函数及其图形解读
函数及其图形知识点总结
函数及其图形知识点总结引言在数学中,函数是一种描述自变量和因变量之间关系的工具。
它是一种非常重要的数学工具,可以用来描述各种各样的现象,包括物理、化学、经济、生物等领域中的问题。
在本文中,我将总结关于函数及其图形的重要知识点,包括函数的定义、性质、图像、分类以及一些相关的概念。
我将从基本概念开始,逐步深入,希望对读者有所帮助。
一、函数的定义函数是一种映射关系,它将一个集合中的元素映射到另一个集合中的元素。
通常情况下,我们用f(x)来表示函数,其中x是自变量,f(x)是因变量。
函数的定义包括以下几个要点:1. 定义域:函数的自变量的取值范围。
2. 值域:函数的因变量的取值范围。
3. 对应关系:自变量和因变量之间的对应关系。
4. 映射规则:描述自变量和因变量之间的映射关系的规则。
函数可以用各种形式表示,包括公式、图表、表格等。
在实际应用中,函数通常用符号、字母、数字、等式等来表示。
函数的定义对于理解和应用函数非常重要,因为它决定了函数的性质和特点。
二、函数的性质1. 有界性:函数的定义域和值域都可能是有界的或无界的。
有界性是函数性质的重要特点之一,对于函数的图像有着重要的意义。
2. 单调性:函数在定义域内可能是单调递增的、单调递减的或者不单调。
单调性是函数图像的一个关键特征,可以通过函数的导数来进行分析。
3. 周期性:某些函数具有周期性,即在一定的区间内具有重复的规律性。
正弦函数和余弦函数就是典型的周期函数的例子。
4. 奇偶性:函数的奇偶性描述了函数图像关于原点的对称性。
奇函数具有关于原点对称,偶函数具有关于y轴对称。
5. 渐近线:函数图像可能有水平渐近线、垂直渐近线或者斜渐近线。
这些渐近线在分析函数图像的特点时非常有用。
三、函数的图像函数的图像是函数性质与特点的重要体现。
数学中有很多种函数图像,每种函数图像都有其独特的特点。
以下是几种常见的图像:1. 直线的图像:表示成y = kx + b的线性函数具有直线的图像,直线的斜率决定了线的倾斜程度,截距决定了直线与坐标轴的交点位置。
五大基本初等函数性质及其图像
五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。
如,,,都是幂函数。
没有统一的定义域,定义域由值确定。
如,。
但在总是有定义的,且都经过(1,1)点。
当时,函数在上是单调增加的,当时,函数在内是单调减少的。
下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。
图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。
高等数学中常用的指数函数是时,即。
以与为例绘出图形,如图1-1-4。
图1-1-43.对数函数函数称为对数函数,其定义域,值域。
当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。
与互为反函数。
当时的对数函数称为自然对数,当时,称为常用对数。
以为例绘出图形,如图1-1-5。
图1-1-54.三角函数有,它们都是周期函数。
对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。
它们都是有界函数,周期都是,为奇函数,为偶函数。
图形为图1-1-6、图1-1-7。
图1-1-6正弦函数图形图1-1-7余弦函数图形(2)正切函数,定义域,值域为。
周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。
在定义域内是单调减少的奇函数,图形如图1-1-9。
图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。
图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。
图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14为有界函数,在其定义域内单调减少的非奇非偶函数。
(完整版)六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
常用函数图像
函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
函数图像总结
函数图像总结函数图像是指函数在直角坐标系中的图形表示。
通过观察函数图像,可以了解函数的基本特征和性质。
下面我将对常见的函数图像进行总结。
一、一次函数图像:一次函数的一般形式为y = kx + b,其中k为斜率,b为截距。
当k>0时,函数图像呈现正斜率,向右上方倾斜;当k<0时,函数图像呈现负斜率,向右下方倾斜;当k=0时,函数图像为水平直线;当b>0时,函数图像在y轴上方截距b的位置;当b<0时,函数图像在y轴下方截距-b的位置。
二、二次函数图像:二次函数的一般形式为y = ax^2 + bx + c,其中a决定了函数的开口方向和开口大小,b决定了函数图像的对称轴位置,c决定了函数图像与y轴的交点。
当a>0时,函数图像向上开口;当a<0时,函数图像向下开口;当b=0时,函数图像的对称轴为y轴;当b>0时,函数图像的对称轴在原点的右侧;当b<0时,函数图像的对称轴在原点的左侧。
三、指数函数图像:指数函数的一般形式为y = a^x,其中a为底数。
当底数a>1时,函数图像呈现增长趋势,向上凸起;当0<a<1时,函数图像呈现递减趋势,向下凹陷;当a=1时,函数图像为水平直线。
四、对数函数图像:对数函数的一般形式为y = loga(x),其中a为底数。
当底数a>1时,函数图像呈现增长趋势,向右上方倾斜;当0<a<1时,函数图像呈现递减趋势,向右下方倾斜;当a=1时,函数图像为y轴。
五、三角函数图像:常见的三角函数包括正弦函数、余弦函数、正切函数等。
正弦函数的图像呈现周期性的波形,振动范围在[-1,1]之间;余弦函数的图像也呈现周期性的波形,振动范围也在[-1,1]之间;正切函数的图像在某些点上发生突变,振动范围在整个坐标轴上。
总结以上几种函数图像,可以根据函数的数学表达式和特点来推测图像的形状和性质,进而帮助解决与函数相关的问题。
函数及其图象函数的图像函数的图象
02
函数的图像
函数图像的概念
1 2
函数图像
将函数表达式中自变量与因变量之间的关系用 图形表示出来。
坐标系
在平面直角坐标系中,以横轴表示自变量,纵 轴表示因达式的性质,图像呈现不同形状, 如直线、曲线、折线等。
绘制函数图像的方法
描点法
根据函数表达式,求出一些自变量对应的因变量值,然后在坐标系上描出对 应的点,最后用平滑的曲线或直线将这些点连接起来。
图示法
利用计算器或编程语言,直接在计算机上绘制出函数图像。
函数图像的变换
复合变换
以上变换可以同时进行,也可以多次进行 。
平移
将函数图像沿横轴或纵轴方向移动一定距 离。
伸缩
将函数图像按比例进行缩放,可以是横向 或纵向。
旋转
将函数图像按一定角度顺时针或逆时针旋 转一定角度。
翻折
将函数图像以某一条直线或点为对称中心 进行翻折。
VS
图像特征
对数函数的图像在坐标系中呈现出“双曲 线+直线”的形式,当底数$a>1$时,函 数图像在第一象限,当底数$0<a<1$时 ,函数图像在第四象限。
04
函数图像的应用
利用函数图像求解方程
图像法
通过观察函数图像的交点或切 线等方法,求解方程的根。
交点法
根据两个函数图像的交点坐标 ,求解方程的根。
零点法
通过函数图像与x轴交点的横坐 标,求解方程的根。
利用函数图像研究函数性质
01
02
观察法
分析法
通过观察函数图像的形状、趋势和特 征,得出函数的性质。
通过对函数图像的局部和整体分析, 得出函数的性质。
03
计算法
五大基本初等函数性质及其图像
五大基本初等函数性质及其图像五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。
如,,,都是幂函数。
没有统一的定义域,定义域由值确定。
如,。
但在内总是有定义的,且都经过(1,1)点。
当时,函数在上是单调增加的,当时,函数在内是单调减少的。
下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。
图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。
高等数学中常用的指数函数是时,即。
以与为例绘出图形,如图1-1-4。
图1-1-43.对数函数函数称为对数函数,其定义域,值域。
当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。
与互为反函数。
当时的对数函数称为自然对数,当时,称为常用对数。
以为例绘出图形,如图1-1-5。
图1-1-54.三角函数有,它们都是周期函数。
对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。
它们都是有界函数,周期都是,为奇函数,为偶函数。
图形为图1-1-6、图1-1-7。
图1-1-6正弦函数图形图1-1-7余弦函数图形(2)正切函数,定义域,值域为。
周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。
在定义域内是单调减少的奇函数,图形如图1-1-9。
图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。
图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。
图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12反余弦函数,定义域为[-1,1],值域为,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14反余切函数,定义域为,值域,为有界函数,在其定义域内单调减少的非奇非偶函数。
函数的图像及解析式
正比例函数
01
图像
正比例函数图像是一条过原点的 直线。
02
03
解析式
性质
$y = kx$,其中$k$是常数且$k neq 0$。
当$k > 0$时,图像位于第一、 三象限;当$k < 0$时,图像位 于第二、四象限。
一次函数
图像
一次函数图像是一条直线。
解析式
$y = ax +
分式
通过分式表示函数关系,如y=1/x。
对数式
通过对数运算表示函数关系,如y=log_a x。
函数解析式的应用示例
线性函数
y=kx+b,用于描述匀速直线运动、 弹簧的伸长量等。
幂函数
y=x^n,用于描述物体随时间加速 或减速运动。
三角函数
y=sin x、y=cos x,用于描述简谐振 动、交流电等周期性现象。
函数的图像及解析式
contents
目录
• 函数图像的绘制 • 函数的解析式 • 函数的性质与图像关系 • 常见函数的图像与解析式 • 函数图像与解析式的应用
01 函数图像的绘制
函数图像的基本概念
01
02
03
函数图像
表示函数中自变量与因变 量之间关系的曲线或曲面。
坐标系
确定函数图像在平面或空 间中的位置和方向。
解析式
以10为底的对数函数为$y = log_{10} x$,以自 然数e为底的对数函数为$y = ln x$。
3
性质
定义域为$(0, +infty)$,值域为$(-infty, +infty)$。
05 函数图像与解析式的应用
解决实际问题
预测模型
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:3y2.幂函数的性质;1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数yxx a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,xay =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) nm n m a a a +=⋅ (2) n m n m a a a -=÷(3)()()mn nmnm aaa ==(4)()n n n b a ab =b.根式的性质;f xxxx g ⎪⎫ ⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
经典数学函数图像(大全)
经典数学函数图像(大全)1. 一次函数图像一次函数图像是一条直线,其一般形式为 y = mx + b,其中 m是斜率,b 是 y 轴截距。
当 m > 0 时,直线向上倾斜;当 m < 0 时,直线向下倾斜。
2. 二次函数图像二次函数图像是一个抛物线,其一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
3. 三角函数图像三角函数图像包括正弦函数、余弦函数和正切函数。
正弦函数图像是一条波动曲线,余弦函数图像与正弦函数图像相似,但相位差为π/2。
正切函数图像是一条周期性振荡的曲线。
4. 指数函数图像指数函数图像是一条上升或下降的曲线,其一般形式为 y = a^x,其中 a 是底数,x 是指数。
当 a > 1 时,曲线上升;当 0 < a < 1 时,曲线下降。
5. 对数函数图像对数函数图像是一条上升或下降的曲线,其一般形式为 y =log_a(x),其中 a 是底数,x 是真数。
当 a > 1 时,曲线上升;当0 < a < 1 时,曲线下降。
6. 双曲函数图像双曲函数图像包括双曲正弦函数、双曲余弦函数和双曲正切函数。
双曲正弦函数和双曲余弦函数图像都是上升或下降的曲线,而双曲正切函数图像是一条周期性振荡的曲线。
7. 幂函数图像幂函数图像是一条上升或下降的曲线,其一般形式为 y = x^n,其中 n 是指数。
当 n > 0 时,曲线上升;当 n < 0 时,曲线下降。
8. 反比例函数图像反比例函数图像是一条双曲线,其一般形式为 y = k/x,其中 k是常数。
当 k > 0 时,曲线位于第一和第三象限;当 k < 0 时,曲线位于第二和第四象限。
经典数学函数图像(大全)3. 反三角函数图像反三角函数是三角函数的反函数,包括反正弦函数、反余弦函数和反正切函数。
高中数学-函数图像详解
高中数学-函数图像详解基本初等函数的图像1. 一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减2. 二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac 决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。
3. 反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。
4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图< span>不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。
5.对数函数当底数不同时,对数函数的图像是这样变换的6. 幂函数y=x^a性质:先看第一象限,即x>0时,当a>1时,函数越增越快;当0<a<1时,函数越增越慢;当a<0时,函数单调递减;然后当x<0时,根据函数的定义域与奇偶性判断函数图像即可。
< span>7. 对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。
函数图形的变换注意:对于函数图像的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要根据上面的规则,判断好顺序,否则顺序错了,可能就没办法经过变换得到了!例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?下面我们一起来看一看。
通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个2,既然有3种变换,那么顺序如何呢?牢记住一点:针对x轴上的变换,那就一定要看x这个符号有啥变化。
函数及其图像分析详解
函数及其图像分析详解函数是高中数学中非常重要的一个概念,它可以描述两个变量之间的关系,或者将一个自变量的值映射到一个因变量的值上。
在实际应用中,各种函数及其图像都有着非常重要的作用,本文将对常见的函数及其图像进行详细的分析。
一、常见的函数类型1.线性函数线性函数是最简单的一类函数,它的定义域为全体实数集合R,表达式为:y=kx+b(其中k和b为常数)。
直线y=kx+b就是它的图像,这条直线在坐标系中的位置由直线的斜率和截距决定。
斜率表示函数在一定区间内自变量变化时因变量的变化幅度,截距表示函数与y轴的交点。
2.二次函数二次函数是一类带有平方项的函数,也是非常常见的函数类型。
它的定义域为全体实数集合R,表达式为:y=ax^2+bx+c(其中a,b,c为常数)。
二次函数的图像是一个抛物线,抛物线开口的方向由a的正负号决定。
当a>0时,抛物线开口朝上,当a<0时,抛物线开口朝下。
3.指数函数指数函数是一类用x的幂作为自变量的函数,自变量为x,因变量为y,通式为y=a^x,其中a为大于0且不等于1的常数。
指数函数的图像是一条右侧开口的曲线,曲线在x轴上向右无限延伸,当x趋近于负无穷大时,曲线趋近于y轴。
4.对数函数对数函数是指数函数的反函数,它的定义域为(0,+∞),值域为全体实数集合R,通式为y=loga x,其中a为大于0且不等于1的常数。
对数函数的图像是一条带左侧开口的曲线,曲线在y轴上向上无限延伸,当x趋近于正无穷大时,曲线趋近于x轴。
5.三角函数三角函数是用角度作为自变量的函数,它是解决几何问题中经常使用的函数。
常见的三角函数包括正弦函数、余弦函数、正切函数等,它们的定义域为全体实数集合R,值域为[-1,1]。
三角函数的图像是一条在[-1,1]区间内振荡的波形,波形周期的长度由函数的周期决定。
二、函数图像分析的相关概念1.函数的极值函数的极值是函数在定义域内的最大值和最小值。
在一段区间内,如果函数的导数在该区间内始终大于0,则该函数在这段区间内单调递增,在这段区间内的最大值即为函数的极大值。
函数及其图像总结知识点
函数及其图像总结知识点函数的图像是函数表示的一种形式,它是函数在坐标系中的图形表示。
函数的图像可以帮助我们更直观地理解函数的特点和性质。
在学习函数的过程中,函数的图像是一个非常重要的知识点。
本文将总结函数的相关知识点,以帮助读者更好地掌握这一重要的数学概念。
一、函数的定义在数学中,函数是一种特殊的关系。
如果存在一种依赖关系,使得除了x以外,对每个x都只有唯一的y和y唯一对应某个x,那么就称这种依赖关系为函数。
函数的符号表示通常是f(x)或者y=f(x),其中x为自变量,y为因变量。
函数的定义域是自变量的取值范围,值域是函数的输出范围。
二、常见函数1. 线性函数:y=ax+b,其中a和b为常数。
线性函数的图像是一条直线,斜率a决定了直线的斜率,常数b决定了直线的截距。
线性函数是最简单的函数之一,它们在数学建模中有着广泛的应用。
2. 二次函数:y=ax^2+bx+c,其中a、b和c为常数且a不等于0。
二次函数的图像是一条抛物线,开口向上或向下取决于a的正负。
二次函数在物理学、工程学等领域有着重要的应用。
3. 指数函数:y=a^x,其中a为正实数且不等于1。
指数函数的图像是一条逐渐增长或逐渐减小的曲线。
指数函数在自然科学和经济学中有着广泛的应用。
4. 对数函数:y=loga(x),其中a为正实数且不等于1。
对数函数的图像是一条渐进线,对数函数能够将指数函数的性质转化为更容易理解的形式。
5. 三角函数:包括正弦函数、余弦函数、正切函数等。
三角函数在物理学、工程学和天文学中有着重要应用。
以上函数是常见的、在数学教育中重点研究的函数。
这些函数具有各自的特点和性质,通过学习这些函数,我们可以更好地理解数学中的各种问题,并且为进一步学习高等数学课程打下扎实的基础。
三、函数的性质1. 奇函数和偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
通过奇偶函数的性质,我们可以推导出一系列关于函数图像的对称性质,以及某些函数值的简化表示。
(完整版)高中各种函数图像画法与函数性质
a>1时,在定义域内单调递增;0<a<1时,在定义域内单 调递减。
06
值域为(0, +∞)。
对数函数图像及性质
对数函数定义:形如y=log_a(x)(a>0且a≠1)的函数称 为对数函数。
对数函数性质
对数函数图像:当a>1时,图像在x轴上方,且随着x的 增大,y值无限增大;当0<a<1时,图像在x轴上方, 且随着x的增大,y值无限减小。
正弦函数、余弦函数图像及性质
图像特点
正弦函数$y = sin x$和余弦函数$y = cos x$的图像都是周期性的波浪形曲线,振幅为1,周期为$2pi$。正弦函 数图像关于原点对称,余弦函数图像关于$y$轴对称。
性质
正弦函数和余弦函数都是周期函数,具有周期性、奇偶性和有界性等性质。其中,正弦函数是奇函数,余弦函数 是偶函数。
变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
运算规则
复合函数的运算遵循“由内到外”的原则,即先求出内层函数的值,再代入外层函数中 计算。
复合函数图像变换规律
平移变换
若f(x)的图像向左(右)平移a个单位得到g(x)的图像,则g(x)=f(x+a)(a>0向左,a<0向 右)。
奇偶性
设函数y = f(x)的定义域为D,如果对D内的任意一个x,都有x∈D,且f(-x)=f(x),则这个函数叫做奇函数;如果对D内的任意一个x,都有x∈D,且f(-x)=f(x) ,则这个函数叫做偶函数。
函数周期性
周期函数的定义
对于函数y = f(x),如果存在一个不为零的常数T,使得当 x取定义域内的每一个值时,f(x + T) = f(x)都成立,那 么就把函数y = f(x)叫做周期函数,不为零的常数T叫做这 个函数的周期。
函数及图像的知识点总结
函数及图像的知识点总结函数是数学中的一个重要概念,也是数学分析和高等代数的基础内容。
在数学中,函数是一种对应关系,可以简单的理解为一种特殊的映射关系,将一个变量的取值映射到另一个变量的取值。
在数学中,通常用f(x)来表示一个函数,其中x是自变量,f(x)是函数的因变量。
函数的定义:在数学中,函数是一个对应关系,它将一个或多个输入值映射到一个输出值。
函数通常用一个算式或图形来表示。
函数可以用以下的方式表示:f:A→B其中,A是函数的定义域,B是函数的值域。
定义域表示函数的输入值的集合,值域表示函数的输出值的集合。
函数的定义域和值域决定了函数的有效输入和输出的范围。
函数的图像:函数的图像是函数在平面直角坐标系中的图形,通常用函数的定义域和值域的点来表示。
函数的图像可以用直线、曲线或点来表示。
通过函数的图像可以直观地看出函数的性质和特点。
常见的函数类型:1. 线性函数:线性函数是指函数的图像是一条直线。
线性函数的一般形式为f(x) = ax + b,其中a和b为常数,a称为斜率,b称为截距。
线性函数的图像是一条斜率为a,截距为b的直线。
2. 二次函数:二次函数是指函数的图像是一条抛物线。
二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数。
二次函数的图像是一条开口的抛物线,开口的方向由二次项的系数a的正负决定。
3. 指数函数:指数函数是指函数的自变量为指数的函数。
指数函数的一般形式为f(x) =a^x,其中a为常数且a>0,a不等于1。
指数函数的图像是一条递增或递减的曲线,曲线的斜率由底数a的大小和正负决定。
4. 对数函数:对数函数是指函数的自变量为对数的函数。
对数函数的一般形式为f(x) =log_a(x),其中a为常数且a>0,a不等于1。
对数函数的图像是一条递增或递减的曲线,曲线的斜率由底数a的大小和正负决定。
函数的性质:1. 定义域和值域:函数的定义域和值域决定了函数的有效输入和输出的范围。
函数与其图像知识点总结
函数与其图像知识点总结函数与其图像是数学中常见的概念,对于理解数学问题和解决实际问题具有重要意义。
在高中阶段,学生已经接触到了函数与其图像的相关知识,下面将从函数的定义、性质、图像绘制及应用等方面进行总结。
一、函数的定义1. 自变量和因变量函数是一个映射关系,它描述了自变量和因变量之间的对应关系。
通常情况下,自变量用x表示,因变量用y表示。
在函数中,自变量的取值范围我们称之为定义域,因变量的取值范围称之为值域。
2. 函数的定义函数的定义包括了自变量的定义域和因变量的值域,以及自变量和因变量之间的对应关系。
一般情况下,我们用符号y=f(x)表示函数的定义,其中f表示函数名称,x表示自变量,y表示因变量。
3. 函数的表示函数可以用表达式、图像、数据表等形式进行表示。
常见的函数表示形式包括解析式表示、图像表示、数据表示等。
二、函数的性质1. 奇偶性函数的奇偶性是指当自变量x的取值变化时,因变量y的取值是否满足某种对称性。
若对于任意x∈D,都有f(-x) = f(x),则函数f(x)是偶函数;若对于任意x∈D,都有f(-x) = -f(x),则函数f(x)是奇函数。
2. 单调性函数的单调性是指当自变量x的取值增大时,因变量y的取值是单调递增还是单调递减。
若对于任意x1 > x2,有f(x1) > f(x2),则函数f(x)是递增函数;若对于任意x1 > x2,有f(x1) < f(x2),则函数f(x)是递减函数。
3. 周期性函数的周期性是指函数在一定范围内具有重复性。
若存在正数T,使得对于任意x∈D,有f(x+T) = f(x),则函数f(x)是周期函数,其中T称为函数的周期。
4. 上下界函数的上下界是指函数在定义域内取值的最大值和最小值。
若存在常数M,使得对于任意x∈D,都有f(x) ≤ M,则M称为函数f(x)的上界;若存在常数m,使得对于任意x∈D,都有f(x) ≥ m,则m称为函数f(x)的下界。
六大基本初等函数图像及性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:2.幂函数的性质;3y1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1(1)当1>a 时函数为单调增,当10<<a 时函数为单调减;2)不论x 为何值,y总是正的,图形在x 轴上方;3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,xay =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅ (2) n m n m a a a -=÷(3)()()mn nmnm aaa ==(4)()nn n b a ab =yxf x xxx g ⎪⎫ ⎛=1)(b.根式的性质;(1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a an m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm 四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
函数及其图形解读
图形特征: 函数图像位于两条平行 直线 y M 之间。
y M
x
M
如果 N,M, x X, N f ( x) M,则称 f ( x) 有上界 M, 有下界 N 。
f ( x) 在 X 上无界:
M 0, x0 X,有 | f ( x0 ) | M,则称 f ( x) 在 X 上无界。
(2) y arcsinu, u 1 , v
z tan x.
v w,
w 1 z 4,
三、反函数
对于函数 y f ( x),
有时 x y(唯一确定) 例如 y x 3 ,
但也有 x1 y x2
例如 y x2 。
定义
设 y f ( x) 在 X 上有定义,x1 , x2 X ,若 x1 x2,有 f ( x1 ) f ( x2 ),则称 f 是 X 到值域 R( f ) 的一个双射或 一一对应。
正周期。 例如 f ( x) 1 无最小正周期。
§1.2 初等函数 一、四则运算
设有两个函数:y f ( x) 与 y g( x) 和函数 f ( x) g( x) x D( f ) D(g) 差函数 f ( x) g( x) x D( f ) D(g) 积函数 f ( x) g( x) x D( f ) D(g)
G {(x, y) | y f ( x), x D}
点集 G 称为 y f ( x) 的图形。 可以利用描点法做出函数图形的草图。
y
y
(x, y)
O
x
x
二、函数的图形
设函数 y f ( x),x D。 x D,与 x 对应的函数值为 y f ( x) 。 如果以 x 为横坐标,y 为纵坐标,则在 xoy 平面上确定一点( x, y) 。 当 x 取遍 D 内的所有数值时,就得到点 ( x, y) 的集合
函数图形知识点总结
函数图形知识点总结1. 函数的概念函数是一种数学关系,它将一个或多个输入值映射到一个输出值。
函数可以用数学表达式、图表、图形甚至语言来描述和表示。
在函数中,输入值称为自变量,输出值称为因变量。
函数通常表示为f(x),其中x是自变量,f(x)是因变量。
在函数图形中,自变量通常代表横坐标,而因变量代表纵坐标。
2. 函数的图形特征函数的图形可以用来表示函数的变化规律和特征。
函数图形的一些重要特征包括:- 曲线趋势:曲线的上升、下降、水平以及复杂的走势可以表示函数的变化趋势。
- 极值点:函数的最大值和最小值,可以通过函数图形的高低峰来确定。
- 零点:函数图形与x轴相交的点,也就是函数取零值的点。
- 渐近线:函数图形在某些区域中可能会接近一条直线,这条直线称为函数的渐近线。
3. 常见的函数图形常见的函数图形包括直线、抛物线、三角函数、指数函数和对数函数等。
每种函数图形都有其独特的形状和特征。
例如,直线的图形是一条直的线,抛物线的图形是一个U形或者倒U形的曲线,三角函数的图形是一条周期性波动的曲线,指数函数的图形是一个逐渐增大或逐渐减小的曲线,对数函数的图形是一个逐渐减小的曲线。
4. 函数的对称性函数图形可能具有不同的对称性,常见的对称性包括:- 偶函数:图形关于y轴对称,即f(x) = f(-x)。
- 奇函数:图形关于原点对称,即f(x) = -f(-x)。
- 周期函数:图形在特定区间内重复出现相同的形状,具有周期性。
函数的对称性可以通过函数图形来进行判断。
5. 函数的变换函数图形可以通过一些变换来获得新的函数图形,常见的变换包括平移、垂直拉伸或压缩、水平拉伸或压缩以及翻转等。
这些变换可以通过改变函数的系数、加减常数等来实现。
通过变换,可以得到原函数图形的平移、拉伸、压缩和翻转等新的图形。
6. 函数的导数与积分函数图形的导数表示了函数在某一点的斜率,也可以用来表示函数的变化率,而函数的积分则表示了函数图形下面积的大小。
常见函数类型的图像分析
常见函数类型的图像分析在数学中,函数是一种将一个集合中的每个元素映射到另一个集合中的规则。
函数的图像则是表示函数规则在平面上的表现形式。
通过对常见函数类型的图像进行分析,我们可以深入了解这些函数的特点和行为。
1. 常数函数常数函数是指在定义域上输出恒定值的函数。
例如,f(x) = 2 是一个常数函数。
常数函数的图像是一条水平线段,不随输入变化而改变。
2. 线性函数线性函数是指函数的增长率恒定的函数,其图像是一条直线。
一般地,线性函数可以表示为 f(x) = ax + b,其中 a 和 b 是常数。
线性函数的图像是一条斜率为 a 的直线,且与 y 轴相交于点 (0, b)。
3. 幂函数幂函数是指以自然数为指数的函数。
例如,f(x) = x^2 是一个幂函数。
幂函数的图像形状因指数的奇偶性而有所不同。
当指数为偶数时,幂函数的图像向上开口,且通过点 (0, 0)。
当指数为奇数时,幂函数的图像通过点 (0, 0),并在第一、三象限上延伸。
4. 指数函数指数函数是指以一个常数为底数的函数。
例如,f(x) = 2^x 是一个指数函数。
指数函数的图像是一个递增或递减的曲线,随着自变量的增大或减小而迅速增长或减小。
当底数大于 1 时,指数函数递增;当底数介于 0 和 1 之间时,指数函数递减。
5. 对数函数对数函数是指与指数函数相反的函数。
例如,f(x) = log(x) 是一个对数函数。
对数函数的图像是一条曲线,随着自变量的增大而缓慢增长。
对数函数的底数决定了函数的增长速度。
6. 正弦函数和余弦函数正弦函数和余弦函数是常见的三角函数。
正弦函数的图像是一条周期性的波浪曲线,振幅为 1,且与 x 轴的交点位于 (0, 0)。
余弦函数与正弦函数非常相似,但图像的相位差为π/2。
通过对这些常见函数类型的图像进行分析,我们可以发现它们的特点和规律。
这有助于我们更好地理解和应用函数概念,在解决实际问题时能够更加灵活地运用各类函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x ) sin 2 x 2 1
2. 表格表示法(列表法) 例如 出租车车费是距离的函 数, 可以用表格来表示:
距离 ( 公 里 )[0, 3] ( 3, 4] (4, 5] (6, 7] 车 费 ( 元 ) 10 12 14 16
当 x 取遍 D 内的所有数值时,就得 到点( x, y) 的集合
G {( x, y ) | y f ( x ), x D}
点集 G 称为 y f ( x ) 的图形。
可以利用描点法做出函 数图形的草图 。
y
y
( x, y )
O
x
x
二、函数的图形
设函数 y f ( x ), x D。 x D, 与 x 对应的函数值为 y f ( x) 。 如果以x 为横坐标, y 为纵坐标,则在 xoy 平面上确定一点 ( x, y ) 。
点集 G 称为 y f ( x ) 的图形。
可以利用描点法做出函 数图形的草图。
y
y
( x, y )
O
x
x
二、函数的图形
设函数 y f ( x ), x D。 x D, 与 x 对应的函数值为 y f ( x) 。 如果以x 为横坐标, y 为纵坐标,则在 xoy 平面上确定一点 ( x, y ) 。
x 称为自变量, y 称为因变量, A 为定义域,记为 D( f ) 或 D f ,
f 为函数符号, f ( x ) 为在 x 点处的函数值。当 x 在定义域中变化时,
f ( x) 的全体值的集合称为函 数 f 的值域,记为 R( f )或 R f ,即
R( f ) { f ( x ) | x D( f ) } B .
当 x 取遍 D 内的所有数值时,就得 到点( x, y) 的集合
G {( x, y ) | y f ( x ), x D}
点集 G 称为 y f ( x ) 的图形。
可以利用描点法做出函 数图形的草图 。
y
y
( x,、函数的图形
设函数 y f ( x ), x D。 x D, 与 x 对应的函数值为 y f ( x) 。 如果以x 为横坐标, y 为纵坐标,则在 xoy 平面上确定一点 ( x, y ) 。
•函数有两大要素:定义域、对应法则。
例如 x f ( x) , x g( x ) 1,
由于定义域不同, f ( x ) 与 g( x) 是两个不同的函数。
•自然定义域
自变量所能取的使算式 有意义的一切实数值。
例如
f ( x)
1 x2 1
定义域为: (, 1) (1, )。
当 x 取遍 D 内的所有数值时,就得 到点( x, y) 的集合
G {( x, y ) | y f ( x ), x D}
点集 G 称为 y f ( x ) 的图形。
可以利用描点法做出函 数图形的草图。
y
Rf
y
( x, y )
O
x
D
x
三、函数的表示法
二、函数的图形
设函数 y f ( x ), x D。 x D, 与 x 对应的函数值为 y f ( x) 。 如果以x 为横坐标, y 为纵坐标,则在 xoy 平面上确定一点 ( x, y ) 。
当 x 取遍 D 内的所有数值时,就得 到点( x, y) 的集合
G {( x, y ) | y f ( x ), x D}
当 x 取遍 D 内的所有数值时,就得 到点( x, y) 的集合
G {( x, y ) | y f ( x ), x D}
点集 G 称为 y f ( x ) 的图形。
可以利用描点法做出函 数图形的草图 。
y
y
( x, y )
O
x
x
二、函数的图形
设函数 y f ( x ), x D。 x D, 与 x 对应的函数值为 y f ( x) 。 如果以x 为横坐标, y 为纵坐标,则在 xoy 平面上确定一点 ( x, y ) 。
第一章 函数
函数及其图形
概念、图形、表示法、 特殊函数、特性;
函数运算及其特性
四则运算、复合运算、 反函数、初等函数、 单调性、有界性等.
§1.1 函数概念
一、 函数的概念
例如 圆的半径为 r,圆的面积为 S,则
S
r
2
即
r S
r 2
定义
设有非空数集 A 与 B, 如果存在一个对应法则 f, 使 得 x A, 按 此 法 则f 在 B 中 能 唯 一 确 定 一 个 元 素 y, 则 称 对 应 法 则f 为 数集 A 到 B 的一个函数,记为 f: x y 或 y f(x)
当 x 取遍 D 内的所有数值时,就得 到点( x, y) 的集合
G {( x, y ) | y f ( x ), x D}
点集 G 称为 y f ( x ) 的图形。
可以利用描点法做出函 数图形的草图 。
y
y
( x, y )
O
x
x
二、函数的图形
设函数 y f ( x ), x D。 x D, 与 x 对应的函数值为 y f ( x) 。 如果以x 为横坐标, y 为纵坐标,则在 xoy 平面上确定一点 ( x, y ) 。
3. 图形表示法
y ex
四、几种特殊函数
1. 分段函数 不能用一个数学表达式 来表示
例1 绝对值函数
x y | x | x x0 x0
y
1
O
1
例2 符号函数
1 当x0 y sgn (x ) 0 当 x 0 1 当 x 0
当 x 取遍 D 内的所有数值时,就得 到点( x, y) 的集合
G {( x, y ) | y f ( x ), x D}
点集 G 称为 y f ( x ) 的图形。
可以利用描点法做出函 数图形的草图 。
y
y
( x, y )
O
x
x
二、函数的图形
设函数 y f ( x ), x D。 x D, 与 x 对应的函数值为 y f ( x) 。 如果以x 为横坐标, y 为纵坐标,则在 xoy 平面上确定一点 ( x, y ) 。