半封闭式工业硅矿热炉主要技术方案

合集下载

工业硅矿热炉的冶炼工艺流程

工业硅矿热炉的冶炼工艺流程

工业硅矿热炉的冶炼工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!工业硅矿热炉的冶炼工艺流程主要包括以下几个步骤:1. 配料准备在冶炼工业硅之前,首先需要对硅矿石进行破碎、研磨等预处理,使其达到一定的细度。

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案半封闭式工业硅矿热炉主要技术方案随着工业化的快速发展,硅矿的需求量不断增加,硅矿热炉的应用也逐渐普及。

而半封闭式工业硅矿热炉在众多热炉技术中表现出了鲜明的特点,成为了当前热炉行业的热门技术之一。

本文将就半封闭式工业硅矿热炉的主要技术方案进行简述。

一、半封闭式工业硅矿热炉的定义半封闭式工业硅矿热炉是一种利用电石或其他燃料进行硅矿冶炼的热处理设备。

该设备可以比较有效地控制氧气的进出,以最大程度地维持炉内的热平衡;同时,也可在炉内设置熄焰器,对废气进行净化处理,起到环保作用。

二、半封闭式工业硅矿热炉的组成结构半封闭式工业硅矿热炉的主要组成部分包括炉体、煤气发生炉、燃料气收集器、熄焰器和排风系统。

其中,炉体是最核心的部件,负责容纳炉料、传递热能,完成硅矿熔化的过程;煤气发生炉则是为了产生所需的燃气,保证炉内温度的升高;而排风系统和熄焰器则是将炉内排放的废气进行净化处理,以达到环保标准。

三、半封闭式工业硅矿热炉的工作原理半封闭式工业硅矿热炉可以使用不同种类的燃料,包括电石、焦炭或者其他燃料。

在工作时,炉内首先需要预烧燃料,产生燃气,燃气在发生炉内与从上方进入的空气通过电石燃烧下,进一步提高炉内温度。

同时,炉料受到高温的加热,渐渐软化成液态,最后形成硅矿的熔体。

排出的废气经熄焰器净化后,再通过排风系统排放出去,达到环保要求。

四、半封闭式工业硅矿热炉的优点和应用半封闭式工业硅矿热炉的优点主要体现在以下几个方面:1、生产效率高。

半封闭式工业硅矿热炉能够在较短时间内完成硅矿的熔化,生产效率高。

2、净化废气效果显著。

熄焰器能够有效地将排出的废气进行净化过滤,达到环保标准。

3、舒适稳定的工作环境。

由于半封闭式工业硅矿热炉在工作时,控制氧气进出,维持炉内的热平衡,从而创造了舒适稳定的工作环境。

半封闭式工业硅矿热炉广泛应用于硅矿冶炼、金属加工、化工工业等领域。

硅材料的应用领域非常广泛,包括光伏、电子业、太阳能电池和半导体等产业,这些产业的发展离不开高品质的硅材料,半封闭式工业硅矿热炉的应用正好能满足这些产业的硅材料需求。

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案半封闭式工业硅矿热炉是一种常见的金属冶炼设备,广泛应用于金属冶炼、化工等领域。

它的主要特点是:炉体为半封闭结构;燃烧室、预加热室和加热室一体式设计,燃烧效率高;可连续生产,生产效率高。

半封闭式工业硅矿热炉的主要技术方案包括以下几个方面:1. 炉体结构设计半封闭式工业硅矿热炉的炉体结构设计采用半封闭结构,具有热损失小、燃烧效率高等特点。

炉体分为燃烧室、预加热室和加热室三部分。

燃烧室采用多点燃烧技术,将燃料燃烧产生的热量充分利用,实现高效加热。

预加热室和加热室采用强制对流方式,使工作效率更高。

2. 环保控制半封闭式工业硅矿热炉使用的燃料主要是煤粉和天然气等,其燃烧产物中含有二氧化碳、二氧化硫等有害气体。

为了保护环境,必须采取措施对这些有害气体进行收集和处理。

这里可以采用官方规定的环保设施,如除尘器和排放口。

3. 人性化设计半封闭式工业硅矿热炉的设计必须考虑人性化因素,以便提高操作员的舒适性和工作效率。

例如,设计中需要考虑炉体的高度,以使操作员在炉体的角度和位置上可以方便地观察应急情况。

此外,应该为炉体提供足够的照明和通风设备,以减轻操作员的疲劳。

4. 完善的控制系统半封闭式工业硅矿热炉的工作主要依靠控制系统来实现。

这个系统必须能够自动控制炉体的温度、燃料供应和燃烧的氧气含量。

此外,必须对炉体和设备的各种参数进行实时监控,及时发现并处理故障,确保生产的连续性和质量。

总之,半封闭式工业硅矿热炉是一种高效、环保的金属冶炼设备,具有炉体结构独特、环保控制完善、人性化设计、控制系统完善等特点。

在今后的生产中,需要加强和优化这些技术方案,以便更好地实现能耗优化和生产效率的提高。

工业硅矿热炉的设计说明

工业硅矿热炉的设计说明

工业硅冶炼能源节约技术的研究5.1概述能源安全已构成我国整体战略安全的一个极大隐患,成为经济社会发展的瓶颈。

我国人均煤炭、石油、天然气资源量仅为世界平均水平的60%、10%和5%。

目前,我国已成为世界第二大能源消费国和第二大石油消费国,能源供应紧张局面日趋严重[81]。

与此同时,我国也存在严重能源利用效率低的问题。

近年来的快速增长在很大程度上是靠消耗大量物质资源实现的。

我国单位产出的能耗和资源消耗水平明显高于国际先进水平,如火电供煤消耗高达22.5%,吨钢可比能耗高21%,水泥综合能耗高达45%。

据测算,我国每创造一美元GDP所消耗的能源是美国的4.3倍,是日本的11.5倍。

能源利用率仅为美国的26.9%,日本的11.5%[82]。

因此,提高能源使用效率是在能源总量不变条件成为中国发展中的刻不容缓的任务。

工业硅生产是高能耗行业,平均每吨工业硅需要消耗13000KWh电以上,全国年产100万吨工业硅需要13亿KWh以上。

而国外先进水平吨硅消耗量为11000KWh,我国工业硅电耗比国外先进水平高10—20%,能源节约潜力仍很大(预计年节约0.2亿KWh,相当0.1亿元)。

另外,国外先进水平也不是最理想的能耗水平,我国如能在国外先进水平基础上再配以精工细作,吨硅消耗量应该在10000—11000KWh间。

我国工业硅生产能源消耗高主要是因为设计上不合理、控制水平与管理水平不高。

设计上不合理体现在我国普遍使用的是6300KVA左右的小炉型(散热大、产量低)、炉型设计上为隔热措施不严密、电路设计不合理、极心圆尺寸大小不合理等许多细节方面。

控制水平不高体现在人工操作范围大、炉况稳定性差、造成因调整炉况波动费时较长而使得非生产性能耗损失大。

管理水平不高体现在管理上不严、制度不健全、操作细节缺乏,造成物资或能源上的消耗浪费。

目前工业硅生产中能源节约途径主要有:1)炉型的大型化方向;2)炉型的密闭化方向;3)余热利用化方向;4)提高炉子电效率措施如改进短网结构设计、改善变压器性能、改善电参数、采用低频电源等;5)提高炉子热效率;6)改变炉内反应机制;7)改变原料性能方向;8)采用自动控制方向;9)管理制度建设方向。

工业硅生产技术操作规程

工业硅生产技术操作规程

工业硅生产技术操作规程一基本原理工业硅是以硅石作为原料,用油焦、煤等作为还原剂,在矿热炉内的高温下发生还原反应而制取的。

总反应式为:SiO2+2C=Si+2CO t=1650℃在实际生产中,二氧化碳的还原是个十分复杂的过程,并分很多阶段进行。

其主要反应有:SiO2+3C=SiC+2CO t=1257℃SiO2+C=SiO+CO t=1810℃SiO2+Si =2SiO t=1390℃SiO+C=Si+CO t=650℃SiO+SiC=2Si+CO t=1775℃SiO2+2SiC =3Si+2CO t=2158℃上述各化学反应的程度,因操作条件的变化而变化。

适宜的温度和合理的配碳量是炉内化学反应顺利进行的基本条件,因此准确掌握配料比是搞好工业硅生产的关键。

炉料中配碳量的多少,影响炉料的电阻,从而影响电极埋入的深度,决定炉况的好坏。

当配碳量过剩时,炉料电阻小,导电性增加,电极间侧部电流增大,电极埋入炉料的深度减少,热损失增加,炉底温度降低,出炉困难,同时加快碳化硅生成结壳,坩埚缩小,炉料熔化量减少,生产效率降低;当配碳量过少时,炉料发粘,透气性差,容易刺火,化料慢,金属氧化物还原率低,炉料氧化物易形成渣堵塞炉眼,增加出炉困难,易涨炉底。

用碳还原二氧化硅,理论上每生产一吨硅相应的产生二吨一氧化碳。

这些气体由反应区逸出,带有大量热能。

因此正确捣炉、加料是增加炉料透气性,使料面冒火均匀“生料”充分预热,减少热损失,加快化料速度,提高产量、质量,降低消耗的有效方法。

二原材料及产品质量要求(一)入炉原料技术条件1 硅石技术条件注:硅石破碎后必须用水洗涤洗净。

2 油焦、煤技术条件(二)工业硅技术条件(根据用户需求,制定本技术条件)1 化学成分注:1、硅含量以100%减去规定分析成份铁、铝、钙之和确定。

2、表中用“—”表示的杂质铝是指该项不受单项限制,但要分析并在质量证明书中报告其分析结果。

2 粒度工业硅一般粒度为10~100mm,但粒度小于10mm,大于100mm的工业硅总和不超过10%,需方如有特殊要求,经供需方双方协商,可供其他规格粒度的产品。

9000kva矿热炉工业硅冶炼启炉方案说明

9000kva矿热炉工业硅冶炼启炉方案说明

2*9000kva矿热炉工业硅冶炼启炉方案工业硅启炉方案是指炉子在炉龄到期挖炉以后,在出炉前柴烘,电烘,投料生产的全过程,由于长时间停炉电极、炉膛均处于常温状态,为确保2台炉子启炉顺利,启炉后生产稳定连续,特制定此开炉方案:1、烘炉前的准备炉子在挖炉以后,在正式投产前要进行烘炉。

通过烘炉去除炉衬内的水分和气体,把电极和炉衬烧结成型,保证在投料前电极和炉衬满足投料要求。

烘炉过程包括柴烘、电烘、投料。

烘炉原则:升温速度由慢到快,火焰由小到大,电流由小到大并成阶梯型上升,缓慢提升电流,缓慢提升炉膛温度,不但要烘干炉衬、而且要使炉内蓄积足热量,使整个炉子具有较好的稳定性。

烘炉前生产营运部要制定详细的开炉方案,要做到万无一失,特别是电气系统要保证安全。

1.1设备检查全面检查各种设备是否符合烘炉要求,确认各辅助系统有无异常情况,并经调试后由相关负责人签字确认。

1.1.1循环水系统水冷系统全面通水,炉体循环水系统应在不低0.25Mpa水压的情况下通水24小时以上,做到水流畅通无阻,无泄漏现象。

1.1.2电极升降和压放系统电极升降正常、压放装置完好、灵活,液压系统无泄漏现象。

1.1.3配料系统皮带无跑偏,滚筒转动正常,皮带减速箱运行是否正常,振动给料机转动正常、弹簧钓钩松紧、长度合适,仪表、指示灯正常,配、加料装置运行可靠,灵活,完全满足冶炼要求。

1.1.4变压器及补偿系统变压器、补偿及输电系统完好,变压器保护系统测试(过流、轻、重瓦斯报警等)正常,炉变各种测试及高低压电路控制系统运行正常完全满足送电要求。

1.1.5炉体绝缘系统密封、绝缘完好,三相电极、短网、炉体各绝缘点测试正常。

1.1.6环保系统环保变频器、主风机、冷却器、旋风和布袋除尘器、环保系统、炉体绝缘、变压器系统等无问题,环保系统联动一次,确保各系统运行正常。

1.1.7辅助设备料场洗矿设备、油焦磁选设备试运行。

车间主行车、精整行车行车的升降是否正常,大车正常行驶,限位正常,抱闸是否正常,电铃是否正常。

矿热炉设计方案教学提纲

矿热炉设计方案教学提纲

(1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

(2)电极把持器。

大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。

大型矿热炉一般采用无烟煤,四、矿热炉主要设备1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备选择如下:1.1炉体炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。

炉底采用18~20㎜厚钢板,炉体采用25~30#工字钢支撑,自然通风冷却炉底,炉壳设有1~2个出料口,炉衬采用高铝耐火砖和自焙碳砖无缝砌筑新工艺,炉墙厚度为460~690㎜,外敷20㎜厚硅酸铝纤维板。

炉底碳砖厚度为800~1200㎜。

炉口采用碳化硅刚玉砖,流料槽采用水冷结构。

根据需要也可增加水冷炉门。

1.2矮烟罩采用全水冷结构或水冷骨架和耐热混凝土的复合结构。

其高度以满足设备维修的需要,全水冷结构采用水冷骨架、水冷盖板和水冷壁及水冷围板。

水冷骨架采用16~20#槽钢制成,三相电极周围内盖板采用无磁不锈钢板制成,外盖板及围板采用Q-235钢板制作,并设有极心圆调整装置和三相电极水冷保护套和绝缘密封装置。

水冷骨架和耐热混凝土复合结构采用烟罩侧壁由金属构件立柱支撑并通水冷却,四周用耐火砖砌筑而成,侧壁上设有三个操作门,在炉内大面上,开启方向是横向旋转式,上部有二个排烟口,与其相联的是二个立冷弯管烟道,直通烟囱或除尘装置。

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案宜兴市中宇电冶设备有限X公司33000KVA半封闭式工业硅矿热炉技术方案1电炉设备1.133000KVA半封闭式工业硅矿热炉主要技术参数1.2电炉设备设计1.2.1矿热炉设备设计要求矿热电炉采用半封闭型式,采用铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采用旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。

短网系统、铜瓦、进线电缆都长期具备20%之上的超负荷能力。

烟道和炉盖之间设置了可靠绝缘。

液压系统采用组合阀,且设置储能器。

电极升降油缸上、下俩端均设绝缘加以保护。

高压油管俩端全部带绝缘。

为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。

所有管道均设管道沟,便于检修。

闸阀采用不锈钢丝杆,以增加其使用寿命。

每组分水器设3路备用水路,分水器阀门采用不锈钢或铜球阀,分水器给、回水路布局合理。

炉盖采用框架式水冷结构,中心区采用不导磁材料制作。

电炉烟道在二、三楼之间设水冷段,以降低烟气温度。

1.2.2工艺设计要求电炉厂房柱子跨距按6m、7.5m布置。

电炉车间分设四个跨区,分别是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。

电炉跨初定为五层平台分别为:a)+0.0m出渣铁轨道平台包括铁道、出铁车和铁包、出渣车和渣包等。

其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。

b)+7.0m电炉炉口操作平台电炉控制室计算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。

C)+11.8变压器放置平台电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安装、检修、更换设有变压器吊装孔。

d)+18.3m电极升降机构平台平台空间内安装有电极升降、压放装置及电炉料管插板阀。

液压站也布置在此平台上。

e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台炉顶料仓座在此平台上。

工业硅技术安全操作规程

工业硅技术安全操作规程

12500KVA工业硅电炉工业硅技术安全操作规程一基本原理工业硅是以硅石为原料,用石油焦、精洗烟煤等作为原料,在矿热炉内高温下发生还原反应而制取的。

总反应式为:SiO2+2C=Si+2CO t=1650o C 在实际生产中,二氧化硅的还原是个十分复杂的过程,并分很多阶段进行。

其主要反应及相关温度:SiO2+3C=SiC+2CO t=1257o CSiO2+C=SiO+CO t=1310o CSiO2+Si=2SiO t=1390o CSiO+C=Si+CO t=1650o CSiO+SiC=2Si+CO t=1775o CSiO2+2SiC=3Si+2CO t=2158o C 上述各化学反应,随操作条件的变化而变化。

适宜的温度和合理的配碳量是炉内化学反应顺利进行的基本条件,因此准确掌握配料比是搞好工业硅生产的关键.炉料中配碳量的多少,直接影响炉料的电阻,从而影响电极埋入深度,决定炉况的好坏。

当配碳量过剩时,炉料电阻小,炉料导电性增加,电极间侧部电流增大,电极埋入炉料的深度减少,热损失增加,炉底温度降低,出炉困难,同时加快碳化硅生成结壳,坩锅缩小,炉料熔化量减少,生产效率降低;当配碳量过少时,炉料发粘,透气性差,电流波动大,容易刺火,化料慢,金属氧化物还原率低,炉料易形成渣堵塞炉眼,增加出炉困难,易涨炉底。

用碳还原二氧化硅,理论上每生产一吨硅相应的产生二吨一氧化碳气体和大量的SiO气体,这些气体由反应区逸出,带走大量热量并造成SiO损失.因此,有了正确的配炭量,还要有正确的配送电和加料、捣炉、打眼等一系列正确操作方法,达到保持电极深埋,增加炉料透气性,防止局部喷火,使料面冒火均匀,“生料"充分预热,减少热损失,加快化料速度,实现提高产量、质量,降低消耗的生产目标,形成生产良性循环。

二原材料及产品质量要求(一)入炉原料技术条件1 硅石技术条件2 石油焦、精洗煤技术条件(二)工业硅技术条件(根据用户需求,制定本技术条件)1 化学成分注:1 硅含量以100%减去规定分析成份铁、铝、钙之和来确定。

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案(冶金行业)半封闭式工业硅矿热炉主要技术方案宜兴市中宇电冶设备有限X公司33000KVA半封闭式工业硅矿热炉技术方案1电炉设备1.133000KVA半封闭式工业硅矿热炉主要技术参数1.2电炉设备设计1.2.1矿热炉设备设计要求矿热电炉采用半封闭型式,采用铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采用旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。

短网系统、铜瓦、进线电缆都长期具备20%之上的超负荷能力。

烟道和炉盖之间设置了可靠绝缘。

液压系统采用组合阀,且设置储能器。

电极升降油缸上、下俩端均设绝缘加以保护。

高压油管俩端全部带绝缘。

为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。

所有管道均设管道沟,便于检修。

闸阀采用不锈钢丝杆,以增加其使用寿命。

每组分水器设3路备用水路,分水器阀门采用不锈钢或铜球阀,分水器给、回水路布局合理。

炉盖采用框架式水冷结构,中心区采用不导磁材料制作。

电炉烟道在二、三楼之间设水冷段,以降低烟气温度。

1.2.2工艺设计要求电炉厂房柱子跨距按6m、7.5m布置。

电炉车间分设四个跨区,分别是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。

电炉跨初定为五层平台分别为:a)+0.0m出渣铁轨道平台包括铁道、出铁车和铁包、出渣车和渣包等。

其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。

b)+7.0m电炉炉口操作平台电炉控制室计算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。

C)+11.8变压器放置平台电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安装、检修、更换设有变压器吊装孔。

d)+18.3m电极升降机构平台平台空间内安装有电极升降、压放装置及电炉料管插板阀。

液压站也布置在此平台上。

e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台炉顶料仓座在此平台上。

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案宜兴市中宇电冶设备有限公司33000KV A半封闭式工业硅矿热炉技术方案1电炉设备1.1 33000KV A 半封闭式工业硅矿热炉主要技术参数1.2 电炉设备设计1.2.1矿热炉设备设计要求矿热电炉采用半封闭型式, 采用铜瓦压力环式电极把持器, 电炉炉底通风冷却, 炉体采用旋转炉体, 炉体测温, 变压器长期具备20%的长期超负荷能力。

短网系统、铜瓦、进线电缆都长期具备20%以上的超负荷能力。

烟道与炉盖之间设置了可靠绝缘。

液压系统采用组合阀, 并设置储能器。

电极升降油缸上、下两端均设绝缘加以保护。

高压油管两端全部带绝缘。

为防止电极偏斜, 设计时在炉盖、平台及电极导向装置, 电极导向装置设绝缘。

所有管道均设管道沟, 便于检修。

闸阀采用不锈钢丝杆, 以增加其使用寿命。

每组分水器设3路备用水路, 分水器阀门采用不锈钢或铜球阀, 分水器给、回水路布局合理。

炉盖采用框架式水冷结构, 中心区采用不导磁材料制作。

电炉烟道在二、三楼之间设水冷段, 以降低烟气温度。

1.2.2工艺设计要求电炉厂房柱子跨距按6m、 7.5m布置。

电炉车间分设四个跨区, 分别是变压器跨( 偏跨) 7.5m、电炉跨18m、浇注跨24m、成品跨18m。

电炉跨初定为五层平台分别为:a)+0.0m出渣铁轨道平台包括铁道、出铁车和铁包、出渣车和渣包等。

其中+2.4m平台为局部出铁操作平台: 该平台正对出铁口, 包括烧穿器、出铁挡板等出炉工具等。

b)+7.0m电炉炉口操作平台电炉控制室计算机室布置在此平台上, 冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。

C)+11.8变压器放置平台电炉设有三台单相变压器, 放置在此平台上成三角形布置, 为方便变压器安装、检修、更换设有变压器吊装孔。

d)+18.3m电极升降机构平台平台空间内安装有电极升降、压放装置及电炉料管插板阀。

液压站也布置在此平台上。

e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台炉顶料仓座在此平台上。

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案33000KVA半封闭式工业硅矿热炉技术方案1电炉设备1.2 电炉设备设计1.2.1矿热炉设备设计要求矿热电炉采纳半封闭型式,采纳铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采纳旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。

短网系统、铜瓦、进线电缆都长期具备20%以上的超负荷能力。

烟道与炉盖之间设置了可靠绝缘。

液压系统采纳组合阀,并设置储能器。

电极升降油缸上、下两端均设绝缘加以爱护。

高压油管两端全部带绝缘。

为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。

所有管道均设管道沟,便于检修。

闸阀采纳不锈钢丝杆,以增加其使用寿命。

每组分水器设3路备用水路,分水器阀门采纳不锈钢或铜球阀,分水器给、回水路布局合理。

炉盖采纳框架式水冷结构,中心区采纳不导磁材料制作。

电炉烟道在二、三楼之间设水冷段,以降低烟气温度。

1.2.2工艺设计要求电炉厂房柱子跨距按6m、7.5m布置。

电炉车间分设四个跨区,分不是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。

电炉跨初定为五层平台分不为:a)+0.0m出渣铁轨道平台包括铁道、出铁车和铁包、出渣车和渣包等。

其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。

b)+7.0m电炉炉口操作平台电炉操纵室运算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。

C)+11.8变压器放置平台电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安装、检修、更换设有变压器吊装孔。

d)+18.3m电极升降机构平台平台空间内安装有电极升降、压放装置及电炉料管插板阀。

液压站也布置在此平台上。

e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台炉顶料仓座在此平台上。

环形加料机及布料皮带均布置在该平台上,此层平台布置有可储存5~8批混合料的中间过度料仓。

2×12500KVA工业硅矿热炉生产线可行性研究报告

2×12500KVA工业硅矿热炉生产线可行性研究报告

2×12500KVA工业硅矿热炉生产线可行性研究报告2×12500KVA工业硅矿热炉生产线可行性研究报告1、概述1.1、项目概述1.1.1、项目单位:硅业有限公司工业硅矿热炉生产线;1.1.2、项目内容:建设2×12500KVA工业硅矿热炉生产线及相关辅助生产设施;1.1.3、拟建规模:工程项目:年产1.65万吨化学级工业硅;1.1.4、建设地点:1.2 、承建单位概况1.2.1、单位名称:硅业有限公司1.2.2、单位地址:1.2.3、承建单位概况:硅业有限公司是一家是具有独立法人资格的民营企业公司。

成立于年,投资万元建成投产KVA工业硅生产线,公司的发展战略是走“电冶”之路,公司的地理位置优越,公路、铁路运输十分方便。

硅业有限公司地处工业园,占地亩,2×12500KVA化学工业硅矿热电炉工程于年月投产,公司实行现代化的企业管理制度,在生产上拥有一批技术人员和一支技术过硬的职工队伍,公司本着“以人为本、和谐发展”的宗旨,坚持以市场为导向,以服务为根本,效益为核心的企业方针,坚持为客户提供最好的产品和优质的服务。

1.3 、建设地点概况园区是在国家实施西部大开发战略中,落实政府“十五”期间建立硅工业基地决策,于年月经政府批准设立的。

年月日正式成立,随即又被列为省重点开发区。

1.4、编制依据1.4.1、高耗能工业园区管理委员会关于硅业科技有限公司建设化学硅工程项目的批复;1.4.2、中亚硅业科技有限公司提交的有关设计基础资料。

1.5 、工程建设的必要性1.5.1 必要性1.5.1.1、中央实施西部大开发战略,加快中西部地区的发展,是我国现代化战略的重要组成部分,是逐步缩小地区差距,达到共同富裕的必然要求。

该项目的实施对本地区的经济发展具有一定的促进作用。

1.5.1.2、地处我国西北部腹地,具有丰富的矿产资源和炼焦用煤资源,丰富的水、电资源和便捷的交通运输条件。

1.5.1.3、目标就是要把公司发展成为煤电冶结合、1.5.2、公司领导锐意进取,有一定的市场竞争意识和经济价值观念;企业在长期的生产实践中培养了一批优秀的工程技术人员和管理人员,并有一支素质较高的熟练生产工人队伍,这对工程顺利建设提供了可靠的技术保证。

工业硅矿热炉的设计说明

工业硅矿热炉的设计说明

工业硅冶炼能源节约技术的研究5.1概述能源安全已构成我国整体战略安全的一个极大隐患,成为经济社会发展的瓶颈。

我国人均煤炭、石油、天然气资源量仅为世界平均水平的60%、10%和5%。

目前,我国已成为世界第二大能源消费国和第二大石油消费国,能源供应紧张局面日趋严重[81]。

与此同时,我国也存在严重能源利用效率低的问题。

近年来的快速增长在很大程度上是靠消耗大量物质资源实现的。

我国单位产出的能耗和资源消耗水平明显高于国际先进水平,如火电供煤消耗高达22.5%,吨钢可比能耗高21%,水泥综合能耗高达45%。

据测算,我国每创造一美元GDP所消耗的能源是美国的4.3倍,是日本的11.5倍。

能源利用率仅为美国的26.9%,日本的11.5%[82]。

因此,提高能源使用效率是在能源总量不变条件成为中国发展中的刻不容缓的任务。

工业硅生产是高能耗行业,平均每吨工业硅需要消耗13000KWh电以上,全国年产100万吨工业硅需要13亿KWh以上。

而国外先进水平吨硅消耗量为11000KWh,我国工业硅电耗比国外先进水平高10—20%,能源节约潜力仍很大(预计年节约0.2亿KWh,相当0.1亿元)。

另外,国外先进水平也不是最理想的能耗水平,我国如能在国外先进水平基础上再配以精工细作,吨硅消耗量应该在10000—11000KWh间。

我国工业硅生产能源消耗高主要是因为设计上不合理、控制水平与管理水平不高。

设计上不合理体现在我国普遍使用的是6300KVA左右的小炉型(散热大、产量低)、炉型设计上为隔热措施不严密、电路设计不合理、极心圆尺寸大小不合理等许多细节方面。

控制水平不高体现在人工操作范围大、炉况稳定性差、造成因调整炉况波动费时较长而使得非生产性能耗损失大。

管理水平不高体现在管理上不严、制度不健全、操作细节缺乏,造成物资或能源上的消耗浪费。

目前工业硅生产中能源节约途径主要有:1)炉型的大型化方向;2)炉型的密闭化方向;3)余热利用化方向;4)提高炉子电效率措施如改进短网结构设计、改善变压器性能、改善电参数、采用低频电源等;5)提高炉子热效率;6)改变炉内反应机制;7)改变原料性能方向;8)采用自动控制方向;9)管理制度建设方向。

矿热炉设计方案

矿热炉设计方案

矿热炉简介一原理用途矿热炉它主要用于还原冶炼矿石,碳质还原剂及溶剂等原料。

主要生产硅铁,锰铁,铬铁、钨铁、硅锰合金等铁合金,是冶金工业中重要工业原料及电石等化工原料。

其工作特点是采用碳质或镁质耐火材料作炉衬,使用自培电极。

电极插入炉料进行埋弧操作,利用电弧的能量及电流通过炉料的,因炉料的电阻而产生能量来熔炼金属,陆续加料,间歇式出铁渣,连续作业的一种工业电炉。

矿热炉主要类别、用途(1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

(2)电极把持器。

大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。

大型矿热炉一般采用无烟煤,焦碳和煤沥青拌合成的电极料,在电炉冶炼过程中自己培烧成的电极。

(3)短网(4)铜瓦(5)电极壳(6)下料系统(7)倒炉机(8)排烟系统(9)水冷系统(10)矿热炉变压器(11)操作系统第三层(1)液压系统(2)电极压放装置(3)电极升降系统(4)钢平台(5)料斗及环行布料车其他附属;斜桥上料系统,电子配料系统等三、矿热炉主要配置方案四、矿热炉主要设备1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备选择如下:1.1炉体炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。

矿热炉施工方案

矿热炉施工方案

矿热炉施工方案引言矿热炉是一种用于加热矿石的设备,广泛应用于冶金、矿山和建材等行业。

本文将介绍矿热炉的施工方案,包括选址、基础施工、炉体安装、热工系统及控制系统的搭建等方面。

选址选址是矿热炉施工的第一步,选址的合理与否直接影响到炉体的稳定运行。

在选择选址时,需要考虑以下几个因素:1.供应电源:矿热炉需要大量的电能供给,所以选址要考虑到附近是否有稳定的电力供应。

2.原材料供应:矿热炉需要矿石等原材料进行加热,选址时要考虑到附近是否有足够的原材料供应。

3.环境要求:矿热炉产生的废气要达到环境排放标准,选址时要考虑到附近是否有合适的废气排放场所。

4.地质条件:选址时要考虑到地质条件,避免选址在地质灾害风险区域。

基础施工基础施工是矿热炉施工的关键环节,它直接关系到炉体的稳定性和安全性。

基础施工包括以下几个步骤:1.地面整平:在选址确定后,首先需要将选址上的地面进行整平,确保基础施工的稳定性。

2.基础测量:在地面整平后,需要进行基础的测量,确定基础的尺寸和形状。

3.筏基施工:筏基是矿热炉的基础,它可以分为浅基础和深基础两种类型。

具体的施工方式根据炉体的尺寸和形状来确定。

4.地基处理:在筏基施工完成后,需要对地基进行处理,确保地基的承载能力和稳定性。

5.基础验收:基础施工完成后,需要进行基础的验收,确保基础质量符合要求。

炉体安装炉体安装是矿热炉施工的核心环节,它直接关系到炉体的运行效果和使用寿命。

炉体安装包括以下几个步骤:1.炉体制作:在进行炉体安装前,需要根据设计图纸进行炉体的制作。

炉体的制作需要遵循相关的制造标准和工艺要求。

2.炉体运输:炉体制作完成后,需要进行炉体的运输。

炉体运输时需要注意保护炉体,并采取合适的运输方式。

3.炉体安装:炉体安装时需要根据设计图纸进行,确保炉体的安装位置和姿态正确,连接紧固可靠。

4.炉体测试:炉体安装完成后,需要进行炉体的测试。

测试包括炉体的密封性测试、抗压性能测试、热工性能测试等。

工业硅的生产操作工艺

工业硅的生产操作工艺

工业硅的生产操作工艺金属硅、工业硅加2010-12-06 15:36:01 阅读60 评论0字号:大中小一、工业硅生产设备及原材料工业硅是在炭质砌衬的矿热炉内,用低灰份炭质还原剂还原高纯硅石而得到的。

由于工业硅含铁量很低,因而工业硅电炉一般采用石墨电极或炭素电极。

工业硅电炉主要有两种炉型,一种是单相炉,一种是三相炉。

单相炉一般是固定敞口炉,炉形近似于椭圆形,两根电极沿椭圆长轴成直线排列。

三相炉有固定敞口炉,也有炉体旋转敞口炉。

冶炼工业硅,与冶炼75%硅铁相比,要求炉膛保持更高的反应温度,过程需要消耗更多的能量,相应的炉内能量的集中程度也应该更高。

使用单相炉时,由于出铁口离电极较远,所以出铁时间也较长。

大型电炉一般为三相炉。

工业硅冶炼是在三相或单相矿热电炉内进行的,大都采用敞口电炉,也有用封闭旋转式电炉。

采用旋转电炉有助于得到较稳定的下料速度,利于破坏碳化硅,减少碳化硅的沉积速度。

3~5 天转一圈,国外大多采用炉体旋转生产工业硅。

两段式旋转炉体1977 年挪威研制成功两段式旋转炉体,可以防止炉料结壳,利于炉料下沉,在工业硅生产中试验已取得较好效果。

使用两段式旋转炉体9000KVA 电炉电耗可下降10-14%。

采用矮烟罩半封闭式电炉,可以回收烟气余热,改善工人劳动条件。

但炉口跑火处理不如敞口电炉及时、方便,同时半封闭后炉口料温度升高,料层温度分布有所改变,对一氧化硅凝结不利,有待进一步研究解决。

冶炼工业硅采用碳质炉衬,都采用石墨电极。

而由于受石墨电极直径的限制,我国目前工业硅电炉最大容量为7500KVA,一般为2000-3000KVA。

而国外大多采用10000-20000KVA 三相敞口旋转电炉。

10000KVA 左右电炉,电极直径为800-900 毫米左右。

工作电压为120-130 伏。

世界最大的工业硅电炉为90000KVA。

冶炼工业硅炉子、电气参数与生产硅铁(含硅75%)基本相同,不过由于工业硅含硅量高,硅还原更难了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宜兴市中宇电冶设备有限公司33000KVA半封闭式工业硅矿热炉技术方案1电炉设备1.2 电炉设备设计1.2.1矿热炉设备设计要求矿热电炉采用半封闭型式,采用铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采用旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。

短网系统、铜瓦、进线电缆都长期具备20%以上的超负荷能力。

烟道与炉盖之间设置了可靠绝缘。

液压系统采用组合阀,并设置储能器。

电极升降油缸上、下两端均设绝缘加以保护。

高压油管两端全部带绝缘。

为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。

所有管道均设管道沟,便于检修。

闸阀采用不锈钢丝杆,以增加其使用寿命。

每组分水器设3路备用水路,分水器阀门采用不锈钢或铜球阀,分水器给、回水路布局合理。

炉盖采用框架式水冷结构,中心区采用不导磁材料制作。

电炉烟道在二、三楼之间设水冷段,以降低烟气温度。

1.2.2工艺设计要求电炉厂房柱子跨距按6m、7.5m布置。

电炉车间分设四个跨区,分别是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。

电炉跨初定为五层平台分别为:a)+0.0m出渣铁轨道平台包括铁道、出铁车和铁包、出渣车和渣包等。

其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。

b)+7.0m电炉炉口操作平台电炉控制室计算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。

C)+11.8变压器放置平台电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安装、检修、更换设有变压器吊装孔。

d)+18.3m电极升降机构平台平台空间内安装有电极升降、压放装置及电炉料管插板阀。

液压站也布置在此平台上。

e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台炉顶料仓座在此平台上。

环形加料机及布料皮带均布置在该平台上,此层平台布置有可储存5~8批混合料的中间过度料仓。

1.3 矿热炉结构1.3.1矿热炉炉体组成:炉体旋转机构、炉底、炉壳、出铁口等。

炉体旋转机构严格按图纸要求施工,炉底设计、制作、安装时其平面度误差+10mm。

工字钢板下部用钢板连接并焊制一起。

炉壳内径9200mm,高度5000mm,炉壳采用焊接形式。

侧壁采用20mm钢板焊接,底部采用22mm钢板制作。

炉体设有5个出炉口,出铁口夹角72o炉壳分瓣制作,组装后炉壳的直径极限偏差为+18mm。

1.3.2铁口出铁排烟系统组成:由烟罩、烟气管道、电动翻板阀、烟罩及烟道吊挂等组成。

在出炉时,用于对出炉口烟气进行收集、输送。

排烟罩上喷涂耐火材料及打结需要的锚钩,防止烟气温度高使之变形。

1.3.4 矿热炉电极把持器组成:组合式把持器由上、下两部分组成。

电极把持器上部主要包括:电极升降装置、电极抱紧压放装置,上部把持器桶及导向系统、液压机管路等。

电极把持器下部主要包括:下部把持筒、防磁不锈钢水冷保护屏、炉内导电铜管、铜瓦、压力环及绝缘系统等部件。

每相电极把持器设10片铜瓦,一个压力环、4片保护屏,导电铜管Ф70×10㎜,铜管材质T2,铜瓦采用锻造紫铜加工而成,由于其工作环境具有高温特点,其内部用软化冷水却。

压力环采用油缸式压力环,一半是丝缸,一半是油缸。

为了电炉操作人员的安全和保护电炉重要零部件不受损坏,在电极上部及下部,设计多极绝缘系统,所使用的绝缘件都是特制的,且能承受高温作用,以确保各部分相互绝缘,防磁不锈钢水冷保护屏由无磁钢制成,并在圆周围方向都用水冷却。

在电极水冷却密封保护屏与电极之间,填有硅酸铝陶瓷纤维毡,以防止炉内的气体从盖上逸出。

压力环与电极冷水保护屏具有相同的外径,当电极下部需要维修时,可以将整个电极提起,使铜瓦高于炉盖,以便维修。

压力环圆形误差直径小于5㎜。

导电铜管吊挂装置、下把持筒下段、铜管固定装置由无磁钢制成。

电极上部设电极抱紧、压放装置,它们不仅能保证在电极上、下移动时夹持电极,而且可以实现电极临时压放,电极的可靠夹持是通过碟型弹簧的机械压力来实现的,把持器上部包括与炉盖、平台之间,设计有导向装置。

其中与炉盖之间导向装置由无磁钢制成。

电极把持器主要参数参见下表:1.3.5 电极液压升降系统电极升降装置采用液压吊缸式结构1.3.6 二次母线系统(短网系统)组成:二次母线系统包括:水冷补偿器、水冷铜管短网、水冷电缆、绝缘吊挂装置、低压电流互感器等。

电炉采用三个单相变压器供电,变压器到电极之间采用水冷却二次母线系统供电。

三个单相变压器及段网均成1200对称分布,导电铜管ф70×10㎜。

单相变压器要求跳相(铜管长度≤2000mm时可不进行调相设计),变压器采用水冷补偿器,变压器二次出线方式:管式侧出线,端子直径ф70㎜×10㎜,每台变压器出线端头ф68h11加工长度150㎜,线圈首尾交叉两排引出。

出线端子间距180㎜,两排间距200㎜,出线端子与短网连接采用水冷电缆形式。

采用管式短网,每套导电管组20根,共计60跟,在厂内预组装,进行0.5Mpa压力试验。

低压电流互感器是二次侧测量控制与计量专用,安装在变压器二次侧出口处。

变压器的二次侧与水冷铜管短网相接用的是水冷却补偿,水冷却铜管短网与电极方向通过连接套连接到水冷软电缆上,水冷软电缆再接到电极导电铜管。

软电缆、水冷铜管短网、水冷电缆、电极导电铜管及导电铜瓦构成一个冷却水回路,每个回路都装有流量开关及电接点双金属温度计。

水冷铜管短网通过吊挂装置吊挂在上层平台上,每根铜管有相应绝缘,外包绝缘层。

吊挂装置由无磁钢制成。

短网主要参数:1.3.7 烟罩与排烟系统组成:烟罩、烟道及水冷蝶阀组成。

1)烟罩烟罩采用全封闭、框架式双层壁水冷钢性结构件炉盖结构,包括盖板,侧板及操作门、密封及绝缘系统、烟道孔及料管孔等。

为了减低由于电磁感应造成的涡流损耗,在强磁部位均采用不导磁材料制作。

炉盖采用悬吊和支撑结合式水冷板式结构。

侧板开设6个操作孔(门)。

炉盖上开有10个料管孔、1个中心料管、3个相间料管、6个外围料管,2个烟道接口,炉盖内部净空高度约1800㎜. 2)烟道组成:水冷段、保温烟道和放空烟道、钟罩阀等。

用于将电炉生产时炉内产生的烟气送入除尘系统,或在除尘系统发生异常时,将炉气直接排空。

电炉设2根烟道,烟道直径需要根据正常工作状态烟气流速计算。

烟道与炉盖连接段采用水冷结构。

保温烟道内表面部喷涂轻质耐火隔热材料。

为了保证喷涂的轻质耐火材料牢固,烟道内表面需设计牢固锚钩。

烟囱的高度符合相关设计规范,烟道上部设有电动闸板和罩阀。

烟道在+22.4m平台下两根合一后对接除尘器,焊接质量符合JB/1152-81Ⅱ级规定。

1.3.8水冷系统组成:由冷却水分配器、压力、温度和流量监测仪表、阀门、水冷却管道、集水槽等组成。

短网、水冷电缆、导电管、铜瓦采用单独一套独立的水冷却系统,炉体、炉盖、烟道、料管采用单独一套水冷却系统,每个冷却水分配器个有一个进水管法兰和一个出水管法兰,分别于冷却水管相连,在进水管道上装有流量控制阀门。

为便于检查,进水管回水管各排成一排,并标有水路编号,回水管将冷却水回水返送到公用冷却集水槽中,过滤后经水槽下部的排水管排出。

冷却水:电炉本体500t/h,0.35Mpa(分水器压力);变压器140 t/h,0.35Mpa(入口压力)进、回水温差不大于8℃.电接点压力计设在分水器上,在进水压力小于0.25MPA时报警。

在分水器上设就地温度显示仪,温度和流量开关设在回水管上,在温度高于50℃时报警。

1.3.9 炉顶加料系统组成:炉顶加料系统由振动给料器、炉料输送胶带机(PL4a#)、可逆胶带机(PL5a#)、移动皮带机、料仓及隔板、料管及绝缘、料管闸门、料头、料位仪等组成。

电炉加料为连续式加料方式。

1)炉料输送胶带机(PL4a#)、可逆胶带机(PL5a#)功能:承担二座33.3MV A工业硅矿热炉日常冶炼炉料的输送任务。

输送能力:180t/h。

2)移动皮带机移动皮带机用来将炉料分配到各个料仓.3)炉顶料仓加料仓为方形,由金属焊接而成。

炉顶料仓共10个,分成两排分布在电极两侧,每个加料仓设有雷达料位仪(付加料仓不设),料位信号为模拟量信号。

4)料管9组炉内加料管,1组中心料管,10组料管绝缘及吊挂、10组料管闸门和10组料位仪。

外围直径320㎜,中心料管直径377㎜,料管上部(人可操作方便位置)设液压插板阀及针式闸门,以实现间断加料或检修时关料。

针式闸门位于液压插板阀上方。

料管上设有绝缘段(二段),下降角度小于550,所有料管在电极上限位置以上0.5m线往下均为不锈钢材质,中心料管、相间料管采用不锈钢水冷结构料头形式,其余为耐热铸钢(ZG35+0.03%Cr)料头形式,耐热铸钢料头位可调整消耗式料头,焊接应符合JB/ZQ4000·3-86B级规定。

料仓、料管技术参数参见下表:1.3.10 液压系统组成:液压系统由液压泵站、电极压放盘(阀站)、蓄能器等组成。

电炉车间设有液压站,作为电极升降、电极压放的动力来源,18m平台上有三台独立液压控制箱。

分别控制三相电极的压放和电极的升降。

当压力油进入油缸有杆腔时,电极上升,电极下降靠电极自重,电极下降速度由调速阀确定(上升速度由泵确定)。

电极升降由控制室控制,也可由就地压放盘控制。

压放装置控制,组合把持器的夹紧油缸和升降油缸,组合把持器的压放油缸速度由压放盘内的流量调节阀调定。

备用系统的功能相当于一个电极升降控制单元或压放动力单元,当其中一个液压泵发生故障时,可以将相应的截止阀打开或关闭,将控制信号切换到备用装置上,即可完成替代故障单元的功能。

过滤冷却系统将油箱中的油经过滤油器和冷却器不断循环,保持介质的清洁度和温度要求。

油箱带有液位指示、温度指示、液位开关,在冷却过滤油泵的吸口没有注油口,通过此油口可向油箱中加油。

每个控制阀组都带有一个溢流阀和一个压力表来调节系统压力,压力表由一个开关控制,需要读取压力值时,按下按钮,压力表方有显示。

电极升降阀组没有压力继电器,设置在流量控制阀上游,用来监视升降压力管路中的压力,测定可能出现的严重泄漏(如管路疏松、软管破裂等),当出现这种异常抵压的情况时,压力继电器发出信号停止油泵并在控制室报警。

蓄能器可以保证在事故停电状态电极向上移动1800mm,脱离反应区。

液压站在制造厂进行空载运转,连续30分钟,要求运转平稳,无噪音,控制阀开闭灵活可靠。

宜兴市中宇电冶设备有限公司2010年12月28日。

相关文档
最新文档