高考数学二轮复习 专题训练七 第3讲 统计与统计案例 理
高考数学二轮复习学案统计与统计案例 含解析
统计与统计案例2讲第年份A.12卷别考查内容及考题位置命题分析抽样方法(基础型)]系统抽样N总体容量为N,样本容量为n,则要将总体均分成n组,每组个(有零头时要先去掉).nN 若第一组抽到编号为k的个体,则以后各组中抽取的个体编号依次为k+,…,k+(n nN-1).n分层抽样按比例抽样,计算的主要依据是:各层抽取的数量之比=总体中各层的数量之比.[考法全练]1.福利彩票“双色球”中红色球的号码可以从01,02,03,…,32,33这33个两位号码中选取,小明利用如下所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列的数字开始,从左到右依次读取数据,则第四个被选中的红色球号码为()81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 8506 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49D.C.0616解析:选C.被选中的红色球号码依次为17,12,33,06,32,22.所以第四个被选中的红色球号码为06,故选C.2.利用系统抽样法从编号分别为1,2,3,…,80的80件不同产品中抽出一个容量为16的样本,如果抽出的产品中有一件产品的编号为13,则抽到产品的最大编号为()A.73 B.78D.77.76C80解析:选B.样本的分段间隔为=5,所以13号在第三组,则最大的编号为13+(16-163)×5=78.故选B.3.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:最喜爱喜爱一般不喜欢1 6004 8007 2006 400电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽选出的人数分别为()A.25,25,25,25 B.48,72,64,16D.30,1024,36,32,820C.,40,1100,解析:选D.法一:因为抽样比为=20020 000所以每类人中应抽选出的人数分别为11118.×=故选D.,×7 200=36,6 400×=321 600=4 800×24,200200200200∶82,∶∶7 200一般、法二:最喜爱、喜爱、不喜欢的比例为4 800∶∶6 4001 600=69∶96,所以每类人中应抽选出的人数分别为,×100=24×10036=29+8++28+69++682×100=32,×100=8,故选D.6+9+8+26+9+8+2“双图”“五数”估计总体(基础型)统计中的5个数据特征众数:在样本数据中,出现次数最多的那个数据.(1).中位数:样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为(2) 偶数,就取中间两个数据的平均数作为中位数.1-).+x+…+x(3)平均数:样本数据的算术平均数,即x=(x n12n (4)方差与标准差:1---2222;x)]+…+(x-sx=[(x-x)(+x-x)n21n1---222]. )x--x)x-[(xx)+…+(+(sx=n12n 从频率分布直方图中得出有关数据的技巧频率频率,频率=组距×频率:频率分布直方图中横轴表示组数,纵轴表示. (1)组距组距(2)频率比:频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比,从而根据已知的几组数据个数比求有关值.(3)众数:最高小长方形底边中点的横坐标.(4)中位数:平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标.(5)平均数:频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和.(6)性质应用:若纵轴上存在参数值,则根据所有小长方形的高之和×组距=1,列方程即可求得参数值.[考法全练]1.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量/度120 140 160 180 200户数25823则这20户家庭该月用电量的众数和中位数分别是()A.180,170B.160,180D.180,C.160170,160解析:选A.用电量为180度的家庭最多,有8户,故这20户家庭该月用电量的众数是180,排除B,C;将用电量按从小到大的顺序排列后,处于最中间位置的两个数是160,180,故这20户家庭该月用电量的中位数是170.故选A.2.(2018·贵阳模拟)在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、) (分的学生人数是100~80,则成绩在40第四、第五小组,已知第二小组的频数是A.15 B.18D.20.25C解析:选A.根据频率分布直方图,得第二小组的频率是0.04×10=0.4,因为频数是40,40所以样本容量是100,又成绩在80~100分的频率是(0.01+0.005)×10=0.15,所以成0.4绩在80~100分的学生人数是100×0.15=15.故选A.3.(2018·武汉调研)某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均数为91,如图,该选手的7个得分的茎叶图有一个数据模糊,无法辨认,在图中用x表示,则剩余5个得分的方差为()36116B. A.79D6.30C.1解析:选C.由茎叶图知,最低分为87分,最高分为99分.依题意得,×(87+93+9051222+(9091)+(93=×[(87-91)-=x×10++91)=91,解得x4.则剩余5个得分的方差s9+51222]=×(16+4+1+91)(91+-91)9)=6.故选C.91)--+(9454.“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用.出现这样的统计结果无疑是令人尴尬的.某小区为了提高小区内人员的读书兴趣,准备举办读书活动,并进一定量的书籍丰富小区图书站.由于不同年龄段的人看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了40名读书者进行调查,将他们的年龄(单位:岁)分成6段:[20,30),[30,40),[40,50),[50,60),[60,后得到如图所示的频率分布直方图.80],[70,70).(1)求在这40名读书者中年龄分布在[40,70)的人数;(2)求这40名读书者的年龄的平均数和中位数.解:(1)由频率分布直方图知年龄在[40,70)的频率为(0.020+0.030+0.025)×10=0.75,故这40名读书者中年龄分布在[40,70)的人数为40×0.75=30.(2)这40名读书者年龄的平均数为25×0.05+35×0.10+45×0.20+55×0.30+65×0.25+75×0.10=54.设中位数为x,则0.005×10+0.010×10+0.020×10+0.030×(x-50)=0.5,解得x=55,故这40名读书者年龄的中位数为55.回归分析(综合型)[典型例题]命题角度一线性回归分析(2018·广州模拟)某地1~10岁男童年龄x(单位:岁)与身高的中位数y(单位:cm)(i ii=1,2,…,10)如下表:对上表的数据作初步处理,得到下面的散点图及一些统计量的值.(1)求y关于x的线性回归方程(线性回归方程系数精确到0.01);2的回归方程类型,他求得的回归方程x关于y更适宜作为r+qx+px=y某同学认为(2).^2+10.17x+68.07.经调查,该地11岁男童身高的中位数为y=-0.30x145.3 cm.与(1)中的线是性回归方程比较,哪个回归方程的拟合效果更好?^^^^附:回归方程y=a+bx中的斜率和截距的最小二乘估计公式分别为:b=n--)-y-x)(y ∑(x ii^-^-1i=,a=y-bx.n-2)∑-x (x i1i=10--∑(x-x)(y-y)566.85ii^i1=【解】(1)b==≈6.871≈6.87,1082.50-2)xx-(∑ii1=^-^-a=y-bx=112.45-6.871×5.5≈74.66,^所以y关于x的线性回归方程为y=6.87x+74.66.^^(2)若回归方程为y=6.87x+74.66,当x=11时,y=150.23.^2+10.17x+68.07,当x=11时,yy若回归方程为=-0.30x=143.64.|143.64-145.3|=1.66<|150.23-145.3|=4.93,^2+10.17x+68.07对该地11y所以回归方程=-0.30x岁男童身高中位数的拟合效果更好.求回归直线方程的关键及实际应用^^(1)关键:正确理解计算b,a的公式和准确地计算.(2)实际应用:在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.命题角度二非线性回归分析(2018·潍坊模拟)某机构为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.811-表中u=,u=∑u.ii8x1i=i d(1)根据散点图判断:y=a+bx与y=c+哪一个模型更适合作为该图书每册的成本费xy(单位:元)与印刷数量x(单位:千册)的回归方程?(只要求给出判断,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程(回归系数的结果精确到0.01);(3)若该图书每册的定价为10元,则至少应该印刷多少册才能使销售利润不低于78 840元?(假设能够全部售出.结果精确到1)^^^附:对于一组数据(w,v),(w,v),…,(w,v),其回归直线v=α+βw的斜率和n2121nn--∑)-vw)(v (w-ii^^-^1i=,α==v-βw.截距的最小二乘估计分别为βn-2∑)w-w(i1i=d【解】(1)由散点图判断,y=c+更适合作为该图书每册的成本费y(单位:元)与印刷x数量x(单位:千册)的回归方程.1(2)令u=,先建立y关于u的线性回归方程,x8--)-y-u)(y∑(u7.049ii^1i=8.96,≈8.957≈由于d==80.787-2)u(u-∑i1i=^-^-所以c =y-d·u=3.63-8.957×0.269≈1.22,^所以y关于u的线性回归方程为y=1.22+8.96u,8.96^所以y关于x的回归方程为y=1.22+.x8.96??+1.22x≥78.840,10(3)假设印刷x 千册,依题意得x-??x所以x≥10,所以至少印刷10 000册才能使销售利润不低于78 840元.求非线性回归方程的步骤确定变量,作出散点图.(1) (2)根据散点图,选择恰当的拟合函数.变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归(3)方程.分析拟合效果:通过计算相关指数或画残差图来判断拟合效果.(4) 根据相应的变换,写出非线性回归方程.(5)命题角度三回归分析与正态分布的综合问题单位:天当中某商品的销售量y(兰州模拟)某地一商场记录了12月份某5 (2018·单位:℃)的相关数据,如下表:kg)与该地当日最高气温x(2 9 8 5 x 11128710y 8^^^ +a;的回归方程y=bx(1)试求y与x试用所6 ℃,x之间是正相关还是负相关;若该地12月某日的最高气温是y(2)判断与求回归方程预测这天该商品的销售量;-22近σ,其中μ近似取样本平均数xX~N(μ,σ,)12(3)假定该地月份的日最高气温2 <13.4).,试求P(3.8<似取样本方差sX 附:参考公式和有关数据nn----?∑∑)yx)(ynxy-(x-xy-iiii?^1ii1===b=?222∑∑)-x (x-nxx ,ii11ii==??-^^nn---x=yb-a2),则P(μ-σ<X<μ+σ)=0.682 7,且P((3.210≈3.2,≈1.8,若X~Nμ,σμ-2σ<X<μ+2σ)=0.954 5.n----【解】(1)由题意,x=7,y=9,∑xy-nxy=287-5×7×9=-28,iii1=n28-^^^--222=12.92.0.56)×7-y-bx=9(-a=-=-n∑x-x=2955×750,b=-0.56,=i501i=^ 12.92.x+y所以所求回归直线方程为=-0.56^代入回归方程可得,x=6x0.56<0(2)由b=-知,y与负相关.将^9.56=,12.9260.56y=-×+.kg9.56 即可预测当日该商品的销售量为1-2σ≈3.2,所以P(3.8<X<13.4)=P(μ-σ<7,X≈s<μ+2σ)=P(μ-知(3)由(1)μ≈x=21σ<X<μ+σ)+P(μ-2σ<X<μ+2σ)=0.818 6.22σ的意义情况下,记清正态分布的密度曲线,解决与正态分布有关的问题,在理解μ是一条关于μ对称的钟形曲线,很多问题都是利用图象的对称性解决的.[对点训练](2018·高考全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:^y=-30.4+13.5 t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立^模型②:y=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.^解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为^y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(以下2种理由,任选其一)(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资^额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t得到的预②年以后的环境基础设施投资额的变化趋势,因此利用模型2010可以较好地描述.测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.统计案例(综合型)[典型例题](2018·福州模拟)某学校八年级共有学生400人,现对该校八年级学生随机抽取50名进行实践操作能力测试,实践操作能力测试结果分为四个等级水平,一、二等级水平的学生实践操作能力较弱,三、四等级水平的学生实践操作能力较强,测试结果统计如下表:等级水平一水平二水平三水平四/名男生6 8 4 12女生/名2864(1)根据表中统计的数据填写下面2×2列联表,并判断是否有95%的把握认为学生实践操作能力强弱与性别有关?实践操作能力较弱实践操作能力较强总计男生/名名女生/总计(2)现从测试结果为水平一的学生中随机抽取4名进行学习力测试,记抽到水平一的男生的人数为ξ,求ξ的分布列和数学期望.下面的临界值表供参考:2)bcad-n(2参考公式:K=,其中n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)【解】(1)2×2列联表如下:实践操作能力较弱实践操作能力较强总计30 12 /男生名18/女生名20614 总计26 24 502)1814×(6×12-502252所以K==≈4.327>3.841.5230×20×26×24所以有95%的把握认为学生实践操作能力强弱与性别有关.(2)ξ的取值为0,1,2,3,4.32141234CC3CCC1C8C6664464P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ4444C14C21C7C351010101041C4=4)==.4C21010所以ξ的分布列为183418所以E(ξ)=0×+1×+2×+3×+4×==1.6.14217352105独立性检验的关键2,若2×2列联表没有列出来,要先列出此表.×2列联表准确计算K根据(1)22的观测值k越大,对应假设事件H成立的概率越小,H不成立的概率越大.(2)K 00[对点训练] (2018·高考全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式的把握认为两种生产方式的效率有差异?99%中的列联表,能否有(2)根据(3).2)-bcn(ad2=,附:K)b+dd)(a+c)(b(a+)(c+2≥kK) P(0.050 0.010 0.00110.8286.6353.841 k解:(1)第二种生产方式的效率更高.理由如下:(以下4种理由,任选其一)(ⅰ)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ⅱ)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(ⅲ)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.(ⅳ)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.79+81(2)由茎叶图知m==80.2列联表如下:超过m 不超过m第一种生产方式515第二种生产方式1552)5-5×1540×(×152(3)由于K==10>6.635,所以有99%的把握认为两种生产方20×20×20×20式的效率有差异.一、选择题1.某班对八校联考成绩进行分析,利用随机数法抽取样本时,先将60个同学按01,6列的数开始向右读,则选出的第5行第9进行编号,然后从随机数表第60,…,03,02.个个体是()(注:下表为随机数表的第8行和第9行)6301 6378 5916 9555 6719 9810 5071 7512 8673 5807 4439 5238 793321 1234 2978 6456 0782 5242 0744 3815 5100 1342 9966 0279 54A.07B.25D.52C.42解析:选D.依题意得,依次选出的个体分别是12,34,29,56,07,52,…因此选出的第6个个体是52.2.(2018·高考全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如图所示的饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A.法一:设建设前经济收入为a,则建设后经济收入为2a,则由饼图可得建设前种植收入为0.6a,其他收入为0.04a,养殖收入为0.3a.建设后种植收入为0.74a,其他收入为0.1a,养殖收入为0.6a,养殖收入与第三产业收入的总和为1.16a,所以新农村建设后,种植收入减少是错误的.故选A.法二:因为0.6<0.37×2,所以新农村建设后,种植收入增加,而不是减少,所以A是错误的.故选A.3.(2018·昆明模拟)AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度.AQI共分六级,从一级优(0~50);二级良(51~100);三级轻度污染(101~150);四级中度污染(151~200);直至五级重度污染(201~300);六级严重污染(大于300).如图是昆明市2017年4月份随机抽取10天的AQI茎叶图,利用该样本估计)(月份空气质量优的天数为4年2018昆明市.A.3 B.4D.C.12214解析:选C.从茎叶图知10天中有4天空气质量为优,所以空气质量为优的频率为=1022,所以估计昆明市2018年4月份空气质量为优的天数为30×=12,故选C. 554.对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为()A.5 B.7D.50C.10解析:选D.根据题中的频率分布直方图可知,三等品的频率为1-(0.050 0+0.062 5+0.037 5)×5=0.25,因此该样本中三等品的件数为200×0.25=50.5.(2018·桂林、白色、梧州、崇左、北海五市联考)如图是2017年第一季度五省GDP情况图,则下列陈述正确的是()①2017年第一季度GDP总量和增速均居同一位的省只有1个;②与去年同期相比,2017年第一季度五个省的GDP总量均实现了增长;③去年同期的GDP总量前三位是D省、B省、A省;④2016年同期A省的GDP总量也是第三位..②③④B .①②A.C.②④D.①③④解析:选B.①2017年第一季度GDP总量和增速均居同一位的省有2个,B省和C省的GDP总量和增速分别居第一位和第四位,故①错误;由图知②正确;由图计算2016年同期五省的GDP 总量,可知前三位为D省、B省、A省,故③正确;由③知2016年同期A省的GDP总量是第三位,故④正确.故选B.6.(一题多解)(2018·石家庄质量检测(二))某学校A、B两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及标准差.①A班数学兴趣小组的平均成绩高于B班的平均成绩;②B班数学兴趣小组的平均成绩高于A班的平均成绩;③A班数学兴趣小组成绩的标准差大于B班成绩的标准差;④B班数学兴趣小组成绩的标准差大于A班成绩的标准差.其中正确结论的编号为()A.①③B.①④D.②④C.②③-:由于x=解析:选B.法一A11-=x92+82++95)=78,78+76+74++78+76+81+85+86+8862(53++64B1515--所66,所以x>x,++73+7374+70+83+82+91)=++(45+4851+53+56+6264+65BA以①正确.12222222278)++(74-78)(78+(78-s78)=-[(5378)-+(62-78)+(64-78)78)+(76-A152222222+(95-+(92-(88-78)+(82-+(76-78)78)+(81-78)+(85-78)(86+-78)78)+2]=121.678),12222222266)-++(62-66)-66)+(53-66)-+(5666)(64s=-[(4566)(48+-66)+(51B152222222+(9166)66)-+(82-66)+(73-66)+(74--+(7066)(83+-66)(73-+(6566)+-2]=175.2.66)22故s>s,B班的方差大,则B班的标准差也大,④正确,故选B.AB班的数学成绩较A班;B 班数学兴趣小组的平均成绩明显高于A由茎叶图可知,法二:B.班的方差、标准差较大,故选B班的数学成绩较分散,显然B稳定,大多在70~90分,二、填空题.给出下列四个命题:7名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量52①某班级一共有;46号同学在样本中,那么样本中另一位同学的编号为234的样本,已知7号、33号、为的平均数、众数、中位数都相同;4,5,3,3,②一组数据1,2 ;1,则其标准差为2,2,3的平均数为③若一组数据a,0,1^^^其中,bx④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+^-^-1.=,则b1,y=3a=2,x=.填序号)其中真命题有________(,故抽取的样本的编号分别134=在①中,由系统抽样知抽样的分段间隔为52÷解析:的平均数,5,3,4,①是假命题;在②中,数据1,23为7号、20号、33号、46号,故1中,因是真命题;在③,众数为3,都相同,故②4+5)=3,中位数为33为(1+2++3+6121)-[(-15,解得a=-1,故样本的方差为3为样本的平均数为1,所以a+0+1+2+=52222,标准差为2,故③是假命题;在]=2-1)④+(2-1)-+(31)(0+-1)中,回归直+(1^^--^^-^线方程为y=bx+2,又回归直线过点(x,y),把(1,3)代入回归直线方程y=bx+2,得b=1,故④是真命题.答案:②④8.(2018·长沙模拟)为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计数据表:购买食品的年 2.09 2.15 2.50 2.84 2.92x/万元支出费用购买水果和牛奶的1.25 1.30 1.50 1.70 1.75/万元年支出费用y^^^^^-^-根据上表可得回归直线方程y=bx+a,其中b=0.59,a=y-bx,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为________万元.2.09+2.15+2.50+2.84+2.92-解析:x==2.50(万元),51.25+1.30+1.50+1.70+1.75-y==1.50(万元),5.^^-^-^其中b=0.59,a=y-bx=0.025,y=0.59x+0.025,故年支出费用为3.00万元的家庭^购买水果和牛奶的年支出费用约为y=0.59×3.00+0.025=1.795万元.答案:1.7959.某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,则这组数据的方差是________.解析:因为对一组数据同时加上或减去同一个常数,方差不变,所以本题中可先对这5个数据同时减去110,得到新的数据分别为0,4,11,9,16,其平均数为8,根据方差公1222222]=30.8.-8)+(9-8)=[(0-8)-+(48)++(11-8)(16式可得s5答案:30.8三、解答题10.某校为了解高一学生周末的“阅读时间”,从高一年级中随机抽取了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示:(1)求图中a的值;(2)估计该校高一学生周末“阅读时间”的中位数;(3)用样本频率代替概率.现从全校高一年级随机抽取20名学生,其中有k名学生“阅读时间”在[1,2.5)内的概率为P(X=k),其中k=0,1,2,…,20.当P(X=k)最大时,求k的值.解:(1)由频率分布直方图可知,周末“阅读时间”在[0,0.5)内的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.20,0.25,0.07,0.04,0.02,所以1-(0.04+0.08+0.20+0.25+0.07+0.04+0.02)=0.5a+0.5a,解得a=0.30.(2)设该校高一学生周末“阅读时间”的中位数为m小时.因为前5组的频率之和为0.04+0.08+0.15+0.20+0.25=0.72>0.5,,0.47<0.5=0.20+0.15+0.08+0.04组的频率之和为4而前所以2≤m<2.5.由0.5×(m-2)=0.5-0.47,解得m=2.06.故可估计该校高一学生周末“阅读时间”的中位数为2.06小时.(3)设在取出的20名学生中,周末“阅读时间”在[1,2.5)内的有X人,则X服从二项分布,即X~B(20,0.6),所以恰好有k名学生周末“阅读时间”在[1,2.5)内的概率为P(X k20kk-(0.4)C(0.6),=k)=20其中k=0,1,2, (20)k20kk-)(0.4(0.6)3(21-kXP(=k)C)20=…,20.,,k=1,2设t==kk1k121---k2)0.40.6)-1()C(P(X=k20若t>1,则k<12.6,P(X=k-1)<P(X=k);若t<1,则k>12.6,P(X=k-1)>P(X=k).P(X=13)3×(21-13)12=又=<1,1313×)X=122P(所以当k=12时,P(X=k)最大.所以k的值为12.11.(2018·石家庄质量检测(二))随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1~8月促销费用(单位:万元)和产品销量(单位:万件)的具体数据.月份 1 2 3 4 5 6 7 8x 促销费用18 2 133 61521104.541 3.5 1 3 5y产品销量2^^^(1)根据数据可知y与x具有线性相关关系,请建立y关于x的回归方程y=bx+a(系数精确到0.01);(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以z(单位:件)表示日销量,z ∈[1 800,2 000),则每位员工每日奖励100元;z∈[2 000,2 100),则每位员工每日奖励150元;z∈[2 100,+∞),则每位员工每日奖励200元.现已知该网站6月份日销量z服从正态分布N(0.2,0.000 1),请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位).参考数据:882,=1y分别为第i个月的促销费用和产品销量,ix,∑∑xy=338.5x=1 308,其中,iiiii1ii1==2),则P(μ-σ<z<μ+σ)=0.682 7,P(μ-2σ,(服从正态分布若随机变量…,32,,8.zNμσ<z<μ+2σ)=0.954 5.--,3=y,11=x由题可知(1)解:n--yx-n∑xy338.5-8×11×374.5ii^^1i=得b==≈将数据代入b=0.219≈0.22.n3401218-×1 308-22∑x-ny i1i=^-^-a=y-bx=3-0.219×11≈0.59,^所以y关于x的回归方程为y=0.22x+0.59.(2)由6月份日销量z服从正态分布N(0.2,0.000 1),得0.954 5日销量在[1 800,2 000)的概率为=0.477 25,20.682 7日销量在[2 000,2 100)的概率为=0.341 35,21-0.682 7日销量在[2 100,+∞)的概率为=0.158 65,2所以每位员工当月的奖励金额大约为(100×0.477 25+150×0.341 35+200×0.158 65)×30=3 919.725≈3 919.73(元).12.(2018·南京模拟)某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;甲班乙班总计大于等于80分的人数分的人数小于80总计(2)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,从中选3名学生发言,记来自[80,90)发言的人数为随机变量X,求X的分布列和数学期望.参数数据和公式:2≥k0.0250.05(PK 0.10 )0.k 2.706 3.841 5.024 02)bcad-n(2K=(a+b)(c+d)(a+c)(b+d)解:(1)补全表格如下:甲班乙班总计分的人数大于等于8032 2012 分的人数小于8048 28 2080 40 40总计2)×2020-2880×(12×2依题意得K=≈3.333>2.706,40×40×32×48故有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)从乙班[70,80),[80,90),[90,100]分数段中抽取的人数分别为2,3,2,依题意随机变量X的所有可能取值为0,1,2,3,1232131CCCCC124C18343344P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,3333C35C35C35C357777其分布列如下表:418121459所以E(X)=0×+1×+2×+3×==.35353535357。
高考数学二轮复习专题突破—统计与统计案例(含解析)
高考数学二轮复习专题突破—统计与统计案例1.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:√74≈8.602.2.(2021·江西赣州二模改编)遵守交通规则,人人有责.“礼让行人”是我国《道路交通安全法》的明文规定,也是全国文明城市测评中的重要内容.《道路交通安全法》第47条明确规定:“机动车行经人行横道时,应当减速行驶;遇行人正在通过人行横道,应当停车让行.机动车行经没有交通信号的道路时,遇行人横过道路,应当避让.否则扣3分罚200元”.下表是2021年1至4月份我市某主干路口监控设备抓拍到的驾驶员不“礼让行人”行为统计数据:(1)请利用所给数据求不“礼让行人”驾驶员人数y 与月份x 之间的经验回归方程y ^=b ^x+a ^,并预测该路口2021年10月不“礼让行人”驾驶员的大约人数(四舍五入);(2)交警从这4个月内通过该路口的驾驶员中随机抽查50人,调查驾驶员不“礼让行人”行为与驾龄的关系,得到下表:依据小概率值α=0.10的独立性检验,分析“礼让行人”行为是否与驾龄有关.参考公式:b ^=∑i=1nx i y i -nx y ∑i=1nx i 2-nx2=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2.χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.3.(2021·河北石家庄二模改编)某地区在2020年底全面建成小康社会,随着实施乡村振兴战略规划,该地区农村居民的收入逐渐增加,可支配消费支出也逐年增加.该地区统计了2016~2020年农村居民人均消费支出情况,对有关数据处理后,制作如图1的折线图[其中变量y (单位:万元)表示该地区农村居民人均年消费支出,年份用变量t 表示,其取值依次为1,2,3,…].(1)由图1可知,变量y与t具有很强的线性相关关系,求y关于t的经验回归方程,并预测2021年该地区农村居民人均消费支出;2016~2020年该地区农村居民人均消费支出图1(2)在国际上,常用恩格尔系数(其含义是指食品类支出总额占个人消费支出总额的比重)来衡量一个国家和地区人民生活水平的状况.根据联合国粮农组织的标准:恩格尔系数在40%~50%为小康,30%~40%为富裕.已知2020年该地区农村居民平均消费支出构成如图2所示,预测2021年该地区农村居民食品类支出比2020年增长3%,从恩格尔系数判断2021年底该地区农村居民生活水平能否达到富裕生活标准.2020年该地区农村居民人均消费支出构成图2参考公式:经验回归方程y ^=b ^x+a ^中斜率和截距的最小二乘估计分别为:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2=∑i=1nx i y i -nx y∑i=1nx i 2-nx 2,a ^=y −b ^x .4.(2021·山东潍坊一模)在对人体的脂肪含量和年龄之间的关系的研究中,科研人员获得了一些年龄和脂肪含量的简单随机样本数据(x i ,y i )(i=1,2,…,20,25<x i <65),其中x i 表示年龄,y i 表示脂肪含量,并计算得到∑i=120x i 2=48 280,∑i=120y i 2=15 480,∑i=120x i y i =27 220,x =48,y =27,√22≈4.7.(1)请用样本相关系数说明该组数据中y 与x 之间的关系可用线性回归模型进行拟合,并求y 关于x的经验回归方程y ^=a ^+b ^x (a ^,b ^的计算结果保留两位小数);(2)科学健身能降低人体脂肪含量,下表是甲、乙两款健身器材的使用年限(整年)统计表:某健身机构准备购进其中一款健身器材,以使用年限的频率估计概率,请根据以上数据估计,该机构选择购买哪一款健身器材,才能使用更长久?参考公式:样本相关系数r=∑i=1n(x i -x)(y i -y)√∑i=1n (x i -x)2√∑i=1n(y i -y)2=∑i=1nx i y i -nx y√∑i=1nx i 2-nx 2√∑i=1ny i 2-ny 2;对于一组具有线性相关关系的数据(x i ,y i )(i=1,2,…,n ),其经验回归直线y ^=b ^x+a ^的斜率和截距的最小二乘估计分别为:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2,a ^=y −b ^x .答案及解析1.解 (1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y =1100(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30, s 2=1100[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6, s=√0.029 6=0.02×√74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17. 2.解 (1)由表中数据易知:x =1+2+3+44=52,y =125+105+100+904=105,则b ^=∑i=14x i y i -4x y∑i=14x i 2-4x2=995−1 05030−25=-11,a ^=y −b ^ x =105-(-11)×52=132.5,故所求经验回归方程为y ^=-11x+132.5.令x=10,则y ^=-11×10+132.5=22.5≈23(人),预测该路口10月份不“礼让行人”的驾驶员大约人数为23. (2)零假设为H 0:“礼让行人”行为与驾龄无关.由表中数据可得χ2=50×(10×12−20×8)218×32×30×20≈0.23<2.706=x 0.10,依据小概率值α=0.10的独立性检验,没有充分证据推断H 0不成立,可以认为H 0成立,即认为“礼让行人”行为与驾龄无关.3.解 (1)由已知数据可求t =1+2+3+4+55=3, y =1.01+1.10+1.21+1.33+1.405=1.21,∑i=15t i 2=12+22+32+42+52=55,∑i=15t i y i =1×1.01+2×1.10+3×1.21+4×1.33+5×1.40=19.16,b ^=19.16−5×3×1.2155−5×32=1.0110=0.101,a ^=1.21-0.101×3=0.907,所求经验回归方程为y ^=0.101t+0.907. 当t=6时,y ^=0.101×6+0.907=1.513(万元),故2021年该地区农村居民人均消费支出约为1.513万元.(2)已知2021年该地区农村居民平均消费支出1.513万元,由图2可知,2020年该地区农村居民食品类支出为4 451元,则预测2021年该地区食品类支出为4 451×(1+3%)=4 584.53元,恩格尔系数=4 584.5315 130×100%≈30.3%∈(30%,40%),所以,2021年底该地区农村居民生活水平能达到富裕生活标准.4.解 (1)x 2=2 304,y2=729,∑i=120x i y i -20x y =1 300,∑i=120x i 2-20x 2=2 200,∑i=1ny i 2-20y 2=900,r=∑i=120x i y i -20x y√∑i=120x i 2-20x 2√∑i=1ny i 2-20y2≈0.92,因为y 与x 的样本相关系数接近1,所以y 与x 之间具有较强的线性相关关系,可用线性回归模型进行拟合.由题可得,b ^=∑i=120(x i -x)(y i -y)∑i=120(x i -x)2=∑i=120x i y i -20x y∑i=120x i 2-20x2=1322≈0.591,a ^=y −b ^ x =27-0.591×48≈-1.37,所以y ^=0.59x-1.37.(2)以频率估计概率,设甲款健身器材使用年限为X (单位:年).E (X )=5×0.1+6×0.4+7×0.3+8×0.2=6.6. 设乙款健身器材使用年限为Y (单位:年).E (Y )=5×0.3+6×0.4+7×0.2+8×0.1=6.1.因为E (X )>E (Y ),所以该健身机构购买甲款健身器材更划算.。
2018届高考理科数学二轮专题复习讲义。统计与统计案例
2018届高考理科数学二轮专题复习讲义。
统计与统计案例本文介绍了统计与统计案例中的一些考点和热点分类,以及一些跟踪演练题目的解析。
在考试中,会以选择题、填空题的形式考查随机抽样、样本的数字特征、统计图表、回归方程、独立性检验等。
同时,在概率与统计的交汇处命题,难度适中。
抽样方法有三种:简单随机抽样、系统抽样和分层抽样。
简单随机抽样适用于总体中个体数较少的情况,而系统抽样适用于个体数较多的情况。
分层抽样适用于总体由差异明显的几部分组成的情况。
对于一些具体的题目,我们可以根据题意和抽样比例计算出样本中产品的最小编号或者应该抽取的学生人数。
在随机抽样的各种方法中,每个个体被抽到的概率都是相等的。
系统抽样又称为“等距”抽样,被抽到的各个号码间隔相同。
分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例。
最后,我们来看一道跟踪演练题目。
题目要求从福利彩票“双色球”中选取红色球的6个号码,选取方法是从第1行、第9列和第10列的数字开始从左到右依次选取两个数字。
根据题意和随机数表,我们可以计算出第四个被选中的红色球号码为06.解析:1) 样本编号题目,根据系统抽样的方法,计算出样本组距为9,然后根据已知编号推算出样本中还有一个学生的编号为14,故选B。
2) 该部分内容排版混乱,需要重新排版。
频率分布直方图中,横坐标表示组距,纵坐标表示频率,频率等于组距乘以组距。
各小长方形的面积之和为1.在频率分布直方图中,最高的小长方形底边中点的横坐标即为众数。
中位数左边和右边的小长方形的面积和相等。
平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和。
3) 根据题目可以列出方程,设未知数为x,平均数为a,中位数为b,众数为c,则有:(10+2+5+2+4+2+x)/7=a,中位数为2或5,众数为2,根据众数的定义可得c=2,因此有:b-a=c-b,代入已知数据可得b=3a-4,根据平均数的定义可得:(10+2+5+2+4+2+x)/7=a,解出a=5,代入b=3a-4可得b=11,因此中位数为11,根据中位数的定义可得:(10+2+5+2+4+2+x)/7=11,解出x=3,所以所有可能值之和为25+3=28,因此答案为B。
2019高考数学二轮复习专题七概率与统计2.7.3正态分布、统计与统计案例课件理
2.正态分布 X~N(μ,σ2)的三个常用数据 (1)P(μ-σ<X≤μ+σ)=0.6826; (2)P(μ-2σ<X≤μ+2σ)=0.9544; (3)P(μ-3σ<X≤μ+3σ)=0.9974.
[解题指导]
[解]
(1)抽取的一个零件的尺寸在(μ-3σ, μ+3σ)之内的概率
为 0.9974, 从而零件的尺寸在(μ-3σ, μ+3σ)之外的概率为 0.0026, 故 X~B(16,0.0026). 因此 P(X≥1)=1-P(X=0)=1-0.997416≈0.0408. X 的数学期望为 E(X)=16×0.0026=0.0416.
[对点训练]
2 1.(2018· 兰州检测)设 X~N(μ1,σ2 1),Y~N(μ2,σ2),这两个
正态分布密度曲线如图所示,下列结论中正确的是(
)
A. P(Y≥μ2)≥P(Y≥μ1) B.P(X≤σ2)≤P(X≤σ1) C.对任意正数 t,P(X≥t)≥P(Y≥t) D.对任意正数 t,P(X≤t)≥P(Y≤t)
3.方差公式 1 - - - s = [(x1- x )2+(x2- x )2+…+(xn- x )2] n
2
[对点训练] 1.(2018· 安徽皖南八校联考)某校为了解 1000 名高一新生的 健康状况, 用系统抽样法(按等距的规则)抽取 40 名同学进行检查, 将学生从 1~1000 进行编号,现已知第 18 组抽取的号码为 443, 则第一组用简单随机抽样抽取的号码为( A.16 B.17 C.18 D.19 )
[答案]
C
2. 某校组织了“2017 年第 15 届希望杯数学竞赛(第一试)”, 已知此次选拔赛的数学成绩 X 服从正态分布 N(72,121)(单位: 分), 此次考生共有 500 人,估计数学成绩在 72 分到 83 分之间的人数 约为(参数数据:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)= 0.9544.)( A.238 ) B.170 C.340 D.477
高三数学专题复习7.3统计、统计案例教案(第2课时)
100
将 2×2列联表中的数据代入公式计算,得
n ad- bc 2
-
2
k= a+ b c+ d a+ c b+ d = 75×25×45×55
课题
统计、统计案例
课 时 共 3 课时
本节第 2 课时
选用教材 教学目标 重点 难点 关键
教学方法 及课前准备
专题七 知识模块
概率与统计
课型
熟练掌握频率分布直方图等图和回归分析独立性检验
熟练掌握频率分布直方图等图和回归分析独立性检验 熟练掌握频率分布直方图等图和回归分析独立性检验 熟练掌握频率分布直方图等图和回归分析独立性检验
1
1n
80
解
(1) 由题意
n= 10,
x
=
ni
=
x
1
i
=
= 10
8,
1 10
20
y
=
ni
=
y
1
i
=
10=
2,
n
又 x2i - n x 2= 720-10×82= 80.
i =1
n
xiyi-n x
i =1
y = 184-10×8×2= 24.
10
xi yi - 10 x y
^
i =1
由此得 b =
10
单价 x( 元 )
8
8.2
8.4
8.6
8.8
9
销量 y( 件 )
90
84
83
80
75
68
2
^
^
^
^
^
^
(1) 求回归直线方程 y =b x+ a ,其中 b =- 20, a = y - b x ;
高三二轮复习(理数) 第三讲 统计与统计案例(教案)(Word版,含答案)
第三讲统计与统计案例[考情分析]统计部分在选择、填空题中的命题热点有随机抽样、用样本估计总体以及变量的相关性,难度较低.回归分析常在解答题中考查1.(2016·高考全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析:由图形可得各月的平均最低气温都在0℃以上,A正确;七月的平均温差约为10℃,而一月的平均温差约为5℃,故B正确;三月和十一月的平均最高气温都在10℃左右,基本相同,C正确,故D错误.答案:D2.(2015.高考全国Ⅰ卷)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量y i(i=1,2, (8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑i =1w i.(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑ni =1 (u i -u )(v i -v )∑ni =1(u i -u )2,α^=v -β^ u . 解析:(1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型. (2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑8i =1(w i -w )(y i -y )∑8i =1(w i -w )2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值 y ^=100.6+6849=576.6,年利润z 的预报值 z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12. 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.抽样方法[方法结论]三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n ,总体的个体数为N ,则用这三种方法抽样时,每个个体被抽到的概率都是nN.[题组突破]1.(2017·荆门调研)将参加数学竞赛决赛的500名学生编号为001,002,…,500,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003,这500名学生分别在三个考点考试,从001到200在第一考点,从201到355在第二考点,从356到500在第三考点,则第三考点被抽中的人数为( ) A .14 B .15 C .16D .21解析:系统抽样的样本间隔为50050=10,第一个号码为003,按照系统抽样的规则,抽到的号码依次为003,013,023,033,043,053,…,493,第三考点抽到的第一个号码为363,最后一个号码为493,由等差数列的通项公式得493=363+(n -1)×10,解得n =14,故选A. 答案:A2.工厂生产的A 、B 、C 三种不同型号的产品数量之比依次为2∶3∶5,为研究这三种产品的质量,现用分层抽样的方法从该工厂生产的A 、B 、C 三种产品中抽出样本容量为n 的样本,若样本中A 型产品有16件,则n 的值为________. 解析:由已知得n ×22+3+5=16,解得n =80.答案:80 [误区警示]利用系统抽样分段时,若分段间隔不为整数,应先随机剔除部分元素,再分组,但每个个体被抽到的概率仍为样本容量总体个数.此问题易忽视.用样本估计总体[方法结论]1.在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用各小矩形的面积表示,各小矩形的面积总和为1,因为在频率分布直方图中组距是一个固定值,所以各小矩形高的比也就是频率比. 2.当样本数据较少时,用茎叶图表示数据效果较好,要分清何为茎,何为叶,并明确其特征数字的含义. 3.特征数字(1)众数:在一组数据中,出现次数最多的数据叫作这组数据的众数.在频率分布直方图中,众数的估计值是最高的矩形的中点的横坐标.(2)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数.在频率分布直方图中,把使左边和右边的直方图的面积相等的直线所对应的横坐标的估计值作为中位数的值.(3)平均数:样本数据的算术平均数,即x =1n (x 1+x 2+…+x n ).在频率分布直方图中,平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(4)方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中s 为标准差.方差与标准差都反映了样本数据的稳定与波动、集中与离散的程度.s 2越小,样本数据的稳定性越高,波动越小.[典例] (1)如图所示,茎叶图记录了甲、乙两组各4名学生完成某道数学题的得分情况,该题满分为12分.已知甲、乙两组学生的平均成绩相同,乙组某个数据的个位数字模糊,记为x .则下列命题正确的是( )A .甲组学生的成绩比乙组稳定B .乙组学生的成绩比甲组稳定C .两组学生的成绩有相同的稳定性D .无法判断甲、乙两组学生的成绩的稳定性解析:x 甲=14×(9+9+11+11)=10,x 乙=14×(8+9+10+x +12)=10,解得x =1.又s 2甲=14×[(9-10)2+(9-10)2+(11-10)2+(11-10)2]=1,s 2乙=14×[(8-10)2+(9-10)2+(11-10)2+(12-10)2]=52,∴s 2甲<s 2乙,∴甲组学生的成绩比乙组稳定.选A. 答案:A(2)海尔公司的n 名员工参加“我是销售家”活动,他们的年龄在25岁至50岁之间.按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],由统计的数据得到的频率分布直方图如图所示.。
新高考数学(理)二轮复习专题专练:专题七_第三讲统计、统计案例(含答案解析)
专题七概率与统计、推理与证明、算法初步、框图、复数第三讲统计、统计事例一、选择题1.以下说法:①一组数据不行能有两个众数;②一组数据的方差一定是正数;③一组数据中的每个数据都加上或减去同一常数后,方差恒不变;④在频次散布直方图中,每个小长方形的面积等于相应小组的频次.此中错误的个数是()A.0 个B.1 个C.2 个D.3 个分析:①②错误,一组数据中能够有多个众数,故①错误;一组数据的方差能够为零,故②错误.答案:C2.某班 50 名学生在一次百米测试中,成绩所有介于13 秒与 18 秒之间,将测试结果分红五组:每一组 [13 ,14);第二组 [14 ,15),,第五组 [17 ,18].以下图是按上述分组方法获得的频次散布直方图,若成绩大于或等于 14 秒且小于 16 秒认为优秀,则该班在此次百米测试中成绩优秀的人数是()A .25B.26C.27D. 28答案: C3.在研究某种新药对鸡瘟的防治成效问题时,获得了以下数据:活鸡数死亡数共计新药13218150比较11535150共计24753300以下结论中正确的一项为哪一项 ()A .有 95%的掌握认为新药对防治鸡瘟有效B .有 99%的掌握认为新药对防治鸡瘟有效C.有 99.9%的掌握认为新药对防治鸡瘟有效D.没有充足凭证显示新药对防治鸡瘟有效分析: K22300 ×(132 ×35-115 ×18)2(χ≈ 6.623.)=247× 53×150× 150由于 6.623> 3.841,因此有95%的掌握认为新药防治鸡瘟有效.答案: A4. (2014 重·庆卷 )已知变量 x 与 y 正有关,且由观察数据算得样本均匀数--=x= 3, y3.5,则由该观察的数据算得的线性回归方程可能是()^= 0.4x+ 2.3^= 2x-2.4A.yB.y^=- 2x+ 9.5^+ 4.4C.yD.y =- 0.3x分析:由于变量x 与 y 正有关,因此清除选项C、 D,又由于回归直线必过样本中心点 (3, 3.5),代入查验知,只有直线 y= 0.4x+ 2.3 过点 (3 ,3.5).应选 A.答案: A5.以下图表示甲、乙两名篮球运动员每场竞赛得分状况的茎叶图,则甲和乙得分的中位数的和是 ()A .56 分B.57 分C.58 分D.59 分分析:由茎叶图知甲的中位数是32,乙的中位数是25,故甲,乙得分的中位数的和是 57.答案: B6.在样本的频次散布直方图中,一共有m(m≥ 3)个小矩形,第3 个小矩形的面积等于其他m- 1 个小矩形面积之和的14,且样本容量为100,则第 3 组的频数是()A .0.2B.25C. 20 D .以上都不正确分析:第 3 组的频次是15,样本容量为100,1∴第 3 组的频数为100×= 20.5答案: C二、填空题7.某校甲、乙两个班级各有 5 名编号为1, 2, 3, 4,5 的学生进行投篮练习,每人投 10 次,投中的次数见下表:学生 1 号 2 号 3 号 4 号 5 号甲班67787乙班67679则以上两组数据的方差中较小的一个为s2= ________.分析:考察统计中的均匀值与方差的运算.甲班的方差较小,数据的均匀值为7,2( 6-7)2+ 02+ 02+( 8- 7)2+ 022故方差 s == .55 2答案:58.以下是某厂 1~ 4 月份用水量 (单位:百吨 )的一组数据:月份 x1234用水量 y 4.543 2.5由其散点图知,用水量 y 与月份 x 之间有较好的线性有关关系,其线性回归方程是^ y=-0.7x + a,则 a=________.分析: x=2.5, y=3.5,-∴ a= y- b x = 3.5- (- 0.7) ×2.5= 5.25.答案: 5.25三、解答题9.某班主任对全班50 名学生学习踊跃性和对待班级工作的态度进行了检查,统计数据以下表所示:踊跃参加班不太主动参加班级工共计级工作作学习踊跃性高18725学习踊跃性一般61925共计242650(1)假如随机抽查这个班的一名学生,那么抽到踊跃参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习踊跃性一般的学生的概率是多少?(2)试运用独立性查验的思想方法剖析:学生的学习踊跃性与对待班级工作的态度能否有关系?并说明原因.( 参照下表 )22χP[K () ≥k 0.500.400.250.150.100.050.025 0.010 0.005 0.001]k0.4550.708 1.323 2.072 2.706 3.841 5.024 6.63510.82 7.8798分析: (1)踊跃参加班级工作的学生有24 人,总人数为50 人,概率为24=12;不太主5025动参加班级工作且学习踊跃性一般的学生有19 人,概率为19 50 .2250×(18×19- 6×7)2≈11.5,∵ K 22(χ= 150(χ的掌握认为(2)K)=25×25× 24×2613)> 6.635,∴有 99%学习踊跃性与对待班级工作的态度有关系.10.某良种培养基地正在培养一种小麦新品种 A ,将其与原有的一个优秀品种 B 进行比较试验,两种小麦各样植了25 亩,所得亩产数据(单位:千克 )以下: .品种 A :357, 359, 367, 368, 375, 388, 392, 399, 400, 405, 412, 414, 415,421, 423,423, 427, 430, 430, 434, 443, 445, 445, 451, 454.品种 B : 363, 371, 374, 383, 385, 386, 391, 392, 394, 394, 395, 397, 397,400, 401,401, 403, 406, 407, 410, 412, 415, 416, 422, 430.(1)画出茎叶图.(2)用茎叶图办理现有的数据,有什么长处?(3)察看茎叶图,对品种 A 与 B 的亩产量及其稳固性进行比较,写出统计结论.分析: (1)茎叶图以以下图所示:(2) 用茎叶图办理现有的数据不单能够看出数据的散布状况,并且能够看出每组中的具体数据.(3)经过察看茎叶图,能够发现品种 A 的均匀每亩产量为 411.1 千克,品种 B 的均匀亩产量为397.8 千克.由此可知,品种 A 的均匀亩产量比品种 B 的均匀亩产量高.但品种A 的亩产量不够稳固,而品种 B 的亩产量比较集中在均匀产量邻近.。
概率与统计 第三讲 统计与统计案例——2023届高考理科数学大单元二轮复习练重点【新课标全国卷】
专题八 概率与统计 第三讲 统计与统计案例——2023届高考理科数学大单元二轮复习练重点【新课标全国卷】1.在某次赛车中,50名参赛选手的成绩(单位:min )全部介于13到18之间(包括13和18).现将比赛成绩分为五组:第一组[13,14),第二组[14,15),…,第五组[17,18],其频率分布直方图如图所示.若成绩在[13,15)内的选手可获奖,则这50名选手中获奖的人数为( )A.11B.15C.35D.392.某学校组织学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依次为[)20,40,[)40,60,[)60,80,[]80,100.若低于60分的人数是15人,则参加英语测试的学生人数是( )A.45B.50C.55D.603.我国是一个农业大国,从事农业工作的人员有5.4亿,如图为某县农村从业人员年龄结构图,为了解该县从业人员在从事农业工作中的实际困难,以推进县乡村振兴工作,某调查机构计划从某县的所有从业人员中随机抽取20人展开某项调研,则所抽取的20人中恰有2人的年龄在20岁以下的概率约为( ) (170.90.167≈,180.90.15≈,190.90.135≈,200.90.122≈)A.0.25B.0.29C.0.32D.0.354.某校高一年级在某次数学测验中成绩不低于80分的所有考生的成绩统计表如下:A.在[90,100]内B.在(100,110]内C.在(110,120]内D.在(120,130]内5.若某同学连续3次考试的名次(3次考试均没有出现并列名次的情况)不低于第3名,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次的数据,推断一定是尖子生的是( )A.甲同学:平均数为2,众数为1B.乙同学:平均数为2,方差小于1C.丙同学:中位数为2,众数为2D.丁同学:众数为2,方差大于16.2021年某省高考体育百米测试中,成绩全部介于12秒与18秒之间,抽取其中100个样本,将测试结果按如下方式分成六组:第一组[12,13),第二组[13,14),…,第六组[17,18],得到如下的频率分布直方图.则该100考生的成绩的平均数和中位数(保留一位小数)分别是( )A.15.2 15.3B.15.1 15.4C.15.1 15.3D.15.2 15.37.设样本数据1x ,2x ,…,10x 的平均数和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则1y ,2y ,…,10y 的平均数和方差分别为( ) A.1a +,4B.1a +,4a +C.1,4D.1,4a +8.已知变量x ,y 之间的一组数据如下表:若y 关于x 的线性回归方程为0.7y x a =+,则a =( ) A.0.1B.0.2C.0.35D.0.459.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得经验回归直线方程0.6754.9y x =+,表中有一个数据模糊不清,请你推断出该数据的值为( )C.68 10.第24届冬季奥林匹克运动会将于2022年在北京举办.为了解某城市居民对冰雪运动的关注情况,随机抽取了该市100人进行调查统计,得到如下22⨯列联表.参考公式:()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.附表:A.该市女性居民中大约有5%的人关注冰雪运动B.该市男性届民中大约有95%的人关注冰雪运动C.有95%的把握认为该市居民是否关注冰雪运动与性别有关D.有99%的把握认为该市居民是否关注冰雪运动与性别有关11.一个项目由15个专家评委投票表决,剔除一个最高分96,一个最低分58后所得到的平均分为92,方差为16,那么原始得分的方差为_______.12.经市场调查,某款热销品的销售量y(万件)与广告费用x(万元)之间满足回归直线方程 3.5=+.若样本点中心为(45,35),则当销售量为52.5万件时,可估计投入y bx的广告费用为_________________万元.13.某学校为了制订治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:14.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.15.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):1(优) (2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.附:2()()()()K a b c d a c b d =++++,)2kk答案以及解析1.答案:A解析:由题意可得,成绩在[13,15)内的频率为10.080.320.380.22---=.又本次赛车中,共50名参赛选手,所以这50名选手中获奖的人数为500.2211⨯=.故选A. 2.答案:B解析:根据频率分布直方图的特点可知,低于60分的频率是(0.0050.01)200.3+⨯=,则所求学生人数是15500.3=. 3.答案:B解析:由频率分布直方图可得20岁以下的农村从业人员的概率为0.1,所以从所有从业人员中抽取20人,其中恰有2人的年龄在20岁以下的概率为221820C (0.1)(0.9)0.2850.29≈≈,故选B. 4.答案:B解析:由表可知,及格的考生共有401512105284+++++=人,在[90,100]内有40人,在(100,110]内有15人,故及格的所有考生成绩的中位数在(100,110]内.5.答案:B解析:甲同学:若平均数为2,众数为1,则有一次名次应为4,故排除A ;乙同学:平均数为2,设乙同学3次考试的名次分别为1x ,2x ,3x ,则方差()()()2222123122213s x x x ⎡⎤=-+-+-<⎣⎦,则()()()2221232223x x x -+-+-<,所以1x ,2x ,3x 均不大于3,符合题意;丙同学:中位数为2,众数为2,有可能是2,2,4,不符合题意;丁同学:众数为2,方差大于1,有可能是2,2,6,不符合题意.故选B. 6.答案:C解析:100名考生成绩的平均数12.50.1013.50.1514.50.15x =⨯+⨯+⨯+15.50.3016.50.2517.50.0515.1⨯+⨯+⨯=.因为前三组频率直方图面积和为0.100.150.150.4++=,前四组频率直方图面积和为0.100.150.150.300.7+++=,所以中位数位于第四组内,设中位数为a ,则(15)0.300.1a -⨯=,解得15.3a ≈,故选C.7.答案:A解析:由题意知i i y x a =+,即()1210110110y x x x a x a a =⨯++++=+=+,方差{}222212101()()()10x a x a x s a x a x a x a ⎡⎤⎡⎤⎡⎤=⨯+-+++-++++-+⎣⎦⎣⎦⎣⎦()()()22212101410x x x x x x ⎡⎤=⨯-+-++-=⎢⎥⎣⎦. 故选A. 8.答案:C解析:本题考查线性回归方程截距的求解.因为11(3456) 4.5,(2.534 4.5) 3.544x y =+++==+++=,所以0.7 3.50.7 4.50.35a y x =-=-⨯=,故选C. 9.答案:C解析:设表中模糊看不清的数据为m .由表中数据得30x =, 3075m y +=,将30730,5m x y +==代入经验回归方程0.6754.9y x =+,得68m =.故选C. 10.答案:C解析:由22⨯列联表中的数据可得()22352515251004.167 3.84160405050K ⨯-⨯⨯=≈>⨯⨯⨯,因此,有95%的把握认为该市居民是否关注冰雪运动与性别有关.故选:C.11.答案:88解析:根据题意,设剔除最高分、最低分之后的13个数据为1a ,2a ,3a ,…,13a ,由这13个数据的平均分为92,方差为16, 知()1231319213a a a a ++++=,()()()222121319292921613a a a ⎡⎤-+-++-=⎣⎦, 解得123131196a a a a ++++=,2221213110240a a a +++=,对于原始得分96,58,1a ,2a ,3a ,…,13a , 其平均数()12313196589015a a a a a =++++++=,其方差为()(()22222212131(9690)(5890)9090)908815s a a a ⎤⎡=-+-+-+-++-=⎣⎦. 12.答案:70解析:本题考查线性回归方程.依题意,将(45,35)代入回归直线方程 3.5y bx =+(提示:回归直线必过样本点中心),得3545 3.5b =⨯+,解得0.7b =,所以回归直线方程为0.7 3.5y x =+.令0.7 3.552.5y x =+=,得70x =. 13.答案:99.5%解析:因为2250(2015510)8.33325253020χ⨯⨯-⨯=≈⨯⨯⨯,又()27.8790.0050.5%P χ==≥,所以我们有99.5%的把握认为“是否同意限定区域停车与家长的性别有关”.14.答案:(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为20%(2)平均数与标准差的估计值分别为30%,17%解析:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=.产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为20%. (2)1(0.1020.10240.30530.50140.707)0.30100y =⨯-⨯+⨯+⨯+⨯+⨯=, ()52222111(0.40)2(0.20)100100i i i s n y y=⎡=-=⨯-⨯+-⨯⎣∑222240530.20140.4070.0296⎤+⨯+⨯+⨯=⎦,0.020.17s .所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.15.答案:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:根据列联表得25.82055457030K =≈⨯⨯⨯. 由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.。
高考数学二轮复习 统计与统计案例
统计与统计案例1.(2014·四川高考)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )A .总体B .个体C .样本的容量D .从总体中抽取的一个样本【解析】 5 000名居民的阅读时间的全体为总体,故选A.【答案】 A2.(2014·重庆高考)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250【解析】 样本抽取比例为703 500=150,该校总人数为1 500+3 500=5 000,则n 5 000=150,故n =100,选A. 【答案】 A3x 3 4 5 6 7 8y 4.0 2.5 -0.5 0.5 -2.0 -3.0得到的回归方程为y =bx +a ,则( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0【解析】 回归直线方程过中心点(5.5,1.5),即1.5=5.5b +a ,由题意,两个变量负相关,b <0,∴a >0,故选B.【答案】 B4.(2014·广东高考)某车间20名工人年龄数据如下表:年龄(岁) 工人数(人)19 128 329 330 531 432 340 1合计 20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.【解】 (1)由题可知,这20名工人年龄的众数是30,极差是40-19=21.(2)这20名工人年龄的茎叶图如图所示:(3)这20名工人年龄的平均数为x =120(19+3×28+3×29+5×30+4×31+3×32+40)=30,∴这20名工人年龄的方差为s 2=12020i =1 (x i -x )2=112+6×22+7×12+5×02+10220=25220=12.6.从近三年高考来看,该部分高考命题的热点考向为:1.随机抽样①随机抽样问题与实际生活紧密相连,是高考考查的热点之一.主要考查系统抽样中号码的确定和分层抽样中各层人数的确定.②多以选择题和填空题的形式呈现,属容易题.2.用样本估计总体①该考向重点考查样本特征数的计算,样本频率分布直方图和茎叶图等知识.特别是茎叶图是新课标中的新增内容,与实际生活联系密切,可方便处理数据,是高考中新的热点.②多以选择题、填空题的形式考查,有时也出现在解答题中,属容易题.3.线性回归分析①线性回归分析是新增内容,在现实生活中有着广泛的应用,应引起重视.②多以选择题、填空题的形式考查,有时也出现在解答题中,属中、低档题目.4.独立性检验①独立性检验也是新增内容,在现实生活中有着广泛的应用,近几年许多省的高考题涉及本考向,应引起关注.②既可以以选择题、填空题的形式考查,也可以以解答题的形式呈现,属中、低档题目.随机抽样【例1】 (1)(2014·天津高考)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.(2)(2014·广东高考)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本 ,则分段的间隔为( )A .50B .40C .25D .20【解析】 (1)由题意知应抽取人数为300×44+5+5+6=60. (2)由1 00040=25,可得分段的间隔为25.故选C. 【答案】 (1)60 (2)C【规律方法】解答与抽样方法有关的问题时应注意:(1)要深刻理解各种抽样方法的特点和实施步骤.(2)熟练掌握系统抽样中被抽个体号码的确定方法.(3)熟练掌握分层抽样中各层人数的计算方法.注意:抽样方法常和概率、频率分布直方图等知识结合在一起考查.[创新预测]1.(1)(2013·湖南高考)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件、80件、60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9 B.10 C.12 D.13(2)(2013·江西高考)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816657208026314070243699728019832049234493582003623486969387481A.08 B.07C.02 D.01【解析】(1)根据分层抽样的特点,用比例法求解.依题意得360=n120+80+60,故n=13.(2)由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.【答案】(1)D (2)D用样本估计总体【例2】(2014·北京高考)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:组号分组频数1[0,2) 62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)127[12,14) 68[14,16) 29[16,18) 2合计100(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论)【解】 (1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1-10100=0.9. 从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[4,6)的有17人,频率为0.17,所以a =频率组距=0.172=0.085. 课外阅读时间落在组[8,10)的有25人,频率为0.25,所以b =频率组距=0.252=0.125. (3)样本中的100名学生课外阅读时间的平均数在第4组.【规律方法】 1.用样本估计总体时应注意的问题:(1)理解在抽样具有代表性的前提下,可以用样本的频率分布估计总体的频率分布,用样本的特征数估计总体的特征数,这是统计的基本思想.(2)反映样本数据分布的主要方式,一个是频率分布表,一个是频率分布直方图.要学会根据频率分布直方图估计总体的概率分布以及总体的特征数,特别是均值、众数和中位数.2.样本数字特征及茎叶图:(1)要掌握好样本均值和方差的实际意义,并在具体的应用问题中会根据所计算出的样本数据的均值和方差对实际问题作出解释.(2)茎叶图是表示样本数据分布的一种方法,其特点是保留了所有的原始数据,这是茎叶图的优势.[创新预测]2.(1)(2013·福建高考)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120(2)(2013·山东高考)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:8 7 79 4 0 1 0 x 9 1则7A.1169 B.367 C .36 D.677【解析】 (1)先求出频率,再求样本容量.不少于60分的学生的频率为(0.030+0.025+0.015+0.010)×10=0.8,∴该模块测试成绩不少于60分的学生人数应为600×0.8=480.故选B.(2)利用平均数为91,求出x 的值,利用方差的定义,计算方差.根据茎叶图,去掉1个最低分87,1个最高分99,则17[87+94+90+91+90+(90+x )+91]=91, ∴x = 4.∴s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=367. 【答案】 (1)B (2)B线性回归分析【例3】 (2014·全国新课标Ⅱ高考)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013年份代号t 1 2 3 4 5 6 7人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑i =1n t i -t-y i -y -∑i =1n t i -t-2,a ^=y --b ^t -. 【解】 (1)由所给数据计算得t -=17(1+2+3+4+5+6+7)=4, y -=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3 ∑i =17(t i -t -)2=9+4+1+0+1+4+9=28,∑i =17 (t i -t -)(y i -y -)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i =17 t i -t-y i -y -∑i =17 t i -t-2=1428=0.5, a ^=y --b ^t -=4.3-0.5×4=2.3,所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t =9代入(Ⅰ)中的回归方程,得y ^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【规律方法】 进行线性回归分析时应注意的问题(1)正确理解计算b ,a 的公式和准确的计算,是求回归直线方程的关键.(2)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.(3)在散点图中,若所有点大部分都集中在斜向上(自左向右看)的直线的附近,则为正相关;若大部分都集中在斜向下(自左向右看)的直线的附近,则为负相关.[创新预测]3.(2013·重庆高考)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y =bx +a ;(2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y =bx +a 中,b =∑i =1n x i y i -n x y ∑i =1nx 2i -n x 2,a =y -b x ,其中x ,y 为样本平均值.线性回归方程也可写为y ^=b ^x +a ^.【解】 (1)由题意知n =10,x =1n ∑i =1n x i =8010=8, y =1n ∑i =1n y i =2010=2, 又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy =∑i =1nx i y i -n x y =184-10×8×2=24,由此得b =l xy l xx =2480=0.3,a =y -b x =2-0.3×8=-0.4, 故所求线性回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 独立性检验【例4】 (2014·辽宁高考)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生 喜欢甜品 不喜欢甜品 合计南方学生 60 20 80北方学生 10 10 20合计 70 30 100(1)惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品.现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2,P (χ2≥k ) 0.100 0.050 0.010k 2.706 3.841 6.635【解】 (1)将2×2列联表中的数据代入公式计算,得χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2=100×60×10-20×10270×30×80×20=10021≈4.762. 由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}.其中a i 表示喜欢甜品的学生,i =1,2.b j 表示不喜欢甜品的学生,j =1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}.事件A 是由7个基本事件组成,因而P (A )=710. 【规律方法】 1.独立性检验的关键是准确计算K 2(χ2),而计算k 2(χ2)时,要正确绘制2×2列联表.2.两个变量的独立性检验,在统计学中有着广泛的应用,学习时一定要结合实际问题,从现实中寻找例子,增强学习数学的动力.[创新预测]4.(2014·安徽高考)某高校共有学生15 000人,其中男生10 500人,女生4 500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K 2=n ad -bc 2a ++++ P (K 2≥k 0) 0.10 0.05 0.010 0.005k 0 2.706 3.841 6.635 7.879【解】 (1)300×15 000=90,所以应收集90位女生的样本数据. (2)由题中频率分布直方图得1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的.所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表 男生 女生 总计每周平均体育运动时间不超过4小时45 30 75 每周平均体育运动时间超过4小时165 60 225 总计 210 90 300结合列联表可算得K 2=300× 2 250275×225×210×90=10021≈4.762>3.841. 所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.[总结提升]失分盲点(1)混淆简单随机抽样、系统抽样、分层抽样的区别,不能正确地选择抽样方法.(2)不能正确地从频率分布直方图中提取相关的信息,混淆了频数与频率的差异.答题指导(1)看到抽样问题,想到三种抽样的定义以及适用范围和三者的区别.(2)看到频率分布直方图,想到频数与频率的区别以及计算方法.方法规律(1)分层抽样:①抽样原则:分层抽样时,每层抽取的个体可以不一样多,但必须满足抽取n =n ·N N(i =1,2,…,k )个个体:②分层原则:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)利用统计量K 2进行独立性检验的步骤:①根据数据列出2×2列联表.②根据公式计算K 2的观测值k .③比较观测值k 与临界值表中相应的检验水平,作出统计判断.通过数据分析事物蕴含的规律1.数据的作用是为了说明实际问题中存在的问题,通过对数据的处理(如计算样本数据的均值、方差、极差、中位数、众数等),看出实际问题中蕴含的某种规律,根据规律的利弊确定未来的发展方向,这是数据处理的一个主要方面.2.在统计中通过对抽取的样本数据进行处理,根据样本估计总体的思想,可以对总体作出估计,从而对总体作出评价,给出令人信服的结论,这就是用数据说话.【典例】 (2014·全国新课标Ⅱ高考)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【解】(1)由题中所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由题中所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由题中所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由题中茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(注:考生利用其他统计量进行分析,结论合理的同样给分.)【规律感悟】样本数据的均值体现了一种整体的态势,样本数据的方差则说明了整体态势的稳定性,整体态势(均值)及其稳定性(方差)是样本数据的两个重要特征数.。
高考数学二轮复习 专题七 第3讲 统计与统计案例配套 理
A.15
B.16 C.17 D.18
整理ppt
解析 由系统抽样方法,知按编号依次每30个编号作 为一组,共分49组, 高二学生的编号为496到988,在第17组到第33组内, 第17组抽取的编号为16×30+23=503,为高二学生, 第33组抽取的编号为32×30+23=983,为高二学生, 故共抽取高二学生人数为33-16=17,故选C. 答案 C
整理ppt
(2)(2014·广东)已知某地区中小学生人数和近视情况分别 如图①和图②所示.为了解该地区中小学生的近视形成原 因,用分层抽样的方法抽取2%的学生进行调查,则样本 容量和抽取的高中生近视人数分别为( )
A.200,20 C.200,10
B.100,20 D.100,10
整理ppt
解析 该地区中、小学生总人数为 3 500+2 000+4 500=10 000, 则样本容量为10 000×2%=200, 其中抽取的高中生近视人数为 2 000×2%×50%=20,故选A. 答案 A
系统抽样方法抽取42人做问卷调查,将840人按1,2,
…,840随机编号,则抽取的42人中,编号落入区
间[481,720]的人数为( )
A.11
B.12 C.13 D.14
思维启迪 系统抽样时需要抽取几个个体,样本就分成几组,且抽
取号码的间隔相同;
整理ppt
解析 由 840 =20,即每20人抽取1人, 42
nad-bc2
Hale Waihona Puke x2 c d c+d a+bc+da+cb+d
总 计
a+c b+d
n (其中 n=a+b+c+d 为样
本容量).
整理ppt
热点分类突破 ➢ 热点一 抽样方法 ➢ 热点二 用样本估计总体 ➢ 热点三 统计案例
二轮复习--统计与统计案例
教学过程一、课堂导入高考考情分析1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.二、复习预习复习整合知识点:抽样方法;统计图表;样本的数字特征;变量间的相关关系;回归分析;独立检验三、知识讲解考点1四、例题精析考点一抽样方法例1某高校共有450名学生参加环保知识测试,其中男生250名,女生200名,已知所有学生的成绩均大于60且小于等于100,现按性别用分层抽样的方法从中抽取45名学生的成绩,从男生和女生中抽查的结果分别如表1和表2:表1(1)求m,n的值,(2)记表2中分组在(60,70]中的2名女生为A、B,(90,100]中的4名女生为C、D、E、F,现从表2中(60,70]的女生中抽取1人,从(90,100]的女生中抽取2人做专题发言,求(60,70]中的女生A和(90,100]中的女生C同时被抽到的概率是多少?【规范解答】(1)由抽样方法知抽取的男生人数为:45×250450=25人,抽取的女生人数为:45×200450=20.所以m=25-(3+8+6)=8,n=20-(2+5+4)=9,故m=8,n=9.(2)满足题意的所有抽法共有12种,情况如下:(A,C,D),(A,C,E),(A,C,F),(A,D,E),(A,D,F),(A,E,F),(B,C,D),(B,C,E),(B,C,F),(B,D,E),(B,D,F),(B,E,F).其中A和C同时被抽中的情况有3种如下所示:(A,C,D),(A,C,E),(A,C,F).所以A和C同时被抽中的概率为P=312=14.【总结与反思】1.观察茎叶图重点看数据的集中程度.2.求中位数、平均数、方差主要依据公式进行计算.3.在频率分布直方图中,平均数的估计值等于每个小矩形的面积乘以小矩形底边中点横坐标之和;在中位数的估计值两侧直方图的面积相等;最高小矩形中点对应数据为这组数据的众数.4.方差越大,数据的波动程度越大,越不稳定.5.准确理解给出图表及已知条件中数据的含义是解决统计问题的关键.考点二 回归分析及其应用例2 班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,24位男同学中随机抽取一个容量为8的(1)画出样本的散点图,并说明物理分数y 与数学分数x 之间是正相关还是负相关;(2)求y 与x 的线性回归直线方程(系数精确到0.01),并指出某学生数学83分,物理约为多少分(精确到1分)?参考公式:回归直线的方程是:y ^=b ^x +a ^,其中b^=∑i =1n(x i -x -)(y i -y -)∑i =1n(x i -x -)2,a ^=y --b ^x -.参考数据:x -=77.5,y -≈85,∑i =18(x i -x -)2=1050,∑i =18(x i -x -)(y i -y -)≈688.【规范解答】(1) 画样本散点图如下:由图可知:物理分数y 与数学分数x 之间是正相关关系.(2)从散点图中可以看出,这些点分布在一条直线附近,因此以用公式计算得,b^=∑i =18(x i -x -)(y i -y -)∑i =18(x i -x -)2=6881050≈0.66,由x -=77.5,y -≈85,得a ^=y --b ^x -=85-0.66×77.5≈33.85.所以回归直线方程为y ^=0.66x +33.85.当x =83时,y ^=0.66×83+33.85=88.63≈89. 因此某学生数学83分时,物理约为89分. 【总结与反思】求线性回归方程关键是熟练运用b ^的计算公式和a ^=y --b ^x -.考点三独立性检验及其应用例3 某校举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本.对高一年级的100名学生的成绩进行统计,并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分组,得到成绩分布的频率分布直方图(如图).(1)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级参加这次知识竞赛的学生的平均成绩;(3)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下面2×2列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”.附:K2=(a+b)(c+d)(a+c)(b+d)【规范解答】(1)高一年级的合格率为0.02×10+0.03×10+0.02×10+0.01×10=0.8=80%.(2)高一年级样本的平均数为45×10100+55×10100+65×20100+75×30100+85×20100+95×10100=72,据此,可以估计高一年级这次知识竞赛的学生的平均成绩为72分.(3)K2=200(80×40-20×60)100×100×140×60≈9.5>6.635,所以有99%的把握认为“这次知识竞赛的成绩与年级有关系”.【总结与反思】理解独立性检验的思想方法,会用K2公式计算,并与给出的数据比较作出判断,是解决这类问题的关键.考点四统计与其他知识的交汇例4 某市共有100万居民的月收入是通过“工资薪金所得”得到的,如图是抽样调查后得到的工资薪金所得x的频率分布直方图.工资薪金个人所得税税率表如表所示.表中“全月应纳税所得额”是指“工资薪金所得”减去3500元所超出的部分(3500元为个税起征点,不到3500元不交税)工资个税的计算公式为:“应纳税额”=“全月应纳税所得额”乘以“适用税率”减去“速算扣除数”.某人某月“工资薪金所得”为5500元,则“全月应纳税所得额”为5500-3500=2000元,应纳税额为2000×10%-105=95(元).在直方图的工资薪金所得分组中,以各组的区间中点值代表该组的各个值,工资薪金所得落入该区间的频率x作为取该区间中点值的概率.(2)设该市居民每月从工资薪金交完税后,剩余的为其月可支配额y(元),试求该市居民月可支配额y的数学期望.【规范解答】(1)工资薪金所得的5组区间的中点值依次为3000、5000、7000、9000、11000,x取这些值的概率依次为0.15、0.3、0.4、0.1、0.05,算得与其相对应的”全月应纳税所得额”依次为0,1500,3500,5500,7500(元),按工资个税的计算公式,相应的工资个税分别为:0(元),1500×3%-0=45(元),3500×10%-105=245(元),5500×20%-555=545(元),7500×20%-555=945(元);∴该市居民每月在工资薪金个人所得税上缴的总税款为(45×0.3+245×0.4+545×0.1+945×0.05)×106=2.1325×108(元);(2)这5组居民月可支配额y取的值分别是y1,y2,y3,y4,y5,y1=3000(元);y2=5000-45=4955(元);y3=7000-245=6755(元);y4=9000-545=8455(元);y5=11000-945=10055(元);E(y)=3000×0.15+4955×0.3+6755×0.4+8455×0.1+10055×0.05=5986.75(元)课程小结1.当总体数N不能被样本容量整除,用系统抽样法剔除多余个体时,必须随机抽样.2.注意中位数与平均数的区别,中位数可能不在样本数据中.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲统计与统计案例考情解读1.该部分常考内容:样本数字特征的计算、各种统计图表、线性回归方程、独立性检验等;有时也会在知识交汇点处命题,如概率与统计交汇等.2.从考查形式上来看,大部分为选择题、填空题,重在考查基础知识、基本技能,有时在知识交汇点处命题,也会出现解答题,都属于中、低档题.1.随机抽样(1)简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少.(2)系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.(3)分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成.2.常用的统计图表 (1)频率分布直方图 ①小长方形的面积=组距×频率组距=频率; ②各小长方形的面积之和等于1;③小长方形的高=频率组距,所有小长方形的高的和为1组距.(2)茎叶图在样本数据较少时,用茎叶图表示数据的效果较好. 3.用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数数字特征 样本数据 频率分布直方图众数出现次数最多的数据取最高的小长方形底边中点的横坐标 中位数将数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数据的平均数)把频率分布直方图划分左右两个面积相等的分界线与x 轴交点的横坐标 平均数样本数据的算术平均数每个小矩形的面积乘以小矩形底边中点的横坐标之和(2)方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差:s =1n[x 1-x2+x 2-x2+…+x n -x2].4.变量的相关性与最小二乘法(1)相关关系的概念、正相关和负相关、相关系数.(2)最小二乘法:对于给定的一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),通过求Q = i =1n(y i-a -bx i )2最小时,得到线性回归方程y ^=b ^x +a ^的方法叫做最小二乘法. 5.独立性检验对于取值分别是{x 1,x 2}和{y 1,y 2}的分类变量X 和Y ,其样本频数列联表是y 1 y 2 总计x 1 a b a +b x 2cdc +d总计a+c b+d n则K2(χ2)=n ad bc2a+b c+d a+c b+d(其中n=a+b+c+d为样本容量).热点一抽样方法例1 (1)(2013·陕西)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A .11 B .12 C .13 D .14(2)(2014·石家庄高三调研)某学校共有师生3 200人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是________.思维启迪 (1)系统抽样时需要抽取几个个体,样本就分成几组,且抽取号码的间隔相同;(2)分层抽样最重要的是各层的比例. 答案 (1)B (2)200 解析 (1)由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. (2)本题属于分层抽样,设该学校的教师人数为x ,所以1603 200=160-150x ,所以x =200.思维升华 (1)随机抽样各种方法中,每个个体被抽到的概率都是相等的;(2)系统抽样又称“等距”抽样,被抽到的各个号码间隔相同;分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.(1)某校高一、高二、高三分别有学生人数为495,493,482,现采用系统抽样方法,抽取49人做问卷调查,将高一、高二、高三学生依次随机按1,2,3,…,1 470编号,若第1组有简单随机抽样方法抽取的号码为23,则高二应抽取的学生人数为( )A.15 B.16 C.17 D.18(2)(2014·广东)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A.200,20 B.100,20C.200,10 D.100,10答案(1)C (2)A解析(1)由系统抽样方法,知按编号依次每30个编号作为一组,共分49组,高二学生的编号为496到988,在第17组到第33组内,第17组抽取的编号为16×30+23=503,为高二学生,第33组抽取的编号为32×30+23=983,为高二学生,故共抽取高二学生人数为33-16=17,故选C.(2)该地区中、小学生总人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20,故选A.热点二用样本估计总体例2(1)(2014·山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6 B.8 C.12 D.18(2)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A.甲B.乙C.甲乙相等D.无法确定甲乙20.04123 6930.0596210.06293310.079640.08770.09246思维启迪(1)根据第一组与第二组的人数和对应频率估计样本总数,然后利用第三组的频率和无疗效人数计算;(2)直接根据公式计算方差.答案(1)C (2)A解析(1)志愿者的总人数为200.16+0.24×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.(2)x甲=(0.042+0.053+0.059+0.061+0.062+0.066+0.071+0.073+0.073+0.084+0.086+0.097)÷12≈0.068 9,x乙=(0.041+0.042+0.043+0.046+0.059+0.062+0.069+0.079+0.087+0.092+0.094+0.096)÷12≈0.067 5,s2=112[(0.042-0.068 9)2+(0.053-0.068 9)2+…+(0.097-0.068 9)2]≈0.000 212.s2=112[(0.041-0.067 5)2+(0.042-0.067 5)2+…+(0.096-0.067 5)2]≈0.000 429.所以甲、乙两地浓度的方差较小的是甲地.思维升华(1)反映样本数据分布的主要方式:频率分布表、频率分布直方图、茎叶图.关于频率分布直方图要明确每个小矩形的面积即为对应的频率,其高低能够描述频率的大小,高考中常常考查频率分布直方图的基本知识,同时考查借助频率分布直方图估计总体的概率分布和总体的特征数,具体问题中要能够根据公式求解数据的均值、众数和中位数、方差等.(2)由样本数据估计总体时,样本方差越小,数据越稳定,波动越小.(1)某商场在庆元宵促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.(2)(2014·陕西)设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a,4 B .1+a,4+a C .1,4D .1,4+a答案 (1)10 (2)A解析 (1)由频率分布直方图可知: 0.100.40=2.5x ,所以x =10. (2)x 1+x 2+…+x 1010=1,y i =x i +a ,所以y 1,y 2,…,y 10的均值为1+a ,方差不变仍为4. 故选A.热点三 统计案例例3(1)以下是某年2月某地区搜集到的新房屋的销售价格y和房屋的面积x的数据.根据上表可得线性回归方程y=b x+a中的b=0.196 2,则面积为150 m2的房屋的销售价格约为________万元.(2)(2014·江西)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1性别男 8 12 20 女 8 24 32 总计163652表4阅读量 性别丰富 不丰富 总计 男 14 6 20 女 2 30 32 总计163652A.成绩 B .视力 C .智商 D .阅读量思维启迪 (1)回归直线过样本点中心(x ,y ); (2)根据列联表,计算K 2的值 答案 (1)31.244 2 (2)D解析 (1)由表格可知x =15(115+110+80+135+105)=109,y =15(24.8+21.6+18.4+29.2+22)=23.2.所以a ^=y -b ^x =23.2-0.196 2×109=1.814 2.所以所求线性回归方程为y ^=0.196 2x +1.814 2.故当x =150时,销售价格的估计值为y ^=0.196 2×150+1.814 2=31.244 2(万元). (2)A 中,a =6,b =14,c =10,d =22,a +b =20,c +d =32,a +c =16,b +d =36,n =52, K 2=52×6×22-14×10220×32×16×36=131 440. B 中,a =4,b =16,c =12,d =20,a +b =20,c +d =32,a +c =16,b +d =36,n =52, K 2=52×4×20-16×12220×32×16×36=637360. C 中,a =8,b =12,c =8,d =24,a +b =20,c +d =32,a +c =16,b +d =36,n =52, K 2=52×8×24-12×8220×32×16×36=1310. D 中,a =14,b =6,c =2,d =30,a +b =20,c +d =32,a +c =16,b +d =36,n =52, K 2=52×14×30-6×2220×32×16×36=3 757160.∵131 440<1310<637360<3 757160,∴与性别有关联的可能性最大的变量是阅读量.思维升华(1)线性回归方程求解的关键在于准确求出样本点中心.回归系数的求解可直接把相应数据代入公式中求解,回归常数的确定则需要利用中心点在回归直线上建立方程求解;(2)独立性检验问题,要确定2×2列联表中的对应数据,然后代入K2(χ2)计算公式求其值,根据K2(χ2)取值范围求解即可.(1)已知x、y取值如下表:从所得的散点图分析可知:y与x线性相关,且y=0.95x+a,则a等于( )A.1.30 B.1.45 C.1.65 D.1.80(2)某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”,“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.得以下2×2列联表:则在犯错误的概率不超过(附:)答案 (1)B (2)0.01解析 (1)依题意得,x =16×(0+1+4+5+6+8)=4,y =16(1.3+1.8+5.6+6.1+7.4+9.3)=5.25;又直线y ^=0.95x +a ^必过样本点中心(x ,y ),即点(4,5.25),于是有5.25=0.95×4+a ^,由此解得a ^=1.45. (2)由题意得K 2=20×5×12-1×226×14×7×13≈8.802>6.635.而K 2>6.635的概率约为0.01,所以在犯错误的概率不超过0.01的前提下认为人的脚的大小与身高之间有关系.1.随机抽样的方法有三种,其中简单随机抽样适用于总体中的个体数量不多的情况,当总体中的个体数量明显较多时要使用系统抽样,当总体中的个体具有明显的层次时使用分层抽样.系统抽样最重要的特征是“等距”,分层抽样,最重要的是各层的“比例”. 2.用样本估计总体(1)在频率分布直方图中,各小长方形的面积表示相应的频率,各小长方形的面积的和为1. (2)众数、中位数及平均数的异同:众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(3)当总体的个体数较少时,可直接分析总体取值的频率分布规律而得到总体分布;当总体容量很大时,通常从总体中抽取一个样本,分析它的频率分布,以此估计总体分布. ①总体期望的估计,计算样本平均值x =1n ∑ni =1x i .②总体方差(标准差)的估计:方差=1n∑ni =1(x i-x )2,标准差=方差,方差(标准差)较小者较稳定.3.线性回归方程y ^=b ^x +a ^过样本点中心(x ,y ),这为求线性回归方程带来很多方便. 4.独立性检验(1)作出2×2列联表.(2)计算随机变量K 2(χ2)的值.(3)查临界值,检验作答.真题感悟1.(2014·江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.答案 24解析 底部周长在[80,90)的频率为0.015×10=0.15, 底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24. 2.(2014·重庆)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5 D.y ^=-0.3x +4.4答案 A解析因为变量x和y正相关,则回归直线的斜率为正,故可以排除选项C和D.因为样本点的中心在回归直线上,把点(3,3.5)的坐标分别代入选项A和B中的线性回归方程进行检验,可以排除B,故选A.押题精练1.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取50辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在70 km/h以下的汽车有________辆.答案20解析时速在70 km/h以下的汽车所占的频率为0.01×10+0.03×10=0.4,共有0.4×50=20(辆).2.某教育出版社在高三期末考试结束后,从某市参与考试的考生中选取600名学生对在此期间购买教辅资料的情况进行调研,得到如下数据:人数 240 200 160若该教育出版社计划用分层抽样的方法从这600人中随机抽取60人进行座谈,则只买试题类的学生应抽取的人数为________. 答案 24解析 只买试题类的学生应抽取的人数为60×240600=24.3.下表提供了某厂节能减排技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x 3 4 5 6 y2.5t44.5根据上表提供的数据,求出y 关于x 的线性回归方程为y ^=0.7x +0.35,那么表中t 的值为________. 答案 3解析 ∵样本点中心为⎝⎛⎭⎪⎫4.5,11+t 4,∴11+t 4=0.7×4.5+0.35,解得t =3. 4.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光盘”能做到“光盘”男 45 10 女3015附:P (K 2≥k 0)0.10 0.05 0.025 k 02.7063.8415.024K 2=n ad -bc 2a +bc +d a +cb +d参照附表,得到的正确结论是( )A .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” 答案 C解析 由公式可计算K 2的观测值k =n ad -bc 2a +bc +d a +cb +d=100×45×15-30×10255×45×75×25≈3.03>2.706,所以有90%以上的把握认为“该市民能否做到‘光盘’与性别有关”,故选C.(推荐时间:40分钟)一、选择题1.(2014·湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3答案 D解析由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1=p2=p3.2.某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200人的样本,则高中二年级被抽取的人数为( )A.28 B.32C.40 D.64答案 D解析由已知,得样本容量为400+320+280=1 000,所以,高中二年级被抽取的人数为2001 000×320=64,选D.3.(2013·江西)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 C .02 D .01答案 D解析 从第1行第5列、第6列组成的数65开始由左到右依次选出的数为:08,02,14,07,01,所以第5个个体编号为01.4.为了了解某城市今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为120,则抽取的学生人数是( )A .240B .280C .320D .480答案 D解析 由频率分布直方图知:学生的体重在65~75 kg 的频率为(0.012 5+0.037 5)×5=0.25,则学生的体重在50~65 kg 的频率为1-0.25=0.75. 从左到右第2个小组的频率为0.75×26=0.25.所以抽取的学生人数是120÷0.25=480.5.某产品在某零售摊位上的零售价x (单位:元)与每天的销售量y (单位:个)的统计资料如下表所示:由上表可得线性回归方程y ^=b ^x +a ^中的b ^=-4,据此模型预计零售价定为15元时,每天的销售量为( ) A .48个 B .49个 C .50个 D .51个答案 B解析 由题意知x =17.5,y =39,代入线性回归方程得a ^=109,109-15×4=49,故选B. 6.某校为了研究学生的性别和对待某一活动的态度(支持和不支持的两种态度)的关系,运用2×2列联表进行独立性检验,经计算K 2=7.069,则所得到的统计学结论是:有________的把握认为“学生性别与支持该活动有关系.”( ) 附:P (K 2≥k 0)0.100 0.050 0.025 0.010 0.001 k 02.7063.8415.0246.63510.828A.0.1% C .99% D .99.9%答案 C解析 因为7.069与附表中的6.635最接近,所以得到的统计学结论是:有1-0.010=0.99=99%的把握认为“学生性别与支持该活动有关系”,选C.7.某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数x 甲,x 乙和中位数y 甲,y 乙进行比较,下面结论正确的是( ) A.x 甲>x 乙,y 甲>y 乙 B.x 甲<x 乙,y 甲<y 乙 C.x 甲<x 乙,y 甲>y 乙 D.x 甲>x 乙,y 甲<y 乙 答案 B 二、填空题8.从某中学高一年级中随机抽取100名同学,将他们的成绩(单位:分)数据绘制成频率分布直方图(如图).则这100名学生成绩的平均数、中位数分别为________.答案 125,124解析 由图可知(a +a -0.005)×10=1-(0.010+0.015+0.030)×10,解得a =0.025,则x =105×0.1+115×0.3+125×0.25+135×0.2+145×0.15=125.中位数在120~130之间,设为x ,则0.01×10+0.03×10+0.025×(x -120)=0.5,解得x =124. 9.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是__________. 答案 1解析 当x ≥4时,89+89+92+93+92+91+947=6407≠91,∴x <4,∴89+89+92+93+92+91+x +907=91,∴x =1.10.某小学对学生的身高进行抽样调查,如图,是将他们的身高(单位:厘米)数据绘制的频率分布直方图.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人,则从身高在[140,150]内的学生中选取的人数应为________.错误!未找到引用源。