重复测量资料方差分析
心理学统计第五部分重复测量方差分析
心理学统计第五部分重复测量方差分析在心理学研究中,有时候研究者需要评估一个或多个因素对参与者的多个测量结果的影响。
这种情况下,重复测量方差分析(Repeated Measures Analysis of Variance,简称为RM ANOVA)是一种常用的统计方法。
重复测量方差分析是一种比较多个组内变量平均数差异的方法,它比较了每个组内变量的差异以及每个组间变量的差异。
与传统的方差分析不同,重复测量方差分析考虑了相同参与者在不同条件下的多次测量结果,因此能够更准确地评估因素对测量结果的影响。
首先,我们需要明确的是,在重复测量方差分析中,我们的因变量是一个连续的测量结果,而自变量是一个或多个处理条件。
例如,我们可能想要评估一个新药物是否对人们的注意力产生影响,我们可以将注意力测量结果作为因变量,而药物与安慰剂作为自变量。
重复测量方差分析有三个基本的假设。
首先,我们假设不同处理条件下的测量结果的总平均数相等,即每组的平均值相等。
其次,我们假设各个处理条件下的测量结果有一定的方差。
最后,我们假设不同处理条件下的测量结果相互独立。
重复测量方差分析有一些优点和注意事项。
首先,这种方法可以减少误差变异,因为我们可以通过比较同一参与者在不同条件下的测量结果来消除参与者间的差异。
其次,重复测量方差分析可以提高统计功效,以便检测到小的差异。
然而,我们需要注意确保多次测量结果之间的独立性,以及在数据分析中正确处理可能的违反方差齐性和正态分布的情况。
总结起来,重复测量方差分析是一种常用的心理学统计方法,用于评估一个或多个因素对参与者的多个测量结果的影响。
它是一种有效的方法,可以提供关于不同处理条件之间差异的信息。
在分析数据时,我们需要检查数据的正态性和方差齐性,并使用适当的修正方法来应对违反这些假设的情况。
重复测量方差分析为心理学研究提供了一个强有力的统计工具,使得研究者能够更好地理解和解释影响行为和心理过程的因素。
方差分析(重复测量)
诱导
患者
方法
序号
T0
t3
A
1
120
A
2
118
A
3
119
A
4
121
A
5
127
B
6
121
B
7
122
B
8
128
B
9
117
B
10
118
C
11
131
C
12
129
C
13
123
C
14
123
C
15
125
麻醉诱导时相
t1 t2 t4
108
112
120
117
109
115
H uy nh-F eldt
2336.453
Low er-bound
2336.453
B * G RO U PS phericity A ssum ed 837.627
G reenhouse-G eisser 837.627
H uy nh-F eldt
837.627
Low er-bound
837.627
T es ts of Within-Sub je cts Effe cts
M easure: M E A S U RE _1
S ource
Ty pe III Sum of S quares
B
S phericity A ssum ed 2336.453
G reenhouse-G eisser 2336.453
Within SubjectsMEfafuecthly 's WC hi-Square
重复测量方差分析
重复测量方差分析1. 引言重复测量方差分析(Repeated Measures Analysis of Variance, RM-ANOVA)是一种统计方法,用于分析在不同时间点或不同处理条件下对同一组个体或样本进行多次测量的数据。
通过比较不同时间点或处理条件下的测量结果,我们可以确定是否存在显著的差异,并了解时间或处理对测量结果的潜在影响。
本文档将介绍重复测量方差分析的基本原理、假设条件、计算方法和结果解读,并提供使用Markdown格式编写重复测量方差分析报告的示例。
2. 基本原理重复测量方差分析的基本原理是基于方差分析(ANOVA)方法,但相对于普通的单因素方差分析,重复测量方差分析考虑了测量数据间的相关性。
在重复测量设计中,同一个个体或样本在不同时间点或处理条件下进行多次测量,因此测量数据之间存在一定的相关性。
为了解决相关性的问题,重复测量方差分析使用了独特的矩阵分解方法,将总体方差分解为组内方差和组间方差。
通过计算组间方差与组内方差的比值,可以判断不同时间点或处理条件下的测量结果是否存在显著差异。
3. 假设条件在进行重复测量方差分析之前,需要满足以下假设条件:•正态性假设:每个时间点或处理条件下的测量结果应当服从正态分布。
•同方差性假设:每个时间点或处理条件下的测量结果应具有相同的方差。
•相关性假设:各个时间点或处理条件下的测量结果之间应具有一定的相关性。
如果数据不满足正态性、同方差性或相关性假设,需要采取适当的数据转换、方差齐性检验或相关性分析等方法进行处理。
4. 计算方法重复测量方差分析的计算方法可以通过计算F统计量来进行。
具体步骤如下:步骤1:计算总体方差首先计算总体方差SSTotal,即测量数据的总体波动情况。
步骤2:计算组间方差然后计算组间方差SSBetween,即不同时间点或处理条件下的测量结果之间的差异。
步骤3:计算组内方差接下来计算组内方差SSWithin,即测量数据在同一个时间点或处理条件下的波动情况。
方差分析三重复测量资料方差分析
比较不同处理组之间的差 异
通过比较不同处理组之间的差异,可以了解 不同处理因素对实验结果的影响程度。
实验设计
处理因素
确定要研究的处理因素,并确保 其具有科学性和可行性。
重复测量
在相同的实验条件下,对实验对 象进行重复测量,以减少实验误 差,提高实验结果的可靠性。
方差分析三重复测量资料 方差分析
目录
• 引言 • 方差分析基本原理 • 三重复测量资料的方差分析 • 结果解释与结论 • 讨论与展望
01
引言
目的和背景
探讨不同处理因素对实验 结果的影响
通过方差分析三重复测量资料,可以分析不 同处理因素对实验结果的影响,从而为进一 步的研究提供依据。
提高实验结果的可靠性
方差齐性检验
使用Levene's test或 Bartlett's test检验各组方
差是否齐性。
假设检验
根据方差分析结果,进行 假设检验,判断各组均值
是否存在显著差异。
三重复测量资料的方差分析实例
数据来源
选取某实验组和对照组在不同时间点的观察 值作为三重复测量资料。
数据整理
整理数据,确保数据准确无误。
2
应用范围讨论
三重复测量资料方差分析不仅适用于生 物学、医学等领域的数据分析,还可广 泛应用于心理学、经济学、社会学等领 域。然而,由于该方法对数据的要求较 高,因此在应用时需要根据具体的数据 情况选择合适的数据处理和分析方法, 以确保结果的准确性和可靠性。
3
与其他方法的比较
除了三重复测量资料方差分析外,还有 其他多种统计分析方法可用于处理和分 析实验数据。每种方法都有其特点和适 用范围。在选择合适的分析方法时,需 要根据研究目的、数据特征和研究设计 等因素进行综合考虑。例如,对于非重 复测量数据,可以考虑使用独立样本t检 验或单因素方差分析等方法。
重复测量设计的方差分析
u 随机区组设计 ●处理因素在区组内随机分配; 每个区组内实验单位彼此独立。
第二节
重复测量数据 的两因素两水平分析
高血压患者治疗前后的舒张压(mmHg)
处理组 a1
对照组(安慰剂组)a2
顺序号 治疗前 治疗后 合计(Mj) 顺序号 治疗前 治疗后 合计(Mj)
●处理因素在区组内随b机1分配; b2
118
124
-6
132
122
10
134
132
2
114
96
18
118
124
-6
128
118
10
118
116
2
132
122
10
120
124
-4
134
128
6
1248
1206
42
124.8
120.6
4.2
7.90
9.75
8.02
三、重复测同相量一关受的设试。计者的(单血样因重素复测)量的结果是高度
受试者血糖浓度(mmol/L)
214
17
118
明“服8药”有效; 138
122
260
18
132
重复测量设计与随机区组设计区别
降压药9物与安慰剂间疗12效6差别无统计学1意08义;
234
19
120
注若意球事 对1项称0 1性、质单不因能素满实足1验2,重4则复方测差量分数析据的1分F0析值6是偏大的,2增3大0了犯第一类错2误0 的概率。 134
重复测量设计的方差分析
讲课内容
第一节 重复测量资料的数据特征 第二节 重复测量数据的两因素两水平分析
方差分析三重复测量资料的方差分析
缺点
实验成本高
需要进行多次测量,增加了实验成本和时间。
数据处理复杂
三重复测量资料的方差分析需要处理大量的数据,并且需要进行复 杂的统计分析,对数据分析的要求较高。
样本量要求高
为了获得更可靠的结果,需要较大的样本量,增加了实验难度。
06
三重复测量资料的方差分析的未来 发展
研究方向
1 2
拓展应用领域
通过比较组间方差和组内 方差的差异,判断各组之
间的差异是否显著。
01
02
03
04
05
1. 建立假设
确定要检验的原假设(H0) 和备择假设(H1)。
3. 计算方差
根据数据计算组间方差和 组内方差。
5. 解读结果
根据统计结果解释实验结 果,确定处理因素对实验 结果的影响是否显著。
03
三重复测量资料的方差分析
感谢您的观看
THANKS
5. 结果解释
根据模型的拟合结果, 解释三重复测量资料 的变化情况,并给出 相应的结论和建议。
04
三重复测量资料的方差分析实例
实例一:药物效果研究
总结词
药物效果研究是三重复测量资料方差分析的重要应用领域之一,主要用于评估药物治疗前后的效果差 异。
详细描述
在药物效果研究中,通常会对同一组受试者在药物治疗前、治疗中、以及治疗后的不同时间点进行测 量,以评估药物对受试者的影响。通过三重复测量资料的方差分析,可以比较不同时间点上受试者的 生理指标、症状改善程度等方面的差异,从而为药物的疗效提供科学依据。
02
方差分析概述
方差分析的定义
方差分析(ANOVA)是一种统计方 法,用于比较两个或多个组之间的平 均值差异是否显著。
重复测量数据方差分析
74.4
77.0
75.2 77.4
82.6
80.4
81.2 79.6
68.6
65.0
63.2 63.4
79.0
77.0
73.8 72.5
69.4
66.8
64.4 60.8
72.6
71.0
68.2 70.2
72.4
72.6
72.8 72.6
75.6
73.4
73.4 72.2
80.0
78.0
76.4 74.8
7.90
9.75 8.02
经检验处理组与对照组的差值 d 方差不齐(F S12 / S22 6.58 , P 0.01),不符合两均数比较 t 检验的前提条件。
设置对照旳前后测量设计
前后测量数据间存在明显差别时,并不能阐明这种差 别是由前后测量之间施加旳处理所产生,还是因为存 在于前后两次测量之间旳时间效应所致。
比较
表9-2 两种措施对乳酸饮料中脂肪含量旳测定成果(%)
编号
1 2 3 4 5 6 7 8 9 10
哥特里-罗紫法
0.840 0.591 0.674 0.632 0.687 0.978 0.750 0.730 1.200 0.870
脂肪酸水解法
0.580 0.509 0.500 0.316 0.337 0.517 0.454 0.512 0.997 0.506
受试 对象j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
剂型 k
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
服药后测定时间i(周)
第十四章 重复测量的资料方差分析
编号
治疗前
治疗后
差值
1
130
114
16
2
124
110
14
3
136
126
10
4
128
116
12
5
122
102
20
6
118
100
18
7
116
98
18
8
138
122
16
9
126
108
18
10
124
106
18
X
126.2
110.2
16.0
S
7.08
9.31
3.13
比较
表3-3 两种方法对乳酸饮料中脂肪含量的测定结果(%)
SS
MS
F
P
总变异
14 0.5328
处理间
2 0.2280 0.1140 11.88 <0.01
区组间
4 0.2284 0.0571 5.95 <0.05
误差
8 0.0764 0.0096
2.重复测量设计区组内即同一受试者 的重复测量数据是高度相关的。例如,计 算表 12-3 中各时间点数据间的相关系数 结果见表 12-6。
表12-4 表 12-3数据的方差分析表
变异来源 自由度 SS MS F
P
总变异
31 5.751
区组(受试者)
7
2.828 0.361 27.77 <0.01
放置时间
3
2.959 0.986 75.85 <0.01
误差
21 0.264 0.013
表12-7 表12-3数据“球对称”检验结果
5 重复测量设计资料的方差分析
SPSS分析结果:
球型性检验结果, P = 0.178>0.1 ,说明满足条件, 不需进行校正。
SPSS分析结果:
SPSS分析结果:
SPSS分析结果:ຫໍສະໝຸດ 前提条件z z z z
独立性; 正态性; 方差齐性; 球形性(复合对称性)-球形性检验。
如果不满足球形性的条件,可以对自由度进行校正,也 可以采用多变量方差分析(MANOVA)。
变异分解
SS总= SS受试对象间 + SS受试对象内
=(SS处理+SS个体间误差)+(SS时间+ SS处理*时间交互+SS个体内误差) ν总= ν受试对象间 + ν受试对象内
=(ν处理+ν个体间误差)+(ν时间+ ν处理*时间交互+ν个体内误差)
基本步骤
• 建立检验假设,确立检验水准 • 计算检验统计量 • 确定P值,下结论
医学统计学
重复测量资料的方差分析
施红英 主讲 温州医学院预防医学系
重复测量资料
重复测量资料:是同一受试对象的同一观察指标 在不同时间点上进行多次测量所得的资料,常用 来分析该观察指标在不同时间点上的变化特点。
案 例
• 将手术要求基本相同的 15 名患者随机分 3 组,在手术过程中分别采用 A , B , C 三种 麻 醉 诱 导 方 法 , 在 T0 ( 诱 导 前 ) 、 T1 、 T2、T3,T4 五个时相分别测量患者的收缩 压。数据见下表。试进行方差分析。 • Data:rebp.sav
重复测量资料与随机区组设计资料的区别: • 重复测量资料中同一受试对象的数据高度相关; 其处理因素在受试对象间可以随机分配、但受试 对象内的各时间点往往是固定的,不能随机分 配。 • 随机区组设计资料中每个区组内的受试对象彼此 独立,处理只在区组内随机分配,同一区组内的 受试对象接受的处理各不相同。
定量数据重复测量的方差分析
定量数据重复测量的方差分析引言。
在科学研究中,我们经常需要对同一组对象进行多次测量,以便得到更加准确和可靠的数据。
在这种情况下,我们需要进行方差分析来确定测量结果的差异是否显著。
本文将介绍定量数据重复测量的方差分析方法及其应用。
一、方差分析的基本原理。
方差分析是一种用于比较两个或多个组之间差异的统计方法。
在定量数据重复测量的情况下,我们通常使用重复测量方差分析(Repeated Measures ANOVA)来分析数据。
重复测量方差分析可以用于比较同一组对象在不同时间点或不同条件下的测量结果之间的差异。
重复测量方差分析的基本原理是利用组内变异和组间变异之间的比较来判断测量结果的差异是否显著。
组内变异是指同一组对象在不同时间点或不同条件下的测量结果之间的差异,而组间变异是指不同组对象之间的测量结果之间的差异。
通过比较组内变异和组间变异的大小,我们可以判断测量结果的差异是否由于不同时间点或不同条件引起。
二、重复测量方差分析的假设。
在进行重复测量方差分析时,我们需要满足以下几个假设:1. 同质性方差假设,不同组对象在不同时间点或不同条件下的测量结果的方差相等;2. 正态分布假设,测量结果符合正态分布;3. 独立性假设,不同组对象在不同时间点或不同条件下的测量结果相互独立。
如果以上假设不成立,我们需要采取相应的方法来处理数据,例如进行变换或者使用非参数方法进行分析。
三、重复测量方差分析的步骤。
进行重复测量方差分析的步骤如下:1. 确定研究设计,确定需要比较的组别以及重复测量的时间点或条件;2. 收集数据,收集不同组对象在不同时间点或不同条件下的测量结果;3. 检验假设,对数据进行正态性检验和同质性方差检验,如果假设不成立,则需要进行相应的数据处理;4. 进行方差分析,利用统计软件进行重复测量方差分析,得出组间变异和组内变异的比较结果;5. 进行事后检验,如果方差分析结果显著,我们需要进行事后检验来确定具体哪些组别或时间点之间存在显著差异;6. 结果解释,根据方差分析和事后检验的结果,对测量结果的差异进行解释和讨论。
重复测量资料的方差分析
重复测量资料的方差分析什么是重复测量资料?重复测量资料是指在同一物件上,经过多次测量所得的一组数据。
它可以用于评估测量装置或人员的准确度和可靠性,或对同一样品在不同时间或不同实验条件下的实验测量结果进行比较。
方差分析方差分析是一种分析比较不同组别之间差异的统计方法,它可以判断一个因素对实验结果的影响是否显著。
在重复测量资料的分析中,方差分析可以用于确定是否存在个体之间的显著差异。
重复测量资料的方差分析方法在重复测量资料的方差分析中,采用的是双因素重复测量资料的方差分析方法。
这种方法包括两个因素:测量因素和重复因素。
测量因素是要分析的因素,重复因素是指对同一物件进行多次测量,每次测量之间都存在一定程度的差异,重复因素会产生误差。
以下是双因素重复测量资料的方差分析步骤:步骤一:确定方差来源方差来源包括测量因素、重复因素以及随机误差。
其中测量因素和重复因素可以用于计算方差,而随机误差则不能。
步骤二:计算平方和平方和是指每个因素所产生的方差之和。
计算平方和的公式如下:•总平方和(TSS):TSS=SSA+SSB+SSAB+SSE•因素A的平方和(SSA):SSA=n∑(yij-y··)2/a-1•因素B的平方和(SSB):SSB=n∑(yij-y··)2/b-1•因素AB的平方和(SSAB):SSAB=n∑(yij-yi·-y·j+y··)2/(a-1)(b-1)•误差平方和(SSE):SSE=TSS-SSA-SSB-SSAB其中,n是每组数据的测量次数,a和b是因素A和因素B的水平数,yij是第i个个体在第j次测量中的数据,yi·是第i个个体在所有测量中的均值,y·j是所有个体在第j次测量中的均值,y··是所有测量数据的均值。
步骤三:计算自由度自由度是指某一因素或误差中可变的部分,计算自由度的公式如下:•总自由度(DFS):dfs=nab-1•因素A的自由度(DFA):DFA=a-1•因素B的自由度(DFB):DFB=b-1•因素AB的自由度(DFAB):DFAB=(a-1)(b-1)•误差自由度(DFE):DFE=dfs-DFA-DFB-DFAB步骤四:计算均方值均方值是平方和与自由度的比值,计算均方值的公式如下:•因素A的均方值(MSA):MSA=SSA/DFA•因素B的均方值(MSB):MSB=SSB/DFB•因素AB的均方值(MSAB):MSAB=SSAB/DFAB•误差的均方值(MSE):MSE=SSE/DFE步骤五:计算F值F值是均方值之比,计算F值的公式如下:•因素A的F值(FA):FA=MSA/MSE•因素B的F值(FB):FB=MSB/MSE•因素AB的F值(FAB):FAB=MSAB/MSE步骤六:计算P值P值是指一个F分布的概率值,计算P值需要使用F分布表。
重复测量方差分析
SPSS学习笔记之——重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS70mg/kg治疗。
重复测量资料的方差分析
浙江大学医学院流行病与卫生统计学教研室 沈毅
协方差阵的球形性质是指该矩阵主对角线元素(方差)
相等、非主对角线元素(协方差)为零。用Mauchly氏法
检验协方差阵的球形性质。Mauchly氏检验的 P值若大于
研究者所选择的显著性水准α时,说明协方差阵的球形性
质得到满足。否则,必须对与时间有关的F统计量的分子、
(1)Greenhouse-Geisser调整系数
(G
G
)
为:
a2 (sk2k s2 )2
(a
1)
k
l
(sk2l )2 (2a)(
k
(sk2
)2
)
a
2
(
s
2
)2
(10 2)
式(10-2)中的 sk2l 是矩阵(10-1)中第k行第l列元素,
浙江大学医学院流行病与卫生统计学教研室 沈毅
SAS程序给出本例的协方差阵Mauchly球形性检验的结果为P
=0.1628,故不必进行自由度的调整。查F界值表得:F0.01(3,24) =3.01,F0.01(3,24)=4.72。本例处理因素的F值为8.22,大于 F0.01(3,24),故拒绝无效假设,说明处理因素间的差别具有统计 学意义。
当 1.0时,取=1.0。
浙江大学医学院流行病与卫生统计学教研室 沈毅
2.调整规则 只对具有重复测定性质的时间效应的
F值的自由度,和处理时间交互作用的F值的自由度进行
调整。由于F值有两个自由度v1和v2,调整的分子自由
度
v1' v1× ,
,分母自由度 v2'
重复测量方差分析报告
前后测量设计和配对设计的区别
配对设计可随机分配同一对子的试验单位,同 期观察试验结果,而前后测量设计则不能同期 观察试验结果;
配对设计比较两种处理的差别,前后测量设计 比较某种处理前后的差别;
前后测量设计在推断处理是否有效时需假定 测量时间对观察结果没有影响.
前后测量设计和配对设计的区别
配对设计要求每组观察结果和差值相互独立, 且差值服从正态分布,前后测量设计差值通常 与前一次观察存在相关关系;
重复测量设计
当前后测量设计的重复测量次数≥3时,则所得 观察结果称为重复测量数据.
表12-5 20例患者手术前后症状评分
处理 分组
A A …… B B
手术 前
0.60 1.42 …… 2.71 1.80
10天 0.67 3.40 …… 2.04 1.40
手术后 2月 4月 6月 2.84 2.10 2.00 4.10 2.92 2.65 …… …… …… 2.61 2.17 2.15 1.00 1.30 2.40
18 128.633
Sig. .000
.226
处理<A>的检验结果,F=1.574,P=0.226 组间误差项
表12-10 重复测量设计两因素两水平的方差分析表
变异来源 组间(对象)
干预(A) 组间误差 组内(重复) 时间(B) AB交互作用 组内误差
自由度 19 1 18 20 1 1 18
SS MS 2517.9 202.5 202.5 2314.5 128.6 1702.0 1020.1 1020.1 348.1 348.1 333.8 18.54
5
4 0
45
90
135
放置时间(分钟)
重复测量资料的方差分析
ˆ ˆ ˆ2 2k 式中中的 s 是协方差矩阵中的第 k 行第 l 列元素, s = ( = (∑ s ) / a 是主对角线元素的平均值, s = (∑ s ) / a 是第 k 行的平均值。
ε ˆ 的取值在 1.0 与 1/(a -1)之间。
ε =ˆˆ ˆ分子自由度ν 1 =ν 1 ⨯ε 分母自由度ν 2 =ν 2 ⨯ε 。
具体计算时可用或ε 代替。
用 调整所得的ν 1 及ν 2 的 F 值查临界值表,得 F α (ν ' ,ν ' ) 。
由于ε≤ 1.0,所以调整后的重复测量资料方差分析重复测量(repeated measure )是指对同一观察对象的同一观察指标在不同时间 点上进行的多次测量,用于分析该观察指标在不同时间上的变化特点。
这类测量 资料在临床和流行病学研究中比较常见,例如,为研究某种药物对高血压病人的 治疗效果,需要定时多次测量受试者的血压,以分析其血压的变动情况。
1、 重复测量资料方差分析中自由度调整方法1.调整系数 ε 的计算有两个调整系数,第一个是 Greenhouse-Geisser 调整系数 ε (G - G ε ) ,计算 公式为ε =a 2(s kl - s 2) 2(a -1)[∑ ∑ (s kl ) 2 - (2a )(∑ (s 2 ) 2 ) + a 2 (s 2 ) 2 ]k l kkl 2 2 ∑∑ s k l 2 kl ) / a 2 是所有元素的总平均值, s 2 kk l2 2 ll2 2 kkll 第 2 个系数是 Huynh-Feldt 调整系数 ε (H - F ε ) 。
研究表明,当 ε 真值在 0.7 以上时,用 ε 进行自由度调整后的统计学结论偏于保守,故 Huynh 和 Feldt 提 出用平均调整值 ε 值进行调整。
ε 值的计算公式为ng (a - 1)ε - 2 (a - 1)[(n - 1)g - (a - 1)ε ]式中中的 g 是对受试对象的某种特征(如年龄或性别)进行分组的组数,n 是每组的观察例数。
重复测量方差分析
课件
53
表9-13
课件
54
可以看出重复测量资料中同一受试对象 (看成区组)的数据高度相关
无论哪位受试对象服用曲明片剂或是胶囊,其服药后8 周、16周和24周的体重均和前面时间点(含服药前 的0周)的体重相关。不同时点数据其相关性较强。
课件
55
重复测量资料方差分析的基本步骤 分为三步:
课件
56
⑵计算检验统计量:使用统计软件进行计算结果如下 :
1 50.10 58.20 64.50 2 47.80 48.50 62.40 3 53.10 53.80 58.60 4 63.50 64.20 72.50 5 71.20 68.40 79.30 6 41.40 45.70 38.40 7 61.90 53.00 51.20 课8件 42.20 39.80 46.2015
常用的调整方法
课件
30
4. 计算F值
时间点间 误差
课件
31
球对称性通常采用 Mauchly’s test检验来判断
其结果按α=0.1水准检验,不满足球对称性, 对系数ε进行校正,其结果如下:
结果显示:治疗前与治疗后不课同件 时间转氨酶平均水平不同。32
5.单组重复测量方 差分析数据结构
6.基本程序格式
run; 提示:显示不同水平比较时的结构
课件
48
显示不同水平比较时的结构
课件
49
当兴趣在于1个水平与以后的所有水平 的比较时,可选helmert
………….; repeated time helmert /printm summary ; ………….;
课件
50
小结: 两两比较参数选择
Printe 产生Mauchly’s 的χ2值和P值 Printm 产生不同水平比较结构阵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重复测量资料方差分析重复测量(repeated measure )是指对同一观察对象的同一观察指标在不同时间点上进行的多次测量,用于分析该观察指标在不同时间上的变化特点。
这类测量资料在临床和流行病学研究中比较常见,例如,为研究某种药物对高血压病人的治疗效果,需要定时多次测量受试者的血压,以分析其血压的变动情况。
1、 重复测量资料方差分析中自由度调整方法1.调整系数ε的计算有两个调整系数,第一个是Greenhouse-Geisser 调整系数)ˆ(ˆεεG G -,计算公式为∑∑∑+---=klkkklkl s a s a s a s s a ])())()(2()()[1()(ˆ22222222222ε式中中的2kl s 是协方差矩阵中的第k 行第l 列元素,2s =22/)(a sklkl∑∑是所有元素的总平均值,222/)(a ss lllkk ∑=是主对角线元素的平均值,as s lkl k /)(22∑=是第k 行的平均值。
εˆ的取值在1.0与1/(a -1)之间。
第2个系数是Huynh-Feldt 调整系数)(εεF H -。
研究表明,当ε真值在0.7以上时,用εˆ进行自由度调整后的统计学结论偏于保守,故Huynh 和Feldt 提出用平均调整值ε值进行调整。
ε值的计算公式为]ˆ)1()1)[(1(2ˆ)1(εεε------=a g n a a ng 式中中的g 是对受试对象的某种特征(如年龄或性别)进行分组的组数,n 是每组的观察例数。
当ε>1.0时,取ε=1.0。
2. 调整规则 只对具有重复测定性质的时间效应的F 值的自由度,和处理时间交互作用的F 值的自由度进行调整。
由于F 值的有两个自由度v 1和v 2,调整的分子自由度ενν⨯=1'1 分母自由度ενν⨯=2'2。
具体计算时可用或ε代替。
用调整所得的'1ν及'2ν的F 值查临界值表,得),('2'1νναF 。
由于ε≤1.0,所以调整后的F 临界值要大于调整前的F 临界值。
2、单因素重复测量资料的方差分析单因素重复测量资料的例子 一项关于不同药物治疗心律失常效果的对比研究。
对9例经常出现心室早搏的病人于用药前测定其心率后进行随机化给药。
一部分病人按A 药→安慰剂(C药)→B 药的顺序给药,另一部分病人按B 药→安慰剂(C 药)→A 药的顺序给药。
安慰剂(C 药)持续一周,作为药物后效的清除期。
比较用药前与各种药物及A 药与B 药之间的心律差别。
图4-12列出9名受试病人在用药前、安慰剂(C 药)期及药(A 与B )期的心率。
方差分析的步骤1. 提出检验假设 检验假设为:H 0:μ1=μ2=μ3=μ4;H 1:μi ≠μh ,至少有一个不等式成立。
2. 计算离均差平方和、自由度及均方 有总离均差平方和、处理因素离均差平方和、受试对象间离均差平方和及受试对象内离均差平方和等。
计算公式为:(1) 总离均差平方和总ss 及总自由度总ν的计算∑∑==-=-=aj ni ij N T s Y Y 1212/)(ss 总,1-=N 总ν(2) 处理因素的离均差平方和处理ss 及自由度处理ν的计算N T T n Y Y n a j j aj j 21212)(1)(ss -=-⨯=∑∑==处理,1-=a 处理ν (3) 受试对象间离均差平方和对象间ss 及自由度对象间ν的计算∑∑==-=-⨯=n i n i i i N T T a Y Y a 1212)(1)(ss 对象间,1-=n 对象间ν受试对象内离均差平方和对象内ss 及自由度对象内ν的计算∑∑==-=-⨯=ni i i ni i ij a T s Y Y a 1212)()(ss 对象内,)1(-=a n 对象内ν(4) 误差的离均差平方和误差ss 与自由度误差ν的计算对象间处理总误差ss ss ss ss --=,)1)(1(--=a n 误差ν根据以上4种离均差平方和与自由度计算所得的均方见表10-2.3. 计算F 值 由于是处理因素的统计学检验,故只计算处理因素的F 值。
误差处理处理MS /MS =F ,处理F 服从处理νν=1与误差νν=2的F 分布本例,在DPS 数据处理系统中,按图4-12方式编辑、定义数据块,然后执行“试验统计”→“重复测量方差分析” →“单因素分析”功能,得到计算结果如下。
DPS 程序给出处理因素的F 值为8.22,p =0.0006,故拒绝无效假设,说明处理因素间的差别具有统计学意义。
由计算结果可以看出,受试对象内离均差平方和等于处理因素的离均差平方和与误差的离均差平方和两项之和。
DPS 系统还给出εˆG G -=0.7774,εF H -= 1.1169。
用εˆ调整的处理因素的分子自由度为0.7774×3=2.33≌2.0;分母自由度为0.7774×24=18.66≌19。
计算得调整自由度后的显著水平p =0.0020,比未调整的F 临界值大。
未调整的概率P =0.0006。
附:平均值之间的多重比较以上用单因素重复测量方差分析方法对心率资料进行分析之后所得到的统计学结论是:拒绝无效假设,即在治疗药物的四个水平中,至少有一个水平的总体平均值不同于其他水平的总体平均值。
为了确定这个特殊总体,必须进行平均值之间的多重比较。
但此处不能采用一般的多重比较方法,因为那些方法都是建立在独立样本基础上的。
这里可采用配对样本的差值t 检验,因为配对样本就是重复测量试验中一种最简单的对比研究设计。
如果用手算,其检验骤如下:1. 计算每一个病人在不同给药情况的差值:d i (j -h )=Y ij -Y ih ,i 为病人号,j ,h 为药物水平号。
若设计时只考虑用药前与各种药物及A 药与B 药之间差别情况,可只计算d i (1-2)、d i (1-3)、d i (1-4)及d i (2-4)四种组合,而不是所有可能6种组合。
2. 根据公式nS d t d=计算差值t 检验统计量,这里可分别得到t 值为:t (1:2)=4.41, t (1:3)=0.03, t (1:4)=3.19, t (2:4)=-0.963. 计算校正临界值t 由于是对同一份资料进行多重比较,为克服累积I 类错误对结果判断所造成的影响,根据Bonferroni 不等式原理对临界t 值进行调整。
首先确定比较的次数c 。
因该研究已事先确定只作4次比较,故c =4。
若在方差分析之后再作多重比较,则只能取所有可能的比较次数。
例如本例在方差分析之后再进行比较时,则比较的次数应为c =4(4-1)/2=6。
其次是选择累积I 类错误的概率α'=0.10.采用双侧检验,每次检验所用的I 类错误概率水准为α=0.10/4=0.0125,自由度v =n -1=8,在DPS 电子表格中输入“=ttest(8,0.0125)”,回车后即可得到自由度为8时t 0.0125的临界值3.2059。
与前面计算出的t 值相比较,可见用药前心率与服用A 药后心率之差具有统计学意义。
用药后心率平均降低12.44次/分,而用药前心率与服安慰剂后心率之间以及A 药与B 药之间心率之差无统计学意义。
用药前心率与用药后心率之差接近显著性水平。
其实,在DPS 数据处理系统中,只要将数据编辑、定义成如图4-12格式,然后执行“试验统计”→“平均数比较” →“Bonferroni 测验”功能,这时系统会给出如下对话界面:在该对话界面,用户可在左边选择比较的组合,在右边上部选择比较方法,这里采用的配对比较,故在比较方法框中用鼠标点击“配对比较“,然后按确定按钮,这时得到计算结果如下。
计算结果当前日期02-8-16 9:08:52比较组别均值差标准差t p1<->2 12.44444 8.47218 4.40658 0.0434581<->3 0.111111 10.83333 0.030769 0.2500001<->4 10.44444 9.83757 3.18507 0.0596052<->4 -2.000000 6.22495 0.963863 0.167539其结果解释和手算结果相同。
3、两因素重复测定资料的方差分析两因素重复测定资料中的因素是指一个组间因素(处理因素)和一个组内因素(时间因素)。
组间因素是指分组或分类变量,它把所有受试对象按分类变量的水平分为几个组。
组内因素是指重复测定的时间变量,例10-1只有组内因素,没有组间因素。
例如一项药物代谢动力学研究,目的是对比某种药物的不同剂型在体内的代谢速度。
剂型分胶囊型和片剂型。
将16名受试对象随机分为两组,每组8名。
一组给予胶囊,另一组给予片剂,分别在服药后1、2、4、6及8小时测定血中的药物浓度。
测定结果见图4-13。
受试者 1 2 3 4 5 6 7 8本例的组间因素是药物剂型,组内因素是测定时间。
各下标的意义是:i (i =1,2,3…,g )为组间因素的分组号,j (j =1,2…,p )为测定时间点的序号,k (1,2,…n i )为组间因素第i 水平的受试对象号,受试对象总数为n 1+n 2+…+n g 。
当各n i 相等时,则用n 代替n i 。
测量值总个数N =g ×n ×p .本例g =2;各组受试对象数n =8,p =5,受试对象总数为2×8=16例,测量值总个数N =80。
方差分析模型:一个组间因素,一个组内因素的方差分析模型为:ijk k i ij j i ijk Y εδαββαμ+++++=)()(模型中各参数的意义是:μ为总体平均值;i α为处理组i 的效应; j β为第j 个测定时间点的效应;ij )(αβ为第i 组在第j 个测定时点上的效应,属交互作用,为固定效应;k i )(δ为第i 组第k 个观察对象的效应,属随机效应;ijk ε为误差项。
给定限制条件为:0)()(1)1111=====∑∑∑∑∑=====nk k i pj ij gi ij pj jgi i δαβαββα模型中的参数估计值与平均值之间的关系见表4-12。
表4-12 模型中的参数与平均值之间的关系Y∑∑∑ijkijk总平均值 i α YY i -()∑∑⨯=jkijk n p Y Y /第i 组平均值 j βY Y j -()∑∑⨯=ikijk j n g Y Y /第j 时点平均值 ()ij αβ Y Y Y Y j i ij +--()∑=kijk ij n Y Y /第i 组第j 时点的平均值()k i δYY ik -()∑=jijk ik p Y Y /第i 组第k 个受试者的均值方差分析的步骤1. 离均差平方和、自由度及均方的计算 令∑∑∑=ijkijkYT 为观察值总和,∑∑∑=ijkijk YS 2为观察值平方总和,∑∑=jk ijki YT 为第i 组观察值之和,∑∑=ikijk j Y T ……第j 时点观察值之和,∑=jijk ik Y T 为第i 组第k 个受试对象的观察值之和,∑=kijkij YT 为在(ij )水平上的观察值之和。