∴A=135,由题意设:B= ,C= ,则b+c=2x,d+e=2y,∵A+B+C=1800,∴B+C=1800﹣135=1665,∴ =1665,∴15≤b+d≤16,①当b+d=15时,x+y=16,c+e=5,∴b+d+c+e=15+5=20,即2x+2y=20,x+y=10≠16,不符合题意;②当b+d=15时,x+y=15,c+e=15,∴b+d+c+e=15+15=30,即2x+2y=30,x+y=15,符合题意;∴y=﹣x+15,③当b+d=16时,x+y=6,c+e=5,∴b+d+c+e=16+5=21,即2x+2y=21,x+y=10.5≠6,不符合题意;④当b+d=16时,x+y=5,c+e=15,∴b+d+c+e=16+15=31,即2x+2y=31,x+y=15.5≠5,不符合题意;综上所述,则y=﹣x+15.证法二:证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),∴2a=1+5,a=3,∴A=135,由题意设:B= ,C= ,∵A+B+C=1800,即135+ + =1800,+ =1665,100m+10x+2x﹣m+100n+10y+2y﹣n=1665,99(m+n)+12(x+y)=1665,33(m+n)+4(x+y)=555,x+y= =139﹣8(m+n)+ ,∵0≤x≤9,0≤y≤9,且x、y是整数,∴是整数,∵1≤m≤9,1≤n≤9,∴2≤m+n≤18,∴3≤1+m+n≤19,则1+(m+n)=4,8,12,16,∴m+n=3,7,11,15,当m+n=3时,x+y=139﹣8×3+ =114(舍),当m+n=7时,x+y=139﹣8×7+ =81(舍),当m+n=11时,x+y=139﹣8×11+ =48(舍),当m+n=15时,x+y=139﹣8×15+ =15,∴y=﹣x+15【解析】【分析】(1)设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b为整数),根据“对称等和数”的意义可得s+b=t+a=4,变形得b=4﹣s,a=4﹣t,再由这个四位数能被11整除和这个四位数的构成可得=11(91s+8t+4)+2(t﹣s),易得t ﹣s是11的倍数,结合s、t的范围即可求解;(2)根据“对称等和数”的意义和A=可得2a=1+5,a=3,则数A可求解,由题意可设B=,C=,因为A+B+C=1800,所以将A、B、C代入上式,再根据三位数的构成=100百位上的数字+10十位上的数字+个位上的数字可得100m+10x+2x﹣m+100n+10y+2y﹣n=1665,整理可得33(m+n)+4(x+y)=555,则x+y可用含m、n的代数式表示,结合x、y的取值范围和x、y、m、n是正整数分析即可求解。
北京中国人民大学附属外国语中学小升初数学期末试卷章末练习卷(Word版 含解析)
北京中国人民大学附属外国语中学小升初数学期末试卷章末练习卷(Word版含解析)一、选择题1.下图是用8个小方块拼成的,如果拿走1个小方块,它的表面积比原来()A.小了B.大了C.没有变化2.小刚小时走了千米,他每走1千米需多少小时?正确的算式是()A.÷ B.× C.÷3.一个三角形三个内角的度数比是1∶2∶3,这个三角形是()三角形。
A.直角B.锐角C.钝角D.无法确定4.甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A.7x=6.5x+5 B.7x+5=6.5x C.(7﹣6.5)x=5 D.6.5x=7x﹣55.下面这个立体图形,灵灵从右面看到的是()A.B.C.6.下列各句话中,表述错误的是()。
A.把8块糖放进3个盒子里,总有一个盒子里至少放3块糖B.圆的面积和半径不成比例C.两个奇数的和一定是合数D.2017年第一季度有90天7.一个圆柱和一个圆锥等底等高,它们的体积相差28立方厘米,圆锥的体积是()立方厘米。
A.14 B.28 C.42 D.848.水果店老板进了两箱樱桃,第一箱因为热销提价20%售出,第二箱突然滞销,老板不得不将热销价格降价20%出售,第二箱价格与成本价相比,()。
A.等于成本价B.低于成本价C.高于成本价9.将一张纸对折后剪去3个圆(如下图),展开后是().A .B .C .二、填空题10.我国是全球通信业发展最快的国家之一,据不完全统计,截止2020年底,我国互联网人数就达到十亿七千八百五十万零七百人,横线上的数写作(______),改写成用“亿”作单位保留一位小数约是(______)亿人。
11.()7()0.7():20()%()÷====。
12.某农户今年收小麦5000千克,比去年多收1000千克。
比去年多收(________)%。
13.两个圆的半径分别是2cm 和3cm ,它们的直径的比是(________),周长的比是(________),面积的比是(________)。
北京中国人民大学附属外国语中学数学整式的乘法与因式分解章末练习卷(Word版 含解析)
北京中国人民大学附属外国语中学数学整式的乘法与因式分解章末练习卷(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.在矩形ABCD 中,AD =3,AB =2,现将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.则S 1﹣S 2的值为( )A .-1B .b ﹣aC .-aD .﹣b【答案】D 【解析】 【分析】利用面积的和差分别表示出S 1、S 2,然后利用整式的混合运算计算它们的差. 【详解】∵1()()()(2)(2)(3)S AB a a CD b AD a a a b a =-+--=-+--2()()()2(3)()(2)S AB AD a a b AB a a a b a =-+--=-+--∴21S S -=(2)(2)(3)a a b a -+--2(3)()(2)a a b a -----32b b b =-+=- 故选D. 【点睛】本题考查了整式的混合运算,计算量比较大,注意不要出错,熟练掌握整式运算法则是解题关键.2.下列各式中,不能运用平方差公式进行计算的是( ) A .(21)(12)x x --+ B .(1)(1)ab ab -+ C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A 【解析】 【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方. 【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项, 故选A. 【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.3.把228a -分解因式,结果正确的是( ) A .22(4)a - B .22(2)a - C .2(2)(2)a a +- D .22(2)a +【答案】C 【解析】 【分析】先提公因式2,然后再利用平方差公式进行分解即可. 【详解】228a -=22(4)a - =2(2)(2)a a +-, 故选C . 【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.4.规定一种运算:a*b=ab+a+b ,则a*(﹣b )+a*b 的计算结果为( ) A .0 B .2aC .2bD .2ab【答案】B 【解析】 【分析】 【详解】 解:∵a*b=ab+a+b ∴a*(﹣b )+a*b =a (﹣b )+a -b+ab+a+b =﹣ab+a -b+ab+a+b =2a 故选B .考点:整式的混合运算.5.下列变形,是因式分解的是( ) A .2(1)x x x x -=- B .21(1)1x x x x -+=-+ C .2(1)x x x x -=-D .2()22a b c ab ac +=+【解析】分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误; B 、右边不是整式积的形式,不是因式分解,故本选项错误; C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误; 故选:C .点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.6.下列各式中,从左到右的变形是因式分解的是( ) A .2a 2﹣2a+1=2a (a ﹣1)+1 B .(x+y )(x ﹣y )=x 2﹣y 2 C .x 2﹣6x+5=(x ﹣5)(x ﹣1) D .x 2+y 2=(x ﹣y )2+2x【答案】C 【解析】 【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可. 【详解】A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C . 【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.7.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( ) A .正数 B .零 C .负数 D .非负数【答案】A 【解析】 【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>,所以x 2+y 2-10x +8y +45的值为正数, 故选A.8.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( ) A .b>0,b 2-ac ≤0 B .b <0,b 2-ac ≤0 C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【解析】 【分析】根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0. 【详解】 解:∵a-2b+c=0, ∴a+c=2b , ∴a+2b+c=4b <0, ∴b <0,∴a 2+2ac+c 2=4b 2,即22224a ac cb ++=∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D. 【点睛】本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.9.下列从左到右的变形中,属于因式分解的是( ) A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=---⎪-⎝⎭【答案】B 【解析】 【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案. 【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意; 故选:B . 【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( ) A .3-,4- B .3-,4C .3,4-D .3,4【答案】A 【解析】 【分析】根据题意可得规律为712a b ab +=-⎧⎨=⎩,再逐一判断即可. 【详解】根据题意得,a ,b 的值只要满足712a b ab +=-⎧⎨=⎩即可,A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意. 故答案选A. 【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货A 和B ,已知A 和B 的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额. 于是小明又购买了A 、B 各一件,这样就能参加超市的促销活动,最后刚好付款1305元. 小明经仔细计算发现前面粗略测算时把A 和B 的单价看反了,那么小明实际总共买了______件年货. 【答案】22 【解析】 【分析】设A 单价为a 元,实际购买x 件,B 单价为b 元,实际购买y 元,根据题意列出方程组130599(1)(1)1305ax by a y b x +=+⎧⎨-+-=⎩,将两个方程相加得到(1)(1)2709a x y b x y +-++-=,分解因式得()(1)33743a b x y ++-=⨯⨯⨯,由A 和B 的单价总和是100到200之间的整数得到()(1)12921a b x y ++-=⨯,由此求得答案. 【详解】设A 单价为a 元,实际购买x 件,B 单价为b 元,实际购买y 元,130599(1)(1)1305ax by a y b x +=+⎧⎨-+-=⎩, ∴(1)(1)2709a x y b x y +-++-=,∴()(1)33743a b x y ++-=⨯⨯⨯,∵A 和B 的单价总和是100到200之间的整数,即100a b 200<+<, ∴()(1)12921a b x y ++-=⨯, 即129a b +=, 121x y +-=, ∴x+y=22, 故答案为:22. 【点睛】此题考查因式分解,设未知数列出方程组后将两个方程相加再因式分解是关键的步骤,根据A 和B 的单价总和确定出x+y 的值.12.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.【答案】0 【解析】 【分析】利用完全平方式的特点把原条件变形为222(1)(2)(3)0x y z -+++-=,再利用几个非负数之和为0,则每一个非负数都为0的结论可得答案. 【详解】解:因为:222246140x y z x y z ++-+-+= 所以222(21)(44)(69)0x x y y z z -+++++-+= 所以222(1)(2)(3)0x y z -+++-=所以102030x y z -=⎧⎪+=⎨⎪-=⎩ ,解得123x y z =⎧⎪=-⎨⎪=⎩所以()2002x y z --=[]221(2)3(33)0---=-=故答案为0. 【点睛】本题考查完全平方式的特点,非负数之和为0的性质,掌握该知识点是关键.13.若a 2+a-1=0,则a 3+2a 2+2014的值是___________. 【答案】2015 【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可. 【详解】 ∵a 2+a-1=0 ∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015 故答案为2015 【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.14.4x(m -n)+8y(n -m)2中各项的公因式是________. 【答案】4(m -n)【解析】根据题意,先变形为4x(m -n)+8y(m -n)2,把m-n 看做一个整体,即可找到公因式4(m-n ). 故答案为:4(m-n ).点睛:此题主要考查了提公因式法因式分解,根据公因式的特点,利用整体法确定公因式即可,关键是要把n-m 与m-n 变形为统一的式子.15.分解因式:x 3y ﹣2x 2y+xy=______. 【答案】xy (x ﹣1)2 【解析】 【分析】原式提取公因式,再利用完全平方公式分解即可. 【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2. 故答案为:xy (x-1)2 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.若(2x ﹣3)x+5=1,则x 的值为________. 【答案】2或1或-5 【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立; (2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立;(3)当x+5=0时,x=−5,此时()0103--=1,等式成立. 综上所述,x 的值为:2,1或−5. 故答案为2,1或−5.17.因式分解:a 3﹣2a 2b+ab 2=_____. 【答案】a (a ﹣b )2. 【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可. 【详解】原式=a (a 2﹣2ab+b 2) =a (a ﹣b )2, 故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.分解因式:x 2﹣1=____. 【答案】(x+1)(x ﹣1). 【解析】试题解析:x 2﹣1=(x+1)(x ﹣1). 考点:因式分解﹣运用公式法.19.若()2242x ax x ++=-,则a =_____. 【答案】-4 【解析】 【分析】直接利用完全平方公式得出a 的值. 【详解】解:∵()2242x ax x ++=-, ∴4a =- 故答案为:4- 【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.20.分解因式:32363a a a -+=_____. 【答案】()231a a - 【解析】 【分析】先提取公因式3a ,再根据完全平方公式进行二次分解即可. 【详解】()()232236332131a a a a a a a a -+=-+=-.故答案为:()231a a - 【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。
北京中国人民大学附属外国语中学数学分式填空选择章末练习卷(Word版 含解析)
北京中国人民大学附属外国语中学数学分式填空选择章末练习卷(Word版含解析)一、八年级数学分式填空题(难)1.若关于x的不等式组64031222x ax x++>⎧⎪⎨-+⎪⎩有4个整数解,且关于y的分式方程211ay y---=1的解为正数,则满足条件所有整数a的值之和为_____【答案】2【解析】【分析】先解不等式组确定a的取值范围,再解分式方程,解为正数从而确定a的取值范围,即可得所有满足条件的整数a的和.【详解】原不等式组的解集为46a--<x≤3,有4个整数解,所以﹣146a--≤<,解得:-4<a≤2.原分式方程的解为y=a+3,因为原分式方程的解为正数,所以y>0,即a+3>0,解得:a >﹣3.∵y=a+3≠1,∴a≠-2,所以-3<a≤2且a≠-2.所以满足条件所有整数a的值为-1,0,1,2.和为-1+0+1+2=2.故答案为:2.【点睛】本题考查了不等式组的整数解、分式方程,解答本题的关键是根据不等式组的整数解确定a的取值范围.2.有一个计算程序,每次运算都是把一个数先乘以 2,再除以它与 1 的和,多次重复进行这种运算的过程如下∶则2y=___ (用含字母x的代数式表示); 第 n次的运算结果记为n y,则n y= __(用含字母x和n的代数式表示).【答案】431xx+2(21)1nnxx-+【解析】解:将y 1=21x x +代入得:y 2=221211xx x x ⨯+++=431x x +; 将y 2=431x x +代入得:y 3=42314131xx x x ⨯+++=871x x +,依此类推,第n 次运算的结果y n =2(21)1n n x x -+ . 故答案为:431x x +,2(21)1n n x x -+. 点睛:此题考查了分式的混合运算,找出题中的规律是解本题的关键.3.若32a b =,则a b a -的值为____________ 【答案】12-【解析】【分析】利用32a b =,在a b a -中,将b 用a 表示,约掉a 得到结果. 【详解】∵32a b =,∴3=2a b 代入a b a-得: 3122aa a -=- 故答案为:12-【点睛】本题考查分式的运算,解题关键是运用已知字母间的关系,将分式中的字母简化,以至可约分求得.4.当m =____________时,解分式方程533x m x x-=--会出现增根. 【答案】2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当x=3时,3-5=-m ,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.5.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.6.化简:(1221121x x x x x ++÷=--+)_____. 【答案】11x x -+. 【解析】【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果.【详解】 (1+1x 1-)÷22x x x 2x 1+-+ =22x x 2x 1x 1x x-+⨯-+ =()2x x 1x 1x x 1-⨯-+ =x 1x 1-+, 故答案为x 1x 1-+. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.7.若关于x的方程2x m2x22x++=--有增根,则m的值是▲【答案】0.【解析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值:方程两边都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=0,解得x=2.∴2-2-m=2(2-2),解得m=0.8.若关于x的分式方程7311mxx x+=--无解,则实数m=_______.【答案】3或7.【解析】解:方程去分母得:7+3(x﹣1)=mx,整理得:(m﹣3)x=4.①当整式方程无解时,m﹣3=0,m=3;②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7.综上所述:∴m的值为3或7.故答案为3或7.9.化简:(a+2+52a-)243aa-⋅+=_______.【答案】2a﹣6【解析】【分析】先计算括号,进行通分,后按同分母加减计算,再计算乘除,约分即可.【详解】原式=24524 ()223 a aa a a---⋅--+=292(2)23 a aa a--⋅-+=(3)(3)2(2)23 a a aa a+--⋅-+=2(a﹣3)=2a﹣6.故答案为2a﹣6.【点睛】本题考查分式的混合运算,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.10.下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.226 24x x x --+- 2(2)6(2)(2)(2)(2)x x x x x x --=-+-+- 第一步 =2(x -2)-x +6 第二步=2x -4-x +6 第三步=x +2 第四步小明的解法从第___步开始出现错误,正确的化简结果是______.【答案】二12x - 【解析】根据分式的加减法,先对分式进行因式分解,然后通分为同分母的分式相加,再化简即可,因此错误在第二步,应为()()()()()2262222x x x x x x ---+-+-=24621(2)(2)(2)(2)2x x x x x x x x --++==+-+--. 故答案为二、12x -.二、八年级数学分式解答题压轴题(难)11.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天 120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费, 请你帮公司选择一种既省时又省钱的加工方案,并说明理由.【答案】(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.【解析】【分析】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20, 由等量关系列出方程求解.(2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用, 比较大小,选择既省时又省钱的加工方案即可.【详解】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,则: 解得:x =16经检验,x =16 是原分式方程的解∴甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60 天需要的总费用为:60×(80+15)=5700 元方案二:乙工厂单独完成此项任务,则需要的时间为:960÷24=40 天需要的总费用为:40×(120+15)=5400 元方案三:甲、乙两工厂合作完成此项任务,设共需要 a 天完成任务,则16a+24a =960∴a =24∴需要的总费用为:24×(80+120+15)=5 160 元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列 出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.12.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. 【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. 【解析】【分析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】 解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…, 知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立; (3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x=+. 【点睛】 解答此题关键是找出规律,再根据规律进行逆向运算.13.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,12x x +≥= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭∵12x x --≥= ∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.14.小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的m 倍,两人在同起点,同时出发,结果小强先到目的地n 分钟.①当3m =,6n =时,求小强跑了多少分钟?②小明的跑步速度为_______米/分(直接用含m n ,的式子表示).【答案】(1)小强的速度为80米/分,小明的速度为300米/分;(2)①小强跑的时间为3分;②1000(1)m mn-. 【解析】【分析】 (1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;(2)①设小明的速度为y 米/分,由m =3,n =6,根据小明的时间-小强的时间=6列方程解答;②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.【详解】(1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分, 根据题意得:1200x =4500220x +. 解得:x =80.经检验,x =80是原方程的根,且符合题意.∴x+220=300.答:小强的速度为80米/分,小明的速度为300米/分.(2)①设小明的速度为y 米/分,∵m =3,n =6, ∴1000100063y y -=,解之得10009y =. 经检验,10009y =是原方程的解,且符合题意, ∴小强跑的时间为:10001000(3)39÷⨯=(分)②小强跑的时间:1n m -分钟,小明跑的时间:11n mn n m m +=--分钟, 小明的跑步速度为: 1000(1)10001mn m m mn -÷=-分. 故答案为:1000(1)m mn-. 【点睛】 此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.15.杨梅是漳州的特色时令水果.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价每件比第一批多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销.要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折(利润-售价-进价)?【答案】(1)120元(2)至少打7折.【解析】【分析】(1)设第一批杨梅每件进价是x 元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的2倍;(2)设剩余的杨梅每件售价y 元,由利润=售价-进价,根据第二批的销售利润不低于320元,可列不等式求解.【详解】解:(1)设第一批杨梅每件进价是x 元, 则120025002,5x x ⨯=+ 解得120.x =经检验,x=120是原方程的解且符合题意.答:第一批杨梅每件进价为120元.(2)设剩余的杨梅每件售价打y 折. 则2500250015080%150(180%)0.12?500320.125125y ⨯⨯+⨯⨯-⨯-≥ 解得y≥7. 答:剩余的杨梅每件售价至少打7折.【点睛】考查分式方程的应用, 一元一次不等式的应用,读懂题目,从题目中找出等量关系以及不等关系是解题的关键.。
北京中国人民大学附属外国语中学数学整式的乘法与因式分解章末练习卷(Word版 含解析)
北京中国人民大学附属外国语中学数学整式的乘法与因式分解章末练习卷(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 ( )A .6B .7C .8D .9【答案】C【解析】【分析】设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6a 2,得出a 2+4ab+4b 2=(a+2b )2,再根据正方形的面积公式将a 、b 代入,即可得出答案.【详解】解:设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6b 2,∵a 2+4ab+4b 2=(a+2b )2,(b >a )∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C .【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.2.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.3.已知x 2+4y 2=13,xy=3,求x+2y 的值,这个问题我们可以用边长分别为x 和y 的两种正方形组成一个图形来解决,其中x>y ,能较为简单地解决这个问题的图形是( )A .B .C .D .【答案】A【解析】 ∵222(2)44x y x y xy +=++,∴若用边长分别为x 和y 的两种正方形组成一个图形来解决(其中x y >), 则这个图形应选A ,其中图形A 中,中间的正方形的边长是x ,四个角上的小正方形边长是y ,四周带虚线的每个矩形的面积是xy .故选A.4.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )A .22100x y +=B .2x y -=C .12x y +=D .35xy =【答案】A【解析】【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.【详解】由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.5.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.6.如果是个完全平方式,那么的值是( ) A .8 B .-4 C .±8 D .8或-4【答案】D【解析】试题解析:∵x 2+(m -2)x +9是一个完全平方式,∴(x ±3)2=x 2±2(m -2)x +9,∴2(m -2)=±12,∴m =8或-4.故选D .7.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED=11()()22x y x x y y -+-=1()()2x y x y -+ =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.8.下列变形,是因式分解的是( )A .2(1)x x x x -=-B .21(1)1x x x x -+=-+C .2(1)x x x x -=-D .2()22a b c ab ac +=+【答案】C【解析】分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选:C .点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.9.下列运算正确的是( )A .23a a a ⋅=B .623a a a ÷=C .2222a a -=D .()22436a a =【答案】A【解析】【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:2123•a a a a +==,A 准确; 62624a a a a -÷==,B 错误;2222a a a -=,C 错误;()22439a a =,D 错误;故选:A .【点睛】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.10.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0, ∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在实数范围内因式分解:231x x +-=____________【答案】x x ⎛++ ⎝⎭⎝⎭【解析】【分析】利用一元二次方程的解法在实数范围内分解因式即可.【详解】令2310x x +-=∴132x +=-,232x -=-∴231x x +-=31331322x x ⎛⎫⎛⎫+-++ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 故答案为:31331322x x ⎛⎫⎛⎫+-++ ⎪⎪ ⎪⎪⎝⎭⎝⎭【点睛】本题考查实数范围内的因式分解,利用一元二次方程的解法即可解答,熟练掌握相关知识点是解题关键.12.把方程x 2+4xy ﹣5y 2=0化为两个二元一次方程,它们是_____和_____.【答案】x +5y =0 x ﹣y =0【解析】【分析】通过十字相乘法,把方程左边因式分解,即可求解.【详解】∵x 2+4xy ﹣5y 2=0,∴(x +5y )(x ﹣y )=0,∴x +5y =0或x ﹣y =0,故答案为:x +5y =0和 x ﹣y =0.【点睛】该题重点考查了因式分解中的十字相乘法,能顺利的把方程左边因式分解是解题的关键所在.十字相乘法相关的知识点是:必须是二次三项式,并且符合拆解的原则,即可利用十字相乘分解因式.13.计算:=_____. 【答案】1【解析】【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.14.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).15.222---x xy y =__________【答案】()2x y -+【解析】根据因式分解的方法,先提公因式“﹣”,再根据完全平方公式分解因式为:()()2222222x xy y x xy y x y ---=-++=-+. 故答案为()2x y -+.点睛:此题主要考查了因式分解,因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),注意符号的变化.16.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.17.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.已知a m =3,a n =2,则a 2m ﹣n 的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a 2m 的值;然后根据同底数幂的除法的运算方法,求出a 2m-n 的值为多少即可.详解:∵a m =3,∴a 2m =32=9,∴a 2m-n =292m n a a ==4.5. 故答案为:4.5. 点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.19.已知2x +3y -5=0,则9x •27y 的值为______.【答案】243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.20.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a bab+-=2()22a bab+-=642﹣2×2=28;②当a+b=8,ab=﹣2时,222a bab+-=2()22a bab+-=642﹣2×(﹣2)=36;故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.。
北京中国人民大学附属外国语中学八年级数学上册第五单元《分式》测试卷(有答案解析)
一、选择题1.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3 C .6 D .112.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯ B .-77.610⨯ C .-87.610⨯ D .-97.610⨯3.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12- 4.计算233222()m n m n -⋅-的结果等于( ) A .2m n B .2n m C .2mn D .72mn 5.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书( )A .20本B .25本C .30本D .35本6.计算2m m 1m m-1+-的结果是( ) A .m B .-m C .m +1 D .m -1 7.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( )A .1524x x 3=+B .1524x x 3=-C .1524x 3x =+D .1524x 3x =- 8.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .29.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2 B .3 C .4D .5 10.计算23211x xx x +-++的结果为( )A .1B .3C .31x +D .31x x ++ 11.11121n n n x x x x +-+-+等于( )A .11n x + B .11n x - C .21xD .1 12.使分式2221x x x ---的值为0的所有x 的值为( )A .2或1-B .2-或1C .2D .1 二、填空题13.计算22a b a b a b -=-- _________.14.已知实数a 、b 满足32ab =,则a ba b +-_________.15.计算:()0322--⋅=________.16.计算:20120192-⎛⎫-= ⎪⎝⎭______.17.分式2(1)(3)32m m m m ---+的值为0,则m =______________.18.如果分式126x x --的值为零,那么x =________ .19.计算:11|1|3-⎛⎫-= ⎪⎝⎭______.20.计算:051)-+=__.三、解答题21.解方程:(1)x21x 1x -=-(2)3142x x -=-+ 22.①先化简,再求值:12(1)y x y x y ⋅--+÷221y x -,其中x=y+2020. ②解方程:239x --112626x x =-+. 23.计算: (1)()()22x y x x y -++;(2)22362369m m m m m -⎛⎫-÷ ⎪--+⎝⎭. 24.某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划的1.5倍,结果提前4天完成了任务,则原计划每天铺地多少平方米?25.先化简,再求值:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝,其中12m =-. 26.今年双11期间开州区紫水豆干凭借过硬的质量、优质的口碑大火,豆干店的王老板用2500元购进一批紫水豆干,很快售完;王老板又用4400元购进第二批紫水豆干,所购数量是第一批的2倍,由于进货量增加,进价比第一批每千克少了3元.(1)第一批紫水豆干每千克进价多少元?(2)该老板在销售第二批紫水豆干时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余紫水豆干在第二批进价的基础上每千克降价325a 元进行促销,结果第二批紫水豆干的销售利润为1520元,求a 的值.(利润=售价-进价)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据分式方程的解为正整数解,即可得出a =0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a <5,找出a 的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x =121a +,∵x≠3, ∴121a +≠3,即a≠3, 又∵分式方程有正整数解,∴a =0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51y y a ≤⎧⎨-⎩>, ∴a−1<4,解得,a <5,∴a =0,1,2,∴0+1+2=3,故选:B .【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况. 2.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解3.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.4.A解析:A【分析】根据整数指数幂的运算法则进行运算即可.【详解】解:原式=43431222m m m n n m nn---=⋅=⋅= 故选:A .【点睛】本题考查了整数指数幂的运算,掌握运算法则是解题的关键 5.A解析:A【分析】设张明平均每分钟清点图书的数量为x ,则李强平均每分钟清点图书的数量为x +10,由张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相等这个条件可列分式方程,求解即可.【详解】设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得:20030010x x =+,解得:20x , 经检验,20x是原方程的解, 所以张明平均每分钟清点图书20本.故选:A .【点睛】本题考查了分式方程的应用.找到题中的等量关系,列出分式方程,注意分式方程一定要验根. 6.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】 原式=211m m m m ---=21m m m--=(1)1m m m --=m , 故选:A .【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.D解析:D【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程.【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D .【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键. 8.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.9.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.10.C解析:C【分析】直接进行同分母的加减运算即可.【详解】 解:23211x x x x +-++=2321x x x +-+=31x +,【点睛】本题考查了同分母的分式的运算,解题的关键是熟练掌握分式的运算法则.11.D解析:D【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】1131112311n n n n n n n x x x x x x x x+-+++++--++==, 故选:D【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.12.C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题13.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.14.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答.【详解】 32a b =, ∴32a b = ∴32532b ba b a b b b ++==--, 故答案为:5.【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键. 15.【分析】根据零指数幂定义及负整数指数幂定义解答【详解】故答案为:【点睛】此题考查实数的计算掌握零指数幂定义及负整数指数幂定义是解题的关键解析:18【分析】根据零指数幂定义及负整数指数幂定义解答.【详解】()0322--⋅=118⨯=18, 故答案为:18. 【点睛】此题考查实数的计算,掌握零指数幂定义及负整数指数幂定义是解题的关键. 16.-3【分析】根据零指数幂和负指数幂法则计算即可【详解】解:原式=1-4=-3故答案为:-3【点睛】本题考查了零指数幂和负指数幂法则熟练掌握运算法则是解决本题的关键解析:-3【分析】根据零指数幂和负指数幂法则计算即可.【详解】解:原式=1-4=-3,故答案为:-3.【点睛】本题考查了零指数幂和负指数幂法则,熟练掌握运算法则是解决本题的关键. 17.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要 解析:3【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.18.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 19.【分析】根据实数的性质即可化简求解【详解】解:故答案为:【点睛】本题主要考查了实数的运算解题的关键是掌握负指数幂的运算解析:4【分析】根据实数的性质即可化简求解.【详解】解:1|131(14)3--==-故答案为:4【点睛】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算. 20.【分析】分别计算绝对值和0次幂再计算和即可【详解】解:原式=5+1=6故答案为:6【点睛】此题主要考查了实数运算解题的关键是熟练掌握绝对值及零次幂的性质解析:【分析】分别计算绝对值和0次幂,再计算和即可.【详解】解:原式=5+1=6.故答案为:6.【点睛】此题主要考查了实数运算,解题的关键是熟练掌握绝对值及零次幂的性质.三、解答题21.(1)2x =;(2)1x =-.【分析】(1)等式两边同时乘()1x x -去分母,再按照整式方程的解法求解即可;(2)等式两边同时乘()+2x 去分母,再按照整式方程的解法求解即可.【详解】(1)解:等式两边同时乘()1x x -得:()()221=1x x x x ---, 去括号得:222+2=x x x x --,移项并合并同类项得:=2x --,解得:2x =,经检验2x =是原分式方程的根;(2)解:等式两边同时乘()+2x 得:()3142x x -=-+,去括号得:3148x x -=--,移项并合并同类项得:77x =-,解得:1x =-,经检验1x =-是原分式方程的根.【点睛】本题考查分式方程的解法,化分式方程为整式方程是关键.22.①x -y ;2020;②原方程无解.【分析】(1)根据分式的运算法则,先化简分式,再代入求值.(2)先变形,再把分式方程转化为整式方程,求出方程的解,再进行检验即可.【详解】解:①12(1)y x y x y ⋅--+÷221y x - =1()()1y x y x y x x y x y -+-⋅⋅-+ =x-y由x=y+2020得x-y=2020;②原方程可化为:3(3)(3)x x +-—112(3)2(3)x x =-+ 方程两边同乘以2(x+3)(x-3)得:6-(x+3)=x-3解得,x=3检验:把x=3代入2(x+3)(x-3)=0所以x=3不是原方程的解,即原方程无解【点睛】本题考查了分式的化简和解分式方程,,掌握运算法则是解决本题的关键.23.(1)222x y +;(2)36m m -+ 【分析】(1)先根据完全平方公式、单项式与多项式的乘法法则计算,再合并同类项即可; (2)把括号内通分,并把除法转化为除法,然后约分化简即可.【详解】(1)原式22222x xy y x xy =-+++ 222x y =+;(2)原式=2226693336m m m m m m m --+⎛⎫-⨯ ⎪---⎝⎭()()()236366m m m m m --=⋅--+ 36m m -=+. 【点睛】 本题考查了整式的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.24.原计划每天铺地75平方米.【分析】设原计划每天铺x 平方米,根据题意即可列出方程进行求解.【详解】解:设原计划每天铺地平方米, 根据题意锝:112511253341.5x x x -⎛⎫-+= ⎪⎝⎭解得:75x =经检验,75x =是原方程的解.答:原计划每天铺地75平方米.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意列出方程.25.11m m -+,3-. 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝ ()()2212211m m m m m m -+-=⋅-+- ()()()212211m m m m m --=⋅-+- 11m m -=+; 当12m =-时,原式1123112--==--+. 【点睛】考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.26.(1)第一批紫水豆干每千克进价是25元;(2)a的值是50.【分析】(1)设第一批紫水豆干每千克进价是x元,则第二批每件进价是(x-3)元,再根据等量关系:第二批所购数量是第一批的2倍列方程求解即可;(2)根据第一阶段的利润+第二阶段的利润=1520列方程求解即可.【详解】解:(1)设第一批紫水豆干每千克进价x元,根据题意,得:2500440023x x⨯=-,解得:x=25,经检验,x=25是原方程的解且符合题意;答:第一批紫水豆干每千克进价是25元.(2)第二次进价:25-3=22(元),第二次紫水豆干的实际进货量:4400÷22=200千克,第二次进货的第一阶段出售每千克的利润为:22×a%元,第二次紫水豆干第二阶段销售利润为每千克325a-元,由题意得:322%20080%200(180%)152025aa⨯⨯⨯-⨯-=,解得:a=50,即a的值是50.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
北京市北大附中八年级数学上册第五单元《分式》检测卷(包含答案解析)
一、选择题1.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变2.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N 3.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2-B .2C .3-D .3 4.计算()3222()m m m -÷⋅的结果是( ) A .2m - B .22m C .28m - D .8m - 5.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( ) A .7500980020x x 10-=- B .9800750020x 10x -=-C .7500980020x x 10-=+D .9800750020x 10x-=+ 6.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( )A .1524x x 3=+B .1524x x 3=- C .1524x 3x =+ D .1524x 3x=- 7.下列说法正确的是( ) A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y -中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 8.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a ,三条直线两两相交最多将平面分得的区域数记为2a ,四条直线两两相交最多将平面分得的区域数记为()3,,1a n ⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为n a ,若121111011111n a a a ++⋅⋅⋅+=---,则n =( ) A .10B .11C .20D .21 9.化简2111313x x x x +⎫⎛-÷⎪---⎝⎭的结果是( ) A .2B .23x -C .41x x --D .21x - 10.计算23211x x x x +-++的结果为( ) A .1 B .3 C .31x + D .31x x ++ 11.下列式子的变形正确的是( )A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 12.下列各式中正确的是( )A .263333()22=x x y yB .222224()=++a a a b a bC .22222()--=++x y x y x y x y D .333()()()++=--m n m n m n m n 二、填空题 13.已知5a b +=,6ab =,b a a b +=______. 14.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x--=---的解为_________________.(3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 15.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1a a =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________. 16.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 17.化简:(﹣2y x)3÷(223⋅y x x y )=_______________. 18.关于x 的方程53244x mx x x++=--无解,则m =________. 19.已知关于x 的方程321x m x -=-的解是正数,则m 的取值范围为____________. 20.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.三、解答题21.计算:(1)202()21)3--;(2)22(1)(21)(21)3(4)m m m m ⎡⎤+-+--÷-⎣⎦;(3)2221121x x x x x x --+-+ 22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 23.先化简,再求值:22141244x x x x x ,其中3x =-24.先化简,再求值:2246221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭,其中x 取-1、+1、-2、-3中你认为合理的数.25.计算:)03-26.解方程:312(2) xx x x-=--【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,故该说法不符合题意;B、22623=23432m n m nm n m n⨯--⨯--,故分子、分母的中m扩大2倍,n不变,分式的值没有扩大2倍,故该说法不符合题意;C、226212=32438m n m nm n m n-⨯--⨯-,故分子、分母的中n扩大2倍,m不变,分式的值发生变化,故该说法不符合题意;D、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.2.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】解:2224411424 x xx x x x -++÷-+2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 3.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 4.C解析:C【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()mm m -÷⋅ =()468m m -÷=()468m m -÷ =28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.5.C解析:C【分析】由设甲单位的捐款人数为x ,甲单位捐款人数比乙单位少10人,得到乙单位人数为(x+10),根据甲单位人均捐款额比乙单位多20元列得方程.【详解】 解:由题意得:7500980020x x 10-=+, 故选:C .【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键. 6.D解析:D【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程.【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D .【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键. 7.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.8.C解析:C【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题.【详解】根据题意得,2条直线最多将平面分成4个区域1=4a ,3条直线最多将平面分成7个区域2=7a ,4条直线最多将平面分成11个区域3=11a ,5条直线最多将平面分成16个区域4=16a则11=3=1+2a -, 21=6=1+2+3a -,31=10=1+2+3+4a -,41=15=1+2+3+4+5a - 1=1+2+3+4+51n a n ∴-++12111111n a a a ∴++⋅⋅⋅+--- 111=1+21+2+31+2+3++(n+1)++⋅⋅⋅+ 111=(1+2)2(1+3)3(1+n+1)(n+1)222++⋅⋅⋅+⨯⨯11122334(1)(2)n n ⎡⎤=+++⎢⎥⨯⨯++⎣⎦1111112233412n n ⎡⎤=-+-++-⎢⎥++⎣⎦ 11222n ⎡⎤=-⎢⎥+⎣⎦ 2n n =+ 121111011111n a a a ++⋅⋅⋅+=--- 10211n n ∴=+ 2101211n ∴-=+ 21211n ∴=+ 222n ∴+=20n ∴= 经检验n=20是原方程的根故选:C .【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键.9.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 10.C 解析:C【分析】直接进行同分母的加减运算即可.【详解】解:23211x x x x +-++=2321x x x +-+=31x +,故选C.【点睛】本题考查了同分母的分式的运算,解题的关键是熟练掌握分式的运算法则.11.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A.22b ba a=不一定正确;B.22+++a ba ba b=不正确;C. 2422x y x yx x--=分子分母同时除以2,变形正确;D.22m nnm-=-不正确;故选:C.【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.12.D解析:D【分析】根据分式的乘法法则计算依次判断即可.【详解】A、2633327()28=x xy y,故该项错误;B、22224()()=++a aa b a b,故该项错误;C、222()()()--=++x y x yx y x y,故该项错误;D、333()()()++=--m n m nm n m n,故该项正确;故选:D.【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.二、填空题13.【分析】原式整理成再整体代入即可求解【详解】∵∴故答案为:【点睛】本题主要考查分式的加减法解题的关键是掌握分式的加减运算法则和完全平方公式 解析:136【分析】 原式整理成222()2b a b a a b ab a b ab ab++-+==,再整体代入即可求解. 【详解】∵5a b +=,6ab =, ∴222()2b a b a a b ab a b ab ab++-+== 25266-⨯= 136=. 故答案为:136. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 14.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-; (2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =;(3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键. 15.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条 解析:111a -+ 531a +- 2或6 【分析】(1)根据材料中分式转化变形的方法,即可把1a a +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+---令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.16.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 17.﹣【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣÷=﹣•=﹣故答案为:﹣【点睛】本题考查分式的混合运算按照正确的运算顺序进行运算并及时化简是解题的关键解析:﹣25y x【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】 解:原式=﹣36y x ÷y x=﹣36y x •x y=﹣25y x, 故答案为:﹣25y x. 【点睛】本题考查分式的混合运算,按照正确的运算顺序进行运算并及时化简是解题的关键. 18.3或【分析】分式方程无解即化成整式方程时无解或者求得的x 能令最简公分母为0据此进行解答【详解】解:方程两边都乘以(x-4)得整理得:当时即m=3方程无解;当时∵分式方程无解∴x-4=0∴x=4∴解得解析:3或174. 【分析】分式方程无解,即化成整式方程时无解,或者求得的x 能令最简公分母为0,据此进行解答.【详解】解:方程两边都乘以(x-4)得, 5(3)2(4)x mx x -+=-,整理,得:(3)5m x -=-当30m -=时,即m=3,方程无解;当30m -≠时,53x m =-, ∵分式方程无解,∴x-4=0,∴x=4, ∴543m =-, 解得,174m =. 故答案为:3或174. 【点睛】 本题考查了分式方程的解,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.19.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.20.80【分析】设现在每天做x 个零件则原计划每天做个零件根据工作时间=工作总量÷工作效率结合现在做4000个零件和原来做3000个零件的时间相同即可得出关于x 的方程求解即可【详解】设现在每天做x 个零件则解析:80【分析】设现在每天做x 个零件,则原计划每天做()20x -个零件,根据工作时间=工作总量÷工作效率,结合现在做4000个零件和原来做3000个零件的时间相同,即可得出关于x 的方程,求解即可.【详解】设现在每天做x 个零件,则原计划每天做()20x -个零件, 依题意得:4000300020x x =-, 解得:80x =;经检验x=80是原方程的解∴现在平均每天做80个零件故答案为:80.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解答本题的关键.三、解答题21.(1)0;(2)112m -;(3)x 【分析】 (1)根据实数的混合运算的法则计算即可;(2)利用完全平方公式,平方差公式去括号、合并同类项后再计算除法即可; (3)根据分式乘法的法则进行计算即可.【详解】解:(1)原式=23212⎛⎫- ⎪⎝⎭=92314--+ =0.25﹣3+1=-1.75; (2)原式=()()222424134m m m m ++-+-÷- =()()2244m m m -+÷- =22444m m m m-+-- =112m -; (3)原式=()()()()2111·11x x x x x x +--+- =x .【点睛】本题考查实数的混合运算、整式的混合运算、完全平方公式,平方差公式,分式的乘法运算,正确计算负整数指数幂、零指数幂、多项式乘法公式和因式分解是解题关键. 22.(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.32x +,3-. 【分析】 先算括号里面的,再算除法,最后将x 的值代入进行计算即可.【详解】 解:22141244x x x x x 22212=222x x x x x x x23=22x x x 23=22x x x 3=2x当3x =-时,原式3=332. 【点睛】本题考查的是分式的化简求值,熟悉相关运算法则是解题的关键.24.22(1)x x -+;3x =-;4 【分析】先算分式的减法运算,再把除法化为乘法,进行约分化简,再代入求值,即可.【详解】原式2462(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++=-÷⎢⎥+-+--⎣⎦224(1)(1)(1)(2)x x x x x +-=⋅+-+ ()211x x -=+221x x -=+ 当3x =-时,原式2(3)2431⨯--==-+. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,是解题的关键. 25.0【分析】分别计算零指数幂、算术平方根、立方根,再进行加减运算即可.【详解】解:)03=1-3+2=0【点睛】本题考查了实数的运算,掌握零指数幂、算术平方根、立方根的性质是关键. 26.32x =【分析】 按照解分式方程的步骤先去分母,再解整式方程,最后检验即可.【详解】解:方程两边乘()2x x -,得()223x x x --=. 解得32x =, 检验:当32x =时,()20x x -≠. ∴原分式方程的解为32x =. 【点睛】本题考查了分式方程的解法,熟练掌握分式方程解题步骤是解题关键,注意:解分式方程一定要检验.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)当x>0时,
当x<0时,
∵
∴
∴当 时, 的最小值为2;当 时, 的最大值为-2;
(2)由
∵x>0,
∴
当 时,最小值为11;
(3)设S△BOC=x,已知S△AOB=4,S△COD=9
则由等高三角形可知:S△BOC:S△COD=S△AOB:S△AOD
∴x:9=4:S△AOD
∴:S△AOD=
(2)当 时,求 的最小值.
(3)如图,四边形ABCD的对角线AC,BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.
【答案】(1)2,-2;(2)11;(3)25
【解析】
【分析】
(1)当x>0时,按照公式a+b≥2 (当且仅当a=b时取等号)来计算即可;x<0时,由于-x>0,- >0,则也可以按照公式a+b≥2 (当且仅当a=b时取等号)来计算;
(3)若A的值是整数,且a也为整数,求出符合条件的所有a值的和.
【答案】(1) ;(2)变小了,理由见解析;(3)符合条件的所有a值的和为11.
【解析】
分析:(1)分解因式,再通分化简.(2)用作差法比较二者大小关系.(3)先分离常数,再尝试让分子能被分母整除.
详解:
(1)A= = = .
(2)1月6日甲与丙去攀登另一座h米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h的代数式表示)
【答案】(1)甲的平均攀登速度是12米/分钟;(2) 倍.
【解析】
【分析】
(1)根据题意可以列出相应的分式方程,从而可以求得甲的平均攀登速度;
【点睛】
本题考查列分式方程解应用题.重点在于准确地找出相等关系,需注意①王老师骑自行车接小刚所走路程是(3+3+0.5)千米;②注意单位要统一.
2.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当 , 时,∵ ,∴ ,当且仅当 时取等号.请利用上述结论解决以下问题:
(1)当 时, 的最小值为_______;当 时, 的最大值为__________.
( )式子① ,② ,③ 中,属于对称式的是__________(填序号).
( )已知 .
①若 , ,求对称式 的值.
②若 ,直接写出对称式 的最小值.
【答案】( )①③.( )① .②
【解析】
试题分析:(1)由对称式的定义对三个式子一一进行判断可得属于对称式的是①、③;(2)①将等号左边的式子展开,由等号两边一次项系数和常数项对应相等可得a+b=m,ab=n,已知m、n的值,所以a+b、ab的值即求得,因为 + = = ,所以将a+b、ab的值整体代入化简后的式子计算出结果即可;② + =a2+ +b2+ =(a+b)2-2ab =m2+8+ = + ,因为 m2≥0,所以 m2+ ≥ ,所以 + 的最小值是 .
一、八年级数学分式解答题压轴题(难)
1.如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?
∴四边形ABCD面积=4+9+x+
当且仅当x=6时取等号,即四边形ABCD面积的最小值为25.
【点睛】
本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.
3.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.
(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲?
② + ,
=a2+ +b2+ ,
=(a+b)2-2ab+ ,
=m2+8+ ,
= + ,
∵ m2≥0,
∴ m2+ ≥ ,
∴ + 的最小值是 .
点睛:本题关键在于理解对称式的定义,并利用分式的性质将分式变形求解.
5.已知分式A= .
(1)化简这个分式;
(2)当a>2时,把分式A化简结果的分子与分母同时加上3后得到分式B,问:分式B的值较原来分式A的值是变大了还是变小了?试说明理由.
试题解析:
( )∵a2b2=b2a2,∴a2b2是对称式,
∵a2-b2≠b2-a2,∴a2-b2不是对称式,
∵ + = + ,∴ + 是对称式,
∴①、③是对称式;
( )①∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx+n,
∴a+b=m,ab=n,
∵m=-2 ,n= ,
∴ + = = = = =2 -2;
∴甲的平均攀登速度是丙的: 倍,
即甲的平均攀登速度是丙的 倍.
4.一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如: , , ,
含有两个字母 , 的对称式的基本对称式是 和 ,像 , 等对称式都可以用 和 表示,例如: .
请根据以上材料解决下列问题:
【答案】王老师的步行速度是 ,则王老师骑自行车的速度是 .
【解析】
【分析】
王老师接小刚上学走的路程÷骑车的速度-平时上班走的路程÷步行的速度= 小时.
【详解】
设王老师的步行速度是 ,则王老师骑自行车是 ,
由题意可得: ,解得: ,
经检验, 是原方程的根,
∴
答:王老师的步行速度是 ,则王老师骑自行车的速度是 .
(2)将 的分子分别除以分母,展开,将含x的项用题中所给公式求得最小值,再加上常数即可;
(3)设S△BOC=x,已知S△AOB=4,S△COD=9,则由等高三角形可知:S△BOC:S△COD=S△AOB:S△AOD,用含x的式子表示出S△AOD,四边形ABCD的面积用含x的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.
(2)根据(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本题.
【详解】
(1)设乙的速度为x米/分钟,
,
解得,x=10,
经检验,x=10是原分式方程的解,
∴1.2x=12,
即甲的平均攀登速度是12米/分钟;
(2)设丙的平均攀登速度是y米/分,
+0.5×60= ,
化简,得
y= ,