北师大版八年级下册 数学第4章:分解因式

合集下载

北师大版八年级数学下册第四章 因式分解1 因式分解

北师大版八年级数学下册第四章 因式分解1 因式分解
求 mn 的值. 解:∵ x4 + mx3 + nx - 16 的最高次数是 4, ∴可设 x4 + mx3 + nx -16 = (x - 1)(x - 2)(x2 + ax + b), 则 x4+mx3+nx-16 = x4 +(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b 比较系数得 2b= -16,b- 3a+2 = 0,a - 3=m,2a-3b=n,
其分解结果为 x2 + ax + b = (x + 2)(x + 4) = x2 + 6x + 8, ∴ a = 6. 同理,乙看错了 a,但 b 是正确的, 分解结果为 x2 + ax + b = (x + 1)(x + 9) = x2 + 10x + 9, ∴b = 9. ∴a + b = 15.
(4)(y-3)2 = y2-_6_y_+_9_
(4) y2-6y+9 = ( y-3 )( y-3 )
或 (y-3)2
2 因式分解与整式乘法的关系
想一想:由 a(a + 1)(a - 1) 得到 a3 - a 的变形是什么运算? 由 a3 - a 得到 a(a + 1)(a - 1) 的变形与它有什么不同?
项式化成了几个整式的积,他们的运算是相反的. 问题2:右边一栏表示的正是多项式的“因式分解”, 你能根据我们的分析说出什么是因式分解吗?
归纳总结 把一个多项式化成几个整式的积的形式,这种
变形叫做因式分解,也可称为分解因式.
其中,每个整式都叫做这个多项式的因式.

北师大版八年级数学下册第4章因式分解回顾与思考课件

北师大版八年级数学下册第4章因式分解回顾与思考课件

解:设正方形Ⅰ的边长为x cm,正方形Ⅱ的边长为y cm;
列方程得:
化简得:
整理得:
解得:
答:两个正方形的边长分别为32cm,8cm.
2.当x取何值时,x2+2x+1取得最小值? 3.当k取何值时,100 x2-kxy+49y2是一个完全平方 2.式解?:x2+2x+1=(x+1)2
当x=-1时, x2+2x+1取得最小值0。
解:原式

解:原式

解:原式
•可以先化简整理,再 •考虑用公式或其它 •方法进行因式分解。

解:原式
小试牛刀
练一练:把下列各式分解因式 ⑴
解:原式

解:原式
连续两次使用公式 法进行分解因式。 当多项式情势上是二 项式时,应考虑用平 方差公式,当多项式 情势上是三项式时, 应考虑用完全平方公 式。
知识点四:综合运用多种方法分解因式 例4.把下列各式分解因式
答:这两个数分别为65和63。
作业
• 完成书上习题
3.解:100 x2-kxy+49y2 =(10x)2-kxy+(7y)2 所以k=±2×10×7=±140
永攀高峰:
例10.利用分解因式说明:
能被120整除。
提示:底数不同,且指数不全为偶数,若考虑使用平方差公式则需要
转化底数。 解:

可以被60和70之间某两个自然数整除,
求这两个数。
解:
反复利用平方差公 式进行分解因式, 分解过程中需注意 题目中的条件要求, 分解因式“适可而止”。
因式分解
回顾与思考
知识回顾
• 1、举例说明什么是分解因式。 • 2、分解因式与整式乘法有什么关系? • 3、分解因式常用的方法有哪些? • 4、试着画出本章的知识结构图。

北师大数学八年级下册第四章-因式分解经典讲义

北师大数学八年级下册第四章-因式分解经典讲义

第01讲_因式分解知识图谱因式分解知识精讲概念(1)把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式,(2)因式分解与整式乘法是互逆过程2222()2()a ab a a bx yx y x y-=-++=+(√)(√)注意事项(1)分解的对象必须是多项式;(2)分解的结果一定是几个整式的乘积的形式;(3)要分解到不能分解为止2323623x y x y=⋅(×)2(1)(2)2x x x x+-=--(×)3229633(32)a a a a a a-+=-(×)概念(1)多项式()am bm cm m a b c++=++,其中m叫做这个多项式各项的公因式(2)m既可以是一个单项式,也可以是一个多项式(1)多项式15m3n2+5m2n﹣20m2n3的公因式是5m2n(2)m(n-2) -m2(2-n)可化简为m(n-2)+m2(n-2),公因式是m (n-2)分解因式得m(n-2) (m+1)步骤(1)公因式的系数——找各因式系数的最大公约数(2)公因式的字母——各因式中相同的字母 (3)相同字母指数——取各字母指数的最低次幂平方差公式(1)()()22a b a b a b -=+-即两个数的平方差,等于这两个数的和与这个数的差的积()()()22249232323x x x x -=-=+-完全平方公式 (1)()2222a ab b a b ±+=±其中,222a ab b ±+叫做完全平方式即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方()()()2222241292223323x xy y x x y y x y -+=-⋅⋅+=-三点剖析一.考点:1.概念;2.提公因式法;3.公式法.二.重难点:提公因式法;公式法三.易错点:没有分解彻底,一定要分解到每一项都不能再分解为止.概念例题1、 下列各等式从左到右的变形是因式分解,且分解正确的是( ) A.ax 2+bx +x =x (ax +b )B.a 2+2ab +b 2-1=(a +b )2-1C.(x +5)(x -1)=x 2-4x -5D.2211()42x x x -+=-【答案】 D【解析】 A 、公因式是x ,应为ax 2+bx +x =x (ax +b +1),故本选项错误; B 、a 2+2ab +b 2-1=(a +b )2-1=(a +b +1)(a +b -1),分解不彻底,故本选项错误; C 、右边不是积的形式,故本选项错误;D 、完全平方公式分解因式,故本选项正确.例题2、 下列从左到右的变形,属于因式分解的有( )(1)2(1)(2)2x x x x +-=-- (2)()ax ay a a x y a --=-- (3)2323623x y x y =⋅ (4)24(2)(2)x x x -=+-(5)3229633(32)a a a a a a -+=- A.0个 B.1个 C.2个 D.3个【答案】 B【解析】 从左到右,式(1)是整式乘法;式(2)右端不是积的形式;式(3)中左右两边均是单项式,原来就是乘积形式,我们说的因式分解,指的是将多项式分解成几个整式的乘积形式;式(5)的右边括号内漏掉了“1”这项;只有式(4)是正确的.例题3、 若多项式x 2+ax +b 分解因式的结果(x -2)(x +3),则a ,b 的值分别是( ) A.a =1,b =-6 B.a =5,b =6 C.a =1,b =6 D.a =5,b =-6 【答案】 A【解析】 ∵多项式x 2+ax +b 分解因式的结果为(x -2)(x +3), ∴x 2+ax +b =(x -2)(x +3)=x 2+x -6, 故a =1,b =-6.随练1、 下列各式由左边到右边的变形中,是因式分解的是( ) A.2xy+6xz+3=2x (y+3z )+3 B.(x+6)(x ﹣6)=x 2﹣36 C.﹣2x 2﹣2xy=﹣2x (x+y ) D.3a 2﹣3b 2=3(a 2﹣b 2) 【答案】 C【解析】 A 、在等式的右边最后计算的是和,不符合因式分解的定义,故A 不正确; B 、等式从左边到右边属于整式的乘法,故B 不正确;C 、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C 正确;D 、多项式a 2﹣b 2仍然可以继续分解为(a+b )(a ﹣b ),故D 属于分解不彻底,故D 不正确; 故选C .随练2、 下列变形,属于因式分解的有( ) ①x 2-16=(x +4)(x -4) ②x 2+3x -16=x (x +3)-16 ③(x +4)(x -4)=x 2-16 ④x 2+x =x (x +1) A.1个 B.2个 C.3个 D.4个 【答案】 B【解析】 由因式分解的意义可知: ①④是因式分解,提公因式法例题1、 3322222491421a bc a b c ab c +-在分解因式时,应提取的公因式是( ) A.27abc B.227ab c C.2227a b c D.337a bc 【答案】 A【解析】 因为()3322222224914217723a bc a b c ab c abc a c ab b +-=+-,所以提取的公因式为27abc ,故选A 选项. 例题2、 单项式2234a b c -,212ab c ,38ab 的公因式是________. 【答案】 24ab【解析】 由公因式的定义可知,题目中三项的公因式为24ab . 例题3、 多项式(x+y ﹣z )(x ﹣y+z )﹣(y+z ﹣x )(z ﹣x ﹣y )的公因式是( ) A.x+y ﹣z B.x ﹣y+z C.y+z ﹣x D.不存在 【答案】 A【解析】 (x+y ﹣z )(x ﹣y+z )﹣(y+z ﹣x )(z ﹣x ﹣y ) =(x+y ﹣z )(x ﹣y+z )+(y+z ﹣x )(x+y ﹣z ) =(x+y ﹣z )(x ﹣y+z+y+z ﹣x ) =2z (x+y ﹣z ),故多项式(x+y ﹣z )(x ﹣y+z )﹣(y+z ﹣x )(z ﹣x ﹣y )的公因式是:x+y ﹣z 例题4、 若x -y =5,xy =6,则x 2y -xy 2=________. 【答案】 30【解析】 ∵x -y =5,xy =6, ∴x 2y -xy 2=xy (x -y )=6×5=30.例题5、 计算:20182-2018×2017=________. 【答案】 2018【解析】 20182-2018×2017=2018(2018-2017)=2018×1=2018. 例题6、 若m ﹣n=﹣1,则(m ﹣n )2﹣2m+2n=______. 【答案】 3【解析】 ∵m ﹣n=﹣1, ∴(m ﹣n )2﹣2m+2n =(m ﹣n )2﹣2(m ﹣n ) =(﹣1)2﹣2×(﹣1) =1+2 =3.例题7、 分解因式:(1)324x x y -(2)324(1)2(1)q p p -+- (3)22x y xy - (4)22x xy -【答案】 (1)2(4)x x y -(2)22(1)(221)p q pq --+(3)22()x y xy xy x y -=-(4)()2x x y -【解析】 (1)()32244x x y x x y -=-(2)()()()()()()322241212121121221q p p p q p p q pq -+-=--+=--+⎡⎤⎣⎦ (3)()22x y xy xy x y -=- (4)()222x xy x x y -=-随练1、 下列各组代数式中没有公因式的是( ) A.5()m a b --与()b a - B.2()a b +与a b -- C.mx y +与x y +D.2a ab -+与22a b ab -【答案】 C【解析】 A 选项公因式为a b -;B 选项公因式为a b +;C 选项没有公因式;D 选项公因式为()a a b -;故答案为C 选项.随练2、 多项式mx 2-m 与多项式x 2-2x +1的公因式是( ) A.x -1 B.x +1 C.x 2-1 D.(x -1)2 【答案】 A【解析】 暂无解析随练3、 在分解3225(32)(23)x a b b a --+-时,提出公因式2(32)a b --后,另一个因式是( ) A.35xB.351x +C.351x -D.35x -【答案】 C【解析】 因为()()()()22233532233251x a b b a a b x --+-=---,所以另一个因式是351x -,故选C 选项. 随练4、 若m -n =-1,则(m -n )2-2m +2n =________. 【答案】 3【解析】 ∵m -n =-1, ∴(m -n )2-2m +2n =(m -n )2-2(m -n ) =(-1)2-2×(-1) =1+2 =3.随练5、 已知m 2=n +2,n 2=m +2,m ≠n ,求m 3-2mn +n 3的值. 【答案】 -2【解析】 暂无解析随练6、 (﹣8)2014+(﹣8)2013能被下列数整除的是( ) A.3 B.5 C.7 D.9【答案】 C【解析】 (﹣8)2014+(﹣8)2013 =(﹣8)2013×(﹣8+1) =﹣7×(﹣8)2013,则(﹣8)2014+(﹣8)2013能被7整除 随练7、 把下列各多项式分解因式 (1)5232a b a b a b -+(2)222271449x y xy x y --+(3)22()(1)()(1)x y a a x y a a +++--++ (4)222318(2)24(2)12(2)x x y xy y x x y x ----- (5)()()()x x y z y x y z z x y z ++++++++【答案】 (1)232(1)a b a b -+(2)7(27)xy x y xy -+-(3)22(1)y a a ++(4)26(2)(58)x y x x y --(5)2()x y z ++【解析】 (1)()52322321a b a b a b a b a b -+=-+ (2)2222714497(27)x y xy x y xy x y xy --+=-+-(3)()()()()()()()222211121x y a a x y a a a a x y x y y a a +++--++=+++-+=++(4)()()()()()22322182242122623422x x y xy y x x y x x x y x y x y -----=--+-⎡⎤⎣⎦()()26258x x y x y =--(5)()()()()2x x y z y x y z z x y z x y z ++++++++=++公式法例题1、 下列多项式中能用平方差公式分解因式的是( ) A.a 2+(﹣b )2 B.5m 2﹣20m C.﹣x 2﹣y 2 D.﹣x 2+9 【答案】 D【解析】 A 、a 2+(﹣b )2,无法运用平方差公式分解因式,故此选项错误; B 、5m 2﹣20m=5m (m ﹣4),无法运用平方差公式分解因式,故此选项错误; C 、﹣x 2﹣y 2,无法运用平方差公式分解因式,故此选项错误; D 、﹣x 2+9=(3﹣x )(3+x ),符合题意,故此选项正确.例题2、 下列各式中能用完全平方公式进行因式分解的是( ) A.21x x ++ B.221x x +- C.21x - D.269x x -+ 【答案】 D【解析】 A 、21x x ++不符合完全平方公式法分解因式的式子特点,故A 错误; B 、221x x +-不符合完全平方公式法分解因式的式子特点,故B 错误; C 、21x -不符合完全平方公式法分解因式的式子特点,故C 错误;D 、22693x x x +=--()2,故D 正确. 例题3、 下列多项式可以用公式法因式分解的是( )A.m 2+4mB.﹣a 2﹣b 2C.m 2+3m+9D.﹣y 2+x 2 【答案】 D【解析】 A .m 2+4m 只有一项平方项,所以不能用平方差公式因式分解,故此选项错误; B .﹣a 2﹣b 2两项的符号相同,所以不能用平方差公式因式分解,故此选项错误; C .m 2+3m+9不符合完全平方公式形式,故此选项错误;D .﹣y 2+x 2符合平方差公式因式分解的式子的特点,故选项正确. 例题4、 分解因式(1)p 2(q -1)-p (1-q ).(2)(a 2+4b 2)2-16a 2b 2. 【答案】 (1)p (p +1)(q -1) (2)(a +2b )2(a -2b )2 【解析】 暂无解析 例题5、 因式分解: (1)x 2-36;(2)3x (a -b )-6y (b -a ); (3)(y 2-1)2-6(y 2-1)+9. 【答案】 (1)(x +6)(x -6) (2)3(a -b )(x +2y ) (3)(y +2)2(y -2)2【解析】 (1)x 2-36=(x +6)(x -6);(2)3x (a -b )-6y (b -a )=3x (a -b )+6y (a -b )=3(a -b )(x +2y ); (3)原式=(y 2-1-3)2 =(y 2-4)2=(y +2)2(y -2)2.例题6、 已知x +y =4,xy =1,求下列各式的值: (1)x 2y +xy 2; (2)(x 2-1)(y 2-1). 【答案】 (1)4 (2)-12【解析】 (1)当x +y =4、xy =1时, x 2y +xy 2=xy (x +y )=1×4=4; (2)当x +y =4、xy =1时, 原式=x 2y 2-x 2-y 2+1 =x 2y 2-(x 2+y 2)+1=(xy )2-(x +y )2+2xy +1 =1-16+2+1 =-12.例题7、 分解因式: (1)2269x ax a ++(2)2244x y xy --+(3)29()6()1a b a b -+-+【答案】 (1)2(3)x a +(2)2(2)x y --(3)2(331)a b -+【解析】 (1)222226923(3)(3)x ax a x x a a x a +++⋅⋅++==(2)222222244(44)[222](2)x y xy x xy y x x y y x y --+=--+=--⋅⋅+=--() (3)222229()6()1[3()]23()11[3()1](331)a b a b a b a b a b a b -+-+-+⋅-⋅+-+-+===例题8、 分解因式:(1)48610369b x c y - (2)22(2)(2)x y x y +-- (3)8881x y -(4)()()223223a b a b +-+【答案】 (1)243524359(2)(2)b x c y b x c y +-(2)8xy (3)442222(9)(3+)(3)x y x y x y +-(4)()5()a b a b +-【解析】 (1)4861048610242352243524353699(4)9[(2)()]9(2)(2)b x c y b x c y b x c y b x c y b x c y ---+-===,(2)22(2)(2)x y x y +--[(2)(2)][(2)(2)](22)(22)(2)(4)8x y x y x y x y x y x y x y x y x y xy =++-+--=++-+-+== (3)8881x y -42424444442222442222442222(9)()(9)(9)(9)[(3)()](9)[(3+)(3)](9)(3+)(3)x y x y x y x y x y x y x y x y x y x y x y =-=+-=+-=+-=+-(4)()()223223a b a b +-+[(32)(23)][(32)(23)](3223)(3223)(55)()5()()a b a b a b a b a b a b a b a b a b a b a b a b =++++-+=++++--=+-=+-随练1、 下列各式中,不能用完全平方公式分解的个数为( )①x 2﹣4x+8;②﹣x 2﹣2x ﹣1;③4m 2+4m ﹣1;④﹣m 2+m ﹣14;⑤4a 4﹣a 2+1a.A.1个B.2个C.3个D.4个 【答案】 C【解析】 ①x 2﹣4x+8,不能;②﹣x 2﹣2x ﹣1,能;③4m 2+4m ﹣1,不能;④﹣m 2+m ﹣14,能;⑤4a 4﹣a 2+1a,不能,则不能用完全平方公式分解的个数为3个, 故选C随练2、 已知a =20182,b =2017×2019,则a -b 的值为________. 【答案】 1【解析】 ∵a =20182,b =2017×2019,∴a -b =20182-2017×2019=20182-(2018-1)×(2018+1)=20182-20182+1=1. 随练3、 因式分解x 4-4=________(实数范围内分解). 【答案】2(2)(x x x ++ 【解析】 x 4-4=(x 2+2)(x 2-2)222(2)[]x x =+-2(2)(x x x =+-.随练4、 下列各式:x 2-y 2,-x 2+y 2,-x 2-y 2,(-x )2+(-y )2,x 4-y 4中能用平方差公式分解因式的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 C【解析】 x 2-y 2=(x +y )(x -y ),-x 2+y 2=(y +x )(y -x ),-x 2-y 2,(-x )2+(-y )2,x 4-y 4=(x +y )(x -y )(x 2+y 2),则能用平方差公式分解因式的有3个.随练5、 若x 2+2(m -3)x +16=(x +n )2,则m =________. 【答案】 7或-1【解析】 ∵x 2+2(m -3)x +16=(x +n )2, ∴n =±4,∴2(m -3)=±8, 解得:m =7或-1.随练6、 分解因式:(1)5a b ab -(2)44()()a m n b m n +-+ (3)11116m m a a +--+【答案】 (1)2(1)(1)(1)ab a a a ++-(2)22()()()()m n a b a b a b +++-(3)11(4)(4)16m a a a --+-【解析】 (1)54222(1)(1)(1)(1)(1)(1)a b ab ab a ab a a ab a a a -=-=+-=++-(2)4444222222()()()()()()()()()()()a m n b m n m n a b m n a b a b m n a b a b a b +-+=+-=++-=+++-(3)11121111(16)(4)(4)161616m m m m a a a a a a a +----+=--=-+- 随练7、 把下列各式因式分解: (1)x (x -5)2-x (-5+x )(x +5) (2)(a +2b )2-a 2-2ab ; (3)-2(m -n )2+32;(4)-x 3+2x 2-x ; 【答案】 (1)-10x (x -5) (2)2b (a +2b )(3)-2(m -n +4)(m -n -4) (4)-x (x -1)2【解析】 (1)原式=x (x -5)2-x (x -5)(x +5)=x (x -5)[(x -5)-(x +5)]=-10x (x -5) (2)原式=a 2+4ab +4b 2-a 2-2ab =2ab +4b 2=2b (a +2b ) (3)原式=-2[(m -n )2-16]=-2(m -n +4)(m -n -4) (4)原式=-x (x 2-2x +1)=-x (x -1)2 随练8、 (1)分解因式2a 3-8ab 2; (2)计算:(-2a 2b )2•(3ab 2-5a 2b )÷(-ab )3; (3)先化简后求值:[(x -y )2+(x +y )(x -y )]÷2x ,其中x =5,y =3. 【答案】 (1)2a (a +2b )(a -2b ) (2)-12a 2b +20a 3 (3)x -y ;2【解析】 (1)2a 3-8ab 2 =2a (a 2-4b 2) =2a (a +2b )(a -2b );(2)原式=4a 4b 2•(3ab 2-5a 2b )÷(-a 3b 3) =(12a 5b 4-20a 6b 3)÷(-a 3b 3) =-12a 2b +20a 3;(3)[(x -y )2+(x +y )(x -y )]÷2x =[(x 2-2xy +y 2)+(x 2-y 2)]÷2x =(2x 2-2xy )÷2x =x -y ,当x =5,y =3时,原式=5-3=2. 随练9、 分解因式:(1)42222244a x a x y x y -+ (2)22()12()36x y x y z z +-++ (3)222(4)8(4)16x x x x ++++(4)22222241(2)2(2)22x y x y y y ---+【答案】 (1)222(2)x a y -(2)2(6)x y z +-(3)4(2)x +(4)221(2)(2)2x y x y +-【解析】(1)()24222222422222222244(44)[()2()(2)2](2)a x a x y x y x a a y y x a a y y x a y -+=-+=-⋅⋅+=-(2)22222()12()36()2()(6)(6)(6)x y x y z z x y x y z z x y z +-++=+-++=+-(3)222222222224(4)8(4)16(4)2(4)44(44)[(2)](2)x x x x x x x x x x x x ++++=++⋅+⋅+=++=+=+(4)22222241(2)2(2)22x y x y y y ---+ 22222242222222222222222221[(2)4(2)4]21[(2)2(2)(2)(2)]21(22)21(4)21[(2)(2)]21(2)(2)2x y x y y y x y x y y y x y y x y x y x y x y x y =---+=--⋅-⋅+=--=-=+-=+-拓展1、 下列各式中,从左到右的变形是因式分解的是( ) A.3x +3y -5=3(x +y )-5 B.(x +1)(x -1)=x 2-1 C.x 2+2x +1=(x +1)2 D.x (x -y )=x 2-xy 【答案】 C【解析】 暂无解析2、 下列变形:①(x+1)(x ﹣1)=x 2﹣1;②9a 2﹣12a+4=(3a ﹣2)2;③3abc 3=3c•abc 2;④3a 2﹣6a=3a (a ﹣2)中,是因式分解的有__________(填序号) 【答案】 ②④【解析】 分析:直接利用因式分解的意义分析得出答案. 解:①(x+1)(x ﹣1)=x 2﹣1,是多项式乘法,故此选项错误; ②9a 2﹣12a+4=(3a ﹣2)2,是因式分解; ③3abc 3=3c•abc 2,不是因式分解; ④3a 2﹣6a=3a (a ﹣2),是因式分解; 故答案为:②④.3、 下列从左到右的变形,是在式分解的是( )①()a x y ax ay +=+ ②22111()()a a a b b b-=+- ③29(3)(3)ax a a x x -=+-④221()()1x y x y x y --=+-- ⑤222222()2()x x y y x y x y -+-=---A.②③B.③C.③⑤D.③④ 【答案】 B【解析】 暂无解析4、 多项式4x 2﹣4与多项式x 2﹣2x +1的公因式是( ) A.x ﹣1 B.x +1 C.x 2﹣1 D.(x ﹣1)2 【答案】 A【解析】 ∵4x 2﹣4=4(x +1)(x ﹣1),x 2﹣2x +1=(x ﹣1)2, ∴多项式4x 2﹣4与多项式x 2﹣2x +1的公因式是(x ﹣1). 5、 多项式15m 3n 2+5m 2n ﹣20m 2n 3的公因式是( ) A.5mn B.5m 2n 2 C.5m 2n D.5mn 2 【答案】 C【解析】 多项式15m 3n 2+5m 2n ﹣20m 2n 3中, 各项系数的最大公约数是5,各项都含有的相同字母是m 、n ,字母m 的指数最低是2,字母n 的指数最低是1, 所以它的公因式是5m 2n .6、 如多项式339363x y xy xy -+提取公因式________后,另一个因式是________. 【答案】 3xy ,223121x y -+【解析】 由提公因式法可知,()3322936333121x y xy xy xy x y -+=-+所以提出公因式3xy 之后,另一个公因式为223121x y -+.7、 分解因式()()()()x m n a b y n m b a -----=_________. 【答案】 ()()()m n a b x y ---【解析】 ()()()()()()()()()()()x m n a b y n m b a x m n a b y m n a b m n a b x y -----=-----=--- 8、 因式分解:x 2﹣2x+(x ﹣2)=______________. 【答案】 (x+1)(x ﹣2)【解析】 原式=x (x ﹣2)+(x ﹣2)=(x+1)(x ﹣2). 9、 因式分解:(a -b )2-(b -a )=________. 【答案】 (a -b )(a -b +1)【解析】 原式=(a -b )2+(a -b )=(a -b )(a -b +1),10、 若x=123456789×123456786,y=123456788×123456787,则x y (填>,<或=)【答案】 <.【解析】 ∵x ﹣y=123456789×123456786﹣123456788×123456787 =(123456788+1)×123456786﹣123456788×(123456786+1)=123456788×123456786+123456786﹣123456788×123456786﹣123456788 =﹣2<0, ∴x <y.11、 代数式x 4﹣81,x 2﹣9与x 2﹣6x+9的公因式为( )A.x+3B.(x+3)2C.x ﹣3D.x 2+9【答案】 C【解析】 x 4﹣81=(x 2+9)(x 2﹣9), =(x 2+9)(x+3)(x ﹣3); x 2﹣9=(x+3)(x ﹣3); x 2﹣6x+9=(x ﹣3)2.因此3个多项式的公因式是x ﹣3. 故选:C .12、 分解因式:9(a -1)2-4(b -2)2. 【答案】 (3a +2b -7)(3a -2b +1)【解析】 原式=[3(a -1)+2(b -2)][3(a -1)-2(b -2)] =(3a -3+2b -4)(3a -3-2b +4) =(3a +2b -7)(3a -2b +1).13、 分解因式:(1)2249a b -(2)24162516a y b -+【答案】 (1)()23(23)a b a b +-(2)8282(45)(45)b ay b ay +-【解析】 (1)222249(2)(3)(23)(23)a b a b a b a b -=-=+-(2)241616248222828225161625(4)(5)(45)(45)a y b b a y b ay b ay b ay -+=-=-=+-14、 因式分解: (1)2x 2-18;(2)3m 2n -12mn +12n ; (3)(x -y )2-6(x -y )+9; (4)(m 2+4n 2)2-16m 2n 2. 【答案】 (1)2(x +3)(x -3) (2)3n (m -2)2 (3)(x -y -3)2 (4)(m +2n )2(m -2n )2【解析】 (1)原式=2(x 2-9)=2(x +3)(x -3); (2)原式=3n (m 2-4m +4)=3n (m -2)2; (3)原式=(x -y -3)2; (4)原式=(m 2+4mn +4n 2)(m 2-4mn +4n 2) =(m +2n )2(m -2n )2. 15、 分解因式(1)244ma ma m -+ (2)232a a a -+(3)22244a b ab c +--【答案】 (1)2(2)m a -(2)2(1)a a -(3)(2)(2)a b c a b c ---+【解析】 (1)22244(44)(2)ma ma m m a a m a -+=-+=- (2)23222(12)(1)a a a a a a a a -+=-+=- (3)2222244(2)(2)(2)a b ab c a b c a b c a b c +--=--=-+-- 16、 分解因式:(1)22229()12()4()a b a b a b -+-++(2)42363a a -+11 (3)112n n n a a a +-+-(4)22222(1)4m n m n +--【答案】 (1)2(5)a b -(2)223(1)(1)a a +-(3)12(1)n a a --(4)(1)(1)(1)(1)m n m n m n m n +++--+--【解析】(1)22229()12()4()a b a b a b -+-++2222222[3()]12()()[2()][3()]23()2()[2()][3()2()](3322)(5)a b a b a b a b a b a b a b a b a b a b a b a b a b =-++⋅-++=-+⨯-⨯+++=-++=-++=-(2)4242222223633(21)3(1)3[(1)(1)]3(1)(1)a a a a a a a a a -+=-+=-=+⋅-=+-(3)1111121222(21)(1)n n n n n n n n a a a a a a a a a a a +-+---+-=-+=-+=-(4)22222(1)4m n m n +-- 2222222222(12)(12)[(2)1][(2)1][()1][()1](1)(1)(1)(1)m n mn m n mn m mn n m mn n m n m n m n m n m n m n =+-+⋅+--=++--+-=+---=+++--+--。

北师大版八年级下册第四章因式分解的常用方法(汇总)

北师大版八年级下册第四章因式分解的常用方法(汇总)

因式分解常用方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。

例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

北师大版八年级数学下册第四章因式分解小结与复习课件

北师大版八年级数学下册第四章因式分解小结与复习课件

⑸(2x+y)2-2(2x+y)+1
(6) (x-y)2 - 6x +6y+9
解:原式=(2x+y-1)2
解:原式=(x-y)2-6(x-y)+9 =(x-y-3)2
(8) (x+1)(x+5)+4
解:原式=(x-y)2-6(x-y)+9 =(x-y-3)2
2. 若 100x2-kxy+49y2 是一个完全平方式, 则k= ( ±140)
3.计算(-2)101+(-2)100
解:原式=(-2)(-2)100+ (-2)100
=(-2)100(-2+1) =2100·(-1)=-2100
4.已知:2x-3=0,求代数式x(x2-x)+x2(5-x)-9的值
解:原式=x3-x2+5x2-x39
=4x2-9 =(2x+3)(2x-3) 又∵ 2x-3=0, ∴ 原式=0
三分 ③再考虑分组分解法
四查 ④检查:特别看看多项式因式 是否分解彻底
课堂小结
因 式 分 解
概念
与整式乘法的关系
提公因式法
方法 公式法
平方差公式
完全平方差公式
提:公因式 步骤 运:运用公式
查:检测结果是否彻底
首页
随堂训练
1.把下列各式分解因式:
(1) 4x2-16y2
(2) x2+xy+ y2.
第四章 因式分解
小结与复习
知识 归纳
复习点一 (一)分解因式的概念:
把一个多项式化成几个整式的积的情势, 叫做多项式的分解因式。也叫做因式分解。
即:一个多项式 →几个整式的积

八年级数学北师大版初二下册--第四单元 4.1《因式分解》课件

八年级数学北师大版初二下册--第四单元 4.1《因式分解》课件

1 知识小结
1.因式分解的定义: 把一个多项式化成几个整式的积的形式,这种变形 叫做因式分解,也可称为分解因式.
2. 因式分解与整式乘法是一个互逆过程,
即:几个整式相乘 噲垐因整垐式式垐分乘解法垎垐 一个多项式
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
C.x2(1-3xy2)
D.x(x-3y2)
导引:把各选项进行整式乘法的运算,将所得的积与 x2-3xy2对照,能够与x2-3xy2相等的选项必是 正确答案.
总结
知2-讲
四个选项都是乘积的形式,可以利用因式分解 和整式乘法的互逆关系检验所得结果的正确性.
知2-讲
例3 20162-2016不能被下列哪个数整除?( B )
因此是因式分解,D正确.
知1-练
1 下列由左边到右边的变形,哪些是因式分解?为 什么? (1) (a+3)(a-3)=a2-9 ; (2) m2-4=(m+2)(m-2); (3) a2-b2+1=(a+b)(a-b)+1; (4) 2mR+2mr=2m(R+r).
解:(2)(4)是因式分解.理由:只有(2)(4)是把一个多项 式化成几个整式的积
知1-导
把一个多项式化成几个整式的积的形式,这种 变形叫做因式分解. 例如,a3-a= a (a+1)(a-1), am+bm+cm=m(a+b+c),x2+2x+l=(x+1)2都 是因式分解. 因式分解也可称为分解因式.
(来自《教材》)
知1-讲
例1 下列各式从左到右的变形属于因式分解的是( D ) A.a2+1=a(a+ 1 ) a B.(x+1)(x-1)=x2-1 C.a2+a-5=(a-2)(a+3)+1 D.x2y+xy2=xy(x+y)
A.9a2+y2

北师大版八年级下册数学《因式分解》PPT教学课件

北师大版八年级下册数学《因式分解》PPT教学课件

合作探究
探究点三 问题1:因式分解:把一个多项式化成几个 整式 的 积 的形式,这种变形叫 做因式分解.因式分解也可称为 分解因式 . 问题2:你能说明因式分解与整式的乘法有什么关系吗? 多项式的因式分解与整式的乘法互为逆变形过程. 因此可以用整式的乘法来检验分解因式是否正确.
合作探究
探究点四 例1:已知多项式x2-4x+m因式分解的结果为(x+a)(x-6),求2a-m的值 解:(x+a)(x-6)
课程讲授
1 因式分解的定义
问题1:
完成下列题目: x(x-2)=__x_2_-_2_x_ (x+y)(x-y)=__x_2-_y_2__ (x+1)2=_x_2_+_2_x_+_1_
根据左空,解决下列问题: x2-2x=( x )( x-2 ) x2-y2=( x+y )( x-y ) x2+2x+1=( x+1 )2
4.1 因式分解
八年级下册
学习目标
1 经历从分解因数到分解因式的类比过程. 2 了解因式分解的意义,以及它与整式乘法的相互关系. 3 感受因式分解在解决相关问题中的作用.
前置学习
1.下列等式从左到右的变形,属于因式分解的是( D )
A.a(x-y)=ax-ay
B.x²+2x+1=x(x+2)+1
整式乘法
(x+1)(x-1)
课程讲授
1 因式分解的定义
归纳:因式分解与整式乘法是互逆运算,二者是一个 式子的两种不同表现形式.因式分解的等号右边是两个 或几个因式积的形式,整式乘法的等号右边是多项式的 形式.
随堂练习
1. 下列各式中从左到右的变形属于分解因式的是( C ) A. a(a+b-1)=a2+ab-a B. a2-a-2=a(a-1)-2 C. -4a2+9b2=(-2a+3b)(2a+3b) D.2x +1=x(2+ 1 )

北师大八年级数学下册因式分解

北师大八年级数学下册因式分解

初中数学试卷金戈铁骑整理制作因式分解一、基本概念:1、分解因式:把一个多项式化成几个整式的积的形式。

如:(1)()322232291263342x y x y xy xy x x y +-+-=(2)))((22b a b a b a -+=-; 2、分解因式的基本要求:(1)最终结果要以乘积的形式表示;(2)每个因式必须是整式,并且每个因式的次数必须低于原来多项式的次数; (3)必须分解到每个因式不能再分解为止。

如:分解因式44x y -二、分解因式的基本方法: 1、提公因式法:问题1、将下列各式分解因式:(1)32642x x x -+ (2)222axy ax y axz --+(3)()()2362a b a a b --- (4)()()24312x x ---(5)222a ab ac bc -+- (6)()()22122nn x x +-+- (n 是正整数)练习:把下列各式分解因式:(1)33)(6)(3x y y y x x ---; (2)23)(6)(4a b b b a a ---;(3))2()2()2(x c x b x a -+-+-; (4))()(22m n xy n m y x ---.(5))1)(32()23()1(52a a a a --+--; (6)))((3))((2y x z x y z y x y x ---+-++;(7)222)()()(b a ac a b a b a ab ---+--;(9)421212288+++++-m m m m y x yx;(8)3222)2(12)2(24)2(18x y x x y xy y x x -----);(10))(2)1(311n n n x x x x-+-++.2、公式法:逆用乘法公式:()()22a b a b a b -=-+()2222a ab b a b ++=+ ()2222a ab b a b -+=- ()()3322a b a b a ab b +=+-+ ()()3322a b a b a a b b-=-++ 问题2、把下列各式分解因式: (1)221164a b -(2)2925x -+(3)()()2223362a b a b +-- (4)4348x -(5)22m n m n -++ (6)229644a ab b ++(7)225101x x -+- (8)222212123m n m n m -+(9)()()22221a b a b -+-+ (10)()222x y x xy y -+-+问题3、把下列各式分解因式:(1)421681x x -+ (2)()22222x y xy x y +--(3)2222a b c bc --+ (4)()()221a b b a b +-+(5)()()221816m n m n --+- (6)2221x xy y -+-(7)3233x x x +-- (8)()()2222249x x xx ---++练习:1、把下列各式分解因式: (1)424y a - (2)224925y x -(3)448116n m -(4)22)3()32(4b a b a --+2、把下列各式分解因式:(1)mn n m 32922-+ (2)42222c abc b a -+-(3)16)4(8)4(222+-+-x x x x (4)2294942y x xy --(5)22222)(624b a b a +-(6)2222)(4)(12)(9b a b a b a ++---(7)a a -5(8)242455m b m a -问题4、已知4316x mx nx ++-有因式()()12x x --和,求,m n 的值。

北师大版初二数学下册数学八年级下北师大第四章因式分解

北师大版初二数学下册数学八年级下北师大第四章因式分解
=m(m-n)(n+m-n) =m²(m-n);
6.(x+y+z)²-(x-y-z)²=(x+y+z+x-y-z)(x+y+z-x+y+z) =2x(2y+2z)
7.4xy²-4x²y-y³=y(4xy-4x²-y²)
8.x²-6x+8=(x-2)(x-4)
1.把下列各式分解因式. (1) 5a²-20b²; (2) p²(a-1)+p(1-a)²; (3)a²(x-y) + 9b²(y-x); (4)(a²-4)²+6(a²-4)+9 .
1. b²- 2b-8=b (b-2 ) – 8; 2. 2x3 4x 2 2x =2x(x²+2x); 3.x(x+y)(x-y)-x(x+y)²=x(x+y)(x-y-x-y); 4.p4 - 1=(p²+1)(p²-1); 5.mn(m-n)-m(n-m)²=mn(m-n)+m(m-n)²
提公因式法 运用公式法
平方差公式 a2 b2 (a b)(a b)
完全平方公式 a2 2ab b2 (a b)2
如果把乘法公式反过来,那 么就可以用来把某些多项式 分解因式,这种分解因式的 方法叫做运用公式法。
下列各式的因式分解是否正确?如果不正确, 应怎样改正?你能从中得到什么启示?
2.你能把下列各式分解因式吗?
(1)x²-y²-2y-1 (2) m²-4mn+3n²
解:(1)原式=x²-(y²+2y+1 ) =x²-(y+1) ² =(x+y+1)(x-y-1)
(2)原式= m²-4mn+4n²-n² =(m-2n) ²-n² =(m-2n+n)(m-2n-n) =(m-n)(m-3n)

2024北师大版数学八年级下册4.1《因式分解》教学设计

2024北师大版数学八年级下册4.1《因式分解》教学设计

2024北师大版数学八年级下册4.1《因式分解》教学设计一. 教材分析《因式分解》是北师大版数学八年级下册第4章第1节的内容。

本节课的主要内容是利用提公因式法和公式法分解因式。

因式分解是中学数学中的重要内容,是解决许多数学问题的基础。

通过本节课的学习,使学生掌握因式分解的方法,提高解题能力。

二. 学情分析学生在七年级已经接触过简单的因式分解,对因式分解有初步的认识。

但八年级的因式分解内容更加系统和复杂,需要学生有一定的逻辑思维能力和抽象思维能力。

根据学生的实际情况,我将采用循序渐进的教学方法,引导学生逐步掌握因式分解的方法。

三. 教学目标1.知识与技能:使学生掌握提公因式法和公式法分解因式的方法。

2.过程与方法:通过独立探究、合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心。

四. 教学重难点1.重点:提公因式法和公式法分解因式。

2.难点:如何引导学生发现和运用提公因式法和公式法的规律。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生独立思考和合作交流,提高学生解决问题的能力。

六. 教学准备1.准备相关案例和练习题。

2.准备课件和教学素材。

七. 教学过程1.导入(5分钟)通过一个实际问题引入因式分解的概念,激发学生的兴趣。

2.呈现(10分钟)呈现因式分解的方法,包括提公因式法和公式法。

通过讲解和示例,让学生初步理解这两种方法。

3.操练(10分钟)让学生独立完成一些因式分解的练习题,巩固所学的知识。

4.巩固(5分钟)对学生的练习情况进行反馈,解答学生的问题,帮助学生巩固因式分解的方法。

5.拓展(5分钟)通过一些综合性的练习题,引导学生运用因式分解的方法解决问题,提高学生的解题能力。

6.小结(5分钟)对本节课的内容进行总结,强调因式分解的方法和注意事项。

7.家庭作业(5分钟)布置一些因式分解的练习题,让学生回家后巩固所学知识。

北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)

北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的推导、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
一、教学内容
北师大版八年级数学下册第四章因式分解4.3节,主要围绕完全平方公式展开教学。本节课内容如下:
1.探索完全平方公式的推导过程,掌握完全平方公式:(a±b)^2 = a^2 ± 2ab + b^2。
2.学会运用完全平方公式分解因式,解决实际问题。
其次,对于完全平方公式的应用,我发现学生们在解决具体问题时,有时会忽略符号的判断。在讲解过程中,我特别强调了“同号得正,异号得负”的规律,并通过大量练习帮助学生加深记忆。但在实际操作中,仍有个别学生会出现错误。为此,我考虑在今后的教学中,增加一些关于符号判断的专项训练,以提高学生们的准确率。
此外,在学生小组讨论环节,我发现学生们能够积极参与,主动提出自己的观点和想法。但在讨论过程中,部分学生可能会偏离主题,讨论一些与完全平方公式无关的内容。为了提高讨论效率,我计划在今后的教学中,明确讨论主题,并在讨论过程中适时引导,确保学生们围绕主题展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的推导和运用这两个重点。对于难点部分,如符号判断,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题。

北师大版数学八年级下册4.1《因式分解》教案

北师大版数学八年级下册4.1《因式分解》教案

北师大版数学八年级下册4.1《因式分解》教案一. 教材分析北师大版数学八年级下册4.1《因式分解》是初中数学的重要内容,主要让学生掌握因式分解的方法和应用。

因式分解是代数运算的基础,对于提高学生的数学思维能力和解决问题的能力具有重要意义。

本节课的内容包括提公因式法、公式法、分组分解法等因式分解方法,通过这些方法的学习,使学生能够灵活运用因式分解解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备了一定的代数基础。

但因式分解较为抽象,对于部分学生来说,理解起来存在一定的困难。

因此,在教学过程中,要关注学生的学习差异,针对不同层次的学生进行教学,提高他们的学习兴趣和自信心。

三. 教学目标1.知识与技能目标:使学生掌握因式分解的方法,能够灵活运用各种方法进行因式分解。

2.过程与方法目标:通过小组合作、讨论交流,培养学生的团队协作能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:因式分解的方法。

2.难点:灵活运用各种方法进行因式分解,解决实际问题。

五. 教学方法1.情境教学法:通过创设生活情境,激发学生的学习兴趣。

2.启发式教学法:引导学生主动思考,培养学生的创新能力。

3.小组合作学习:培养学生团队协作能力和解决问题的能力。

六. 教学准备1.准备相关教案、PPT、教学素材等。

2.准备黑板、粉笔、投影仪等教学用品。

3.提前让学生预习本节课的内容,了解因式分解的基本概念。

七. 教学过程1. 导入(5分钟)利用生活实例或趣味数学问题,引入因式分解的概念,激发学生的学习兴趣。

2. 呈现(10分钟)通过PPT展示因式分解的方法,包括提公因式法、公式法、分组分解法等。

引导学生了解各种方法的特点和应用。

3. 操练(10分钟)对学生进行分组,每组选定一个因式分解问题,运用所学的methods进行解决。

教师巡回指导,解答学生的疑问。

北师大版八年级数学下册 因式分解

北师大版八年级数学下册 因式分解
北师版 八年级 下册
第四章 因式分解
1 因式分解
复习旧知
1.整式乘法有几种形式? (1)单项式乘以单项式 (2)单项式乘以多项式
a(m+n)= am+an .
(3)多项式乘以多项式
(a+b)(m+n)= am+an+bm+bn .
复习旧知
2.乘法公式有哪些?
(1)平方差公式
(a+b)(a-b)= a2 - b2 .
解: 7652×17-2352 ×17 = 17(7652 -2352) = 17(765+235)(765 -235) = 17×1000×530 = 9010000
讲授新课
例3 20042+2004能被2005整除吗?
解: ∵20042+2004 =2004(2004+1) =2004×2005
(3) (m+4)(m-4)= m2-16 ; y2-6y+9 =( y-3 )2
(4) ( y-3)2= y2-6y+9 . a3-a =( a )( a+1)( a-1 )
(5)a(a+1)(a-1)= a3-a .
讲授新课
由a(a+1)(a-1)得到a3-a的变形是什么运算? 由a3-a得到a(a+1)(a-1)的变形与它有什么不同?
讲授新课
善于辨析:因式分解与整式乘法有 什么联系?
因式分解
二者是互逆的恒等变形
讲授新课
巩固概念
判断下列各式哪些是整式乘法?
哪些是因式分解?
(1) x2-4y2=(x+2y)(x-2y) 因式分解 (2) 2x(x-3y)=2x2-6xy 整式乘法

北师大版八年级下册4.1因式分解(教案)

北师大版八年级下册4.1因式分解(教案)
举例Байду номын сангаас释:
-难点在于如何引导学生从多项式中提取公因式,例如在多项式4x² + 5x + 1中找出公因式。
-解释平方差公式和完全平方公式的适用条件,通过具体题目(如将x² - 6x + 9分解为(x - 3)²)来帮助学生识别和运用这些公式。
-在解决综合问题时,如求解含绝对值符号的方程,指导学生如何先进行因式分解,再根据不同情况讨论解的取值。
2.教学难点
-找出多项式的公因式:学生在寻找多项式的公因式时可能存在困难,特别是在多项式项数较多时。
-判断并运用平方差公式和完全平方公式:学生需要理解平方差和完全平方的结构特点,才能准确应用这些公式进行因式分解。
-灵活运用因式分解解决综合问题:学生需要将因式分解与其他数学知识(如方程、不等式等)结合,解决更复杂的数学问题。
2.提高学生的数学运算能力:使学生能够熟练运用提公因式法、平方差公式和完全平方公式进行因式分解,简化数学表达式,提高解题效率。
3.增强学生的数学建模意识:培养学生将现实问题转化为数学问题,通过因式分解解决实际问题的能力,提高数学建模素养。
4.培养学生的合作交流能力:在小组讨论和互动中,使学生学会倾听、表达、交流与合作,提高团队协作能力。
北师大版八年级下册4.1因式分解(教案)
一、教学内容
本节课选自北师大版八年级下册第四章第一节“因式分解”。教学内容主要包括以下两个方面:
1.因式分解的概念与意义:使学生理解因式分解的定义,掌握因式分解在简化计算、解决方程中的应用。
2.因式分解的方法与步骤:引导学生掌握以下几种因式分解方法:
(1)提公因式法:找出多项式中的公因式,并将其提取出来。
平方差公式和完全平方公式的应用对学生而言也是一个难点。我发现他们在判断何时使用这些公式方面存在困难。在今后的教学中,我可以设计一些更具针对性的练习,让学生在不同的情境中应用这些公式,从而提高他们的识别和应用能力。

第4章 因式分解-最新北师大版八年级下册

第4章 因式分解-最新北师大版八年级下册
3.4x2-9=(2x+3)(2x-3)从左到右的变形是
___因_式__分_解_______.
4.下列各式从左到右的变形是因式分解的为( C )
A. x(a-b)=ax-bx B. x2-1+y2=(x-1)(x+1)+y2 C. x2-1=(x+1)(x-1) D. ax+bx+c=x(a+b)+c 5.下列各式从左到右的变形①15x2y=3x·5xy;②(x+y) (x-y)=x2-y2;③x2-6x+9=(x-3)2;④
2. 因式分解的思路: (1)有公因式时,应先提公因式; (2)没有公因式时,考虑是否符合公式的特征,能否用 公式法分解,可以则用公式法分解; (3)有些式子提完公因式后还能用公式,有些式子用了 公式后还能再用公式; (4)分解因式要彻底,要分解到不能再分解为止:
【例1】分别写出下列多项式的公因式:
(1)ax+ay:_________________; (2)3x3y4+12x2y:________________; (3)25a3b2+15a2b-5a3b3:_______________;
解析 先确定一个多项式有几项,再观察其中的每一项 都含有的相同因式是什么.
2. 因式分解:9+6a+a2=____(_3_+_a)__2 ________.
3. 因式分解(a-b)(a-4b)+ab的结果是
_(__a-_2_b)__2 _____.
新知3 因式分解的方法与思路总结
1. 因式分解的方法:
(1)提公因式法:ma+mb+mc=m(a+b+c);
(2)公式法:

北师大版八年级数学下册 第四章因式分解的四种方法(讲义及答案)

北师大版八年级数学下册 第四章因式分解的四种方法(讲义及答案)

因式分解的四种方法(讲义)➢ 课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?➢ 知识点睛1. __________________________________________叫做把这个多项式因式分解.2. 因式分解的四种方法(1)提公因式法需要注意三点:①_____________;②_______________;③_________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.(3)分组分解法如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。

多项式项数比较多常考虑分组分解法,首先找 ,然后再考虑 或者_______.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()x p q x pq x p x q +++=++ 因式分解是有顺序的,记住口诀:“ 竖分常数交叉验,横写因式不能乱 ”;➢ 精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+; (2)32a a a --+; (3)()(1)()(1)a b m b a n -+---;解:原式=解:原式= 解:原式=(4)22()()x x y y y x ---; (5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+; (10)22222()4a b a b +-. 解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+; 解:原式=解:原式=(3)22144a ab b ---; (4)22699a a b ++-; 解:原式=解:原式=(5)2299ax bx a b +--;(6)22244a a b b -+-. 解:原式=解:原式=5. 因式分解(十字相乘法):(1)243x x ++;(2)26x x +-; 解:原式=解:原式=(3)223x x -++;(4)221x x +-; 解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --; 解:原式= 解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-; 解:原式=解:原式=(5)2(2)8a b ab -+;(6)222221x xy y x y -+-++. 解:原式=解:原式=【参考答案】➢ 课前预习1. 22()()a b a b a b +-=-222222()2()2a b a ab b a b a ab b +=++-=-+2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除3223(1)(1)(1)m m m m mm m m m m -=⋅-=-=+-()∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除 ➢ 知识点睛1. 把一个多项式化成几个整式的积的形式2. (1)①公因式要提尽②首项是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式的先提公因式②找准公式里的a 和b(3)公因式,完全平方公式,平方差公式3. 一提二套三分四查,有理数➢ 精讲精练1. ④⑥⑦2. (1)6(241)ab a b -+(2)2(1)a a a -+-(3)()()a b m n -+(4)3()x y -(5)1(1)m x x -+3. (1)(23)(23)x x +-(2)2(43)x +(3)2(2)x y --(4)4(2)(2)m n m n ++(5)29(2)x y -(6)(25)(2)(2)x x x -+-(7)28()a x y --(8)22()()()x y x y x y ++-(9)22(1)(1)a a +-(10)22()()a b a b +-4. (1)(5)(2)x y a b --(2)(5)()m m n --(3)(12)(12)a b a b ++--(4)(33)(33)a b a b +++-(5)()(31)(31)a b x x ++-(6)(2)(22)a b a b -+-5. (1)(1)(3)x x ++(2)(3)(2)x x +-(3)(3)(1)x x --+(4)(21)(1)x x -+(5)(4)(23)x x +-(6)()(32)x y x y +-(7)(5)(23)x y x y ++(8)(2)(4)x x x +-6. (1)(4)(4)a b c a b c -+--(2)2(2)y x y --(3)2(5)(3)a a --(4)(2)(5)x x -+(5)2(2)a b +(6)2(1)x y --。

北师大版八年级下册数学《提公因式法》因式分解PPT教学课件

北师大版八年级下册数学《提公因式法》因式分解PPT教学课件

(3)8a3b2-12ab3c+ab;(4)-24x3+12x2-28x.
(3)8a3b2-12ab3c+ab
(4)-24x3+12x2-28x
=ab·8a2b-ab·12b2c+ab·1
=-( 24x3-12x2+28x)
=ab(8a2b-12b2c+l);
=-(4x·6x2-4x·3x+4x·7)
第四章 因式分解
提公因式法
知识回顾
1. 因式分解的概念
把一个多项式化为几个整式的积的形式,这种变形叫做把这
个多项式分解因式 .
2. 整式乘法与分解因式之间的关系.
互为逆运算
获取新知
1.多项式ma+mb+mc有哪几项?
ma, mb, mc
2.每一项的因式都分别有哪些?
依次为m, a和m, b和m, c

1
2
时此式的值.
解:x(x+y)(x-y)-x(x+y)2
=x(x+y)[(x-y)-(x+y)]
=-2xy(x+y).
1
2
当x+y=1,xy=- 时,
1
原式=-2×(-
2
)×1=1.
随堂练习
1.多项式a(m-2)+(m-2)分解因式等于( B
)
A.2(m-2)
B.(m-2)(a+1)
C.(m-2)(a-1)
解:原式=(a-1)(7+x).
(4)(2a+b)(2a-3b)-3a(2a+b).
解:原式= (2a+b)(2a-b-3a)
=-(2a+b)(a+3b).
请在下列各式等号右边填入“+”或“-”号,使等式成立.
(1) 2-a=____(
- a-2)

北师大版八年级数学下册第四章-分解因式-(基础+提高)

北师大版八年级数学下册第四章-分解因式-(基础+提高)

第四章分解因式考点一:分解因式的概念1、下列变形中,从左向右是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6x B.x2﹣8x+16=(x﹣4)2C.(x﹣1)2=x2﹣2x+1D.x2+1=x(x+)考点二:因式分解1、下列分解因式中,正确的个数为()x2+2xy+x=x(x2+2y);x2+4x+4=(x+2)2;—x2+y2=(x+y)(x—y)A.3个B.2个C.1个D.0个2、下列多项式中,能运用公式法进行因式分解的是()A.a2+b2B.x2+9 C.m2﹣n2D.x2+2xy+4y23、小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌4、若分解因式x2+mx-24=(x+3)(x+n),则m的值为。

已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),另一个因式为。

5、甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=_______6、因式分解9a2(x-y)+4b2(y-x) x2+2xy+y2-4(m+1)(m﹣9)+8m.x2+4xy﹣5y24x2+4xy+y2﹣4x﹣2y﹣3.考点三:利用因式分解计算1、2016×2016﹣2016×2015﹣2015×2014+2015×2015的值为()。

A.1 B.﹣1 C.4032 D.40312、3(4+1)(42+1)(44+1)+13、考点四:利用因式分解化简求值1、已知xy=8,x﹣y=2,求代数式x3y﹣x2y2+xy3的值为.2、a+1+a(a+1)+a(a+1)2+……+a(a+1)2014= .3、已知a2+b2+4a﹣2b+5=0,则的值为()A.3 B.C.﹣3 D.4、已知x2+x-1=0,则代数式x3+2x2+2014= .5、化简求值:(2x-1)2(3x+2)+(2x-1)(3x+2)2-x(1-2x)(3x+2),其中x=1.考点五:利用因式分解证明整除问题1、能被下列数整除的是( )A.3B.5C.7D.92、已知58-1能被20-—30之间的两个整数整除,则这两个整数是 .3、如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如:自然数12321,从最高位到个位排出的一串数字是:1,2,3,2,1,从个位到最高排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如:22,545,3883,34543,…,都是“和谐数".(1)请你直接写出3个四位“和谐数";请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数",设其个位上的数字为x(,x为自然数),十位上的数字为y,求y与x的函数关系式.考点六:利用因式分解解决几何问题1、若、、为的三边长,且满足,,则的形状是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形2、设是一个直角三角形两条直角边的长,且,则这个直角三角形的斜边长为.3、已知a、b、c为△ABC三边的长.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.4、已知是△ABC的三边长,是△ABC的最短边且满足,求的范围。

北师大版八年级数学下册第四章4.和4.因式分解公式法课件

北师大版八年级数学下册第四章4.和4.因式分解公式法课件

练习:课本100页,知识技能1
例2
把下列各式因式分解:
总结
1.分解因式的步骤:
(1)9(m+ n)2-(m-n)2
(2)2x3-8x
(1)提;(2)套
2.整体思想
解:(1)原式=[3(m+n)]2-(m-n)2 (2)原式=2x(x2-4)
=[3(m+n)+(m-n)][3(m+n)-(m-n)] =2x(x2-22)
(2)原式=-( − + ) =-(a-2b)2 1.提 2.套
(3)原式=y(y2-4y+4)
= y(y-2)2.
(4)原式= (y2 + x2 )2 -()
=(y2 + x2 +2xy)(y2 + x2 -2xy) = + 2 ( − )2
先破后立
练习:名校课堂67页-68页
=( 2 +4 2 )(x+2y)(x-2y)
=(x+3)(x-3)
先破后立:
若一个多项式没有公因式,也不能直接运用公式时,
要把多项式化简,然后再考虑用适当的方法分解
练习:课本100页知识技能2(1)(3)(5)
想一想:以前学过两个乘法公式
a b
2
a b
2
a 2ab b
y)]
=(6x+6y+7x-7y)(6x+6y-7x+7y)
=(13x-y)(13y-x);
(2) -16
(3) ( − ) +2(x-5)
解(2)原式= ( 2 )2 −( )
(3)原式= -2x+1+2x-10

北师大版八年级下册第四章因式分解之因式分解

北师大版八年级下册第四章因式分解之因式分解

B
D x²-5x+6 =(x+2)(x+3)
已知关于x的二次多项式2x²-ax+b因式分 解后的结果为(2x-1)(x+2),求a,b的值.
解 由题意知2x²-ax+b=(2x-1)(x+2) 又因为(2x-1)(x+2)=2x²+3x-2 所以2x²-ax+b= 2x²+3x-2 所以-a=3 b=-2 所以a=-3 b=-2
(1)x²-x =x(x-1) 因式分解
(2)x²-1=(x+1)(x-1) 因式分解
(3) x(x-1)=x²-x 整式乘法
(4) (x+1)(x-1) =x²-1 整式乘法
判断下列各式哪些是整式乘法,
哪些是因式分解。
(1)x²-4y²=(x+2y)(x-2y) 因式分解
(2)(5a-1)²=25a²-10a+1 整式乘法
已知关于x的二次多项式2x²-ax+b因式分 解后的结果为(2x-1)(x+2),求a,b的值.
解 由题意知2x²-ax+b=(2x-1)(x+2) 又因为(2x-1)(x+2)=2x²+3x-2 所以2x²-ax+b= 2x²+3x-2 所以-a=3 b=-2 所以a=-3 b=-2
解这类题的步骤:第一利用整式的乘法得到 多项式;第二令得到的多项式与所求的多项 式相等;第三使其对应项的系数相等.
所以原式能被11整除.
试说明 32020 - 4 32019 7 32018
能被11整除.
32 52018 - 4332018 7 32018 32018 (32 - 4 3 7) 32018 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二北师大版数学期末复习第4章:分解因式知识要点: 1. 思想方法提炼(1)直接用公式。

如:x 2-4=(x +2)(x -2) a ab b a b 222442++=+()(2)提公因式后用公式。

如:ab 2-a =a (b 2-1)=a (b+1)(b -1) (3)整体用公式。

如:()()[()()][()()]()()2222223322a b a b a b a b a b a b a b a b +--=++-⋅+--=-+(4)连续用公式。

如: ()a b c a b 2222224+--=+-++--()()a b c ab a b c ab 22222222 =+---[()][()]a b c a b c 2222=+++--+--()()()()a b c a b c a b c a b c (5)化简后用公式。

如: (a +b )2-4ab =a 2+b 2+2ab -4ab =(a -b )2(6)变换成公式的模型用公式。

如:x xy y x y x y x y x y 22222221211++--+=+-++=+-()()()2. 注意事项小结(1)分解因式应首先考虑能否提取公因式,若能则要一次提尽。

然后再考虑运用公式法 (2)要熟悉三个公式的形式特点。

灵活运用对多项式正确的因式分解。

(3)对结果要检验(1)看是否丢项(2)看能否再次提公因式或用公式法进行分解,分解到不能分解为止。

3. 考点拓展研究 a. 分组分解法在分解因式时,有时为了创造应用公式的条件,需要将所给多项式先进行分组结合,将之整理成便于使用公式的形式,进行因式分解。

【典型例题】例1. 分解因式:x x y x y x x y ()()()+--+2解:=+--+x x y xy x y ()[()()] =+---x x y x y x y ()() =+-x x y y ()()2 =-+2xy x y () 例2. x y 4416- 解:=-()()x y 22224=+-()()x y x y 222244 =++-()()()x y x y x y 22422例3. x y xy 33-解:=-=+-xy x y xy x y x y ()()()22例4. ()x y x --3422解:=-+--()()x y x x y x 3232=---=-⋅-+=--+()()()[()]()()3333333x y y x x y x y x y x y例5. 13231322x xy y ++解:=++=+13213222()()x xy y x y例6. 252034322m m m n m n --+-()()解:=-⨯⨯-+-()()[()]525232322m m m n m n=--[5()]m m n 232=-+[5]m m n 262=+()362m n =+[()]322m n=+922()m n例7.()()x x 2221619---+ 解:=--()x 2213=-()x 224=+-()()x x 2222例8. 分解因式164129222a b bc c -+-精析:后三项提负号后是完全平方式。

和原来的16a 2正好可继续用平方差公式分解因式。

解:164129222a b bc c -+- =--+164129222a b bc c () =--()()42322a b c=-++-()()423423a b c a b c点评:分组时,要注意各项的系数以及各项次数之间的关系,这一点可以启示我们对下一步分解的预测是提公因式还是应用公式等。

b. 用整体思想分解因式在分解因式时,要建立一种整体思想和转化的思想。

第二章检测题一. 填空题(每空2分,共32分)1. 1218323x y x y -的公因式是___________ 2. 分解因式:2183x x -=__________3. 若A x y B y x =+=-353,,则A A B B 222-⋅+=_________4. 若x x t 26-+是完全平方式,则t =________ 5. 因式分解:944222a b bc c -+-=_________ 6. 分解因式:a c a bc ab c 32244-+=_________7. 若||x x xy y -+-+=214022,则x =_______,y =________8. 若a b ==9998,,则a ab b a b 22255-+-+=_________9. 计算12798012501254798....⨯-⨯=________ 10. 运用平方差公式分解:a 2-_______=(a +7)(a -_____) 11. 完全平方式49222x y -+=()12. 若a.b.c ,这三个数中有两个数相等,则a b c b c a c a b 222()()()-+-+-=_____ 13. 若a b ab +==-514,,则a a b ab b 3223+++=__________ 二. 选择题(每小题3分,共27分)14. 下列各式从左到右的变形为分解因式的是( ) A. 18363232x y x y =⋅ B. ()()m m m m +-=--2362C. x x x x x 289338+-=+-+()() D. m m m m 2623--=+-()() 15. 多项式-+-36322x y xy xy 提公因式-3xy 后另一个多项式为( )A. x y +2B. x y +-21C. x y -2D. x y -+2116. 下列多项式中不含有因式()x -1的是( ) A. 2313x x -+B. x x 245+-C. x x 287-+D. x x 26+-17. 下列各式进行分解因式错误的是( ) A. 96322--+-=-+()()()x y x y x y B. 41292222()()()a b a a b a a b ---+=+C. ()()()()()a b a b a c a c b c +-+-+-=+2222D. ()()()m n m n m n ---+=-+22211 18. ()()-+--a a a m m 1的值是( ) A. 1B. -1C. 0D. ()-+11m19. 把3154521aa a n n n +++-分解因式是( )A. 35152a a a n()+- B. 351521a a an ()+--C. 12D. 35151a a a n ++-()20. 若n 为任意整数,()n n +-1122的值总可以被k 整除,则k 等于( ) A. 11B. 22C. 11或22D. 11的倍数21. 下列等式中一定正确的是( )A. ()()a b b a n n +=+B. ()()a b b a n n-=-C. ()()b a a b n n -=--D. ()()--=+a b a b n n22. 多项式-++8102233222m n m n m n 被-222m n 除,所得的商为( ) A. 451n m +- B. 451n m -+ C. 451n m --D. 45n m +三. 解答题(共61分)23. 把下列各式分解因式(每小题4分共20分)(1)m m n n m 2224()()--- (2)x xy y 22444--+(3)()()343272222x x x x -+--- (4)-+-x x x 3214(5)x x x x x x x ()()()+++++++11113224. 计算(每小题5分,共10分)(1)2222998101100--9 (2)20042200420022004200420053232-⨯-+-25. 已知m n +=3,mn =23,求m n m n mn 3223-+的值。

(10分)26. 选择适当的方法分解下列多项式(每小题5分共10分) (1)x y z xy xz yz 222946412++-+-(2)()()a a a a 225456120++++-【试题答案】一. 填空题1. 62x y2. 233x x x ()()+-3. 4322()x y +4. 95. ()()3232a b c a b c +--+6. ac a b ()-227. 2,4 8. -4 9. 1 10. 49,7 11. 12xy ,2x -3y 12. 0 13. 265 二. 选择题 14. D 15. D 16. D 17. D 18. C 19. A20. A 21. A22. C三. 解答题23. (1)解:原式=---m m n m n 2224()()=---=--=-+-m m n m n m n m m n m m 222222222222()()()()()()()(2)解:原式=-+-()x xy y 22444=--=-+--()()()x y x y x y 22222222(3)解:原式=-++---+---[()()][()()]34327343272222x x x x x x x x=---+()()55431022x x x x(4)解:原式=--+=--x x x x x ()()221412 (5)解:原式=++++++()[()()]x x x x x x 11112=+++++=+++=++=+(){()[()]}()[()()]()()()x x x x x x x x x x x 1111111111222424. 计算(1)解:原式=⋅-⋅-=--==222222212212221498981001009810098100()() (2)解:设a =2004则原式=--++--=+--+-+=-+a a a a a a a a a a a a a a 323222111211121()()()()()()()() 将a =2004代入得原式=2002200525. 解:m n m n mn 3223-+=-+=++-=+-mn m mn n mn m n mn mn mn m n mn ()()[()]22222233将m n mn +==323,代入得原式=-⋅=-=23332323921432[][]26. (1)解:原式=-++-+x xy y xz yz z 222694124=-+-+=-+()()()x y z x y z x y z 343432222(2)解:原式=++++-()()a a a a 222510524120=+++-=+++-()()[()][()]a a a a a a a a 2222251059651656=+++-=-+++()()()()()()a a a a a a a a 225166116516。

相关文档
最新文档