弯曲工艺与弯曲模具设计
模具设计与制造第6章弯曲工艺与模具设计
06
总结与展望
弯曲工艺与模具设计的现状与挑战
现状
随着制造业的快速发展,弯曲工艺与模具设计在产品制造中占据重要地位。目前,弯曲工艺与模具设 计已经取得了长足进步,能够满足多种复杂形状的加工需求。
挑战
然而,在弯曲工艺与模具设计过程中,仍存在一些挑战,如高精度控制、复杂曲面加工、高效自动化 等方面的问题。
未来发展方向与技术前沿
柔性制造技术
随着个性化需求的增加,柔性制造技术将成为未 来发展的重点。通过柔性制造技术,可以实现快 速、高效、个性化的产品制造,提高生产效率和 降低成本。
增材制造技术
增材制造技术是一种基于数字模型的快速成型技 术,能够实现复杂形状的高精度加工。未来,增 材制造技术有望在弯曲工艺与模具设计中发挥更 大的作用。
模具材料的选择蚀性等。
常用材料
碳素工具钢、合金工具钢、硬质合金、铸铁等。
材料处理
热处理、表面处理等。
模具设计的流程与方法
设计流程
明确设计任务→收集设计资料→设计 出图→审查→修改。
设计方法
经验设计法、解析设计法、计算机辅 助设计法等。
04
弯曲工艺与模具设计的关系
THANK YOU
模具设计对弯曲工艺的影响
模具结构
模具的结构对弯曲工艺的实施具 有重要影响,合理的模具结构可 以提高弯曲效率并降低不良品率。
模具材料
模具材料的选取直接影响弯曲工艺 的效果,选用高强度、耐磨和耐热 的材料可以提高模具的使用寿命和 弯曲质量。
冷却系统
模具中的冷却系统对于控制弯曲过 程中的温度至关重要,合理的冷却 系统设计可以减少热应力,提高产 品质量。
02
弯曲工艺的基本原理
弯曲变形的过程与特点
冲压工艺学弯曲工艺与模具设计
冲压工艺学弯曲工艺与模具设计引言冲压工艺是一种常用的金属板材成型方法,其中弯曲工艺是常见的冲压工艺之一。
通过弯曲工艺,可以将金属板材弯折成所需的形状,用于制造各种零部件和产品。
而在冲压弯曲过程中,模具的设计和选择对于成品质量和效率起着至关重要的作用。
本文探讨了冲压工艺学中的弯曲工艺以及与之相关的模具设计原则和要点。
冲压弯曲工艺冲压弯曲是通过施加压力使金属板材弯曲或折叠成所需形状的一种工艺。
其主要过程包括:切割、弯曲和折叠。
下面分别介绍这些过程的一些关键要点。
切割切割是冲压弯曲的第一步,它的目的是从金属板材中切割出所需的形状。
常用的切割方法有剪切、切割、切割和激光切割等。
选择合适的切割方法要考虑到金属板材的材料、厚度和形状等因素。
弯曲弯曲是冲压弯曲的核心过程,通过施加力使金属板材弯曲成所需的形状。
弯曲的关键要点包括:弯曲角度、弯曲半径和弯曲方向。
弯曲角度是指金属板材与原始平面之间的夹角;弯曲半径是指弯曲过程中模具与金属板材之间的半径;弯曲方向是指金属板材弯曲时所受到的外力相对于模具的位置。
合理选择这些参数,可以保证弯曲后的金属板材符合设计要求。
折叠折叠是将金属板材通过弯曲工艺折叠成所需形状的过程。
折叠通常需要搭配使用额外的模具来实现。
在折叠过程中,要注意保持金属板材的平整和对称性,以确保成品的质量。
模具设计原则模具是冲压工艺中不可或缺的一部分,其设计对于冲压弯曲工艺的成功与否起着决定性作用。
以下是一些模具设计的原则和要点。
弯曲角度和半径在设计模具时,要根据产品的要求确定弯曲角度和半径。
合理选择弯曲角度和半径可以避免金属板材在弯曲过程中的过度拉伸、裂纹和变形等问题。
模具结构模具的结构设计要简单、实用,并考虑到易于加工和维修。
模具应具备足够的刚度和强度,以抵抗弯曲过程中产生的冲击力和压力。
此外,模具的表面也应平整、光滑,以确保成品的表面质量。
润滑剂在冲压弯曲过程中,使用适量的润滑剂可以减少摩擦力和磨损,提高金属板材的表面质量和模具的使用寿命。
模具设计基础-第三章 弯曲工艺与弯曲模具设计
当t 2mm ,S t 当t 2mm ,S 2t
模具设计基础 第三章 弯曲工艺与弯曲模具设计
5.止裂孔、止裂槽 如图 3.12 所示, 当局部弯曲某一段边缘时, 为了防止 尖角处由于应力集中而产生裂纹,可增添工艺孔、 工艺槽或 将弯曲线移动一定距离, 以避开尺寸突变处, 并满足b≥t, h=t+r+b/2的条件。
弯曲件的结构工艺性对弯曲生产有很大的影响。弯曲件良 好的工艺性,不仅能简化弯曲工序和弯曲模的设计,而且还能 提高弯曲件的精度、节约材料、提高生产率。 (1)弯曲件的形状 弯曲件的形状一般应对称,弯曲半径应左右一致,如图 所示。图(b)所示形状左右不对称,弯曲时由于工件受力不平 衡将会产生滑动现象,影响工件精度。
3.7补偿法
模具设计基础 第三章 弯曲工艺与弯曲模具设计
2) 校正法 校正弯曲时,在模具结构上采取措施,让校正压力集 中施加在弯曲变形区,使其塑性变形成分增加,弹性变形 成分减小,从而使回弹量减小,如图 3.8 所示。
3.8 校正法示意
模具设计ห้องสมุดไป่ตู้础 第三章 弯曲工艺与弯曲模具设计
四、弯曲件的工艺性
模具设计基础 第三章 弯曲工艺与弯曲模具设计
3.回弹 由于影响回弹的因素很多,各因素之间往往又互相影 响,因此很难实现对回弹量的精确计算和分析。在模具设 计时,对回弹量的确定大多按经验确定(也可查有关冲压资 料进行估算),最后通过试模来修正。 在模具设计时,要尽可能消除或减小回弹的影响响(指 消除回弹对弯曲件的影响,但并不能消除弯曲件的回弹现 象)。
第3章 弯曲工艺与模具设计
3.2.2、影响回弹的因素 材料的机械性能 相对弯曲半径 弯曲中心角 模具间隙 弯曲件的形状 弯曲力
3.2.3、回弹值的确定 目的:作为修正模具工作部分参数的 依据。 经验公式: 1.小半径弯曲的回弹( r / t 5 ~ 8 )
0 t
rt r 1 3
90
90
6)弹性材料的准确回弹值需要通过试模对凸、 凹模进行修正确定,因此模具结构设计要便于拆 卸。 7)由于U形弯曲件校正力大时会贴附凸模,所以 在这种情况下弯曲模需设计卸料装置。 8)结构设计应考虑当压力机滑块到达下极点时, 使工件弯曲部分在与模具相接触的工作部分间得 到校正。 9)设计制造弯曲模具时,可以先将凸模圆角半 径做成最小允许尺寸,以便试模后根据需要修整 放大。
当工件局部边缘部分需弯曲时,为防 止弯曲部分受力不均而产生变形和裂纹, 应预先切槽或冲工艺孔(如图所示) 5.弯曲件的几何形状 如果弯曲件的形状不对称或者左右弯 曲半径不一致,弯曲时板料将会因摩擦阻 力不均匀而产生滑动偏移(如图所示), 为了防止这种现象的发生,应在模具上设 置压料装置,或利用弯曲件上的工艺孔采用 定位销定位(如图所示)
第 3 章 弯曲工艺与模具设计
3.1
3.2
弯曲的基本原理 应变中性层位置、最小弯曲半径的确定及回弹现象 弯曲力和弯曲件的毛坯尺寸计算 弯曲件的工艺性 弯曲模具的设计
3.3 3.4
3.5
3.1 弯曲的基本原理
弯曲是使材料产生塑性变形,形成一 定曲率和角度零件的冲压工序(如图所示) 弯曲材料:板料、棒料、型材、管材 弯曲方法:压弯、折弯、拉弯、滚弯、 辊弯
3.1.1 弯曲变形过程 (图3.1.1) 1、变形毛坯的受力情况 从力学角度,弯曲分为: 弹性弯曲 弹塑性弯曲 纯塑性弯曲 无硬化弯曲
第三章:弯曲工艺与弯曲模具设计
校正弯曲时,回弹角修正量: K90
不是90°的角按下式修正: x ( / 90)90
➢ 当r/t < 8~10时,要分别计算弯曲半径和弯曲角的回弹值,再修正。
弯曲板料时
凸模的圆角半径: rp 1/(1/ r) (3 s / Et)
凸模圆弧所对中心角: p
(r
/ rp )
弯曲件的滑移
6. 最小弯曲半径 rmin
❖ r/t 小 —— 变形程度大 —— 弯曲破坏。 影响最小弯曲半径的因素:
❖ 材料的机械性能:好塑性(塑稳)、退火处理、热弯、开槽减薄 ❖ 方向性:折弯线垂直纤维方向:伸长变形能力强
❖ 板宽:B/t 小(< 3) ❖ 弯曲角:小, 直边有切向形变。 ❖ 板料表面质量和断面质量:差处易应力集中发生破坏。 ❖ 板料厚度:t小 —— 切向应变小 —— 开裂小。
弯曲件的工序安排
1. 工序安排的一般原则 ➢ 先弯外角后弯内角,后次弯曲不能影响前一次弯曲变形,前次弯曲应考 虑后次弯曲有合适的定位基准。 ➢ 当有多种方案时,要进行比较,进行优化。
2. 工序安排的一般方法 ➢ 形状简单的弯曲件可一次弯曲成形。如V形、U形、Z形。 ➢ 形状复杂的弯曲件可用两次或多次压弯成形。
➢ r/t值
小r/t: 加厚筋边或 减小 r; 其值大时拉弯
(在同条件下,r/t越小,则总变形量就越大,回弹就越小。) 工艺处理
➢ 弯曲中心角
(α越大,变形区长度越长,参与变形的区域越大,回弹越多。)
小
➢ 弯曲方式与校正力大小
(自由弯曲回弹大,校正弯曲回弹小,校正力越大回弹越小。)
➢ 工件形状
(工件形状越复杂,回弹就越少。)
弹-塑性变形: 塑性变形:
L1-L2 ,r1-r2 超过屈服极限,
第3章 弯曲工艺与弯曲模具
总之影响最小弯曲半径的主要因素如下:
⒈ 材料的机械性能;
⒉ 板材纤维的方向性;
⒊ 弯曲件的宽度; ⒋ 板材的表面质量和剪切断面质量;
⒌ 弯曲角;
⒍ 板材的厚度。 最小弯曲半径可按表3-1选取
表3-1 最小弯曲半径rmi
3.2.2、弯曲时的回弹及控制回弹的措施 1、弯曲回弹现象 弯曲回弹现象产生于弯曲变形结束后的卸载过程,是由其内部产生 的弹性回复力矩造成的。弯曲件卸载后的回弹,表现为弯曲件的弯曲 半径和弯曲角的变化,如图3-6所示。
(a )
(b ) (c) 图3-25 防止尖角处撕裂的措施
0 绪论 一、冲压概念
图3-26所示的零件,根据需要设置了工艺孔、槽及定位孔。图(a) 所示工件弯曲后很难达到理想的直角,甚至在弯曲过程中变宽、开 裂。如果在弯曲前加工出工艺缺口(M×N),则可以得到理想的弯 曲件。图(b)所示的工件,在弯曲处预先冲制了工艺孔,效果与 图(a)相同。图(c)所示的工件,要经过多次弯曲,图中的D是 定位工艺孔,目的是作为多次弯曲的定位基准,虽然经多次弯曲, 该零件仍保持了对称性和尺寸精度,
0 绪论 一、冲压概念
凸模下行,减小到r/t>200时,板料处于线形弹塑性状态,
即板料中心几附近区域为弹性变形,其他部分为塑性变形, 弯曲进行至r/t值大约在(200>r/t>5)时,板料进入线形全塑
性弯曲状态。
当其进一步减小到r/t3~5时,则为立体塑性弯曲,此即模 具弯曲最终状态。
• 窄板(b/t3)弯曲时,宽度 方向可以自由变形,故其应 力b0,内外层的应变状态 是立体的,应力状态是平面 的。 • 宽板(b/t>3)弯曲时,由于 宽度方向材料不能自由变形 (宽度基本不变),即
冲压工艺与模具设计第3章 弯曲工艺与弯曲模
3.1.2 弯曲变形的特点
1.弯曲变形区主要在弯曲件的圆角部分。 2.弯曲变形区的中性层长度保持不变。 3.弯曲变形区材料厚度变薄。 4.弯曲变形区内横断面的形状变化
3.2 弯曲变形程度及其表示法
3.2.1 最小弯曲半径
对于厚度一定的板料,弯曲半径越小,板料外 表面变形程度越大,当弯曲半径减小到一定值以后, 板料外表面变形将超过最大许可变形程度而产生弯 曲裂纹。在保证板料外层不产生裂纹的前提下,所 能达到的工件内表面最小圆角半径,称为最小弯曲 半径rmin 。生产中用它来表示材料弯曲时的变形程 度极限。 最小弯曲半径rmin的数值参见表3-1。
3.1.1 弯曲变形过程
V形工件的弯曲是最基本的弯曲变形,其弯曲 过程如图3-2所示。板料的弯曲变形过程是围绕着 弯曲圆角区域展开的,该区域为弯曲主要变形区。 当弯曲圆角半径减小到一定值时,板料的内外 表面首先开始出现塑性变形,并逐渐向板料内部扩 展。当凸模、板料和凹模三者完全压紧,板料的弯 曲内侧半径和弯曲力臂达到最小时,弯曲过程结束。
第3章 弯曲工艺与弯曲模
3.1
弯曲变形过程分析
弯曲变形程度及其表示法 弯曲件的工艺性分析 弯曲件卸载后的回弹
3.2
3.3
3.4
3.5
弯曲件坯料尺寸的计算
3.6
弯曲力的计算
3.7
弯曲模的典型结构 弯曲模工作部分的尺寸设计 弯曲工艺中常见问题及解决措施
3.8
3.9
3.10
弯曲工艺与模具设计实训
3.1 弯曲变Байду номын сангаас过程分析
3.校正弯曲时的回弹值
V形件校正弯曲的回弹如图3-16所示。 回弹量一般用弯曲角的增大量△β表示,可 用试验所得的公式计算,公式如表3-5所 示。
模具设计第3章弯曲工艺与弯曲模课件
b/t<3窄板弯曲,断面产生了 畸变 ,外窄内宽
3.1.4 弯曲件的结构工艺性
弯曲件的结构工艺性是指弯曲零件的形状、 尺寸、精度、材料以及技术要求等是否符合弯 曲加工的工艺要求。具有良好工艺性的弯曲件, 能简化弯曲的工艺过程及模具结构,提高工件 的质量。
1. 弯曲件的形状 弯曲件形状对称,对应r 相等
播放动画
1-顶杆 2-定位钉 3-模柄 4-凸模 5-凹模 6-下模座
3. L形件弯曲 适用于两直边长度相差较大的单角弯曲件
a)竖边无校正
b)竖边可校正
L形件弯曲
4.复杂零件 多次V形弯曲制造复杂零件举例
3.2.2 U形件弯曲模
1.U形件弯曲模的一般结构形式
U 形 件 弯 曲 模
1.凸模 2.凹模 3.弹簧 4.凸模活动镶块 5.凹模活动镶块 6.定位销 7.转轴 8.顶板 9.凹模活动镶块
弯曲半径r>0.5t: 按中性层不变原理,坯料总长度应等于弯曲 件直线部分和圆弧段长度之和,即:
提问:下面的弯曲件展开长度如何计算?
L
l1
l2
l3
π α1 180
(r1
xt
)
π α2 180
S / E 越大,回弹越大。
E1>E2
1 2
.
1 2
图a)
E3=E4
3 4
3 4
图b)
材料的力学性能对回弹值的影响 1、3-退火软钢 2-软锰黄铜 4-经冷变形硬化的软钢
应尽量选择屈服极限小、n值小的材料以获得 形状规则、尺寸精确的弯曲件。
(2)相对弯曲半径r/t r/t越小,变形程度越大,回弹量减小。
例:1mm厚铝板、65Mn板,弯曲时易裂,退火后 再弯,则弯曲正常。
弯曲与弯曲模具设计
二、弯曲件的工艺计算
2.弯曲力的计算
(1)自由弯曲力对于V形件,有
F自
0.6kbt 2 b
rt
对于U形件,有
F自
0.7kbt 2 b
rt
(2)校正弯曲力如果弯曲件在冲压行程结束时受到模具的校正
(见图3-27)
上一页 下一页
第四节 弯曲件的工艺特性及工艺计 算
二、弯曲件的工艺计算
(3)顶件力或压料力
上一页 下一页
第四节 弯曲件的工艺特性及工艺计 算
一、弯曲件的工艺性
(6)增添连接带和定位工艺孔 如图3-22所示。 (7尺寸标注 尺寸标注对弯曲件的工艺性有很大的影响。 如图3-23所示。
上一页 下一页
第四节 弯曲件的工艺特性及工艺计 算
二、弯曲件的工艺计算
1.弯曲件展开长度的确定
第三章 弯曲与弯曲模具设计
第一节 弯曲技术概述 第二节 弯曲变形过程分析 第三节 弯曲件坯料尺寸的计算 第四节 弯曲件的工艺特性及工艺计算 第五节 弯曲件的工序安排 第六节 弯曲模典型结构及结构设计
第一节 弯曲技术概述
弯曲是利用压力使金属板料、管料、棒料或型材在模具中弯 成一定曲率、一定角度和形状的变形工序。弯曲工艺在冲压 生产中占有很大的比例,应用相当广泛,如汽车纵梁、电器 仪表壳体、支架、铰链等,都是用弯曲方法成型的。
所示为V形件弯曲的变形过程。 2.弯曲变形特点 为了分析板料弯曲变形的规律,将试验用的长方形板料的 侧面画成正方形网格,如图3-4(a)所示,然后弯曲,观察其
变形特点,弯曲后情况如图3-4(b)所示。
下一页
第二节 弯曲变形过程分析
一、弯曲的变形特点
(1)变形区主要在弯曲件的圆角部分,圆角区内的正方形网 格变成厂扇形。
冲压模具设计与制造-弯曲工艺与模具设计
应用场景
广泛应用于手机、汽车、电视机、 计算机等产品的制造中
弯曲工艺的应用场景
个人消费品
行李车、儿童座椅、自行车座等
建筑领域
门窗、钢结构等
工业制造
吊车臂、桥架、挖掘机臂等
汽车领域
汽车车身、排气管、离合器等
弯曲工艺的优缺点
优点
• 工艺简单 • 生产效率高 • 生产成本低 • 形状可变
缺点
• 成型重量限制 • 无法实现非线性弯曲 • 弯曲角度存在最小值 • 弯曲半径限制较大
3 材料
应选择强度和韧性都较高的材料,同时应考 虑在操作过程中的磨耗性和修复性
4 可维修性
模具设计应考虑寿命和易损件,易于维修和 更换
弯曲模具的分类
按形式分类
• 单工位模 • 连续模 • 中空模 • 异形模
按应用分类
• 汽车工业专用模 • 造船业用弯管模 • 机床上安装的弯管模 • 家电制造业弯头型号模
Hale Waihona Puke 弯曲模具的设计方法常见方法
手工模拟、数值模拟、经验规律法、模拟仿真
设计步骤
1. 确定工件的几何形状 2. 计算弯曲力矩和弯曲角度 3. 准备模具的设计图纸 4. 优化模具的几何尺寸
弯曲模具对模具的要求
1 强度
模具应具有足够的强度来承受弯曲力矩和弯 曲压力的作用
2 精度
模具必须保证成型精度的要求,例如加工定 位孔及精度要求达到零误差
弯曲工艺的材料选择
常见材料
铝合金、钢材、不锈钢、镁合金 等
制造工艺
冷拔可广泛应用,热轧用于钢材 弯曲时的复合成型
板厚选择
在保证预算的前提下,尽量选择 薄板
弯曲模具的构造和原理
1
弯曲工艺与弯曲模
5.7 弯曲模类型及典型结构
1. V形件弯曲模 这类形状的弯曲件可以用两种方法弯曲: (1)是沿着工件弯曲角的角平分线方向弯曲,称为V
形弯曲; (2)是垂直于工件一条边的方向弯曲,称为L形弯曲;
Y
L形件弯曲模
2、U形件弯曲模
(1)U形弯曲模在一次 弯曲过程中可以形成 两个弯曲角,右图为 U形件弯曲模结构 。
弯曲原理——弯曲变形特点(P83-P84) (重点)
(采用网格法分析弯曲时金属的变形规律)
分析结果: a、弯曲变形主要发生在弯曲圆角区;
弯曲角与弯曲带中心角
b、内层受压变短,外层受拉变长,中层不变; 中性层弯曲半径ρ=r+xt
变形程度的表示方法:
相对弯曲半径 r/t 来表示,其小,则 弯曲程度越大;
当弯曲件的折弯线与板料的纤维方向垂直时,材料具有 较大的伸长变形能力,最小弯曲半径可取较小值;
反之,如果弯曲 件的折弯线平行 于纤维方向,则 最小弯曲半径要 取大值;在双向 弯曲时,应该使 折弯线与材料纤 维方向成一定的 夹角,如图3.8所 示。
图 3.8 弯曲方向对弯曲半径的影响
(3)板宽
πα2 180
(r2
xt)
πα3 180
(r3
xt)
弯曲半径r<0.5t: 按体积不变原则进行计算。
注意事项:
∵弯曲件展开长度公式为经验公式
或
中t的公差、r、α、x的微小误差
∴展开长度计算数据不准确
∴弯曲模的制作顺序:
先作弯曲模→通过弯曲件实际尺寸调整展 开长度数据→确定展开毛坯准确落料刃口尺 寸→制作落料模。
③ 凹模刃口处的圆角 半径不等,圆角半径 小的摩擦力大,弯曲 件向圆角半径小的一 边滑移,如图3.16所 示。
弯曲工艺和弯曲模具设计
3.2.2影响回弹的因素
1.材料的力学性能 材料的屈服点 越高,弹性模量E越小,弯曲弹性回跳
越大。
2.相对弯曲半径 相对弯曲变径
越大,则回弹也越大。
3.弯曲中心角 弯曲中心角 越大,表明变形区的长度越长,故回弹的
积累值越大,其回弹角越大。但对弯曲半径的回弹影响不大。
4.弯曲方式及弯曲模具结构 采用校正弯曲时,工件的回弹小。
时弯曲半径r继续减小,而直边部分反而向凹模方向变形, 直至板料与凸、凹模完全贴合。
3.1.2板料弯曲变形特点
通过网格试验观察弯曲变形特点(如图3.1.3)。
图3.1.3 弯曲前后坐标网络的变化
1.弯曲圆角部分是弯曲变形的主要变形区 变形区的材料外侧伸长,内侧缩短,中性层长度不变。
2.弯曲变形区的应变中性层
•
• 1、弹性弯曲条件
若材料的屈服应力为 σs ,
则• 弹性弯曲的条件为:
•
2、塑性弯曲的应力与应变条件
• (a)弹性弯曲; (b)弹-塑性弯曲; (c)塑性弯 曲
• 图3.1.5弯曲毛坯变形区的切向应力分布
• 3.1.3弯曲时变形区的应力和应变
•
• 板料在塑性弯曲时,变形区
内的应力应变状态取决于弯曲
铰链弯曲和一般弯曲件有所不同,铰链弯曲常用推卷的方法成形
。在弯曲卷圆的过程中,材料除了弯曲以外还受到挤压作用,板料不是 变薄而是增厚了,中性层将向外侧移动,因此其中性层位移系数K≥0.5。 图3.3.13所示为铰链中性层位置示意图。
•图3.3.12 铰链中性层位置
•图3.3.13 铰链弯曲件
3.3.5弯曲件弯曲工序的安排
3.弯曲件直边高度对弯曲的影响(如图3.3.5) 在进行弯曲时,若弯曲的直边高度过短,弯曲过程中
弯曲工艺与模具设计
第三章弯曲工艺与模具设计弯曲是使材料(板料、棒料、管材等)产生塑性变形,形成具有一定角度或一定曲率零件的冲压工艺。
它属于成形工序,是冲压的基本工序之一,各种常见弯曲件如图4-1所示。
根据所使用的工具及设备的不同,可以把弯曲工序分为使用模具在普通压力机上进行的压弯及在专门的弯曲设备上进行的折弯、滚弯、拉弯等。
虽然各种弯曲方法使用的工具及设备不同,但其变形过程和变形特点有共同规律。
(【1】p108)第一节弯曲变形过程及特点一、弯曲变形过(本节内容摘自【2】p148)V形弯曲是最基本的弯曲变形,任何复杂弯曲都可以看成是由多个v形弯曲组成。
所以以v形弯曲为代表分析弯曲变形的过程。
弯曲过程中,当坯料上受到凸模压力(弯曲力矩)时,坯料的曲率半径会发生变化。
图4-3所示为一副常见的v形件弯曲。
其弯曲过程简述如下:弯曲开始前,先将平板毛坯放入模具定位板中定位,然后凸模下行,实施弯曲,直到板料与凸模、凹模完全贴紧(此时冲床下行至下死点),然后开模(此时冲床上行至上死点),再从模具中取出v形件。
其受力情况如图4-4所示,弯曲过程分析如图4-5所示。
在板材A处,凸模施加外力2F,在凹模支撑点B1,B2处则产生反力与这外力构成了弯曲力矩M=FxL,该我弯曲力矩使板材产生弯曲变形。
弯曲变形可分成弹性变形阶段、塑性变形阶段和矫正弯曲阶段。
(1)弹性变形阶段:在凸模的压力下,板料受弯曲力矩M的作用,坯料变形区应力最大的内、外表面的材料没有产生变形,变形区内的材料仅产生弹性变形,且是自由弯曲,此时如果消除弯曲力矩时,坯料将恢复原状。
如图4-5(a)所示。
(2)塑性变形阶段:坯料变形区内、外表面的应力分量满足塑性条件,进入塑性变形状态。
此时如果消除弯曲力矩时,坯料将不能恢复原状。
随着凸模进一步下行,塑性变形有表面向中心进一步扩展。
板料与凹模v形表面逐渐靠紧,同时曲率半径和曲率力臂逐渐变小,即r0>r1>r2>r k,L0>L1>L2>L k。
第3章 弯曲工艺与弯曲模具
另一种克服回弹的有效方法:采用 摆动式凹模 ,而凸模侧 壁应有补偿回弹角β ;当材料厚度负偏差较大时,可设计成凸、 凹模间隙可调的弯曲模。
在弯曲件直边端部纵向加压。 用橡胶或聚氨酯代替刚性金属凹模能减小回弹。
23
弯曲时的偏移
板料在弯曲过程中沿凹模圆角滑移时,会受到凹模圆角 处摩擦阻力的作用。当板料各边所受的摩擦阻力不等时,有 可能使毛坯在弯曲过程中沿工件的长度方向产生移动,使工 件两直边的高度不符合图样的要求,这种现象称为偏移。
第二节 弯曲工艺设计及计算
一、弯曲变形过程
V形件弯曲是最基本的弯曲变形。
弯曲变形过程
r0 r1 r2 r
l0 l1 l2 lK
弯曲结果:表现为弯曲半径和弯曲力臂的变化(减小)。
弯曲半径逐渐减小:弯曲变形部分的变形程度逐渐增加。 弯曲力臂逐渐减小:弯曲变形过程中板料与凹模之间有相对滑移。
铰支板弯曲模
37
二、连续模
对于批量大、尺寸较小的弯曲件,为了提高生产率,操作 安全,保证产品质量等,可以采用连续弯曲模进行多工位的冲 裁、压弯、切断连续工艺成形。
三、复合模
对于尺寸不大的弯曲件,还可以采用复合模,即在压力 机一次行程内,在模具同一位置上完成落料、弯曲、冲孔等 几种不同工序。
两次弯曲复合的弯曲模
38
第四节 弯曲模工作部分结构参数的确定
一、弯曲凸模圆角半径
r rmin r rmin
r凸=r
r凸=rmin
当r/t>10时,则应考虑回弹,将凸模圆角半径r凸 加以修正。
39
二、凹模圆角半径
凹模圆角半径不能过小,否则弯矩的力臂减小,毛坯沿凹 模圆角滑进时阻力增大,从耐增加弯曲力,并使毛坯表面擦伤。
冲压模具设计与制造-弯曲工艺与模具设计
二.截面翘曲
1.现象
当弯曲相对宽度很大的V形件时 ,会产生明显的翘曲现象。
2.原因
由于宽板弯曲时,沿宽度方向上的变形区外侧为拉应力, 内侧为压应力,
在弯曲件宽度方向会形成力矩 MB 。
弯曲结束后 ,外加力去除 ,在宽度方向将引起与力矩 MB 方向相反的弯曲 形变 , 即弓形翘曲。
(2) 先加长直边弯曲 , 再切边
第15页 ,共38页。
2.预制孔的位置
弯曲有孔的工序件时 ,如果孔位于弯曲变形区内 ,则弯曲时孔要发 生变形 ,为此必须使孔处于变形区之外。
(1)加工工艺孔 、工艺槽 (2) 先弯曲 , 再冲孔 (3)冲凸缘缺口和月牙形槽
第16页 ,共38页。
3.弯曲件形状
(1) 一般要求弯曲件形状对称 弯曲件形状应尽量对称 , 以免板料与模具之间的摩擦阻力不均匀而产生工
第22页 ,共38页。
(3) 当弯曲件几何形状不对称时 ,为避免压弯时坯料偏移 ,应尽量 采用成对弯曲 ,然后再切成两件的工艺。
第23页 ,共38页。
第三节 提高弯曲件质量的工艺措施
一.弯曲外层拉裂
1.现象 2.原因
弯曲外层的拉伸应变量超过了材料应变极限,
3.解决方法
弯曲半径满足最小相对弯曲半径要求。
(4) 避免尺寸突变部分的弯曲 a. 使尺寸突变处远离弯曲变形区
b. 预先冲裁工艺孔、工艺槽 , 防止弯曲部分
受力不均而产生变形和裂纹,
第19页 ,共38页。
4. 尺寸标注
尺寸标注对弯曲件的工艺性有很大的影响 。孔的位置精度不受坯 料展开长度和回弹的影响 ,将大大简化工艺设计。
第20页 ,共38页。
四.弯曲件的工序安排原则
模具设计与制造第6章 弯曲工艺与模具设计
(4)一般情况下,在设计时不宜采用最小弯曲半径。如果工件的弯 曲半径小于如表6-1所示数值,则应分两次或多次弯曲,即先弯成较大的圆 角半径(大于rmin),经中间退火后,然后再以校正工序弯成所要求的弯曲 半径。这样可以使变形区域扩大,减小外层材料的伸长率。 (5)对于较厚材料的弯曲,若结构允许,可先在弯曲圆角内侧开槽, 再进行弯曲,如图6-6所示。
图6-6 开槽后弯曲
6.3.2 弯曲回弹 1.弯曲回弹现象 常温下的塑性弯曲与其他塑性变形一样,总是伴随有弹性变形。 当弯曲结束,外力去除后,塑性变形保留了下来,而弹性变形则完全 消失,使得弯曲件的形状和尺寸发生变化而与模具尺寸不一致,这种现象 称为弯曲回弹,简称回弹。 弯曲件的回弹现象通常表现为两种形式,如图6-7所示。 (1)曲率减小。 (2)弯曲中心角减小。
l0>l1>l2>lk 当凸模、毛坯与凹模三者完全压合,毛坯的内侧弯曲半径及弯曲力臂 达到最小时,弯曲过程结束。
图6-3 弯曲变形过程
6.2.2 弯曲变形特点 为观察板料弯曲时的金属流动情况,便于分析材料的变形特点,可以 采用在弯曲前的板料侧表面设置正方形网格的方法。 通常用机械刻线或照相腐蚀制作网格,然后用工具显微镜观察测量弯 曲前后网格的尺寸和形状变化情况,如图6-4所示。
图6-7 弯曲变形的回弹
2.影响回弹的因素 (1)材料的力学性能。 (2)相对弯曲半径r/t。 (3)弯曲中心角 。 (4)弯曲方式。 (5)弯曲件形状。 (6)模具间隙。
四角形弯曲件弯曲工艺与模具设计
四角形弯曲件弯曲工艺与模具设计1. 引言说到四角形弯曲件,大家可能会想,“这不就是个简单的弯曲吗?”其实不然,这背后可是门学问!想象一下,你在家里试着弯一根铁丝,结果发现弯来弯去不怎么好看,最后还被惹得不高兴了。
四角形的弯曲工艺,就像是做一道精致的菜,没点技巧可不行!今天咱们就来聊聊这个话题,轻松一点,幽默一点,让大家都能懂得明白。
2. 四角形弯曲件的基本概念2.1 什么是四角形弯曲件?首先,四角形弯曲件就是那种四个角都在的形状,比如说框架、外壳等等。
这种形状的工艺在很多行业都用得着,像汽车、家电,甚至建筑上都少不了它的身影。
说实话,这四角形件可真是个“大忙人”,到处跑,帮助我们解决各种问题。
2.2 为什么弯曲工艺这么重要?弯曲工艺的好坏,直接影响到产品的质量和使用效果。
想想看,假如你买的一个家电外壳弯得歪七扭八的,那看着就让人心里不爽,对吧?这时候,如果使用了合适的弯曲工艺,那可真是“如虎添翼”,让产品看起来更加完美。
总之,弯曲工艺的好坏,直接关乎着产品的“颜值”和“内涵”。
3. 四角形弯曲工艺的流程3.1 材料的选择首先,咱得选材料。
常见的有铝、钢、塑料等等。
每种材料的特性都不同,就像人有不同的性格,选错了可就麻烦了。
铝虽然轻,但强度相对较低;而钢结实,但重量也不轻。
选得好,工艺自然顺利,选得不当,可能就得重走老路,吃个大亏了。
3.2 设计与计算接下来,就是设计和计算。
这一步就像是搭建乐高积木,得把每个部分都想清楚了。
设计图纸要精细,不能马虎。
现代化的设计软件就像是个高科技的小助手,能帮我们快速计算出需要的弯曲角度和半径,简直是“如鱼得水”!3.3 模具的制作一切准备好后,就轮到模具的制作了。
模具就像是四角形弯曲件的“衣服”,得合身、得好看。
制作模具的时候,可不能心急,要仔细、要认真,才能确保最终产品的质量。
如果模具做得不行,后面的弯曲工艺就像是“竹篮打水一场空”,白忙一场。
4. 实际操作中的注意事项4.1 温度控制在实际操作中,温度可是个“隐形杀手”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/7/8
7
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
3.1弯曲变形的过程及变形特点
3.1.1弯曲变形过程
弯曲变形过程:如图3.1.2所示V形件的弯曲,随着凸模进 入凹模深度的增大,凹模与板料的接触处位置发生变化,支点 B沿凹模斜面不断下移,弯曲力臂l 逐渐减小,接近行程终了, 弯曲半径r继续减小,而直边部分反而向凹模方向变形,直至板 料与凸、凹模完全贴合。
第3章 弯曲工艺与弯曲模具设计
2020/7/8
5
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
2020/7/8
6
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计 弯曲方法:压弯、折弯、拉弯、滚弯、辊弯
(a)模具压弯; (b)折弯; (c)拉弯; (d)滚弯; (e)辊压 3.0.2弯曲零件的成形方法
定的材料。 2.改进弯曲件的结构设计
设计弯曲件时改进一些结构,加强弯曲件的刚度以减小回 弹。比如:在变形区压加强肋或压成形边翼,增加弯曲件的刚 性,使弯曲件回弹困难(如图3.2.3)。
2020/7/8
18
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
3.2.3 改进零件的结构设计
弯曲毛坯的种类:板料、棒料、型材、管材
2020/7/8
2
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
2020/7/8
3
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
2020/7/8
4
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
概述
3.1 弯曲变形的过程及变形特点
3.2 弯曲卸载后弯曲件的回弹
3.3 弯曲成形的工艺设计
3.4 弯曲模具的设计
2020/7/8
1
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
弯曲是使材料产生塑性变形,形成一定曲率和角 度零件的冲压工序。
2020/7/8
13
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
回弹性的表现形式: (1) 卸载前板料的内半径 r p(与 凸模的半径吻合)在卸载后增加 至 r。弯曲半径的增加量为:
r rrp
(2)
卸载前弯曲中心角为 (与
凸模顶角相吻合),卸载后变化 为 。弯曲件角度的变化量为:
3.1.3弯曲时变形区的应力和应变
板料在塑性弯曲时, 变形区内的应力应变状
态取决于弯曲毛坯的想 对宽度b / t 以及弯曲变 形程度。
窄板弯曲的应力状 态是平面的,应变状态 是立体的。
宽板弯曲的应力状 态是立体的,应变状态 是平面的。
2020/7/8
12
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
2020/7/8
10
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
1.弯曲圆角部分是弯曲变形的主要变形区
变形区的材料外侧伸长,内侧缩短,中性层长度不变。
2.弯曲变形区存在应变中性层
应变中型层是指在变形前后金属纤维的长度没有发生改
变的那一层金属纤维。
3. 变形区材料厚度变薄的现象
3.1.2板料弯曲变形特点
通过网格试验观察弯曲变形特点(如图3.1.3)。
2020/7/8
8
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
2020/7/8
9
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
图3.1.3 弯曲前后坐标网络的变化
Δ0t
Δ Δ 90
90
2.大圆角半径弯曲的回弹 ( r/t5~8 )
rt
13rs
r
1
13s
E t r Et
t r
rt
t 1800 t
2020/7/8
17
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
3.2.4减少回弹的措施
1.材料选择 应尽可能选用弹性模数大的,屈服极限小,机械性比较稳
使回弹困难,因而回弹角减小。 6.模具间隙
在压弯U形件时,间隙大,材料处于松动状态,回弹就
7.非变形区的影响
2020/7/8
16
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
3.2.3回弹值的确定
目的:作为修正模具工作部分参数的依据。
1.小半径弯曲的回弹( r/t5~8 )
图3.2.1弯曲件的弹性回跳
2020/7/8
14
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
3.2.2影响回弹的因素
1.材料的力学性能 材料的屈服点 s 越高,弹性模量E越小,弯曲弹性回跳
越大。 2.相对弯曲半径 r / t
相对弯曲变径 r / t 越大,则回弹也越大。Biblioteka 变形程度愈大,变薄现象愈严重。
4.变形区横断面的变形
变形区横断面形状尺寸发生改变称为畸变。主要影响因
素为板料的相对宽度。
b/t3 (宽板)
b/t3 (窄板)
横断面几乎不变; 断面变成了内宽外窄的扇形。
2020/7/8
11
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
2020/7/8
19
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
3. 从工艺上采取措施
(1)采用热处理工艺 对一些硬材料和已经冷作硬化的材料,弯曲前先进行 退火处理,降低其硬度以减少弯曲时的回弹,待弯曲后再 淬硬。在条件允许的情况下,甚至可使用加热弯曲。 (2)增加校正工序 运用校正弯曲工序,对弯曲件施加较大的校正压力, 可以改变其变形区的应力应变状态,以减少回弹量。 (3)采用拉弯工艺 对于相对弯曲半径很大的弯曲件,由于变形区大部分 处于弹性变形状态,弯曲回弹量很大。这时可以采用拉弯 工艺 (如图3.2.4)。
3.弯曲中心角
弯曲中心角越大,表明变形区的长度越长,故回弹的
积累值越大,其回弹角越大。但对弯曲半径的回弹影响不大。
2020/7/8
15
《冲冲 压压工工艺艺与及模模具具设设计计助学》课件
第3章 弯曲工艺与弯曲模具设计
4.弯曲方式及弯曲模具结构 采用校正弯曲时,工件的回弹小。
5.弯曲件形状 工件的形状越复杂,一次弯曲所成形的角度数量越多,
第3章 弯曲工艺与弯曲模具设计
3.2弯曲卸载后弯曲件的回弹
3.2.1回弹现象
当弯曲结束,外力去除后,塑性变形留存下来,而弹性 变形则完全消失。弯曲变形区外侧因弹性恢复而缩短,内侧
因弹性恢复而伸长,产生了弯曲件的弯曲角度和弯曲半径与
模具相应尺寸不一致的现象。这种现象称为弯曲件的弹性回 跳(简称回弹)。