内蒙古鄂尔多斯市康巴什新区第二中学八年级数学人教版下册18-1-1平
2020--2021学年人教版八年级数学下册第18章:平行四边形的性质与判定 (1)
平行四边形(第一讲:性质与判定)[知识点梳理与例题讲解]一、平行四边形定义1、平行四边形:两组对边分别平行的四边形叫做平行四边形(如图),记作“□ABCD ”。
2、平行四边形的表示:一般按一定的方向依次 表示各顶点,如上图的平行四边形不能表示成□ACBD ,也不能表示成□ADBC 。
二、平行四边形的性质1、平行四边形的对边平行且相等;2、平行四边形相邻的角互补,对角相等;3、平行四边形的对角线互相平分;4、平行四边形是中心对称图形,对称中心是对角线的交点;5、四个相等,四组全等:DOA DOC BOC AOB S S S S ∆∆∆∆===COD AOB ∆≅∆;COB AOD ∆≅∆;CDA ABC ∆≅∆;DAB BCD ∆≅∆. 常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线 的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
[例1]如图,在□ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于_________cm 。
[例2]如图,□ABCD 中,AC ,BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为________.[例3](1)已知□ABCD 的周长为60cm,对角线AC、BD 相交于O 点,△AOB 的周长比△BOC 的周长多8cm,则AB 的长度为_________cm。
⑵已知△ABC,若存在点D 使得以A、B、C、D 为顶点的四边形是平行四边形,这样的点D 有______个。
⑶接上题,若已知△ABC 的周长为3,则以所有D 点围成的多边形周长为________。
[例4]如图,在□ABCD 中,E、F 是对角线BD 上的两个点且DF=BE,试猜想AE 与CF 有何数量关系及位置关系并加以证明。
[例5]如图,当点 E、F 分别在线段BD、DB 的延长线上时,仍有DF=BE,此时AE 与CF 的数量关系及位置关系有变化吗?[例6](1)如图,□ABCD 中,平行于边的两条线段EF,GH 把□ABCD 分成四部分,分别记这四部分的面积为S1、S2、S3 和S4,这下列等式一定成立的是( )A.S1=S3 B.S1+S3=S2+S4C.S3-S1=S2-S4 D.S1×S3=S2×S4(2)如图,□ABCD 中,P 是中间任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1、S2、S3、S4,则一定成立的是( )A.S1+S2>S3+S4 B.S1+S2=S3+S4C.S1+S2<S3+S4 D.S1+S3=S2+S4三、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形;(2)定理1:两组对角分别相等的四边形是平行四边形;(3)定理2:两组对边分别相等的四边形是平行四边形;(4)定理3:对角线互相平分的四边形是平行四边形;(5)定理4:一组对边平行且相等的四边形是平行四边形。
初中数学:18.1.1 平行四边形的性质(人教版八年级数学下册第十八章平行四边形)
18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角的特征1.理解平行四边形的定义及有关概念。
2.能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。
3.了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。
重点:平行四边形的概念和性质。
难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法.1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.2.平行四边形的性质:(1)平行四边形的对角相等,邻角互补;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分.平行四边形的性质为以后证明线段平行或相等以及角相等提供了新的理论依据.3.推论:夹在两条平行线间的平行线段相等.探究点一:平行四边形的定义如图,在四边形ABCD中,∠B=∠D,∠1=∠2.求证:四边形ABCD是平行四边形.解析:根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD∥BC,AB∥CD,根据平行四边形的定义推出即可.证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC.∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.方法总结:平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.探究点二:平行四边形的边、角特征【类型一】利用平行四边形的性质求边长如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形,DE=2,则AD=________.解析:∵四边形ADEF为平行四边形,∴DE=AF=2,AD=EF,AD∥EF,∴∠ACB =∠FEB.∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF.∴AD=BF,∵AB=5,∴BF=5+2=7,∴AD=7.方法总结:本题考查了平行四边形对边平行且相等的性质及等腰三角形的性质,熟练掌握各性质是解题的关键.【类型二】利用平行四边形的性质求角如图,在平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为A.35°B.55°C.25°D.30°解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.∵∠A=125°,∴∠B=55°.∵CE⊥AB于E,∴∠BEC=90°,∴∠BCE=90°-55°=35°.故选A.方法总结:平行四边形对角相等,邻角互补,并且已知一个角或已知两个邻角的关系,可求出其他角,所以利用该性质可以解决和角度有关的问题.【类型三】利用平行四边形的性质证明有关结论如图,点G 、E 、F 分别在平行四边形ABCD 的边AD 、DC 和BC 上,DG =DC ,CE =CF ,点P 是射线GC 上一点,连接FP ,EP .求证:FP =EP .解析:根据平行四边形的性质推出∠DGC =∠GCB ,根据等腰三角形性质求出∠DGC =∠DCG ,推出∠DCG =∠GCB ,根据“等角的补角相等”求出∠DCP =∠FCP ,根据“SAS”证出△PCF ≌△PCE 即可得出结论.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DGC =∠GCB .∵DG =DC ,∴∠DGC =∠DCG ,∴∠DCG =∠GCB .∵∠DCG +∠ECP =180°,∠GCB +∠FCP =180°,∴∠ECP =∠FCP .在△PCF 和△PCE =CE ,FCP =∠ECP ,=CP ,∴△PCF ≌△PCE (SAS),∴PF =PE .方法总结:平行四边形性质,等腰三角形的性质,全等三角形的性质和判定等常综合应用,利用平行四边形的性质可以解决一些相等的问题,在证明时应用较多.【类型四】判断直线的位置关系如图,在平行四边形ABCD 中,AB =2AD ,M 为AB 的中点,连接DM 、MC ,试问直线DM 和MC 有何位置关系?请证明.解析:由AB =2AD ,M 是AB 的中点的位置关系,可得出DM 、CM 分别是∠ADC 与∠BCD 的平分线.又由平行线的性质可得∠ADC +∠BCD =180°,进而可得出DM 与MC 的位置关系.解:DM 与MC 互相垂直.证明如下:∵M 是AB 的中点,∴AB =2AM .又∵AB =2AD ,∴AM =AD ,∴∠ADM =∠AMD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠AMD =∠MDC ,∴∠ADM =∠MDC ,则∠MDC =12∠ADC ,同理∠MCD =12∠BCD .∵AD ∥BC ,∴∠ADC +∠DCB =180°,∴∠MDC +∠MCD =12∠BCD +12∠ADC =90°.∵∠MDC +∠MCD +∠DMC =180°,∴∠DMC =90°,∴DM 与MC 互相垂直.方法总结:根据平行四边形的性质,将已知条件转化到同一个三角形中,即可判断两条直线的关系.探究点三:两平行线间的距离如图,已知l1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴△EGO 的面积等于△FHO 的面积.方法总结:根据两平行线间的距离可知,夹在两条平行线间的任何平行线段都相等,而后可推出两三角形同底等高,面积相等.第2课时平行四边形的对角线的特征1.探索并掌握平行四边形的性质:平行四边形的对角线互相平分.2.会运用平行四边形的性质进行推理和计算.重点:平行四边形的对角线互相平分.难点:平行四边形性质的灵活运用及几何计算题的解题表达.平行四边形的性质:(1)平行四边形的对角相等,邻角互补;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分.平行四边形的性质为以后证明线段平行或相等以及角相等提供了新的理论依据.探究点一:平行四边形的对角线互相平分【类型一】利用平行四边形对角线互相平分求线段已知▱ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△DOA的周长长5cm ,求这个平行四边形各边的长.解析:平行四边形周长为60cm ,即相邻两边之和为30cm.△AOB 的周长比△DOA 的周长长5cm ,而AO 为共用,OB =OD ,因而由题可知AB 比AD 长5cm ,进一步解答即可.解:∵四边形ABCD 是平行四边形,∴OB =OD ,AB =CD ,AD =BC .∵△AOB 的周长比△DOA 的周长长5cm ,∴AB -AD =5cm ,又∵▱ABCD 的周长为60cm ,∴AB +AD =30cm ,则AB =CD =352cm ,AD =BC =252cm.方法总结:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.【类型二】利用平行四边形对角线互相平分证明线段或角相等如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF .解析:根据平行四边形的性质得出OD =OB ,DC ∥AB ,推出∠FDO =∠EBO ,证出△DFO ≌△BEO 即可.证明:∵四边形ABCD 是平行四边形,∴OD =OB ,DC ∥AB ,∴∠FDO =∠EBO .在△DFO 和△BEO ∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO (ASA),∴OE =OF .方法总结:利用平行四边形的性质解决线段的问题时,要注意运用平行四边形的对边相等,对角线互相平分的性质.【类型三】判断直线的位置关系如图,平行四边形ABCD 中,AC 、BD 交于O 点,点E 、F 分别是AO 、CO 的中点,试判断线段BE 、DF 的关系并证明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用△FOD ≌△EOB 可得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .理由如下:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E 、F 分别是OA 、OC 的中点,∴OE =OF ,又∵∠FOD =∠EOB ,∴△FOD ≌△EOB (SAS),∴BE =DF ,∠ODF =∠OBE ,∴BE ∥DF .方法总结:在解决平行四边形的问题时,如果有对角线的条件时,则首选对角线互相平分的方法解决问题.探究点二:平行四边形的面积在▱ABCD 中,(1)如图①,O 为对角线BD 、AC 的交点.求证:S △ABO =S △CBO ;(2)如图②,设P 为对角线BD 上任一点(点P 与点B 、D 不重合),S △ABP 与S △CBP 仍然相等吗?若相等,请证明;若不相等,请说明理由.解析:(1)根据“平行四边形的对角线互相平分”可得AO =CO ,再根据等底等高的三角形的面积相等解答;(2)根据平行四边形的性质可得点A 、C 到BD 的距离相等,再根据等底等高的三角形的面积相等解答.(1)证明:在▱ABCD 中,AO =CO .设点B 到AC 的距离为h ,则S △ABO =12AO ·h ,S △CBO =12CO ·h ,∴S △ABO =S △CBO ;(2)解:S △ABP =S △CBP .理由如下:在▱ABCD 中,点A 、C 到BD 的距离相等,设为h ,则S △ABP =12BP ·h ,S △CBP =12BP ·h ,∴S △ABP =S △CBP .方法总结:平行四边形的对角线将平行四边形分成四个面积相等的三角形.另外,等底等高的三角形的面积相等.本节学习总结:1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.2.平行四边形的性质:(1)平行四边形的对角相等,邻角互补;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分.平行四边形的性质为以后证明线段平行或相等以及角相等提供了新的理论依据.3.推论:夹在两条平行线间的平行线段相等.更多内容请见:资料下载汇总表(提示:按住ctrl+鼠标左键打开链接)。
内蒙古鄂尔多斯市康巴什新区第二中学八年级数学下册 18.1.1 平行四边形的性质课件 (新版)新人教版
∵四边形ABCD是平行四边形
一位饱经苍桑的老人,经过一辈子的辛勤劳动, 到 晚年的时候,终于拥有了一块平行四边形的土地,由于年 迈体弱,他决定把这块土地分给他的四个孩子,他是这样 分的:
老大
老二 老三 老四
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么?
A
D F C O
A
E
B
我变,我变变变!
D D F O A E B D F C O F C A O B C E
D O F
A B
C E
A B
E
找一找
在这些图形中面积相等的图形有哪些?
D F O A D O F A B C F D O C E
E
B C E
A
D
F
B
C
O
A E B
过对角线交点的任一条直线都将平 行四边形分成面积相等的两部分
0
如右图,AB=AC,且AB=5,从等腰三角形底边上 任一点,分别作两腰的平行线,求所成的平行四边 形AEDF的周长?
A
E F B D C
DE AB, 在平行四边形ABCD中, BF CD,垂足分别为 E、F.
F
求证 AE CF .
D
C
A
E
B
如图, ABCD的对角线AC、BD 相交于点O.
B 再看一遍
C
A
D O ●
B
C
结论
你能证明 它吗?
●
●
平行四边形的对角线互相平分.
求证: 平行四边形的对角线互相平分.
已知:如图: ABCD的对角线AC、BD 相交于点O. A 1 O 求证:OA=OC,OB=OD.
2023年春八下数学 18-1-3 平行四边形的判定(1) 导学案(人教版)
人教版初中数学八年级下册18.1.3 平行四边形的判定(1) 导学案一、学习目标:1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.重点:掌握平行四边形的判定定理.难点:综合运用平行四边形的性质与判定解决问题.二、学习过程:课前自测平行四边形的性质:边:_____________________________;∵ _______________________________∴ _______________________________角:_____________________________;∵ _______________________________∴ _______________________________对角线:_____________________________;∵ _______________________________∴ _______________________________自主学习思考:反过来,对边相等,或对角相等,或对角线互相平分的四边形是平行四边形吗?也就是说,平行四边形的性质定理的逆命题成立吗?逆命题1:____________________________________________.逆命题2:____________________________________________.逆命题3:____________________________________________.逆命题1:(证明过程)如图,在四边形ABCD中,AB=CD,AD=CB.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理1:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题2:(证明过程)如图,在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理2:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题3:(证明过程)如图,在四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理3:_________________________________________.几何符号语言:∵ _______________________,∴ _________________________.典例解析例1.如图,以△ABC的各边向同侧作正三角形,即等边△ABD、等边△ACE、等边△BCF,连接DF,EF.求证:四边形AEFD是平行四边形.【针对练习】如图,将□ABCD的四边DA,AB,BC,CD分别延长至点E,F,G,H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.求证:四边形EFGH为平行四边形.例2.如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【针对练习】如图,在□ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形.例3.如图,□ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.【针对练习】变式1:若E、F继续移动至OA、OC的延长线上,仍使AE=CF,则结论还成立吗?为什么?变式2:问题中AE=CF,过点O作一直线分别交AB、CD于G、H,则四边形GFHE 是平行四边形吗?为什么?达标检测1.下面给出四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是( )A.1:2:3:4B.2:3:2:3C.2:3:3:2D.1:2:2:32.如图,在四边形ABCD中,AB=CD,BC=AD.若∠D=120°,则∠C的度数为( )A.60°B.70°C.80°D.90°3.如图,在□ABCD中,对角线AC、BD交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE= ∠CBF;④∠ABE= ∠CDF.其中不能判定四边形DEBF是平行四边形的有( )A.0个B.1个C.2个D.3个4.四边形ABCD中,AB=9cm,BC=6cm,CD=9cm,当AD=____cm时,四边形ABCD 是平行四边形.5.如图,在□ABCD中,点E,F分别在边AD,BC上,且BE//DF,若AE=5,则CF=_____.6.如图,线段AB,CD相交于点O,且图上各点把线段AB,CD四等分,这些点可以构成平行四边形的个数是_____.7.如图,在□ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,求证:四边形KLMN为平行四边形.8.如图,在□ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.9.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.10.如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.。
内蒙古鄂尔多斯康巴什新区第一中学八年级数学下册《20.1.1 平均数》导学案2(无答案)(新版)新人教版
20.1 平均数学习目标:1.加深对加权平均数的理解;会根据频数分布表求加权平均数, 从而解决一些实际问题;会用计算器求加权平均数的值.2、经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,学会频数分布表中应用加权平均数的方法. 学习重点:根据频数分布表求加权平均数. 学习难点:理解频数、组中值的定义. 一、课前检测:1、八年级一班有学生55人,八年级二班有学生45人。
期末数学测试中,一班学生的平均分为82分,二班学生的平均分是84分,这两个班的平均分是多少?二、新知探究:自主学习:(阅读教材113页)进一步理解,统计中也常把下面的这种算术平均数看成加权平均数。
一般的:在求n 个数的算术平均数时,如果1x 出现1f 次,2x 出现2f 次,…k x 出现k f 次(这里1f +2f +…k x =n )那么着n 个数的算术平均数是x = 。
x 也叫这k 个数的加权平均数。
其中1f , 2f …k f 。
分别叫 的权。
例2:某跳水队为了了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人,求这个跳水队运动员的平均年龄(结果保留整数)探究活动:为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每21≤x<41 31 541≤x<61 51 2061≤x<81 71 2281≤x<101 91 18教与学101≤x<121 111 15这天5路公共汽车平均每班的载客量是多少?(结果保留整数)思考下列问题:(1)依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,各组数据的平均值和组中值有什么关系。
(5)这天5路公共汽车平均每班的载客量是多少?(6)从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?(可以使用计算器)结论: 1.当数据是以分组的形式出现时,用组中值代表每一组的数据;2.每一组的频数看作每一组数据的权三、课堂练习:1、课本115练习1、22.北京时2007年5月份是一周的日最高气温(单位:0C)分别为为25,28,30,29,31,32,28.这周的日最高气温平均值是()A.28B.29C.30D.313.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:命中环数7 8 9 10从射击成绩的平均数评价甲,乙两人的射击水平,则()A.甲比乙高 B。
内鄂尔多斯市康巴什新区第二中学八年级数学下册 18.1.2 平行四边形的判定(第3课时)课件 (新版)新人教版
D
B
E
C
已知,如图,D、E分别是△ABC的边AB、
1 AC的中点. 求证:DE∥BC, DE BC . 2
A
D
E
C
分析1:
平行 角
B
一条线段是另一条线段 的一半
倍长短线
或 平行四边形
线段相等
A
分析2:
倍长 DE 互相 平分
D
B
E
C
构 造
平行 四边 形
证法1:
A 证明: 延长DE到F,使EF=DE. D E 连接AF、CF、DC . C B ∵AE=EC,DE=EF , ∴四边形ADCF是平行四边形. ∴CF // AD . ∴CF // BD . ∴四边形BCFD是平行四边形.
A
E
C
F
三角形中位线定理: 三角形的中位线平行于三角形的 D 第三边且等于第三边的一半.
B
A
E
C
符号语言: △ABC中,若D、E分别是边AB、AC的中点,
1 则DE∥BC,DE= BC. 2
三角形中位线定理:
D
A
E
三角形的中位线 平行
B
一条线段是另一条线段的2倍或
1 2
1. 如图,△ABC中,D、E分别是AB、AC中点. (1) 若DE=5,则BC= 10 . (2) 若∠B=65°,则∠ADE= 65 °. (3) 若DE+BC=12,则BC= 8 .
B
A
E
C
分析: 猜想:
两条线段的关系 DE 与BC的关系 位置关系 DE∥BC
1 ? BC 数量关系 DE 2
问题4: 度量一下你手中的三角形,看看是 否有同样的结论?并用文字表述这一结论.
18-1-1 平行四边形的性质-2020-2021学年八年级数学下册教材配套教学课件(华东师大版)
掌握平行四边形的概念. 探索并熟练运用平行四边形的性质. 理解两条平行线之间的距离的概念.能熟练运用平行线 之间的距离的概念去解题.
两组对边分别平行的四边形叫做平行四边形.
记作: ABCD
A
D
读作:平行四边形ABCD
B
C
几何语言:
∵ AB∥CD AD∥BC
∵四边形ABCD是平行四边形
AC E BDF
m
两条平行线间的距离:两 条平行线中,一条直线上
n 任意一点到另一条直线的
距离
若m // n,AB、CD、EF垂直于 n,交n于B、D、F,交 m于A、C、E.
同前面易得AB=CD=EF 两条平行线间的距离相等.
两条平行线之间的距离 两条平行线之间的距离:两条平行线中,一条直线上任意一点到 另一条直线的距离,叫做这两条平行线之间的距离.
C B
例2 如图,在 ABCD中, AB=8,周长等于24.求余各边的长.
解:∵四边形ABCD是平行四边形 且 AB =8(已知),
D
∴ DC = AB=8, AD= BC (平行四边形的对边相等). A
又∵周长等于24,
∴ AB+BC+DC+AD=24,
∴ AD= BC= 12(24-2AB)= 4.
A
3232
D
58°
B
2288
C
在笔直的铁轨上, 夹在两根铁轨之间的枕木是否一样长 ?
若m // n,作 AB // CD // EF,分别交 m于A、C、E,交 n于B、D、F.
ACEm
BD F
n
由平行四边形的定义易知四边形ABCD,CDEF均为平行四边形.
人教版八下数学18.1.2 课时1 平行四边形的判定(1)教案+学案
人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)教案【教学目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【教学难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学过程设计】一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?二、合作探究知识点一:两组对边分别相等的四边形是平行四边形例1如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解析:根据题意,利用全等可证明AD=FE,DF=AE,从而可判断四边形DAEF为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF =60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC =DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.知识点二:两组对角分别相等的四边形是平行四边形例2如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形”进行证明.(1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=180°-40°-85°=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB=40°,∠DCB+∠B=180°,∴∠DAB =∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D =∠B=55°,∴四边形ABCD是平行四边形.方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路.知识点三:对角线相互平分的四边形是平行四边形例3如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎨⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.知识点四:平行四边形的判定定理(1)的应用【类型一】 利用平行四边形的判定定理(1)证明线段或角相等例4如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理(1)的综合运用例5如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS ”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用已知得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC 于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎨⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC=∠BCA .在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、教学小结本节课我们主要学习了平行四边形的判定方法:平行四边形的定义文字语言:两组对边分别平行的四边形叫做平行四边形.符号语言:∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形.平行四边形的判定定理1文字语言:两组对边分别相等的四边形是平行四边形.符号语言:∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形.平行四边形的判定定理2文字语言:两组对角分别相等的四边形是平行四边形.符号语言:∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形.平行四边形的判定定理3文字语言:对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.四、学习检测1..如图所示,在四边形ABCD中,AC,BD相交于点O.(1)若AD=8 cm,AB=4 cm,那么当BC=cm,CD=cm时,四边形ABCD为平行四边形;(2)若AC=8 cm,BD=10 cm,那么当AO=cm,DO=cm时,四边形ABCD为平行四边形.解析:(1)此题主要考查了平行四边形的判定定理的应用.根据两组对边分别相等的四边形是平行四边形,即可确定BC,CD的长.(2)此题主要考查了平行四边形的判定定理的应用.根据对角线互相平分的四边形是平行四边形,即可确定AO,DO的长.答案:(1)84(2)4 52.如图所示,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件: (只添加一个即可),使四边形ABCD是平行四边形.解析:答案不唯一.所填条件能使△AOB≌△COD,或者△AOD≌△COB即可.可填:①AB∥CD,②AD∥BC,③∠BAO=∠DCO,④∠ABO=∠CDO,⑤∠ADO=∠CBO,⑥∠DAO=∠BCO等.故可填AB∥CD.3.如图所示的是由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察、分析发现:①第4个图形中平行四边形的个数为.②第8个图形中平行四边形的个数为.解析:根据“两组对边分别相等的四边形是平行四边形”,可以判断图中的平行四边形的个数.通过观察、分析,寻找规律,即可解决问题.答案:①6②204.如图所示,在▱ABCD中,点E,F是对角线AC上两点,且AE=CF.求证∠EBF=∠FDE.解析:要证明∠EBF=∠FDE,根据平行四边形的性质,只要证明四边形BEDF是平行四边形即可.由AE,CF在▱ABCD的对角线上,可考虑利用“对角线互相平分的四边形是平行四边形”,证明EF与BD互相平分即可.证明:连接BD交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,∴OA-AE=OC-CF,即OE=OF.∴四边形BEDF是平行四边形,∴∠EBF=∠FDE.【板书设计】18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)征1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理(1)的应用【教学反思】在本节数学课的教学中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)学案【学习目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【学习重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【学习难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【自主学习】一、知识回顾1.平平行四边形的定义是什么?有什么作用?2.除了两组对边分别平行,平行四边形还有哪些性质?3.平行四边形上面的三条性质的逆命题各是什么?二、自主探究知识点1:两组对边分别相等的四边形是平行四边形猜一猜将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?证一证已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,在△ABC和△CDA中,AB=CD ,AC=CA,∴△ABC_____△CDA(________).BC=DA,∴∠1____∠4 , ∠ 2_____∠3,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对边分别_________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是_________________.【典例探究】例1如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.例2 如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.【跟踪练习】如图, AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.知识点2:两组对角分别相等的四边形是平行四边形猜一猜对于两组对角分别相等的四边形的形状你的猜想是什么?证一证已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.证明:∵∠A+∠C+∠B+∠D=_______°,又∵∠A=∠C,∠B=∠D,∴___∠A+___∠B=_______°,即∠A+∠B=______°,∴ AD_____BC.同理得 AB_____CD,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对角分别________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵∠A=______,∠B=______,∴四边形ABCD是_______________.【典例探究】例3如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【跟踪练习】1.判断下列四边形是否为平行四边形:2.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A. 1:2:3:4B. 1:4:2:3C. 1:2:2:1D. 3:2:3:2知识点3:对角线互相平分的四边形是平行四边形猜一猜如图,将两根细木条AC、BD的中点重叠,用小钉固定在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD.转动两根木条,四边形ABCD一直是一个平行四边形吗?证一证已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC,∠AOB=∠COD,∴△AOB______△COD(________).OB=OD,∴∠BAO_____∠OCD , ∠ ABO_____∠CDO,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:对角线互相________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AO_____CO,DO_____BO,∴四边形ABCD是______________.【典例探究】例4(教材P46例3变式题)如图,AC是平行四边形ABCD的一条对角线,BM⊥AC 于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.例5昨天林莉同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,她想回家去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是她想把原来的平行四边形重新在纸上画出来?然后带上图纸去就行了,可原来的平行四边形怎么给它画出来呢(A,B,C为三顶点,即找出第四个顶点D)?(请用多种方法)【跟踪练习】1.根据下列条件,不能判定四边形为平行四边形的是()A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行2.如图,在四边形ABCD中,AC与BD交于点O.如果AC=8cm,BD=10cm,那么当AO=_____cm,BO=_____cm时,四边形ABCD是平行四边形.四、学习中我产生的疑惑【学习检测】1.判断题(对的在括号内填“√”,错的填“×”):(1)有一组对边平行的四边形是平行四边形. ( )(2)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形( )(3)对角线互相平分的四边形是平行四边形()(4)一条对角线平分另一条对角线的四边形是平行四边形( )(5)有一组对角相等且一组对边平行的四边形是平行四边形( )2.下列命题中,正确的是()A.两组角相等的四边形是平行四边形B.一组对边相等,两条对角线相等的四边形是平行四边形C.一条对角线平分另一条对角线的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形3.四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是()A.①②B.①③④C.②③D.②③④4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD 是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD5.如图,在四边形ABCD中,(1)如果AB∥CD,AD∥BC,那么四边形ABCD是 __________.(2)如果∠A:∠B:∠ C:∠D=a:b:a:b(a,b为正数),那么四边形ABCD是___ _______.(3)如果AD=6cm,AB=4cm,那么当BC=_______cm,CD=_____cm时,四边形ABCD为平行四边形.6.如图所示,在▱ABCD中,E,F分别为AB,CD的中点,求证四边形AECF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,∵E,F分别为AB,CD的中点,∴AE=BE=AB,CF=DF=CD.∴AE=CF,BE=DF,在△ADF和△CBE 中,AD=BC,∠B=∠D,BE=DF,∴△ADF≌△CBE(SAS).∴AF=CE,∴四边形AECF 是平行四边形.7.如图,五边形ABCDE是正五边形,连接BD、CE,交于点P.求证:四边形AB PE是平行四边形.第4题图第5题图8.如图,平行四边形ABCD的对角线AC,BD相交于点O,M,N分别是OA,OC的中点,求证BM∥DN,且BM=DN.证明:连接DM,BN,如图所示.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵M,N分别是OA,OC的中点,∴OM=OA,ON=OC,∴OM=ON.∴四边形BMDN是平行四边形,∴BM∥DN,且BM=DN.9.如图,已知E,F,G,H分别是平行四边形ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.10.如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.11.学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?12.如图,在▱ABCD中,E,F,G,H分别是四条边上的点,且满足AE=CF,BG=DH,连接EF,GH.(1)猜想EF与GH的关系;(2)证明你的猜想.(1)解:EF与GH互相平分.(2)证明:连接EG,GF,FH,HE,∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C.又∵DH=BG,∴AD-DH=BC-BG,即AH=CG.又∵AE=CF,∴△AEH≌△CFG.∴EH=FG,同理可证明HF=GE.∴四边形EGFH是平行四边形.∴EF与GH互相平分.。
人教版数学八年级下册说课稿:第18章正方形(一)
人教版数学八年级下册说课稿:第18章正方形(一)一. 教材分析人教版数学八年级下册第18章正方形(一)是本册内容的重要部分,主要内容包括正方形的性质、正方形的判定以及正方形与其他图形的性质比较。
本章内容在学生已有矩形、菱形等四边形性质的基础上进行,为后续正六边形等复杂图形的性质学习打下基础。
二. 学情分析八年级的学生已经掌握了四边形的基本性质,具有较好的逻辑思维能力和观察能力。
但在学习本章内容时,仍需注意以下几点:1. 学生对概念的理解和运用还不够熟练,需要通过实例加深理解;2. 正方形性质的证明较为复杂,学生可能一时难以接受;3. 学生对实际应用题的解决能力有待提高。
三. 说教学目标1.知识与技能目标:使学生掌握正方形的性质,能够运用正方形的性质解决实际问题;2. 过程与方法目标:通过观察、操作、证明等过程,培养学生的逻辑思维能力和空间想象能力;3. 情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.重点:正方形的性质及其应用;2. 难点:正方形性质的证明和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等;2. 教学手段:多媒体课件、实物模型、几何画板等。
六. 说教学过程1.导入:通过展示生活中的正方形实例,引导学生关注正方形,激发学习兴趣;2. 新课导入:介绍正方形的定义,引导学生思考正方形与矩形、菱形的联系与区别;3. 性质探究:引导学生通过观察、操作、证明等方法,探究正方形的性质;4. 性质应用:通过实例,讲解正方形性质在实际问题中的应用;5. 巩固提高:设计一些练习题,让学生运用正方形性质解决问题;6. 课堂小结:总结本节课所学内容,强调正方形性质的重要性;7. 课后作业:布置一些有关正方形的练习题,巩固所学知识。
七. 说板书设计正方形性质板书设计:1.正方形的定义2.正方形的性质a.四条边相等b.四个角都是直角c.对角线互相垂直平分d.邻边垂直3.正方形的判定4.正方形性质的应用八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 练习完成情况:检查学生课后作业和课堂练习的完成质量,评估学生对正方形性质的掌握程度;3. 小组合作:评估学生在小组合作中的表现,培养学生的团队合作精神。
内蒙古鄂尔多斯康巴什新区第二中学2024届八年级数学第二学期期末检测模拟试题含解析
内蒙古鄂尔多斯康巴什新区第二中学2024届八年级数学第二学期期末检测模拟试题 注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.如图,AC AD =,BC BD =,则( )A .CD 垂直平分ADB .AB 垂直平分CDC .CD 平分ACB ∠ D .以上结论均不对2.在▱ABCD 中,AD =3cm ,AB =2cm ,则▱ABCD 的周长等于( )A .10cmB .6cmC .5cmD .4cm 3.函数y =x 和2y x=-在同一直角坐标系中的图象大致是( ) A . B . C . D .4.﹣2的绝对值是( )A .2B .12C .12-D .2-5.下列方程中有实数根的是( )A 291x -=-;B 2x +x -;C .2210x y ++=;D .11x x +-=1+11x -. 6.能判定一个四边形是平行四边形的条件是( )A .一组对角相等B .两条对角线互相平分C .一组对边相等D .两条对角线互相垂直7.如图,直线y =ax ﹣b 与直线y =mx +1交于点A (2,3),则方程组1ax y b mx y -=⎧⎨-=-⎩( )A .23x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .32x y =-⎧⎨=-⎩D .23x y =-⎧⎨=-⎩ 8.下列各组数据中,能够成为直角三角形三条边长的一组数据是( ). A .111,,345 B .2223,4,5 C .3,4,5 D .0. 3,0. 4,0. 5 9.下列各式中,运算正确的是( )A .222()-=-B .284⨯=C .2810+=D .222-=10.若函数()0y kx k =≠的图象过()23-,,则关于此函数的叙述不正确的是( ) A .y 随x 的增大而增大B .32k =-C .函数图象经过原点D .函数图象过二、四象限11.下列式子从左至右变形不正确的是( )A .a b =a 2b 2++ B .a b =4a 4b C .23b -=-23b D .a 2b --=a 2b 12.下列二次根式计算正确的是( )A .-=1B .+=C .×=D .÷=二、填空题(每题4分,共24分)13.如图,以点O 为圆心的三个同心圆把以OA 1为半径的大圆的面积四等分,若OA 1=R,则OA 4:OA 3:OA 2:OA 1=______________,若有(1n -)个同心圆把这个大圆n 等分,则最小的圆的半径是n OA =_______.14.小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______15.如图,在▱ABCD 中,AB=2,BC=3,∠BAD=120°,AE 平分∠BAD ,交BC 于点E ,过点C 作CF ∥AE ,交AD 于点F ,则四边形AECF 的面积为________.16.如图,点A 是函数()0k y x x=<的图象上的一点,过点A 作AB y ⊥轴,垂足为点B .点C 为x 轴上的一点,连结AC 、BC .若ABC ∆的面积为4,则k 的值为_________.17.为了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是_____.18.己知三角形三边长分别为6,6,23,则此三角形的最大边上的高等于_____________.三、解答题(共78分)19.(8分)如图,在△ABD 中,AB=AD ,将△ABD 沿BD 对折,使点A 翻折到点C ,E 是BD 上一点。
内蒙古鄂尔多斯市康巴什新区第二中学八年级数学人教版下册18-1-1平
最大最全最精的教育资源网
全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | 教 材 分 析
18.1.1平行四边形的性质
【内容分析】
“18.1.1平行四边形的性质” 是本章重点内容之一。
本节的主要内容是平行四边形的概念和性质,平行四边形是两组对边分别平行的四边形;要强调平行四边形是具有特殊条件的四边形.平行四边的性质:对边相等、对角相等、对角线互相平分。
平行四边形的性质和定义是研究线段和角相等的一种重要工具,它为探究其它特殊四边形的性质奠定了基础,学生已经学习过的四边形的概念与性质以及三角形和平移等相关知识,为本节课的学习奠定了基础。
本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用,平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路。
【教材整合】
本节课所选教学内容是教材中四条性质及例题;原来教材中用了两个课时,为了遵循学生思维、认知规律的循序渐进,探究问题的完整性,培养学生的学生能力,发展智力;采取把平行四边形所有性质集中在第一课时中一起研究,以达到注意学生对知识探究过程的目的。
【重难点分析】
(一) 18.1.1平行四边形的性质共3课时,其中包括两节新授课、一节习题课:
(二) 18.1.1平行四边形的性质(第1课时):
1.教学重点:平行四边形性质的探究和应用;
2.教学难点:探究、用简明的语言归纳平行四边形的性质。
内蒙古鄂尔多斯康巴什新区第一中学八年级数学下册《解分式方程》教案 新人教版
内蒙古鄂尔多斯康巴什新区第一中学八年级数学下册《解分式方程》教案新人教版使用时间:______________学习目标:1、熟练掌握可化为一元一次方程的分式方程中去分母变形;2、掌握解分式方程的步骤.3、能够掌握分式方程验根.学习过程:一、学前准备:1、在初一学过一元一次方程,二元一次方程组等等,这些方程我们统称为整式方程。
整式方程的求解步骤:________________ _____ _______________.如解整式方程612342+=--xxx解:1)去分母,得:2)去括号,得:3)移项,得:4)合并同类项,得:5)化系数为1,得:x=3、自学课本P26思考至P27归纳上面部分,回答下列问题①解分式方程v2060v20100-=+的基本思路是将分式方程转化为方程,具体做法是 .即方程两边同时乘以最简公分母。
②如何确定最简公分母?4、自学课本P27归纳下面部分至P28例1上面,回答下列问题:以1x441x222-=-为例解释一下为什么会产生增根;教与学教与学因为解分式方程会产生增根,所以解分式方程必须检验,可是怎么检验呢?二、自主学习、合作探究:探究一:分式方程的定义 像方程1211,660902-=--=x x xx ,……这种方程特点是:__________________,这类方程叫做___ __请你根据分式方程的定义,举几个分式方程的例子: 探究二、解分式方程如解分式方程66090-=x x (解题思路:化分式方程为整式方程) 解:1)去分母,得 (两边都乘以最简公分母 )2)解这整式方程,得:x= (问:这个解是原方程的解吗? )怎么判断这个解是不是原分式方程的解呢?我们的做法是: 又如解分式方程12112-=-x x (解题思路:__________________________) 解:1)去分母,得 (两边都乘以最简公分母 )2)解这整式方程,得:x= (问:这个解是原方程的解吗? ,为什么?)我们把使_______________等于0的这个整式方程的解......,叫做原分式方程的增根..。
2023-2024学年内蒙古鄂尔多斯市康巴什区八年级(下)期中数学试卷(含答案)
2023-2024学年内蒙古鄂尔多斯市康巴什区八年级(下)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列式子中,属于最简二次根式的是( )A. 9B. 12C. 7D. 132.下列各组数中,能构成直角三角形的是( )A. 2,3,4B. 3,3,5C. 3,4,5D. 1,2,33.下列运算正确的是( )=6A. 2+3=6B. 6÷6=6C. 62=36D. 12×124.关于一次函数y=2x−1的图象,下列说法不正确的是( )A. 直线不经过第二象限B. 直线经过点(−1,3)C. 直线与y轴的交点是(0,−1)D. 当x>0时,y>−15.如图,在△ABC中,∠ACB=90°,BC=2,AC=1,BC在数轴上,以点B为圆心,AB的长为半径画弧,交数轴于点D,则点D表示的数是( )A. 2−5B. 5C. 5−2D. 2−36.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是( )A. 25°B. 30°C. 35°D. 40°7.将一次函数y=3x+1的图象向上平移2个单位长度后所对应的函数解析式为( )A. y=3xB. y=3x−1C. y=3x−3D. y=3x+38.下列命题的逆命题是真命题的是( )A. 对顶角相等B. 如果两个实数相等,那么它们的绝对值相等C. 全等三角形的对应角相等D. 平行四边形的对角线互相平分9.如图,直线y=kx+6与直线y=x+b交于点P(3,5),则关于x的不等式kx+6≥x+b的解集为( )A. x>3B. x<5C. x≥3D. x≤310.如图,A(0,1),M(3,2),N(4,4).点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P 的直线l:y=−x+b也随之移动,设移动时间为t秒,当M、N位于直线l的异侧时,t应该满足的条件是( )A. 3<t<6B. 4<t<7C. 3<t<7D. 5<t<7二、填空题:本题共6小题,每小题3分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大最全最精的教育资源网
全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | 观评记录
学科: 数学 执教人: 孙彦振 课题: 18.1.1平行四边形的性质(1)
日期:2016.04.20 班级: 八年级三班 设计者:刘书传 观察者:焦裕锋、关波
项目
评价指标 评析
学 生 学 习 行 为
1、学习方式(指学生在学习过程中表现出来的自主性、探究性和合作性、方面)
2、学习状态(包括注意、倾听、参与、交往、思维、情绪、生成等状态)
3、学生对知识的理解和运用(课堂学习目标的达成情况) 1、学生基本都能按照观察-猜想-验证-证明的活动过
程进行自主探究问题;学习状态较好;
2、学习效果还可以,但部分学生在动手验证时没有
探究出来,但对性质的理解和运用大部分学生掌握较
好。
教
师
教
学
行
为
1、环节(由哪些环节构成?是否围绕教学目标展开?这些环节是否面向全体学生?不同环节/行为/内容的时间是怎么分配的?)
2、呈现(讲解是否清晰、契合主题、简洁?语速、音量、节奏如何?板书怎样呈现的?媒体怎样呈现的?是否有其它辅助为?)
3、互动(提问的对象、次数、类型、结构、候答时间怎样?教师的理答方式和内容如何?有哪些辅助方式?)
4、指导(怎样指导学生自主学习?怎样指导学生合作学习(讨论/活动)?
怎样指导学生探究学习(实验探
究)?)
1、时间分配上较合理,灵活、合理的应用信息技术手段进行教学、展示学生学习情况;
2、提问学生次数多,学生动手活动多、互动多,
3、体现了教为主导、学为主体、练为主线的教学策略。
课程性质 1、如何以问题驱动教学(创设的问题
如何利用情景?) 2、情景创设的有效性(能否引起学生兴趣、与目标有较大的关联性吗?) 3、如何整合教学资源以达成教学目
标?
本节课情景较多,特别是flash 课件动态演示验证性质的方法,对丰富课堂效果,激发学生兴趣起到了很好的作用。
观评小组意见:
本节课较好的完成教学任务,达到预期效果,课堂气氛基本上活跃;语言激励上再调整一下一
下,使气氛更活跃,教学效果会更好一些。