二次函数题(9[1][1].20-9.21)
(完整版)九年级二次函数综合测试题及答案,推荐文档
2、4. 抛物线
的对称轴是( )
A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数 y=ax2+bx+c 的图象如图所示,则下列结论中,正确的是( A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0
21.已知:如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于 A、B 两点,其中 A 点坐标为(-1,0),点 C(0,5),另抛物线经过点(1,8),M 为它的顶点.
我去 人 (1也)求就抛物有线的人解!析式为; UR扼腕入站内信不存在向你偶同意调剖沙
(2)求△MCB 的面积 S△MCB.
6. 二次函数 y=ax2+bx+c 的图象如图所示,则点
A. 一 B. 二 C. 三 D. 四
在第___象限( )
7. 如图所示,已知二次函数 y=ax2+bx+c(a≠0)的图象
的顶
点 P 的横坐标是 4,图象交 x 轴于点 A(m,0)和点 B,且
m>4,那么 AB 的长是( )
10.把抛物线
的图象向左平移 2 个单位,再向上
平移 3 个单位,所得的抛物线的函数关系式是( )
A.
B.
C.
D.
二、填空题(每题 4 分,共 32 分) 11. 二次函数 y=x2-2x+1 的对称轴方程是______________.
12. 若将二次函数 y=x2-2x+3 配方为 y=(x-h)2+k 的形式,则 y=________.
二次函数测试题及答案
二次函数测试题及答案一、选择题1. 下列哪个选项是二次函数的一般形式?A. y = x + 2B. y = x^2 + 3x + 1C. y = 2x^3D. y = 1/x答案:B2. 二次函数y = ax^2 + bx + c(a ≠ 0)的顶点坐标是:A. (-b, a)B. (-b/a, c)C. (-b/2a, 4ac - b^2/4a)D. (-b/2a, 4ac + b^2/4a)答案:C3. 如果二次函数y = ax^2 + bx + c的图像与x轴有两个交点,那么a、b、c之间的关系是:A. b^2 - 4ac > 0B. b^2 - 4ac < 0C. b^2 - 4ac = 0D. b^2 - 4ac ≠ 0答案:A二、填空题4. 二次函数y = -3x^2 + 6x - 5的顶点坐标是______。
答案:(1, -2)5. 如果二次函数y = ax^2 + bx + c的图像开口向上,那么a的值是______。
答案:> 0三、解答题6. 已知二次函数y = 2x^2 - 4x + 3,求其图像与x轴的交点。
解:令y = 0,得到方程2x^2 - 4x + 3 = 0。
通过求解这个方程,我们可以得到x的值。
首先计算判别式Δ = b^2 - 4ac = (-4)^2 - 4 * 2 * 3 = 16 - 24 = -8。
因为Δ < 0,所以这个二次方程没有实数解,即二次函数的图像与x轴没有交点。
7. 已知二次函数y = 3x^2 + 6x - 5,求其图像的对称轴。
解:二次函数y = ax^2 + bx + c的对称轴是x = -b/(2a)。
将a= 3, b = 6代入公式,得到对称轴为x = -6 / (2 * 3) = -1。
四、应用题8. 某工厂生产一种产品,其成本函数为C(x) = 0.5x^2 - 100x + 1000,其中x表示产品的数量。
九年级数学二次函数测试题含答案(精选5套)
九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线=-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。
二次函数经典例题及解答
定义
一般形式为$y = ax^2 + bx + c$ ($a neq 0$)的函数称为二次函 数。
图像特征
二次函数的图像是一条抛物线, 开口方向由系数$a$决定,当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。
对称轴与顶点坐标求解
对称轴
对于一般形式的二次函数$y = ax^2 + bx + c$,其对称轴为 直线$x = -frac{b}{2a}$。
05
当$-2 leq x < 1$时,由$a geq frac{x^2 + 3}{x - 1}$恒 成立,得$a geq (frac{x^2 + 3}{x - 1})_{max}$。
03
当$x = 1$时,不等式恒成立,$a in R$;
06
综合以上情况,可求得$a$的取值范围。
转化思想在恒成立问题中运用
对称轴和顶点坐标公式记忆错误。避免策略
通过多做练习加深记忆,同时理解公式的推导过程。
判别式 $Delta$ 使用不当,导致…
正确理解判别式的含义和使用方法,结合二次函数的图像进行分析。
忽略二次函数图像与性质的综合运用。避免策略
在解题时注重数形结合,充分利用二次函数的图像和性质进行分析和 求解。
拓展延伸:高阶导数在二次函数研究中的应用
第四步
求极限。根据单调性,求出开 区间上的极限值,即为最值。
含参数最值问题处理方法
第一步
确定参数范围。根据题目条件,确定参数的取 值范围。
01
第三步
求导数。对新函数进行求导,得到导 函数。
03
第五步
判断单调性。根据二次函数的开口方向和临 界点的位置,判断新函数在参数范围内的单
九年级数学二次函数测试题含答案(精选5套)
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
二次函数练习题与答案
22.某商店销售一种商品,每件的进价为 2.50 元,根据市场调查,销售量与销售单价满足如 下关系:在一段时间内,单价是 13.50 元时,销售量为 500 件,而单价每降低 1 元,就可以 多售出 200 件.请你分析,销售单价多少时,可以获利最大 .
3
答案与解析:
一、选择题
1.考点:二次函数概念 .选 A.
且 -1<x 1<x2, x3<-1,则 y1, y2, y3 的大小关系是 (
A. y 1<y2<y3
B. y2<y3<y1
C. y 3<y1<y2
) D. y 2<y1<y 3
1
10.把抛物线 物线的函数关系式是 ( )
A.
的图象向左平移 2 个单位,再向上平移 3 个单位,所得的抛 B.
C.
y=2(x-3) 2 的顶点为 (3, 0),
所以顶点在 x 轴上,答案选 C.
4. 考点:数形结合,二次函数 y=ax2+bx+c 的图象为抛物线,其对称轴为
.
解 析: 抛物线
, 直接 利用 公式, 其对 称轴 所在 直线为
答案选 B. 5. 考点:二次函数的图象特征 . 解析:由图象,抛物线开口方向向下,
有确定哪个角为直角,答案不唯一,如:
y=x 2-1.
16. 考点:二次函数的性质,求最大值 .
解析:直接代入公式,答案: 7.
17. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一
.
解析:如: y=x 2-4x+3.
18. 考点:二次函数的概念性质,求值 .
5
答案:
.
二次函数基础练习题(含答案)(完整资料).doc
【最新整理,下载后即可编辑】二次函数练习题(一)1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式.2、下列函数:① 23yx ;②()21y x x x =-+;③()224y x x x =+-;④21yx x ;⑤()1y x x =-,其中是二次函数的是,其中a,b,c3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数4、当____m =时,函数2221mm ym m x 是关于x 的二次函数5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数 6、若点 A ( 2,m )在函数12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式S=πr2中,s 与r 的关系是()A、一次函数关系B、正比例函数关系C、反比例函数关系D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.9、矩形的长是4cm,宽是3cm,如果将长和宽都增加x cm,那么面积增加ycm2,①求y 与x 之间的函数关系式.②求当边长增加多少时,面积增加8cm2.10、已知二次函数),0(2≠axy当x=1时,y= -1;当x=2时,y=2,求该c=a+函数解析式.11、富根老伯想利用一边长为a米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽AB为x米,则猪舍的总面积S(米2)与x有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数练习题(二)-----函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D 5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm ymx 的图象是开口向下的抛物线,求m 的值.stOstOstOstO7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x的增大而减小?10、如果抛物线2y ax与直线1=-交于点,2b,求这条抛物线所对应的二y x次函数的关系式.二次函数练习题(三)-----函数c=2的图象与性质axy+1、抛物线322-y的开口,对称轴是,顶点坐标-=x是,当x 时, y随x的增大而增大, 当x 时, y随x的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .二次函数练习题(四)-----函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.二次函数练习题(五)-----()k h x a y +-=2的图象与性质 1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大. 4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是 6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( ) A 、x>3 B 、x<3 C 、x>1 D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3)当x 时,y随x的增大而增大;当x 时,y随x的增大而减小.(4)求出该抛物线与x轴的交点坐标及两交点间距离;(5)求出该抛物线与y轴的交点坐标;(6)该函数图象可由23x=的图象经过怎样的平移得到的?y-8、已知函数()412-y.+=x(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)若图象与x轴的交点为A、B和与y轴的交点C,求△ABC的面积;(3)指出该函数的最值和增减性;(4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5)该抛物线经过怎样的平移能经过原点.(6)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0.二次函数练习题(六)-----c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 的对称轴是 . 2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是 6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为___ ____;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-14 9、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223yx x的顶点和坐标原点1)求一次函数的关系式;2)判断点()-是否在这个一次函数的图象上2,514、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?二次函数练习题(七)-----c+=2的性质axy+bx1、函数2y x px q的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数22y mx x m m的图象经过原点,则此抛物线的顶点坐标24是3、如果抛物线2y ax bx c与y轴交于点A(0,2),它的对称轴是1x,那么acb4、抛物线c+=2与x轴的正半轴交于点A、B两点,与y轴交于点C,y+xbx且线段AB的长为1,△ABC的面积为1,则b的值为______.5、已知二次函数c=2的图象如图所示,则a___0,b___0,c___0,y++axbx2-____0;acb46、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2yax bxc (0≠a )的图象如图所示,则下列结论:1),a b 同号; 2)当1x 和3x时,函数值相同;3)40a b;4)当2422b b acy a-±-=-时,x 的值只能为0;其中正确的是 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx axb 中,若0ab,则它的图象必经过点()A ()1,1--B ()1,1-C 1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab111、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ). (A )①② (B )②③ (C )②④ (D )③④ 14、二次函数2y ax bxc 的最大值是3a ,且它的图象经过()1,2--,1,6两点,求a 、b 、c15、试求抛物线2y ax bx c与x轴两个交点间的距离(240b ac)二次函数练习题(八)-----确定二次函数解析式1、抛物线y=ax2+bx+c经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为.3、二次函数有最小值为1,当0x时,1x,y,它的图象的对称轴为1则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过1,1、2,1两点,且与x轴仅有一个交点,求二次函数的解析式6、抛物线y=ax2+bx+c过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x轴交于A(-2,0)、B(3,0)两点,且函数有最大值是2.(1)求二次函数的图象的解析式;(2)设次二次函数的顶点为P,求△ABP的面积.8、以x为自变量的函数)32(2)1(42-mxy中,m为不小于零的整mx-+=m++-数,它的图象与x轴交于点A和B,点A在原点左边,点B在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b的图象经过点A,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.二次函数练习题(九)-----二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( ) A 、0 B 、-1 C 、2 D 、416、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3 B 、x =-2 C 、x =-1 D 、x =17、已知二次函数2y x pxq 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值。
二次函数真题及答案解析
二次函数真题及答案解析二次函数是高中数学中的重要知识点,也是大学数学及工科类专业课的基础。
掌握二次函数的概念、性质和解题方法对学生的数学学习有着重要的作用。
本文就为大家选取了一些经典的二次函数真题,并对其答案进行详细解析,希望对大家的学习有所帮助。
一、真题及解析1已知函数f(x)=ax²+bx+c,其中a>0。
若对于任意的x,f(x)≥0,且不等式f(x)-c<x成立,求证:b²-4ac≥0。
解析:首先,根据题目要求,对于任意的x,都有f(x)≥0。
这意味着函数图像上的所有点都在x轴或者x轴以上。
所以,二次函数的开口一定向上,即a>0。
其次,不等式f(x)-c<x成立。
我们可以将函数f(x)进行整理,得到ax²+bx+(c-x)>0。
进一步整理可得ax²+(b-1)x+(c)>0。
根据二次函数的性质,当a>0时,二次函数的图像与x轴有两个交点,或者与x轴有一个切点。
对于这道题来说,如果函数图像与x轴有两个交点,则不可能对于任意的x,f(x)≥0。
所以只能是与x轴有一个切点。
综上所述,我们可以得知b²-4ac≥0。
二、真题及解析2已知函数f(x)=x²-4bx+4b+1,其中b为常数。
若对于任意的x,不等式f(x)≥0成立,则b的取值范围为多少?解析:根据题目要求,对于任意的x,都有f(x)≥0。
这意味着函数图像上的所有点都在x轴或者x轴以上。
所以,二次函数的开口一定向上,即a>0。
由于题目给出了函数f(x)=x²-4bx+4b+1,我们可以根据二次函数的性质来分析。
首先,根据a>0,可以得知开口是向上的。
其次,由于f(x)≥0,即对于任意x,函数图像都在x轴或者x 轴以上,我们可以知道判别式∆=b²-4ac≤0。
带入题目给出的函数,我们可以得到b²-(4b+4)≤0。
二次函数练习题
二次函数练习题班级 姓名一、填空题:(每题3分,共30分) ⑴.抛物线()52212+--=x y 的对称轴是 .这条抛物线的开口向 . ⑵.用配方法将二次函数1232--=x x y 化成()k h x a y +-=2的形式是 .⑶.已知二次函数32++=bx x y 的图象的顶点的横坐标是1,则b= .⑷. 二次函数x x y 42+-=的图象的顶点坐标是 ,在对称轴的右侧y 随x 的增大而⑸.已知抛物线c bx x y ++=22的顶点坐标是(-2,3),则bc = . ⑹.若抛物线c x x y +-=242的顶点在x 轴上,则c= .⑺. 已知二次函数m x x y +-=62的最小值是1,那么m 的值是 .⑻. 若抛物线()x m mx y 122+-=经过原点,则m= . ⑼. 已知二次函数()()m mx x m y --+-=3222的图象的开口向上,顶点在第三象限,且交于y 轴的负半轴,则m 的取值范围是 .⑽. 若抛物线()4152322---+=x m m x y 的顶点在y 轴上, 则 m 的值是 二、选择题:(每题3分,共24分)⑴. 若直线y=ax+b 不经过一、三象限,则抛物线c bx ax y ++=2( ).(A)开口向上,对称轴是y 轴; (B) 开口向下,对称轴是y 轴;(C)开口向上, 对称轴是直线x=1;(D) 开口向下,对称轴是直线x=-1;⑵. 抛物线()()312-+=x x y 的顶点坐标是( ).(A)(-1,-3); (B)(1,3); (C)(-1,8); (D)(1,-8);⑶. 若二次函数c bx ax y ++=2的图象的开口向下,顶点在第一象限,抛物线交于y 轴的正半轴; 则点⎪⎭⎫ ⎝⎛b c a P ,在( ).(A) 第一象限; (B) 第二象限; (C) 第三象限; (D) 第四象限;⑷. 对于抛物线171222+-=x x y ,下列结论正确的是( ).(A )对称轴是直线x=3,有最大值为1; (B)对称轴是直线x=3,有最小值为-1;(C)对称轴是直线x=-3,有最大值为1; (D)对称轴是直线x=-3,有最小值为-1;(5). 抛物线232+-=x x y 不经过( ).(A)第一象限; (B) 第二象限; (C) 第三象限; (D) 第四象限(6). 已知抛物线的顶点坐标是(2,1), 且抛物线的图象经过(3,0)点, 则这条抛物线的解析式是( ).(A) 342---=x x y , (B)342+--=x x y ,(C) 342--=x x y , (D) 342-+-=x x y ,(7).在同一直角坐标系中,抛物线542-+=x x y 与直线y=2x-6的交点个数是( ).(A)0个; (B)1个; (C)2个; (D)3个.(8)把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( )(A )()1232+-=x y (B ) ()1232-+=x y (C ) ()1232--=x y (D )()1232++=x y三.解答题1、已知二次函数c bx ax y ++=2的图象经过A(-1,0)、B(3,0)、C(0,3)三点,求这个二次函数的解析式.(6分)2、 已知抛物线()8122++-=x y ,①求抛物线与y 轴的交点坐标;②求抛物线与x 轴的两个交点间的距离.(10分)。
二次函数练习题及答案
ABCD O xy 二次函数练习题(1)1.二次函数y=ax 2+bx+c 的图象如图1所示,下列五个代数式ab 、ac 、a-b+c 、b 2- 4ac 、2a+b 中,值大于0的个数为( ) A.5 B.4 C.3 D.22.二次函数c bx ax y ++=2的图象如图所示,下列结论: ①0<c ;②0>b ;③024>++c b a ;④042>-ac b .其中正确的有 ( )(A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个3.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x 1,0)且1<x 1<2,与y·轴正半轴的交点在点(0,2)的下方,下列结论:①a <b <0;②2a+c >0;③4a+c< 0,④2a -b+l >0.其中的有正确的结论是(填写序号)__________. 4.把抛物线y=12x 2向左平移三个单位, 再向下平移两个单位所得的关系式为________. 5.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________. 6.抛物线c bx ax y ++=2如右图所示,则它关于y 轴对称的抛物线的解析式是__________.7.已知二次函数y=2x 2-mx-4的图象与x 轴的两个交点的横坐标的倒数和为2,则m=_________.8.如图,四边形ABCD 是矩形,A 、B 两点在x 轴的正半轴上,C 、D 两点在抛物线y =-x 2+6x 上.设OA =m (0<m <3),矩形ABCD 的周长为l ,则l 与m 的函数解析式为 .9.已知抛物线22b x x y ++=经过点1()4a -,和1()a y -,,则1y 的值是 . 10、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点 (0,1),(-1,0),则S=a+b+c 的变化围是 ( )图1y O 33 1(A) 0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<111、已知二次函数y =ax 2(a ≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 。
二次函数习题及答案
二次函数习题及答案二次函数习题及答案二次函数是高中数学中的一个重要概念,也是数学建模中常用的数学工具之一。
它的形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
在解决实际问题时,我们经常需要运用二次函数来进行建模和分析。
下面,我将给大家提供一些常见的二次函数习题及其答案,供大家参考和练习。
1. 习题一:已知二次函数f(x) = 2x^2 - 3x + 1,求解以下问题:a) 函数的顶点坐标是多少?b) 函数的对称轴方程是什么?c) 函数的图像是否开口向上?d) 函数的零点是多少?答案:a) 函数的顶点坐标为(3/4, 7/8)。
b) 函数的对称轴方程为x = 3/4。
c) 函数的图像开口向上。
d) 函数的零点为x = 1和x = 1/2。
2. 习题二:已知二次函数f(x) = -x^2 + 4x - 3,求解以下问题:a) 函数的顶点坐标是多少?b) 函数的对称轴方程是什么?c) 函数的图像是否开口向下?d) 函数的零点是多少?答案:a) 函数的顶点坐标为(2, -3)。
b) 函数的对称轴方程为x = 2。
c) 函数的图像开口向下。
d) 函数的零点为x = 1和x = 3。
3. 习题三:已知二次函数f(x) = x^2 + 2x + 1,求解以下问题:a) 函数的顶点坐标是多少?b) 函数的对称轴方程是什么?c) 函数的图像是否开口向上?d) 函数的零点是多少?答案:a) 函数的顶点坐标为(-1, 0)。
b) 函数的对称轴方程为x = -1。
c) 函数的图像开口向上。
d) 函数的零点为x = -1。
通过以上三个习题的解答,我们可以看出,解决二次函数问题需要掌握一些基本的概念和技巧。
首先,顶点坐标可以通过求解二次函数的导数为0的点来得到。
其次,对称轴方程可以通过求解二次函数的x坐标的平均值来得到。
此外,通过判断二次函数的系数a的正负可以确定图像的开口方向,正数表示开口向上,负数表示开口向下。
二次函数的练习题及答案
二次函数的练习题及答案二次函数是高中数学中的重要内容,也是考试中常考的知识点之一。
掌握好二次函数的相关概念和解题方法,对于提高数学成绩和解决实际问题都有很大的帮助。
本文将通过一些练习题和答案的形式,帮助读者巩固和加深对二次函数的理解。
1. 练习题一:已知二次函数y = ax^2 + bx + c的图像经过点(1,4)和(2,1),求a、b、c的值。
解法:根据已知条件,将点(1,4)和(2,1)带入二次函数的方程,得到两个方程:a +b +c = 44a + 2b + c = 1解这个方程组,可以得到a、b、c的值。
2. 练习题二:已知二次函数y = ax^2 + bx + c的图像与x轴有两个交点,且交点的横坐标分别为2和5,求a、b、c的值。
解法:根据已知条件,可以得到两个方程:4a + 2b + c = 025a + 5b + c = 0同样地,解这个方程组,可以得到a、b、c的值。
3. 练习题三:已知二次函数y = ax^2 + bx + c的图像经过点(-1,0),且在点(2,3)处的切线斜率为4,求a、b、c的值。
解法:根据已知条件,可以得到两个方程:a -b +c = 04a + 2b + c = 3同样地,解这个方程组,可以得到a、b、c的值。
通过以上几个练习题,我们可以看到,解二次函数的题目,关键在于将已知条件转化为方程,然后通过解方程组得到未知数的值。
这是一个基本的解题思路,需要我们熟练掌握。
除了解题方法,我们还可以通过一些图像来加深对二次函数的理解。
例如,我们可以画出二次函数y = x^2 + x - 2的图像,观察图像的开口方向、顶点位置以及与x轴的交点等特征。
这样可以帮助我们更好地理解二次函数的性质和特点。
此外,二次函数还有一些重要的应用,例如在物理学中,二次函数可以用来描述自由落体运动的轨迹;在经济学中,二次函数可以用来描述成本、收益等与产量之间的关系。
通过了解这些应用,我们可以将抽象的数学知识与实际问题联系起来,提高数学的应用能力。
(word版)初三数学二次函数专题训练(含答案),文档
二次函数专题训练〔含答案〕一、填空题1.把抛物线y1x2向左平移2个单位得抛物线,接着再向下平移3个2单位,得抛物线.2 .函数y2x2x图象的对称轴是,最大值是.3 .正方形边长为3,如果边长增加x面积就增加y,那么y与x之间的函数关系是.4.二次函数y2x28x 6,通过配方化为y a(x h)2k的形为.5.二次函数y ax2c〔c不为零〕,当x取x,x〔x≠x〕时,函数值相等,那么1212x1与x2的关系是.6.抛物线y ax2bx c当b=0时,对称轴是,当a,b同号时,对称轴在y轴侧,当a,b异号时,对称轴在y轴侧.7.抛物线y 2(x1)23开口,对称轴是,顶点坐标是.如果y随x的增大而减小,那么x的取值范围是.8 .假设a0,那么函数y2x2ax5图象的顶点在第象限;当x a时,函4数值随x的增大而.二次函数9.口抛物线y ax2bx c〔a≠0〕当a0时,图象的开口a0时,图象的开,顶点坐标是.y1(x h)2,开口,顶点坐标是,对称轴2是.11.二次函数y3(x)2()的图象的顶点坐标是〔1,-2〕.12.y1(x1)22,当x时,函数值随x的增大而减小.313.直线y2x1与抛物线y5x2k交点的横坐标为2,那么k=,交点坐标为.14.用配方法将二次函数y x22x化成y a(xh)2k的形式是. 315.如果二次函数yx26x m的最小值是1,那么m的值是.二、选择题:16.在抛物线y2x23x1上的点是〔〕1A.〔0,-1〕B.1,0 C.〔-1,5〕D.〔3,4〕217.直线y5x2与抛物线yx21x的交点个数是〔〕22个个个 D.互相重合的两个18.关于抛物线y ax2bx c〔a≠0〕,下面几点结论中,正确的有〔〕①当a0时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大,当0时,情况相反.②抛物线的最高点或最低点都是指抛物线的顶点.③只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④一元二次方程ax2bx c 0〔a≠0〕的根,就是抛物线y ax2bx c与x轴交点的横坐标.A.①②③④B.①②③C.①②D.①19.二次函数y=(x+1)(x-3),那么图象的对称轴是〔〕A.x=1B.x=-2C.x=3D.x=-320.如果一次函数yax b的图象如图代13-3-12中A所示,那么二次函yax2bx-3的大致图象是〔〕图代13-2-1221.假设抛物线y ax2bxc的对称轴是x 2,那么ab〔〕A.2B.11D.2422.假设函数y a1,-2〕,那么抛物线的图象经过点〔xA.质说得全对的是〔〕开口向下,对称轴在y轴右侧,图象与正半开口向下,对称轴在y轴左侧,图象与正半开口向上,对称轴在y轴左侧,图象与负半开口向下,对称轴在y轴右侧,图象与负半y ax2(a 1)x a3的性轴相交轴相交轴相交轴相交23.二次函数y x2bxc中,如果b+c=0,那么那时图象经过的点是〔〕A.(-1,-1)B.(1,1)C.(1,-1)D.〔-1,1〕224.函数y ax2与y a〔a0〕在同一直角坐标系中的大致图象是〔〕x图代13-3-1325.如图代13-3-14,抛物线y x2bx c与y轴交于A点,与x轴正半轴交于B,C两点,且BC=3,S△ABC=6,那么b的值是〔〕A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数y ax2〔a 0〕,假设要使函数值永远小于零,那么自变量x的取值范围是〔〕A.X取任何实数00或x027.抛物线y2(x3)24向左平移1个单位,向下平移两个单位后的解析式为〔〕A.y2(x4)26B.y2(x4)22C.y2(x2)22D.y3(x3)2228.二次函数y x2ykx9k2〔k0〕图象的顶点在〔〕轴的负半轴上轴的正半轴上轴的负半轴上轴的正半轴上29.四个函数:y x,y x1,y1〔x0〕,y x2〔x0〕,其中图象经过原x点的函数有〔〕个个个个30.不管x为值何,函数y ax2bx c〔a≠0〕的值永远小于0的条件是〔〕0,00,03C.a0,00,0三、解答题31.二次函数y x22ax 2b 1和y x2(a 3)x b21的图象都经过x轴上两上不同的点M,N,求a,b的值.32.二次函数y ax2bx c的图象经过点A〔2,4〕,顶点的横坐标为1,它2的图象与x轴交于两点B〔x1,0〕,C〔x2,0〕,与y轴交于点D,且x12x2213,试问:y轴上是否存在点P,使得△POB与△DOC相似〔O为坐标原点〕?假设存在,请求出过P,B两点直线的解析式,假设不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A,B两点,该抛物线的对称轴x=-21与x轴相交于点C,且∠ABC=90°,求:〔1〕直线AB的解析式;〔2〕抛物线的解析式.图代13-3-15图代13-3-1634.中图代13-3-16,抛物线y ax23x c交x轴正方向于A,B两点,交y轴正方向于C点,过A,B,C三点做⊙D,假设⊙D与y轴相切.〔1〕求a,c满足的关系;〔2〕设∠ACB=α,求tgα;〔3〕设抛物线顶点为 P,判断直线PA与⊙O的位置关系并证明.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x轴,横断面的对称轴为y轴,桥拱的DGD'局部为一段抛物线,顶点C的高度为8米,AD和A'D'是两侧高为米的支柱,OA和OA'为两个方向的汽车通行区,宽都为15米,线段CD和C'D'为两段对称的上桥斜坡,其坡度为1∶4.求〔1〕桥拱DGD'所在抛物线的解析式及CC'的长;〔2〕BE和B'E'为支撑斜坡的立柱,其高都为4米,相应的AB和A'B'为两个方向的行人及非机动车通行区,试求AB和A'B'的宽;〔3〕按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于米,车载大型设备的顶部与地面的距离均为7米,它能否从OA〔或OA'〕区域平安通过?请说明理由.4图代13-3-1736.:抛物线yx 2 (m 4)x m 2与x 轴交于两点A(a,0),B(b,0)〔ab 〕.O为坐标原点,分别以OA ,OB 为直径作⊙O 和⊙O 在y 轴的哪一侧?简要说明理由,并12指出两圆的位置关系.37.如果抛物线yx 2 2(m 1)x m 1与x 轴都交于A ,B 两点,且A 点在x 轴( 的正半轴上,B 点在x 同的负半轴上, OA 的长是a ,OB 的长是b.1〕求m 的取值范围;2〕假设a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式;〔3〕 设〔2〕中的抛物线与 y 轴交于点 C ,抛物线的顶点是 M ,问:抛物线上是否存 在点P ,使△PAB 的面积等于△BCM 面积的8倍?假设存在,求出 P 点的坐标;假设不存在,请说明理由.38.:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点 P ,使是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-181〕假设AE=2,求AD 的长.〔2〕当点A 在EP 上移动〔点A 不与点E 重合〕时,①是否总有ADED?试证明AH FH你的结论;②设 ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.39.二次函数yx2(m24m5)x2(m24m9)的图象与x 轴的交点为2240. A ,B 〔点A 在点B 右边〕,与y 轴的交点为 C.1〕假设△ABC 为Rt △,求m 的值;2〕在△ABC 中,假设AC=BC ,求∠ACB 的正弦值;〔3〕设△ABC 的面积为 S ,求当m 为何值时,S 有最小值,并求这个最小值 .如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B ,满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.5图代13-3-191〕求⊙C 的圆心坐标.2〕过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式.〔3〕抛物线yax 2bx c 〔a ≠0〕的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式.41.直线y1x 和yx m ,二次函数yx 2pxq 图象的顶点为M.21x 与y〔1〕假设M 恰在直线yx m 的交点处,试证明:无论m 取何实数值,2二次函数yx 2 pxq 的图象与直线 y xm 总有两个不同的交点.〔2〕在〔1〕的条件下,假设直线y x m 过点D 〔0,-3〕,求二次函数yx 2pxq 的表达式,并作出其大致图象.图代13-3-20〔3〕 在〔2〕的条件下,假设二次函数 y x 2 pxq 的图象与y 轴交于点C ,与x同的左交点为A ,试在直线y1x 上求异于M 点P ,使P 在△CMA 的外接圆上.242.如图代 13-3-20,抛物线yx 2 ax b 与x 轴从左至右交于A ,B 两点,( 与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°.1〕求点C 的坐标;2〕求抛物线的解析式;3〕假设抛物线的顶点为P ,求四边形ABPC 的面积.6参 考 答 案动脑动手设每件提高x 元〔0≤x ≤10〕,即每件可获利润〔2+x 〕元,那么每天可销售〔100-10x 〕件,设每天所获利润为y 元,依题意,得y (2x)(10010x)10x 2 80x 20010(x4)2 360.∴当x=4时〔0≤x ≤10〕所获利润最大,即售出价为 14元,每天所赚得最大利润 360元.2.∵ymx 23m 4x 4,3∴当x=0时,y=4.当mx 23m 4x4 0,m0时m 1 3,m 24.33m即抛物线与y 轴的交点为〔0,4〕,与x 轴的交点为A 〔3,0〕,B4,0.3m1〕当AC=BC 时,43,m 4.3m4x 2 9 ∴y492〕当AC=AB 时,AO 3,OC4,AC 5.∴45 .33mm 112 .∴,m 231时,y1x 2 11x4;6当m666当m2时,y2x22x4.3333〕当AB=BC 时,44 2342,3m3m∴m8.77∴y8x244x4.721可求抛物线解析式为:y4x24,y1x211x4,y2x22x4或8x244x 96633y4.7213.〔1〕∵[(25)]24(226)m mm22m21(m2 1)20图代13-3-21∴不管m取何值,抛物线与x轴必有两个交点.令y=0,得x2(m25)x2m260(x2)(xm23)0,∴x12,x2m23.∴两交点中必有一个交点是A〔2,0〕.〔2〕由〔1〕得另一个交点B的坐标是〔m2+3,0〕.d m232m21,∵m2+100,∴d=m2+1.3〕①当d=10时,得m2=9.∴A〔2,0〕,B〔12,0〕.y x214x24(x7)225.该抛物线的对称轴是直线x=7,顶点为〔7,-25〕,∴AB的中点E〔7,0〕.过点P作PM⊥AB于点M,连结PE,那么PE 1AB5,PM2b2,ME2(7a)2,2∴(7a)2b252.①∵点PD在抛物线上,8∴b(a 7)2 25. ②解①②联合方程组,得 b 1 1,b 2 0.当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1.注:求b 的值还有其他思路,请读者探觅,写出解答过程.②△ABP 为锐角三角形时,那么-25≤b -1;△ ABP 为钝角三角形时,那么 b -1,且b ≠0.同步题库一、 填空题1.y1(x2)2,y1(x 2)23;2.x1,1;3.y(x3)29;4.224 8y2(x2)22;5. 互为相反数;轴,左,右;7. 下,x=-1,(-1,-3) ,x-1;8.四,增大;9.向上,向下,b ,4ac b 2 ,xb ; 10.向下,〔h,0〕,x=h ;2a4a2a1 2,-2;-1;,〔2,3〕;14.yx13;15.10.9二、选择题 28. C三、解答题解法一:依题意,设M 〔x 1,0〕,N 〔x 2,0〕,且x 1≠x 2,那么x 1,x 2为方程x 2+2ax-2b+1=0的两个实数根,∴x 1 x 22a ,x 1·x 22b1. ∵x 1,x 2又是方程x 2 (a3)xb 21 0的两个实数根,∴ x1+x 2=a-3,x 1·x 2=1-b 2.∴2a a 3,2b 1 1 b 2.解得a 1, 或a 1,b 0;b2.当a=1,b=0 时,二次函数的图象与x 轴只有一个交点,a=1,b=0舍去.当a=1;b=2时,二次函数y x 2 2x 3和yx 22x 3符合题意.∴a=1,b=2.解法二:∵二次函数yx 22ax 2b 1的图象对称轴为x a ,9二次函数 yx 2 (a 3)x b 21的图象的对称轴为 xa3,2又两个二次函数图象都经过 x 轴上两个不同的点 M ,N ,∴两个二次函数图象的对称轴为同一直线 .∴a3.a2解得a1.∴两个二次函数分别为yx 2 2x 2b1和yx 2 2xb 21.依题意,令y=0,得x 2 2x 2b 1 0,x 2 2xb 2 10.①+②得b 22b 0. 解得b 1 0,b 22.∴a 1,a 1,b 0;或2.b当a=1,b=0时,二次函数的图象与 x 轴只有一个交点,∴a=1,b=0舍去.当a=1,b=2时,二次函数为y x 22x 3和yx 2 2x3符合题意.∴a=1,b=2.32.解:∵y ax 2 bx c 的图象与x 轴交于点B 〔x 1,0〕,C 〔x 2,0〕,∴x 1 x 2b,x 1x 2c .aa又∵x 12 x 22 13即(x 1x 2)2 2x 1x 2 13,∴( b )22 c 13 .①aa又由y 的图象过点A 〔2,4〕,顶点横坐标为1,那么有4a+2b+c=42,②b 1③2a.2解由①②③组成的方程组得a=-1,b=1,c=6.10∴ y=-x 2+x+6.与x 轴交点坐标为〔-2,0〕,〔3,0〕.与y 轴交点D 坐标为〔0,6〕.设y 轴上存在点 P ,使得△POB ∽△DOC ,那么有 〔1〕 当B 〔-2,0〕,C 〔3,0〕,D 〔0,6〕时,有OB OP ,OB 2,OC 3,OD6.OCOD∴OP=4,即点P 坐标为〔0,4〕或〔0,-4〕.当P 点坐标为〔0,4〕时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4.得 k=-2.∴ y=-2x-4.或 OBOP,OB2,OD6,OC3. OD OC ∴OP=1,这时P 点坐标为〔0,1〕或〔0,-1〕.当P 点坐标为〔0,1〕时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得1k.2∴y1x1.2当P 点坐标为〔0,-1〕时,可设过P ,B 两点直线的解析式为y=kx-1,有0=-2k-1 ,得k 1 .2∴y1x1.22〕当B 〔3,0〕,C 〔-2,0〕,D 〔0,6〕时,同理可得y=-3x+9,或 y=3x-9, 或y1x 1,3 或y11. x 3解:〔1〕在直线y=k(x-4)中,令y=0,得x=4.∴A 点坐标为〔4,0〕. ∴ ∠ABC=90°. ∵△CBD ∽△BAO ,∴OB OA2OCOB ,即OB=OA ·OC.11又∵CO=1,OA=4,∴OB2=1×4=4.∴OB=2〔OB=-2舍去〕∴B点坐标为〔0,2〕.将点B〔0,2〕的坐标代入y=k(x-4)中,得k 1.1x 2∴直线的解析式为:y2.2〔2〕解法一:设抛物线的解析式为y a(x1)2h,函数图象过A〔4,0〕,B〔0,2〕,得25a h0,a h 2.解得a1,h25. 1212∴抛物线的解析式为:y1(x1)225. 1212解法二:设抛物线的解析式为:y ax2bx c,又设点A〔4,0〕关于x=-1的对称是D.∵CA=1+4=5,∴CD=5.∴OD=6.∴D点坐标为〔-6,0〕.将点A〔4,0〕,B〔0,2〕,D〔-6,0〕代入抛物线方程,得16a4b c0,c2,36a6b c0.解得a 1,b1,c2. 126∴抛物线的解析式为:y1x21x2.12634.解:〔1〕A,B的横坐标是方程ax23x c 0的两根,设为x1,x2〔x2x1〕,C的纵坐标是C.又∵y轴与⊙O相切,∴OA2·OB=OC.∴x1·x2=c2.又由方程ax23x c0知x1x2c,a12∴c2c,即ac=1.a〔2〕连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴AE1AB .1 2ACBADBADE.2ax ,∵0,x21∴ABx 2x 1 9 4ac5a.aAE5.2a又ED=OC=c ,∴tg AE 5 .DE23〕设∠PAB=β,∵P 点的坐标为3, 5 ,又∵a0,2a 4a∴在Rt △PAE 中,PE5.4a∴PE5tg.AE2∴tgβ=tg α.∴β=α.∴∠PAE=∠ADE.∵∠ADE+∠DAE=90°PA 和⊙D 相切.解:〔1〕设DGD '所在的抛物线的解析式为 y ax 2 c ,由题意得 G 〔0,8〕,D 〔15,〕.138c,解得a1 , ∴9025ac.c 8.∴DGD '所在的抛物线的解析式为 y1x 2 8.∵AD1且AD=5.5,90AC4∴×4=22(米).∴cc2OC 2 (OA AC) 2(1522〕=74 〔米〕.答:cc '的长为 74米. 〔2〕∵EB 1,BE 4,BC=16.BC 4∴∴AB=AC-BC=22-16=6〔米〕.答:AB 和A 'B '的宽都是 6米.〔3〕在y1x 2 8中,当x=4时,901737y16 8 .90 45∵37 (7 0.4) 1970.4545∴该大型货车可以从 OA 〔OA '〕区域平安通过.解:〔1〕∵⊙O 1与⊙O 2外切于原点O ,∴A ,B 两点分别位于原点两旁,即 a0,b0.∴方程x 2 (m 4)x m 2 0的两个根a ,b 异号.ab=m+20,∴m-2.〔2〕当m-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形.根据题意,计算得S四边形POOQ1b 2〔或1a 2或1〕.1 22 2m=-4时,四边形POOQ 是矩形.1 2根据题意,计算得S四边形POOQ1b 2〔或1a 2或1〕.1 222〔3〕∵(m 4)2 4(m 2)(m2)240∴方程x 2 (m 4)x m 2 0有两个不相等的实数根.∵ m-2,∴a b m4 0,ab m 20.14∴a0,b0.∴⊙O1与⊙O2都在y轴右侧,并且两圆内切.解:〔1〕设A,B两点的坐标分别是〔x1,0〕、〔x2,0〕,∵A,B两点在原点的两侧,∴x1x20,即-〔m+1〕0,解得m-1.∵[2(m1)]24(1)(m1)4m24m84(m1)272当m-1时,0,∴m的取值范围是m-1.2〕∵a∶b=3∶1,设a=3k,b=k〔k0〕,那么x1=3k,x2=-k,∴3k k2(m1),3k(k)(m1).解得m12,m21 .143∵m x2时,x1〔不合题意,舍去〕,33∴m=2∴抛物线的解析式是y x2x3.〔3〕易求抛物线y x22x3与x轴的两个交点坐标是A〔3,0〕,B〔-1,0〕与y轴交点坐标是C〔0,3〕,顶点坐标是M〔1,4〕.设直线BM的解析式为y px q,4 p1 q,那么0p(1)q.p2,解得q 2.∴直线BM的解析式是y=2x+2.设直线BM与y轴交于N,那么N点坐标是〔0,2〕,∴SBCM SBCNSMNC111111221.设P点坐标是〔x,y〕,15∵SABP8S BCM,∴1AB y81. 2即14y8.2∴y4.∴y4.当y=4时,P点与M点重合,即P〔1,4〕,当y=-4时,-4=-x2+2x+3,解得x122.∴满足条件的P点存在.P点坐标是〔1,4〕,(122,4),(122,4).38.〔1〕解:∵AD切⊙O于D,AE=2,EB=6,∴AD2=AE·AB=2×〔2+6〕=16.∴AD=4.图代13-2-23〔2〕①无论点A在EP上怎么移动〔点A不与点E重合〕,总有证法一:连结DB,交FH于G,∵AH是⊙O的切线,∴∠HDB=∠DEB.又∵BH⊥AH,BE为直径,∴∠BDE=90°AD ED.AH FH ∴有∠DBE=90°-∠DEB=90°-∠HDB=∠DBH.在△DFB和△DHB中,DF⊥AB,∠DFB=∠DHB=90°,DB=DB,∠DBE=∠DBH,∴△DFB∽△DHB.BH=BF,∴△BHF是等腰三角形.BG⊥FH,即BD⊥FH.16∴ED∥FH,∴AD ED.AH FH图代13-3-24证法二:连结DB,∵AH是⊙O的切线,∴∠HDB=∠DEF.又∵DF⊥AB,BH⊥DH,∴∠EDF=∠DBH.以BD为直径作一个圆,那么此圆必过F,H两点,∴∠DBH=∠DFH,∴∠EDF=∠DFH.∴ED∥FH.∴AD EDAH .FH ②∵ED=x,BH=,BH=y,BE=6,BF=BH,∴EF=6y.又∵DF是Rt△BDE斜边上的高,∴∴△DFE∽△BDE,EFED,即ED2EFEB.ED EB∴x26(6y),即y1x26.6∵点A不与点E重合,∴ED=x0.A从E向左移动,ED逐渐增大,当A和P重合时,ED最大,这时连结OD,那么OD⊥PH.∴OD∥BH.又POPE EO639,PB12,OD PO,BH ODPB4,BH PB PO ∴BF BH4,EF EB BF642,2由ED=EF·EB得x2 2 612,x0,∴x23.∴0x≤23.〔或由BH=4=y,代入y1x26中,得x23〕617故所求函数关系式为y1 x2 6〔0x ≤2 3〕.639.解:∵yx2m 4m5 x 2m24m 9(x2)[xm24m9],222∴可得A(2,0),Bm 24m 9 ,0,C0,2m 24m9 .22〔1〕∵△ABC 为直角三角形,∴OC 2OB ,AO24m9即4m24m92m,22化得(m 2)20.∴m=2.〔2〕∵AC=BC ,CO ⊥AB ,∴AO=BO ,即m 24m 9 2 .2∴OC2m 24m94.∴ACBC5.22过A 作AD ⊥BC ,垂足为D ,∴ AB·OC=BC ·AD.∴8AD.58∴sin ACBAD 5 4 .AC2 55图代13-3-25〔3〕S ABC1AB CO21m 24m 9 22m 24m9222(u2)u(u1)21.∵u m 2 4m9 1 ,2 2181,即m5∴当u2时,S 有最小值,最小值为.24解:〔1〕∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2,∴⊙C 过原点,OC=4,AB=8.A 点坐标为32,0,B 点坐标为0,24.55∴⊙C 的圆心C 的坐标为 16 ,12.52〕由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB,∴∠COA=∠CAO ,∠COB=∠CBO.∴ Rt△AOB ∽Rt △OCE ∽Rt △FCO.∴OE OC ,OFOC .AB OA AB OB∴OE5,OF20.3E 点坐标为〔 5,0〕,F 点坐标为0,20,3∴切线EF 解析式为y4x 20 .3 3〔3〕①当抛物线开口向下时,由题意,得抛物线顶点坐标为16,12 4,可得5 5b16, 5,2a 5 a324ac b 2 324ab1,524.24 cc. 55∴y5x 2 x 24 .32 5②当抛物线开口向上时 ,顶点坐标为16,124,得5 519b 16,5,2a 5a 4acb 28, b8 4,4a52424c.c .5541. ∴综合上述,抛物线解析式为〔1〕证明:由y5 x 2 4x 24 .8 5y5x 2 x24或y 5x 2 4x 24.325 85y1x, 2 yxm,有1xxm ,3221∴x mxmy m .2,3 , 32 1∴交点 M()m,m332m 21m此时二次函数为yx3 3x24mx 4m 2 1m .y ,有 3 93由②③联立,消去x24m1x4m 22m0.3934m1 244m 22m39316m 2 8m116m 28m9 3 931 0.∴无论m 为何实数值,二次函数y x 2pxq 的图象与直线yxm 总有两个不同的交点.20图代13-3-26〔2〕解:∵直线y=-x+m过点D〔0,-3〕,∴-3=0+m,∴m=-3.∴M〔-2,-1〕.∴二次函数为y(x2)21x24x3(x3)(x1).图象如图代13-3-26.3〕解:由勾股定理,可知△CMA为Rt△,且∠CMA=Rt∠,∴MC为△CMA外接圆直径.∵P在y 1x上,可设Pn,1n,由MC为△CMA外接圆的直径,P在这个圆上,22∴∠CPM=Rt∠.过P分别作PN⊥y,轴于N,PQ⊥x轴于R,过M作MS⊥y轴于S,MS的延长线与PR的延长线交于点Q.由勾股定理,有222212MP QP(n2)2n1.MQ,即MP222NC2NP231n n2.CP2220.CM而MP 2CP2CM2,21n2∴(n2)21n13n220,22即52260,n n2∴5n24n120,(5n6)(n2)0.21∴n 16,n 22.5 而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴n 6,5此时1 32n.5∴P 点坐标为6 ,3.5解:〔1〕根据题意,设点A 〔x 1,0〕、点〔x 2,0〕,且C 〔0,b 〕,x 10,x 20,b0,∵x 1,x 2是方程 x 2 axb0的两根, ∴x 1 x 2a,x 1x 2b .2在Rt △ABC 中,OC ⊥AB ,∴OC=OA ·OB.∵ OA=-x∴ bb0,∴b=1,∴C 〔0,1〕.〔2〕在Rt △AOC 的Rt △BOC 中,1,OB=x 2,2=-x 1·x 2=b.OCOC 1 1 x 1x 2 a tgtgx 1x 2x 1x 22.OAOBb∴a2.∴抛物线解析式为yx 2 2x1.图代13-3-27〔3〕∵y x 2 2x1,∴顶点P 的坐标为〔1,2〕,当x 2 2x 1 0时,x12. ∴A(12,0),B(12,0).延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1, ∴点D 坐标为〔-1 ,0〕. ∴S 四边形ABPC S DPB S DCA221DB y p 1AD yc221(22)21(22)1 2232(平方单位).223。
(word完整版)人教版九年级二次函数练习题(含答案),推荐文档
本大题共 4 小题,每小yo xyo x人教版九年级数学二次函数单元试卷时间 90 分钟满分:100 分一、选择题(本大题共 10 小题,每小题3分,共 30 分)1.下列函数不属于二次函数的是()A.y=(x-1)(x+2)1B.y= (x+1)22C. y=1-3 x2D. y=2(x+3)2-2x22.函数 y=-x2-4x+3 图象顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3.抛物线y =1 (x + 2)2 + 1 的顶点坐标是()2A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)4. y=(x-1)2+2 的对称轴是直线()A.x=-1 B.x=1 C.y=-1 D.y=1)5.已知二次函数y =mx 2 +x +m(m - 2) 的图象经过原点,则m 的值为(A.0 或2 2B. 0 C. 2 D.无法确定6.二次函数y=x 的图象向右平移3 个单位,得到新的图象的函数表达式是()A. y=x2+3B. y=x2-3C. y=(x+3)2D. y=(x-3)27.函数y=2x2-3x+4 经过的象限是()A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限8.下列说法错误的是()A.二次函数 y=3x2中,当x>0 时,y 随x 的增大而增大B.二次函数 y=-6x2中,当x=0 时,y 有最大值 0C.a 越大图象开口越小,a 越小图象开口越大D.不论 a 是正数还是负数,抛物线 y=ax2(a≠0)的顶点一定是坐标原点19.如图,小芳在某次投篮中,球的运动路线是抛物线y=-5x2+3.5 的一部分,若命中篮圈中心,则他与篮底的距离l 是()A.3.5m B.4m C.4.5m D.4.6m10.二次函数y=ax2+bx+c 的图象如图所示,下列结论错误的是()A.a>0.B.b>0.C.c<0.D.abc>0.y(第 9 题) 3.05mx(第 10 题)二、填空题( 2.5 Ol 题3分,共 12 分)11.一个正方形的面积为 16cm2,当把边长增加 x cm 时,正方形面积为 y cm2,则 y 关于x的函数为 。
二次函数测试题一
二次函数测试题一一、选择题(每小题3分,共24分)1. 二次函数2()y a x k k =-+,无论k 取什么实数,图像的顶点必在( )上 A. x 轴 B. 直线y x =- C. 直线y x = D. y 轴的左侧 2. 已知二次函数2y ax bx c =++的图像如图所示,则关于x 的方程220ax bx c +++=的根的情况是( )A. 有两个不相等的正实数根B. 有两个异号实数根C. 有两个相等的正实数根D. 没有实数根3. 若抛物线224y x bx =-+的顶点在x 轴上,则b 的值是( ) A. 1 B. 2 C. 2- D. 2±4. 关于x 的函数22y mx x m =+-的图像与x 轴的交点有( )个 A. 0 B. 1 C. 2 D. 1或25. 若二次函数26y x x c =-+的图像经过点1(1)A y -,,2(2)B y , ,3(33)C y +,,则123y y y 、、的大小关系正确的为( )A. 132y y y >>B. 213y y y >>C. 123y y y >>D. 312y y y >>6. 在平面直角坐标系中,抛物线223y x x =++绕着它与y 轴的交点旋转0180,所得抛物线的解析式是( )A. 2(1)2y x =-++ B. 2(1)4y x =--+ C. 2(1)2y x =--+ D. 2(1)4y x =-++ 7. 二次函数228y x mx =++的图象如图所示,则m 的值是( ) A. 8- B. 8 C. 8± D. 68. 二次函数2y ax bx c =++,若0a <,0b <,0c >,则此抛物线与x 轴的交点情况是( )A. 有两个交点,都在x 轴正半轴上B. 有两个交点,都在x 轴正半轴上C. 有两个交点,一个在x 轴正半轴上,一个在x 轴负半轴上D. 没有交点xy-3O第7题图二、填空题(第9、11题每空一分,其余每小题4分共34分)9. 抛物线21232y x x =--的图像开口向_____,配方成顶点式为___________________,其顶点坐标是__________,对称轴方程是_________,x =______时,y 有最___值,值为____.10. 若关于x 的函数2(1)21y a x x =--+的图像与x 轴只有一个交点,则a =_______. 11. 抛物线2y ax bx c =++的对称轴是_________________,顶点坐标是___________,当15. (10分)已知抛物线与x 轴交于(20)A ,,(40)B ,,且经过点(33)C -,,求抛物线的解析式,并求出对称轴方程和顶点坐标.16. (10分)如图所示,在矩形ABCD 中,4BC =,2AB =,P 是线段BC 上一动点,动点Q 在PC 或其延长线上,BP PQ =,以PQ 为一边的正方形PQRS ,点P 从B 点开始演射线BC 方向运动。
二次函数测试题及答案
二次函数测试题及答案本文档包含一些关于二次函数的测试题及其答案。
以下是题目及解答的详细内容:题目一已知二次函数 $y = ax^2 + bx + c$ 的顶点为 $(2, -3)$,并且经过点 $(-1, 10)$。
求解 $a$、$b$、$c$ 的值。
解答根据题意,已知顶点为$(2, -3)$,我们可以得到以下两个方程:\[\begin{align*}(-1)^2a - b + c &= 10 \\2^2a + 2b + c &= -3\end{align*}\]通过解这个方程组,我们可以求解出 $a$、$b$、$c$ 的值。
题目二已知二次函数 $y = 2x^2 - 5x + 3$,求解其顶点及对称轴方程。
解答对于二次函数 $y = 2x^2 - 5x + 3$,我们可以通过公式 $x = -\frac{b}{2a}$ 求解出其对称轴的 $x$ 坐标。
首先,可以得到 $a = 2$,$b = -5$。
将这些值代入公式中,我们可以得到对称轴的 $x$ 坐标为\[x = -\frac{-5}{2 \cdot 2} = \frac{5}{4}\]对称轴的方程可以表示为 $x = \frac{5}{4}$。
顶点的 $x$ 坐标等于对称轴的 $x$ 坐标,即 $x = \frac{5}{4}$。
将该值代入二次函数中,我们可以求得 $y$ 坐标:\[y = 2 \left(\frac{5}{4}\right)^2 - 5 \cdot \frac{5}{4} + 3 = -\frac{7}{8}\]所以该二次函数的顶点为 $\left(\frac{5}{4}, -\frac{7}{8}\right)$。
以上是关于二次函数测试题及其答案的内容。
以上是关于二次函数测试题及其答案的内容。
二次函数测试题及答案(完整资料).doc
【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】二次函数一、 选择题:1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x2. 二次函数c bx ax y ++=2的图象如右图,则点),(ac b M 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c 5. 已知反比例函数xk y =的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )x6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )B D7.抛物线322+-=xxy的对称轴是直线()A. 2-=xB. 2=xC. 1-=xD. 1=x8.二次函数2)1(2+-=xy的最小值是()A. 2-B. 2C.1- D. 19.二次函数cbxaxy++=2的图象如图所示,若cbaM++=24cbaN+-=,baP-=4,则()A. 0>M,0>N,0>PB. 0<M,0>N,0>PC. 0>M,0<N,0>PD. 0<M,0>N,0<P二、填空题:10.将二次函数322+-=xxy配方成khxy+-=2)(的形式,则y=______________________.11.已知抛物线cbxaxy++=2与x轴有两个交点,那么一元二次方程02=++cbxax的根的情况是______________________.12.已知抛物线cxaxy++=2与x轴交点的横坐标为1-,则ca+ =_________.13.请你写出函数2)1(+=xy与12+=xy具有的一个共同性质:_______________.14.有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线4=x;【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】乙:与x 轴两个交点的横坐标都是整数;丙:与y 轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:15. 已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_____________________.16. 如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点的坐标是________________.三、解答题:1. 已知函数12-+=bx x y 的图象经过点(3,2). (1)求这个函数的解析式;(2)当0>x 时,求使y ≥2的x 的取值范围.2. 如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B .【最新整理,下载后即可编辑】(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求点P 的坐标.3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系). (1)由已知图象上的三点坐标,求累积利润s (万元)与销售时间t (月)之间的函数关系式; (2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?提高题 1. 如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m. (1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计). 货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?2.某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元).(1)用含x的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;(2)求y与x之间的二次函数关系式;【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械设备?请你简要说明理由; (4)请把(2)中所求的二次函数配方成ab ac a b x y 44)2(22-++=的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?参考答案一、选择题:1. 2)1(2+-=x y2. 有两个不相等的实数根3. 14. (1)图象都是抛物线;(2)开口向上;(3)都有最低点(或最小值)5. 358512+-=x x y 或358512-+-=x x y 或178712+-=x x y 或178712-+-=x x y 6. 122++-=x x y 等(只须0<a ,0>c ) 7. )0,32(-8.3=x ,51<<x ,1,4三、解答题:1. 解:(1)∵函数12-+=bx x y 的图象经过点(3,2),∴2139=-+b . 解【最新整理,下载后即可编辑】得2-=b .∴函数解析式为122--=x x y .(2)当3=x 时,2=y .根据图象知当x ≥3时,y ≥2.∴当0>x 时,使y ≥2的x 的取值范围是x ≥3.2. 解:(1)由题意得051=++-n . ∴4-=n . ∴抛物线的解析式为452-+-=x x y .(2)∵点A 的坐标为(1,0),点B 的坐标为)4,0(-. ∴OA =1,OB =4. 在Rt △OAB 中,1722=+=OB OA AB ,且点P 在y 轴正半轴上.①当PB =PA 时,17=PB . ∴417-=-=OB PB OP .此时点P 的坐标为)417,0(-.②当PA =AB 时,OP =OB =4 此时点P 的坐标为【最新整理,下载后即可编辑】(0,4).3. 解:(1)设s 与t 的函数关系式为c bt at s ++=2,由题意得⎪⎩⎪⎨⎧=++-=++-=++;5.2525,224,5.1c b a c b a c b a 或⎪⎩⎪⎨⎧=-=++-=++.0,224,5.1c c b a c b a解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a∴t t s 2212-=. (2)把s =30代入t t s 2212-=,得.221302t t -= 解得101=t ,62-=t (舍去)答:截止到10月末公司累积利润可达到30万元. (3)把7=t 代入,得.5.10727212=⨯-⨯=s把8=t 代入,得.16828212=⨯-⨯=s5.55.1016=-. 答:第8个月获利润5.5万元.4. 解:(1)由于顶点在y 轴上,所以设这部分抛物线为图象的函数的解析式为1092+=ax y .【最新整理,下载后即可编辑】因为点)0,25(-A 或)0,25(B 在抛物线上,所以109)25(·02+-=a ,得12518-=a .因此所求函数解析式为109125182+-=x y (25-≤x ≤25).(2)因为点D 、E 的纵坐标为209,所以10912518209+-=,得245±=x .所以点D 的坐标为)209,245(-,点E 的坐标为)209,245(. 所以225)245(245=--=DE .因此卢浦大桥拱内实际桥长为385227501.01100225≈=⨯⨯(米).5. 解:(1)∵AB =3,21x x <,∴312=-x x . 由根与系数的关系有121=+x x . ∴11-=x ,22=x .∴OA =1,OB =2,2·21-==amx x .∵1tan tan =∠=∠ABC BAC ,∴1==OBOC OAOC .∴OC =2. ∴2-=m ,1=a .【最新整理,下载后即可编辑】∴此二次函数的解析式为22--=x x y .(2)在第一象限,抛物线上存在一点P ,使S △PAC =6. 解法一:过点P 作直线MN ∥AC ,交x 轴于点M ,交y 轴于N ,连结PA 、PC 、MC 、NA .∵MN ∥AC ,∴S △MAC =S △NAC = S △PAC =6.由(1)有OA =1,OC =2.∴6121221=⨯⨯=⨯⨯CN AM . ∴AM =6,CN =12.∴M (5,0),N (0,10). ∴直线MN 的解析式为102+-=x y .由⎩⎨⎧--=+-=,2,1022x x y x y 得⎩⎨⎧==;4311y x ⎩⎨⎧=-=18,422y x (舍去) ∴在 第一象限,抛物线上存在点)4,3(P ,使S △PAC =6. 解法二:设AP 与y 轴交于点),0(m D (m >0)∴直线AP 的解析式为m mx y +=.⎩⎨⎧+=--=.,22m mx y x x y ∴02)1(2=--+-m x m x . ∴1+=+m x x P A ,∴2+=m x P .又S △PAC = S △ADC + S △PDC =P x CD AO CD ·21·21+=)(21P x AO CD +.∴6)21)(2(21=+++m m ,0652=-+m m∴6=m (舍去)或1=m .∴在 第一象限,抛物线上存在点)4,3(P ,使S △PAC =6. 提高题1. 解:(1)∵抛物线c bx x y ++=2与x 轴只有一个交点,∴方程02=++c bx x 有两个相等的实数根,即042=-c b . ① 又点A 的坐标为(2,0),∴024=++c b . ② 由①②得4-=b ,4=a .(2)由(1)得抛物线的解析式为442+-=x x y . 当0=x 时,4=y . ∴点B 的坐标为(0,4).在Rt △OAB 中,OA =2,OB =4,得5222=+=OB OA AB . ∴△OAB 的周长为5265241+=++.2. 解:(1)76)34()10710710(1022++-=--⨯++-⨯=x x x x x S .当3)1(26=-⨯-=x 时,16)1(467)1(42=-⨯-⨯-⨯=最大S . ∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于投资的资金是13316=-万元.经分析,有两种投资方式符合要求,一种是取A 、B 、E各一股,投入资金为13625=++(万元),收益为0.55+0.4+0.9=1.85(万元)>1.6(万元); 另一种是取B 、D 、E 各一股,投入资金为2+4+6=12(万元)<13(万元),收益为0.4+0.5+0.9=1.8(万元)>1.6(万元).3. 解:(1)设抛物线的解析式为2ax y =,桥拱最高点到水面CD 的距离为h 米,则),5(h D -,)3,10(--h B . ∴⎩⎨⎧--=-=.3100,25h a h a 解得⎪⎩⎪⎨⎧=-=.1,251h a∴抛物线的解析式为2251x y -=.(2)水位由CD 处涨到点O 的时间为1÷0.25=4(小时),货车按原来速度行驶的路程为40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥. 设货车的速度提高到x 千米/时, 当2801404=⨯+x 时,60=x .∴要使货车安全通过此桥,货车的速度应超过60千米/时. 4. 解:(1)未出租的设备为10270-x 套,所有未出租设备的支出为)5402(-x 元.(2)54065101)5402()1027040(2++-=----=x x x x x y .∴540651012++-=x x y .(说明:此处不要写出x 的取值范围)(3)当月租金为300元时,租赁公司的月收益为11040元,此时出租的设备为37套;当月租金为350元时,租赁公司的月收益为11040元,此时出租的设备为32套. 因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有率,应选择出租37套. (4)5.11102)325(1015406510122+--=++-=x x x y . ∴当325=x 时,y 有最大值11102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故租出设备应为34套或35套. 即当月租金为为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11100元.二次函数测试题(B)一、选择题(每小题4分,共24分)1.抛物线y=-3x2+2x-1的图象与坐标轴的交点情况是( ) (A)没有交点.(B)只有一个交点.(C)有且只有两个交点.(D)有且只有三个交点.2.已知直线y=x与二次函数y=ax2-2x-1图象的一个交点的横坐标为1,则a的值为( )(A)2.(B)1.(C)3.(D)4.3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )(A)6.(B)4.(C)3.(D)1.4.函数y=ax2+bx+c中,若a>0,b<0,c<0,则这个函数图象与x轴的交点情况是( )(A)没有交点.(B)有两个交点,都在x轴的正半轴.(C)有两个交点,都在x轴的负半轴.(D)一个在x轴的正半轴,另一个在x轴的负半轴.5.已知(2,5)、(4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是( )(A)x=a.(B)x=2.(C)x=4.(D)x=3.b6.已知函数y=ax2+bx+c的图象如图1所示,那么能正确反映函数y=ax +b 图象的只可能是( )二、填空题(每小题4分,共24分)7.二次函数y =2x 2-4x +5的最小值是______.8.某二次函数的图象与x 轴交于点(-1,0),(4,0),且它的形状与y =-x 2形状相同.则这个二次函数的解析式为______.9.若函数y =-x 2+4的函数值y >0,则自变量x 的取值范围是______.10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下: 为获得最大利润,销售商应将该品牌电饭锅定价为 元.11.函数y =ax 2-(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为______.12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽1.6AB m ,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内,涵洞所在抛物线的解析式为________.三、解答题(本大题共52分) 13.(本题8分)已知抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,求过A 、B 两点的直线的解析式.14.(本题8分)抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8分)如图4,已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q 两点,且点P到x轴的距离为2.(1)求抛物线和直线l的解析式;(2)求点Q的坐标.16.(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10分)) 杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g (万元),g 也是关于x 的二次函数.(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y 关于x 的解析式;(2)求纯收益g 关于x 的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱A 3B 3=50m ,5根支柱A 1B 1、A 2B 2、A 3B 3、A 4B 4、A 5B 5之间的距离均为15m ,B 1B 5∥A 1A 5,将抛物线放在图4-②所示的直角坐标系中. (1)直接写出图4-②中点B 1、B 3、B 5的坐标; (2)求图4-②中抛物线的函数表达式; (3)求图4-①中支柱A 2B 2、A 4B 4的长度.图4-①B A 5A 4A 31A 2四、附加题(本题为探究题20分,不计入总分)19、 (湘西自治州附加题,有改动)如图5,已知A (2,2),B (3,0).动点P (m ,0)在线段OB 上移动,过点P 作直线l 与x 轴垂直.(1)设△OAB 中位于直线l 左侧部分的面积为S ,写出S 与m 之间的函数关系式;(2)试问是否存在点P ,使直线l 平分△OAB 的面积?若有,求出点P 的坐标;若无,请说明理由.参考答案一、1.B 2.D 3.C 4.D 5.D 6.B二、7.3 8.y =-x 2+3x +4 9.-2<x <2 10.130 11.a =0,(13-,0);a =1,(-1,0);a =9,(13,0)12.2154y x =-三、13.抛物线的顶点为(1,-3),点B 的坐标为(0,-2).直线AB 的解析式为y =-x -214.依题意可知抛物线经过点(1,0).于是a +2a +a 2+2=0,解得a 1=-1,a 2=-2.当a =-1或a =-2时,求得抛物线与x 轴的另一交点坐标均为(-3,0)15.(1)依题意可知b =0,c =1,且当y =2时,ax 2+1=2①,-ax +3=2②.由①、②解得a =1,x =1.故抛物线与直线的解析式分别为:y =x 2+1,y =-x +3;(2)Q (-2,5) 16.设降价x 元时,获得的利润为y 元.则依意可得y =(45-x )(100+4x )=-4x 2+80x +4500,即y =-4(x -10)2+4900.故当x =10时,y 最大=4900(元)17.(1)将(1,2)和(2,6)代入y =ax 2+bx ,求得a =b =1.故y =x 2+x ;(2)g =33x -150-y ,即g =-x 2+32x -150;(3)因y =-(x -16)2+106,所以设施开放后第16个月,纯收益最大.令g =0,得-x 2+32x -150=0.解得x =16x ≈16-10.3=5.7(舍去26.3).当x =5时,g <0, 当x =6时,g >0,故6个月后,能收回投资18.(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,【最新整理,下载后即可编辑】 ∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==. 四、19.(1)当0≤m ≤2时,S =212m ;当2<m ≤3时,S =12×3×2-12(3-m )(-2m +6)=-m 2+6m -6.(2)若有这样的P 点,使直线l 平分△OAB 的面积,很显然0<m <2.由于△OAB 的面积等于3,故当l 平分△OAB 面积时,S =32.21322m =∴.解得m.故存在这样的P 点,使l 平分△OAB 的面积.且点P 的坐标为,0).。
二次函数专题练习(word版
二次函数专题练习(Wgd 版一、初三数学二次函数易错题压轴题(难)1.如图1,抛物线C :y = X 2经过变换可得到抛物线C] :x =qx(x —勺),G 与X 轴的正 半轴交于点A ,且其对称轴分别交抛物线C 、Cl 于点B∣、卩,此时四边形O B 1A 1D 1恰为 正方形;按上述类似方法,如图2,抛物线C l ιy l =πl x(x-b l )经过变换可得到抛物线 C 2'.y 2=a 2x(x-b 2), C?与X 轴的正半轴交于点儿,且对称轴分别交抛物线G 、G 于 点B2、D It 此时四边形OB 2A 2D 2也恰为正方形:按上述类似方法,如图3,可得到抛物 线G :)'3 =弔兀(/一仇)与正方形O 尽九2,请探究以下问题:(1) 填空:= __________________ , b ∖= ______________ :(2) 求岀C?与C3的解析式:(3) 按上述类似方法,可得到抛物线C n '.y ll =a l ,x(x-b tl )与正方形O B n AnD II (∕z≥l). ①请用含n 的代数式直接表示出C n 的解析式;②当X 取任意不为O 的实数时,试比较北阴与Now 的函数值的大小关系,并说明理由•对 一 2x (〃 ≥ 1),②)‘2018>,2019 ・【解析】【分析】(1) 求与X 轴交点金坐标,根据正方形对角线性质表示出址的坐标,代入对应的解析式 即可求出对应的bj 的值,写出6的坐标,代入内的解析式中可求得6的值;(2) 求与X 轴交点金坐标,根据正方形对角线性质表示岀B?的坐标,代入对应的解析式 即可求岀对应的b2的值,写出D2的坐标,代入他的解析式中可求得Q2的值,写出抛物线 C2的解析式;再利用相同的方法求抛物线C3的解析式;(3) ①根据图形变换后二次项系数不变得出a n =a.=l,由弘坐标(1, 1) . &坐标(3, 3)、&坐标(7, 7)得弘坐标(2n -l, 2π-l),则亦2 (2n -l) =2π*1-2 (n≥l),写出抛物 线G 解析式・ 1 2x3" Z O②根据规律得到抛物线GoiS和抛物线C2Oie的解析式,用求差法比较出V2015与Xzoie的函数值的大小.【详解】解:(1) yf=O 时,GLX (x-bι)二0,×ι=0> ×2=b l9:.Al (bn 0),由正方形OBIA l D I得:OA I=Bi.Dι=b lt,b l b x h l b i∕∙βι ( —, -------------- — ) , DI (—, ),2 2 2 2I&在抛物线C上,则S,2 2解得:b1=0 (不符合题意),b1=2,:.DI (1, -1),把Dl (1» -1)代入yι=αιx (x-bι)中得:-l=-ai»故答案为1,2:(2)当比=0时,有a2x(x-b2) = 0, 解得X = $或X = O ,・•・4 (妇0)・由正方形OB2A2D2,得B2D2=OA2=b29T b ( b•••民在抛物线G上,.∙.今=今|今一2 解得”2 =4或b2=0 (不合舍去),.∙.Z)2(2,-2)∙∙∙ D2在抛物线C?上,.•.-2 = 26(2-4).解得a2=^.∙∙∙ C2的解析式是力=丄X(X— 4),即比=-X2-2X .2 2 同理,当儿=0时,有α∕(x-E) = 0, 解得x = b5,或X = 0..∙∙4(⅛,o).由正方形OB.A.D.9得BQ=O入=儿呵箸),啥勺.•・•侏在抛物线C?上,.⅛=I[⅛Y-2A.…2 2[ 2 ) 2解得4 = 12或E=O (不合舍去),.∙. A (6,-6) ∙∙∙Q在抛物线°3上,.∙.-6 = 6α3(6-12).解得佝=丄.6・・G的解析式是儿=τ"x(x-12)9 BP y3= ~χ— 2兀・6 6(3)解:①C”的解析式是Λ=^‰-X2-2X(Π≥1).②由①可得 >'2018 = ° X ;(H6 F 一2x,>f2019 = ω X ^2017X2-2X.当XHo 时,)‘2018 —『2019・•〉‘2018>)‘2019 ・【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、左理和二次函数的知识,并注总挖掘题目中的一些隐含条件•就此题而言:①求岀抛物线与X轴交点坐标电尸0代入汁算,把函数问题转化为方程问题:② 利用正方形对角线相等且垂直平分表示出对应弘、B2. B i. B n的坐标;③根据规律之间得到解析式是关键・已知A(70),C(0,3).(1)求此抛物线的关系式:(2)设点P是线段BC上方的抛物线上一动点,过点P作y轴的平行线,交线段BC于点D,当的而积最大时,求点D的坐标;(3)点M是抛物线上的一动点,当(2)中A BCP的而积最大时,请直接写出使ZPDM= 45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数练习题 姓名_____________
一、选择题
1.下列函数中,是二次函数的是( ) A .2
1y x x
=
- B .22
(1)y x x =-- C .2
22
x x
y -=
D .2
1y x x
=+
2.抛 物 线 2
4y x =-的 顶 点 坐 标 是 ( )
A 、(2,0)
B 、(-2,0)
C 、(1,-3)
D 、(0,-4) 3.若(2,5)、(4,5)是抛物线c bx ax y ++=2
上的两个点,则它的对称轴是 ( )
A 、x= b a
-
B 、1=x
C 、2=x
D 、3=x
4.已知反比例函数)0(≠=a x
a y ,当x <0时,y 随x 的增大而减小,则函数a ax
y +=2
的图象经过的象限是 ( )
A 、第三、四象限;
B 、第一、二象限;
C 、第二、三、四象限;
D 、第一、二、三象限 5.抛物线y=
12
x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式
为( ) A.y=
12
x 2+2x -2 B.y=
12
x 2+2x+1 C.y=
12
x 2-2x -1 D.y=
12
x 2-2x+1
6.在同一直角坐标系中,函数b ax y +=2
与)0(≠+=ab b ax y 的图象大致如图 ( )
7.抛物线y=2(x-1)2+3与y 轴的交点是( ). A .(0,5) B .(1,3) C .(0,2) D .(2,1)
8.抛物线y=x 2
-8的顶点坐标是( ). A .(3,0) B .(0,-8) C .(0,8) D .(0,2)
9.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=a x 2+c 的图象大致为( ).
10.将抛物线y=x 2
+1向左平移2个单位,再向下平移3个单位,则新抛物线的解析式为( ).
A.y=(x+2)2-3
B.y=(x+2)2-2
C.y=(x -2)2-3
D.y=(x -2)2-2
1.抛物线y=
12
(x-1)2-•3•的对称轴是_______,•顶点坐标是_______,•开口方向是
___________.
2.抛物线y=2(x-3)2+1是抛物线y=2x 2向_____•平移________•个单位长度,•再向_____平移_______个单位长度后得到的.
3.已知A (1,y 1),B (,y 2),C (-2,y 3)在二次函数y=2(x+1)2-1的图象上,则y 1,y 2,y 3的大小关系是_________________.(用“<”连接) 4.已知二次函数22
-=ax
y 的图象经过点(1,-1),则这个二次函数的关系式为
________,它与x 轴的交点的个数为 个. 5.若4
2
)2(--=m
x m y 是二次函数,则m= .
6.下列函数中,是二次函数的是 (填序号).
①142+-=x x y ;②22x y =; ③x x y 422+=;④x
y 3-=;⑤12--=x y ;
⑥p nx mx
y ++=2
; ⑦x
y 4=
; ⑧x y 5-=.
7.若函数15)2(2
2
++-=-x x m y m
是关于x 的二次函数,
则m 的值为 . 8.若函数54)82(2
2++-+=x x m m y 是关于x 的二次函数,则m 的取值范围
为 .
9.二次函数当x=2时有最小值为5,图象形状与y= —3x 2相同,则该二次函数的解析式为 . 10.已知:二次函数()()36417
82
+---=+-x m x m y m m
的图象开口向下,则=m ,
其顶点坐标是 .
11.对二次函数4322
+-=x x y 进行配方,得=y ,从而抛物线的对称轴是 ,顶点坐标是 ,当=x 时y 有最 值 .
12.把抛物线1422
++-=x x y (先配成顶点式)向左平移2个单位,再向上平移5个单位,则所得的抛物线解析式是 (结果写成一般式). 13.若抛物线2
2y x a x b =-+-的顶点坐标是()4,3-,则a = ,
b = ;
14.抛物线2
541y x x =--+关于y 轴对称的抛物线解 析式是 _________,关于x 轴对称的 抛物线解析式是 ______;
1.分别在同一坐标系内画出函数()122
12
-+=
x y 和()212
12
+-=
x y 的图象,并根据图
象写出对称轴、顶点坐标、最值和增减性.
2.已知函数()9232
+--=x y . (1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .
(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标; (5)
求出该抛物线与y 轴的交点坐标;
(6) 该函数图象可由2
3x y -=的图象经过怎样的平移得到的?
3.已知函数()412
-+=x y . (1) 指出函数图象的开口方向、对称轴和顶点坐标;
(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;
(4)
若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;
(5) 该抛物线经过怎样的平移能经过..原点. (6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,
函数值小于0.
(1)122
12
+-=x x
y ; (2)2832
-+-=x x
y ; (3)44
12
-+-
=x x
y
6.把抛物线c bx x y ++=2
的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是532
+-=x x y ,试求b 、c 的值.(提示:先把后抛物线配方成顶点式,再倒移到前抛物线,最后化成一般式)
7.把抛物线1422
++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.(先化成顶点式再移)。