超全图论matlab程序-可解决图论方面的绝大多数问题

合集下载

如何在Matlab中进行多目标优化问题求解

如何在Matlab中进行多目标优化问题求解

如何在Matlab中进行多目标优化问题求解如何在Matlab中进行多目标优化问题求解?多目标优化问题是指存在多个目标函数,且这些目标函数之间相互矛盾或者无法完全同时满足的问题。

在实际应用中,多目标优化问题非常常见,例如在工程设计中寻求最佳平衡点、在金融投资中追求高收益低风险等。

而Matlab作为一种强大的数值计算工具,提供了丰富的优化算法和工具箱,可以帮助我们解决多目标优化问题。

一、多目标优化问题数学建模在解决多目标优化问题之前,首先需要将实际问题转化为数学模型。

假设我们需要优化一个n维的向量x,使得目标函数f(x)同时最小化或最大化。

其中,n为自变量的个数,f(x)可以表示为多个目标函数f1(x)、f2(x)、...、fm(x)的向量形式:f(x) = [f1(x), f2(x), ..., fm(x)]其中,fi(x)(i=1,2,...,m)即为待优化的目标函数。

在多目标优化问题中,一般没有单一的最优解,而是存在一个解集,称为"帕累托前沿(Pareto Frontier)"。

该解集中的每个解被称为"非支配解(Non-Dominated Solution)",即不能被其他解所优化。

因此,多目标优化问题的目标就是找到帕累托前沿中的最佳解。

二、Matlab中的多目标优化算法Matlab提供了多种多目标优化算法和工具箱,包括paretosearch、gamultiobj、NSGA-II等等。

这些算法基于不同的思想和原理,可以根据问题的特点选择合适的算法进行求解。

1. paretosearch算法paretosearch算法采用遗传算法的思想,通过迭代更新种群来寻找非支配解。

该算法适用于求解中小规模的多目标优化问题。

使用paretosearch算法求解多目标优化问题可以按照以下步骤进行:(1)定义目标函数编写目标函数fi(x)(i=1,2,...,m)的代码。

MATLAB中常见的图论算法介绍

MATLAB中常见的图论算法介绍

MATLAB中常见的图论算法介绍一、引言图是计算机科学中非常重要的一种数据结构,广泛应用于各个领域。

图论算法能够解决多种问题,如网络分析、社交网络分析、路径规划等。

在本篇文章中,我们将介绍一些在MATLAB中常见的图论算法,帮助读者了解和应用这些算法。

二、图的表示方法在MATLAB中,图可以用邻接矩阵或邻接表来表示。

邻接矩阵是一个二维矩阵,其中行和列分别代表图的节点,矩阵中的元素表示节点之间的关系。

邻接表是一个包含图中所有节点的列表,每个节点链接到其相邻节点的列表。

三、最短路径算法1. Dijkstra算法Dijkstra算法用于解决单源最短路径问题,即寻找一个节点到图中其他所有节点的最短路径。

算法的基本思想是通过不断选择最短路径的节点来逐步扩展最短路径树。

在MATLAB中,可以使用graph对象和shortestpath函数来实现Dijkstra算法。

首先,使用graph对象创建图,然后使用shortestpath函数计算从源节点到目标节点的最短路径。

2. Bellman-Ford算法Bellman-Ford算法也用于解决单源最短路径问题,但相比Dijkstra算法,Bellman-Ford算法可以处理带有负权边的图。

算法的基本思想是通过松弛操作来逐步减小节点的估计距离,直到找到最短路径。

在MATLAB中,可以使用graph对象和shortestpath函数来实现Bellman-Ford算法。

与Dijkstra算法类似,首先使用graph对象创建图,然后使用shortestpath函数计算最短路径。

四、最小生成树算法1. Prim算法Prim算法用于寻找一个无向图的最小生成树。

算法的基本思想是从一个初始节点开始,逐步添加边,直到所有节点都被连接成一棵生成树。

在MATLAB中,可以使用graph对象和minspantree函数来实现Prim算法。

首先,使用graph对象创建图,然后使用minspantree函数计算最小生成树。

gurobi多目标问题matlab

gurobi多目标问题matlab

Gurobi多目标问题在Matlab中的解决一、Gurobi简介Gurobi是一款强大的商业数学建模工具,广泛应用于优化领域。

它提供了多种优化算法,能够高效地解决线性规划、整数规划、二次规划等各种优化问题。

在实际工程和科学研究中,经常遇到多目标优化问题,即需要同时优化多个目标函数。

本文将介绍如何使用Gurobi在Matlab中解决多目标优化问题。

二、多目标优化问题的定义在多目标优化问题中,我们需要最小化或最大化多个目标函数,而且这些目标函数之间往往存在相互矛盾的关系。

在生产计划中,一个目标函数可能是最大化产量,另一个目标函数可能是最小化成本。

在实际应用中,我们需要找到一组可行的解,使得所有目标函数都达到一个较好的平衡。

三、Gurobi在Matlab中的调用在Matlab中调用Gurobi需要先安装Gurobi的Matlab接口。

安装完成后,我们可以在Matlab命令窗口中输入命令"gurobi"来验证是否成功安装。

接下来,我们需要在Matlab中编写代码,定义优化问题的目标函数、约束条件和变量类型。

在定义目标函数时,我们需要考虑多个目标函数之间的相关性,以及它们之间的权重关系。

在定义约束条件和变量类型时,我们需要考虑多目标函数之间可能存在的约束条件和变量之间的相互制约关系。

四、多目标优化问题的解决方法Gurobi提供了多种解决多目标优化问题的方法,包括加权法、约束法和Pareto最优解法等。

在加权法中,我们将多个目标函数进行线性组合,并引入权重因子来平衡各个目标函数之间的重要性。

在约束法中,我们将多个目标函数作为多个约束条件,通过逐步添加约束条件来找到最优解。

在Pareto最优解法中,我们寻找一组可行解,使得没有其他可行解能比它在所有目标函数上都更好。

五、案例分析以生产计划为例,假设我们需要同时考虑最大化产量和最小化成本两个目标。

我们可以先使用加权法,通过调整权重因子来平衡这两个目标的重要性,找到一个较好的解。

matlab常微分方程求解例题

matlab常微分方程求解例题

MATLAB常微分方程求解例题一、引言MATLAB是一款常用于科学计算和工程领域的软件,其强大的数学计算和绘图功能使得它成为了工程师、科学家和研究人员们的首选工具。

在工程和科学领域中,常微分方程是一个极为重要的数学工具,而MATLAB正是一个很好的利用工具。

本文将通过一些例题来介绍MATLAB如何求解常微分方程。

二、求解算法MATLAB提供了多种求解常微分方程的算法,其中最常用的是ode45函数。

ode45是一种基于龙格-库塔(Runge-Kutta)方法的求解器,适用于绝大多数的常微分方程求解。

MATLAB中还有其他的求解函数,如ode23、ode113等,它们分别适用于不同类型的常微分方程求解。

在使用这些函数时,需要注意选择合适的算法,以保证求解的准确性和速度。

三、例题分析1. 一阶常微分方程我们首先考虑一个一阶常微分方程的例子:$$\frac{dy}{dt} = y - t^2 + 1, y(0) = 0$$这是一个典型的一阶常微分方程,可以用ode45函数求解。

在MATLAB中,可以这样编写代码:```matlab% 定义常微分方程函数function dydt = myODE(t,y)dydt = y - t^2 + 1;end% 求解常微分方程[t,y] = ode45(@myODE, [0, 2], 0);% 绘制解曲线plot(t, y);```上述代码中,首先定义了常微分方程的右端函数myODE,然后调用ode45求解常微分方程,并使用plot函数绘制解曲线。

运行该代码,即可得到常微分方程的数值解,并且可以通过绘制曲线观察解的情况。

2. 二阶常微分方程接下来考虑一个二阶常微分方程的例子:$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = \sin(t), y(0) = 0, \frac{dy}{dt}(0) = 1$$这是一个典型的二阶常微分方程,可以通过一些转化,化为一阶常微分方程组进行求解。

matlab图论方法ppt课件

matlab图论方法ppt课件

如果某个有限图不满足(2)(3)(4),可在某条
边上增设顶点使之满足.
ppt课件.
10
定义2 若将图G的每一条边e都对应一个实数 F (e), 则称F (e)为该边的权, 并称图G为赋权图(网 络), 记为G = (V, E , F ).
定义3 设G = (V, E)是一个图, v0, v1, …, vk∈V, 且1≤i≤k, vi-1vi∈E, 则称v0 v1 … vk是G的一条通路. 如果通路中没有相同的边, 则称此通路为道路. 始 点和终点相同的道路称为圈或回路. 如果通路中 既没有相同的边, 又没有相同的顶点, 则称此通路 为路径, 简称路.
ppt课件.
22
解:用Floyd算法,首先写出其(对称的)权矩 阵A = (aij )8×8,然后利用计算机编程计算.
01234567 0 0 2 8 1∞∞∞∞ 1 2 0 6∞ 1∞∞∞ 2 8 6 0 7 5 1 2∞ 3 1∞ 7 0∞∞ 9∞ 4∞ 1 5∞ 0 3∞ 8 5∞∞ 1∞ 3 0 4 6 6∞∞ 2 9∞ 4 0 3 7 ∞ ∞ ∞ ∞ 8 ppt课件. 6 3 0 23
已知设备在每年年初的购买费分别为11,11, 12,12,13. 使用不同时间设备所需的维修费分别 为5,6,8,11,18.
解 设bi 表示设备在第i 年年初的购买费,ci 表 示设备使用i 年后的维修费, V={v1, v2, … , v6},点 vi表示第i 年年初购进一台新设备,虚设一个点v6表 示第5年年底. E ={vivj | 1≤i<j≤6}.
G为有限图或n阶图. ppt课件.
5
如果E的每一条边都是无向边, 则称G为无向 图(如图1); 如果E的每一条边都是有向边, 则称G 为有向图(如图2); 否则, 称G为混合图.

MATLAB深度学习中常见问题与解决方法

MATLAB深度学习中常见问题与解决方法

MATLAB深度学习中常见问题与解决方法深度学习在计算机科学领域中扮演着重要角色,而在深度学习的实践中,MATLAB是一个常用的工具。

然而,即便是有经验的MATLAB用户,也会在深度学习过程中遇到各种问题。

本文将讨论一些常见的问题,并提供相应的解决方法,以帮助读者更好地应对这些困扰。

## 数据准备问题在进行深度学习之前,数据准备是必不可少的步骤。

数据必须经过预处理、特征提取等步骤,以使其适合作为深度学习模型的输入。

然而,在这个过程中,可能会遇到一些问题。

首先,数据的质量是一个关键问题。

数据必须是准确、完整、无噪声的,才能得到可靠的模型。

解决这个问题的方法是使用数据清理技术,如去除异常值、填充缺失值等。

其次,数据集的大小也是一个常见的问题。

深度学习需要大量的数据来训练模型。

如果数据集太小,可能会导致模型过拟合,即在训练集上表现出很高的准确率,但在测试集上表现较差。

解决这个问题的方法是扩充数据集,可以通过数据增强技术来实现,如旋转、翻转、裁剪等。

另一个值得关注的问题是类别不平衡。

在某些任务中,不同类别的样本数量可能差异很大,这会导致模型对多数类别过于偏向,而对少数类别不够敏感。

解决这个问题的方法是使用各种采样技术,如过采样、欠采样、SMOTE等,以平衡不同类别的样本。

## 模型选择问题选择适合的模型是深度学习的关键步骤之一。

在选择模型时,需要考虑问题的复杂度、数据集的大小和特征等因素。

然而,有时候会遇到一些困扰。

首先,过拟合是一个常见的问题。

过拟合指的是模型在训练集上表现良好,但在测试集上表现较差。

这可能是因为模型过于复杂,导致学习到了训练集中的噪声。

解决这个问题的方法是通过正则化技术,如L1正则化、L2正则化等,来限制模型的复杂度。

其次,欠拟合也是一个常见的问题。

欠拟合指的是模型无法很好地拟合训练集,导致训练集和测试集的表现都较差。

这可能是因为模型过于简单,无法捕捉到数据中的复杂模式。

解决这个问题的方法是使用更复杂的模型,如增加模型的层数、增加神经元的个数等。

MATLAB中常见问题的解决方法总结

MATLAB中常见问题的解决方法总结

MATLAB中常见问题的解决方法总结MATLAB是一种强大的数值计算和科学编程环境,被广泛应用于工程、科学研究和数据分析等领域。

然而,在使用MATLAB的过程中,我们常常会遇到各种各样的问题。

本文将总结一些常见问题,并提供相应的解决方法,以帮助读者更好地使用MATLAB。

1. 内存溢出问题在处理大规模数据或者运行占用内存较大的程序时,经常会遇到内存溢出的问题。

为了解决这个问题,可以尝试以下几种方法:- 使用循环代替矢量化操作:矢量化操作可能会导致内存占用过高,特别是在处理大型数据时。

通过将操作改为循环形式,可以减少内存的使用。

- 释放不必要的变量:在程序运行过程中,需要及时释放不再使用的变量。

可以使用clear命令清除不再需要的变量,并使用pack命令压缩内存空间。

- 增加系统虚拟内存:可以通过增加系统的虚拟内存来扩大MATLAB的可用内存空间。

在Windows系统中,可以通过“计算机属性-高级系统设置-高级-性能-设置-高级-虚拟内存-更改”来进行设置。

2. 代码运行速度慢问题当我们需要处理大量数据或者进行复杂的计算时,可能会遇到MATLAB代码运行速度慢的问题。

以下是一些优化代码运行速度的方法:- 矢量化操作:在MATLAB中,矢量化操作可以显著提高代码的执行速度。

矢量化操作意味着使用矩阵运算代替循环操作,这样可以充分利用MATLAB的内置优化工具。

- 预分配数组空间:在使用循环操作时,应该预先为数组分配足够的空间。

预分配数组空间可以避免因为MATLAB动态调整数组大小而导致的运行速度下降。

- 使用函数而不是脚本:在MATLAB中,函数比脚本通常执行得更快。

将代码封装成函数可以提高代码的复用性和执行效率。

- 使用编译器:对于一些复杂的计算和循环操作,可以使用MATLAB的JIT 编译器来提高代码的执行速度。

可以使用命令"mex -g"将MATLAB代码转换为C 或Fortran源代码,并进行编译。

如何使用Matlab解决数学问题

如何使用Matlab解决数学问题

如何使用Matlab解决数学问题使用Matlab解决数学问题引言:数学作为一门基础学科,广泛应用于各个学科领域。

而Matlab作为一款数学软件,拥有强大的计算能力和丰富的函数库,成为了数学问题解决的得力工具。

本文将介绍如何使用Matlab解决数学问题,并通过实例来展示其强大的功能和灵活性。

一、Matlab的基本使用方法1. 安装和启动Matlab首先,我们需要从官方网站下载并安装Matlab软件。

安装完成后,打开软件即可启动Matlab的工作环境。

2. 变量和运算符在Matlab中,变量可以用来存储数据。

我们可以通过赋值运算符“=”将数值赋给一个变量。

例如,可以使用“a=5”将数值5赋给变量a。

Matlab支持常见的运算符,如加、减、乘、除等,可以通过在命令行输入相应的表达式进行计算。

3. Matirx和向量的操作Matlab中,Matrix和向量(Vector)是常用的数据结构。

我们可以使用方括号将数值组成的矩阵或向量输入Matlab,比如“A=[1 2; 3 4]”可以创建一个2x2的矩阵。

4. 函数和脚本Matlab提供了丰富的内置函数和函数库,可以通过函数来解决各种数学问题。

同时,我们还可以自己编写函数和脚本。

函数用于封装一段可复用的代码,而脚本则是按照特定的顺序执行一系列的命令。

二、解决线性代数问题1. 线性方程组求解Matlab提供了“solve”函数用于求解线性方程组。

例如,我们可以使用“solve([2*x + y = 1, x + 3*y = 1], [x, y])”来求解方程组2x + y = 1和x + 3y = 1的解。

2. 矩阵运算Matlab提供了丰富的矩阵运算函数,如矩阵的加法、乘法、转置等。

通过这些函数,我们可以快速进行矩阵运算,解决线性代数问题。

三、解决数值计算问题1. 数值积分对于某些无法解析求解的积分问题,Matlab可以通过数值积分方法求得近似解。

Matlab提供了“integral”函数用于数值积分,我们只需要给出被积函数和积分区间即可。

Matlab技术在运筹学中的应用方法

Matlab技术在运筹学中的应用方法

Matlab技术在运筹学中的应用方法近年来,运筹学在各个领域中的应用越来越广泛,可以有效提升运营效率和资源利用率。

而其中,Matlab技术作为一种强大的计算工具,为运筹学研究提供了许多有效的应用方法。

本文将探讨Matlab技术在运筹学中的应用方法,并且展示其在不同领域中的实际案例。

一、线性规划和整数规划线性规划和整数规划是运筹学中常见的优化问题。

Matlab提供了丰富的优化工具箱,可以帮助研究者对这类问题进行求解。

例如,在供应链管理中,为了最大程度降低成本,需要对物流、库存以及供应链中的各个环节进行优化。

Matlab可以通过调用优化工具箱,对供应链系统进行优化,找到最佳的方案,从而在成本和效益之间找到最佳平衡点。

二、排队论排队论是研究随机序列的到达和服务过程的理论,它在交通管理、通信网络和生产制造等领域有着广泛的应用。

Matlab拥有丰富的数学建模工具,可以方便地建立排队论模型,并通过模拟和仿真来评估系统性能。

例如,在交通管理中,可以通过建立排队论模型来优化交通信号灯配时,从而提高道路通行能力和交通流的效率。

三、图论图论是运筹学中的重要分支,用于解决网络中的路径规划、最小生成树等问题。

Matlab提供了强大的图论工具箱,可以用于图的建模、分析和可视化。

例如,在物流管理中,可以通过图论技术对供应链网络进行建模,从而找到最优的运输路径和节点布局,以最大程度地减少运输时间和成本。

四、模拟和仿真模拟和仿真是运筹学中常用的分析方法,可以帮助研究者更好地理解系统的行为和性能。

Matlab提供了丰富的仿真工具,可以方便地进行系统模拟和仿真实验。

例如,在生产制造中,可以通过建立仿真模型来优化生产流程,减少生产周期和浪费,从而提高生产效率。

五、智能算法智能算法是一类模拟生物或自然过程的算法,用于解决复杂问题。

Matlab提供了多种智能算法工具箱,如遗传算法、神经网络等,可以帮助研究者解决运筹学中的各种优化和决策问题。

Matlab中的复杂网络与图论分析方法

Matlab中的复杂网络与图论分析方法

Matlab中的复杂网络与图论分析方法在当今数字时代,数据网络正在成为各行各业的核心,这就给研究网络结构和分析网络行为提供了前所未有的机会。

而复杂网络和图论分析方法则成为了研究数据网络的一种重要手段。

本文将介绍在Matlab中应用的复杂网络和图论分析方法,探讨其原理和应用。

一、复杂网络:拓扑结构的研究复杂网络是指由大量节点和链接组成的网络,其中节点代表实体,链接代表实体之间的关系。

通过研究复杂网络的拓扑结构,我们可以揭示数据网络中的规律和性质,了解网络中节点的连接模式和信息传播机制。

1.1 网络拓扑结构的描述在复杂网络研究中,一种常用的描述方法是邻接矩阵和度矩阵。

邻接矩阵是一个由0和1组成的矩阵,其中的元素表示节点之间的连接关系,1表示连接,0表示未连接。

度矩阵是一个对角矩阵,用于描述每个节点的度数,即与该节点相连的链接数。

1.2 网络节点的度分布节点的度数是指与该节点相连的链接数,而节点的度分布则是指不同度数的节点在网络中的分布情况。

在复杂网络中,节点的度分布往往符合幂律分布,即少数节点的度数非常大,而大部分节点的度数相对较小。

通过分析节点的度分布,可以了解网络中的核心节点和边缘节点,以及网络的鲁棒性和可靠性。

1.3 网络中的社区结构社区结构是指网络中节点的聚集现象,即节点之间的连接更密集,而与其他社区的联系较弱。

通过识别和研究网络中的社区结构,可以帮助我们揭示网络中的隐含规律、发现重要节点和子网络,并理解网络的分层结构和功能。

二、图论分析:探索网络行为的机制图论是研究网络结构和图形模型的数学理论,主要关注网络中节点和链接之间的关系。

通过图论分析,我们可以量化和描述网络中的节点和链接的特性,揭示网络的演化机制和行为规律。

2.1 网络中的中心性度量中心性是衡量网络中节点重要性的指标,可以帮助我们识别重要节点和影响网络动态行为的因素。

在复杂网络中,常用的中心性度量包括度中心性、接近中心性和介数中心性等。

Matlab中的网络分析与图论算法

Matlab中的网络分析与图论算法

Matlab中的网络分析与图论算法在现代社会中,网络分析和图论算法正变得越来越重要。

随着信息技术的迅猛发展,人们对网络的研究也日益深入。

而Matlab作为一种强大的科学计算软件,其网络分析和图论算法的应用也越来越广泛。

I. 网络分析的概述网络分析是指通过研究网络中的节点(节点可以代表人、物或其他实体)之间的关系,来理解和分析网络的结构和特征。

网络分析方法主要包括节点度数分布、社区结构、中心性指标等。

1. 节点度数分布网络中的节点度数指的是与该节点相连接的其他节点的数量。

在网络分析中,研究节点度数分布可以帮助我们了解网络中节点的连接情况,进而揭示网络的结构特征。

Matlab中有丰富的函数可以用来计算节点度数分布,如hist函数和bar函数。

2. 社区结构社区结构是指网络中的节点按某种规则或特征被划分为多个聚类的情况。

社区结构分析可以帮助我们发现网络中的子群体,进一步研究节点的集聚性和节点之间的相似性。

Matlab中的图论工具箱中提供了多种算法,如谱聚类算法(Spectral Clustering)和模块度优化算法(Modularity Optimization),可以用于社区结构的分析。

3. 中心性指标中心性指标是用来衡量网络中节点的重要性程度。

常见的中心性指标有度中心性(Degree Centrality),介数中心性(Betweenness Centrality)和接近中心性(Closeness Centrality)等。

这些指标可以帮助我们找出网络中的核心节点,并进行节点的排序和权重的计算。

在Matlab中,我们可以使用centrality函数来计算节点的中心性指标。

II. 图论算法的应用图论算法是一类数学算法,用于研究网络的图结构和图的性质。

在Matlab中,有许多图论算法可以帮助我们解决各种实际问题。

1. 最短路径算法最短路径算法用于寻找网络中两个节点之间的最短路径。

其中一种常见的算法是迪杰斯特拉算法(Dijkstra's algorithm),它可以在网络中找到起点到终点的最短路径,并计算路径的长度。

matlab图论程序大全

matlab图论程序大全

图论算法matlab实现求最小费用最大流算法的 MATLAB 程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流while(1)for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j);elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;endfor(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;endif(pd)break;end;end %求最短路的Ford 算法结束if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt 表示调整量while(1) %计算调整量if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if(dvt>dvtt)dvt=dvtt;endif(s(t)==1)break;end %当t 的标号为vs 时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end%如果最大流量大于或等于预定的流量值t=n;while(1) %调整过程if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程t=s(t);endif(pd)break;end%如果最大流量达到预定的流量值wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用f %显示最小费用最大流图6-22wf %显示最小费用最大流量zwf %显示最小费用, 程序结束__Kruskal 避圈法:Kruskal 避圈法的MATLAB 程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x 记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end %排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x 中不同的正数从小到大排序if(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;end;end;endT(n,n)=0; %将矩阵T 中所有的元素赋值为0q=0; %记录加入到树T 中的边数for(s=1:k)if(q==n)break;end %获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if (A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T 中TT=T; %临时记录Twhile(1)pd=1; %砍掉TT 中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end %寻找TT 中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0;pd=0;end;end %砍掉TT 中的树枝if(pd)break;end;end %已砍掉了TT 中所有的树枝pd=0; %判断TT 中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;endif(pd)T(i,j)=0;T(j,i)=0; %假如TT 中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束用Warshall-Floyd 算法求任意两点间的最短路.n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 InfInf 1 5 Inf 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB 中, Inf 表示∞D=A; %赋初值for(i=1:n)for(j=1:n)R(i,j)=j;end;end %赋路径初值for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)<D(i,j))D(i,j)=D(i,k)+D(k,j); %更新dijR(i,j)=k;end;end;end %更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if(D(i,i)<0)pd=1;break;end;end %存在一条含有顶点vi 的负回路if(pd)break;end %存在一条负回路, 终止程序end %程序结束利用 Ford--Fulkerson 标号法求最大流算法的MATLAB 程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流for(i=1:n)No(i)=0;d(i)=0;end %No,d 记录标号图6-19while(1)No(1)=n+1;d(1)=Inf; %给发点vs 标号while(1)pd=1; %标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj 为非饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi 为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt 得到标号或者无法标号, 终止标号过程if(pd)break;end %vt 未得到标号, f 已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt 表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end %后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end %当t 的标号为vs 时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end %计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束图论程序大全程序一:关联矩阵和邻接矩阵互换算法function W=incandadf(F,f)if f==0m=sum(sum(F))/2;n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);W(a(1),a(2))=1;W(a(2),a(1))=1;endelsefprint('Please imput the right value of f'); endW;程序二:可达矩阵算法function P=dgraf(A)n=size(A,1);P=A;for i=2:nP=P+A^i;endP(P~=0)=1;P;程序三:有向图关联矩阵和邻接矩阵互换算法function W=mattransf(F,f)if f==0m=sum(sum(F));n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=-1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);if F(a(1),i)==1W(a(1),a(2))=1;elseW(a(2),a(1))=1;endendelsefprint('Please imput the right value of f'); endW;第二讲:最短路问题程序一:Dijkstra算法(计算两点间的最短路)function [l,z]=Dijkstra(W)n = size (W,1);for i = 1 :nl(i)=W(1,i);z(i)=0;endi=1;while i<=nfor j =1 :nif l(i)>l(j)+W(j,i)l(i)=l(j)+W(j,i);z(i)=j-1;if j<ii=j-1;endendendi=i+1;end程序二:floyd算法(计算任意两点间的最短距离)function [d,r]=floyd(a)n=size(a,1);d=a;for i=1:nfor j=1:nr(i,j)=j;endendr;for k=1:nfor i=1:nfor j=1:nif d(i,k)+d(k,j)<d(i,j) d(i,j)=d(i,k)+d(k,j); r(i,j)=r(i,k);endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short(W,k1,k2)n=length(W);U=W;m=1;while m<=nfor i=1:nfor j=1:nif U(i,j)>U(i,m)+U(m,j)U(i,j)=U(i,m)+U(m,j);endendendm=m+1;endu=U(k1,k2);P1=zeros(1,n);k=1;P1(k)=k2;V=ones(1,n)*inf;kk=k2;while kk~=k1for i=1:nV(1,i)=U(k1,kk)-W(i,kk);if V(1,i)==U(k1,i)P1(k+1)=i;kk=i;k=k+1;endendendk=1;wrow=find(P1~=0);for j=length(wrow):-1:1P(k)=P1(wrow(j));k=k+1;endP;程序四、n1short.m(计算某点到其它所有点的最短距离)function[Pm D]=n1short(W,k)n=size(W,1);D=zeros(1,n);for i=1:n[P d]=n2short(W,k,i);Pm{i}=P;D(i)=d;end程序五:pass2short.m(计算经过某两点的最短距离)function [P d]=pass2short(W,k1,k2,t1,t2)[p1 d1]=n2short(W,k1,t1);[p2 d2]=n2short(W,t1,t2);[p3 d3]=n2short(W,t2,k2);dt1=d1+d2+d3;[p4 d4]=n2short(W,k1,t2);[p5 d5]=n2short(W,t2,t1);[p6 d6]=n2short(W,t1,k2);dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2(2:length(p2)) p3(2:length(p3))]; elsed=dt1;p=[p4 p5(2:length(p5)) p6(2:length(p6))]; endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf(d,flag)if nargin==1n=size(d,2);m=sum(sum(d~=0))/2;b=zeros(3,m);k=1;for i=1:nfor j=(i+1):nif d(i,j)~=0b(1,k)=i;b(2,k)=j;b(3,k)=d(i,j);k=k+1;endendendelseb=d;endn=max(max(b(1:2,:)));m=size(b,2);[B,i]=sortrows(b',3);B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t(B(1,i))~=t(B(2,i))T(1:2,k)=B(1:2,i);c=c+B(3,i);k=k+1;tmin=min(t(B(1,i)),t(B(2,i)));tmax=max(t(B(1,i)),t(B(2,i)));for j=1:nif t(j)==tmaxt(j)=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf(a)l=length(a);a(a==0)=inf;k=1:l;listV(k)=0;listV(1)=1;e=1;while (e<l)min=inf;for i=1:lif listV(i)==1for j=1:lif listV(j)==0 & min>a(i,j) min=a(i,j);b=a(i,j);s=i;d=j;endendendendlistV(d)=1;distance(e)=b;source(e)=s;destination(e)=d;e=e+1;endT=[source;destination];for g=1:e-1c(g)=a(T(1,g),T(2,g));endc;另外两种程序最小生成树程序1(prim 算法构造最小生成树)a=[inf 50 60 inf inf inf inf;50 inf inf 65 40 inf inf;60 inf inf 52 inf inf 45;...inf 65 52 inf 50 30 42;inf 40 inf 50 inf 70 inf;inf inf inf 30 70 inf inf;...inf inf 45 42 inf inf inf];result=[];p=1;tb=2:length(a);while length(result)~=length(a)-1temp=a(p,tb);temp=temp(:);d=min(temp);[jb,kb]=find(a(p,tb)==d);j=p(jb(1));k=tb(kb(1));result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[];endresult最小生成树程序2(Kruskal 算法构造最小生成树)clc;clear;a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40; a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30; a(4,7)=42; a(5,6)=70;[i,j,b]=find(a);data=[i';j';b'];index=data(1:2,:);loop=max(size(a))-1;result=[];while length(result)<looptemp=min(data(3,:));flag=find(data(3,:)==temp);flag=flag(1);v1=data(1,flag);v2=data(2,flag);if index(1,flag)~=index(2,flag)result=[result,data(:,flag)];endindex(find(index==v2))=v1;data(:,flag)=[];index(:,flag)=[];endresult第四讲:Euler图和Hamilton图程序一:Fleury算法(在一个Euler图中找出Euler环游)注:包括三个文件;fleuf1.m, edf.m, flecvexf.mfunction [T c]=fleuf1(d)%注:必须保证是Euler环游,否则输出T=0,c=0n=length(d);b=d;b(b==inf)=0;b(b~=0)=1;m=0;a=sum(b);eds=sum(a)/2;ed=zeros(2,eds);vexs=zeros(1,eds+1);matr=b;for i=1:nif mod(a(i),2)==1m=m+1;endendif m~=0fprintf('there is not exit Euler path.\n')T=0;c=0;endif m==0vet=1;flag=0;t1=find(matr(vet,:)==1);for ii=1:length(t1)ed(:,1)=[vet,t1(ii)];vexs(1,1)=vet;vexs(1,2)=t1(ii);matr(vexs(1,2),vexs(1,1))=0;flagg=1;tem=1;while flagg[flagg ed]=edf(matr,eds,vexs,ed,tem);tem=tem+1;if ed(1,eds)~=0 & ed(2,eds)~=0T=ed;T(2,eds)=1;c=0;for g=1:edsc=c+d(T(1,g),T(2,g));endflagg=0;break;endendendendfunction[flag ed]=edf(matr,eds,vexs,ed,tem)flag=1;for i=2:eds[dvex f]=flecvexf(matr,i,vexs,eds,ed,tem);if f==1flag=0;break;endif dvex~=0ed(:,i)=[vexs(1,i) dvex];vexs(1,i+1)=dvex;matr(vexs(1,i+1),vexs(1,i))=0;elsebreak;endendfunction [dvex f]=flecvexf(matr,i,vexs,eds,ed,temp) f=0;edd=find(matr(vexs(1,i),:)==1);dvex=0;dvex1=[];ded=[];if length(edd)==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length(edd)m1=find(vexs==edd(kk));if sum(m1)==0dvex1(dd)=edd(kk);dd=dd+1;dd1=1;elsekkk=kkk+1;endendif kkk==length(edd)tem=vexs(1,i)*ones(1,kkk);edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1(1:2,l1)==ed(1:2,l2)lt=lt+1;endendif lt==0ded(ddd)=edd(l1);ddd=ddd+1;endendendif temp<=length(dvex1)dvex=dvex1(temp);elseif temp>length(dvex1) & temp<=length(ded) dvex=ded(temp);elsef=1;endend程序二:Hamilton改良圈算法(找出比较好的Hamilton路)function [C d1]= hamiltonglf(v)%d表示权值矩阵%C表示算法最终找到的Hamilton圈。

利用Matlab解决数学问题

利用Matlab解决数学问题

利用Matlab 解决数学问题一、线性规划求解线性规划的Matlab 解法单纯形法是求解线性规划问题的最常用、最有效的算法之一。

单纯形法是首先由George Dantzig 于1947年提出的,近60年来,虽有许多变形体已被开发,但却保持着同样的基本观念。

由于有如下结论:若线性规划问题有有限最优解,则一定有某个最优解是可行区域的一个极点。

基于此,单纯形法的基本思路是:先找出可行域的一个极点,据一定规则判断其是否最优;若否,则转换到与之相邻的另一极点,并使目标函数值更优;如此下去,直到找到某一最优解为止。

这里我们不再详细介绍单纯形法,有兴趣的读者可以参看其它线性规划书籍。

下面我们介绍线性规划的Matlab 解法。

Matlab5.3中线性规划的标准型为bAx x c T x ≤ such that min 基本函数形式为linprog(c,A,b),它的返回值是向量x 的值。

还有其它的一些函数调用形式(在 Matlab 指令窗运行 help linprog 可以看到所有的函数调用形式),如: [x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X 0,OPTIONS)这里fval 返回目标函数的值,Aeq 和beq 对应等式约束beq x Aeq =*,LB 和UB 分别是变量x 的下界和上界,x 是x 的初始值,OPTIONS 是控制参数。

例2 求解下列线性规划问题321532m ax x x x z -+=⎪⎩⎪⎨⎧≥≥+-=++0,,10527321321321x x x x x x x x x解 (i )编写M 文件 c=[2;3;-5];a=[-2,5,-1]; b=-10; aeq=[1,1,1]; beq=7;x=linprog(-c,a,b,aeq,beq,zeros(3,1)) value=c'*x(ii )将M 文件存盘,并命名为example1.m 。

matlab常见问题及解决技巧

matlab常见问题及解决技巧

matlab常见问题及解决方法㈠matlab安装、运行与其他问题集锦Q1:还有另外三种低功耗模式,matlab有没有监视内存的方法?A:与PC机的通信通过MAX232芯片把单片机的TTL电平转化为标准的RS-232 电平,用函数WhOSo或根本就有故障,Q2:其余数据取算术平均的办法,如何解决mat!ab7.0命令窗口跳出一大堆java 错误…A:在FPGA/EPLD Top-Down设计方法全球市场上,换matlab 7的sp2。

19 F5,Q3:编码后的语音数据先存储在各通道的缓存区,自从安装matlab, 1)计算机下传数据01H, 一开机就在进程里有matlabo第二种方法实现难度小,能不能开机的时候进程就不运行matlab?具有廉价、高速、支持即插即用、使用维护方便等优点。

A: 2.1电压数据釆集子程序电压数据采集是直接通过TMS320LF2407自带的模数转换模块(ADC)实现的。

开始控制面板-> 管理工具-〉服务把MATLAB Server的属性改成'手动”就行了。

本文介绍了一种让U—BOOT 支持千兆网络功能的方法,Q4: 1系统总体设汁本数据采集系统的设汁主要分为硬件和软件设计两部分。

退出matlab7程序运行的快捷键。

在满足实时性要求的同时,A:适当的增加读取查询操作频率,ctrl+qQ5:它的引脚功能参见文献。

matlab7远程控制是否有限制?下面就主要的部分进行具体介绍。

A:在译码方面有硬件和软件两种方式,不能远程控制,可以从可接收数据的15 分钟里判断故障点。

如果接收到的数据时有时无,不过你可以先在你的remote 机器上打开,在计算机端,然后就可以用了。

WAKEMOD);Q6:首先对ADC进行初始化,Matlab占用资源太多怎么办?随着科学技术发展, A:1系统硬件设计1.1系统硬件框图系统的硬件框图由4部分组成:。

用matlab -nojvm启动(如果不需要图形界面)。

图算法的应用以及在Matlab中的实现

图算法的应用以及在Matlab中的实现

图算法的应用以及在Matlab中的实现图算法是图论的基础,广泛应用于各个领域。

图算法可以用来解决很多实际问题,例如社交网络分析、路网优化、数据挖掘等。

在Matlab中,图算法的实现主要依赖于图对象和图函数库。

一、图算法的应用1.社交网络分析:通过图算法可以进行社交网络的分析和挖掘,例如寻找网络中的关键节点、查找社区结构、计算网络的中心性指标等。

2.路网优化:图算法可以用来解决路网中的最短路径问题、最小生成树问题、最大流问题等,以优化交通运输和资源分配。

3.数据挖掘:图算法可以用于发现模式和关联规则,例如通过挖掘网页链接关系发现重要网页、通过分析推荐系统中用户的行为图谱进行个性化推荐等。

二、Matlab中图算法的实现在Matlab中,图算法的实现主要依赖于图对象(Graph Object)和图函数库(Graph and Network Algorithms),Matlab提供了一套完整的图算法库供用户使用。

1. 图对象(Graph Object)Matlab中的图对象是用来存储图数据的数据结构,可以表示有向图或无向图。

可以通过创建图对象,设置节点和边的属性,以及添加节点和边来构建图。

图对象提供了很多有用的方法,用于访问和操作图数据。

2. 图函数库(Graph and Network Algorithms)Matlab提供了一系列的图函数,用于解决常见的图算法问题。

其中包括最短路径算法、最小生成树算法、最大流算法等。

这些图函数可以用来解决各种实际问题,例如计算两节点之间的最短路径、查找网络中的关键节点等。

在Matlab中,通过以下几个步骤可以实现图算法:1.创建图对象:使用图对象的构造函数可以创建一个空的图对象,并指定图的类型(有向图或无向图)。

2.添加节点和边:使用图对象的方法可以添加节点和边,设置节点和边的属性。

3.访问图数据:可以通过图对象的方法访问和操作图数据,例如获取节点数、获取边数、获取节点的邻居等。

(图论)matlab模板程序

(图论)matlab模板程序

第一讲:图论模型程序一:可达矩阵算法%根据邻接矩阵A〔有向图〕求可达矩阵P〔有向图〕function P=dgraf<A>n=size<A,1>;P=A;for i=2:nP=P+A^i;endP<P~=0>=1; %将不为0的元素变为1P;程序二:无向图关联矩阵和邻接矩阵互换算法F表示所给出的图的相应矩阵W表示程序运行结束后的结果f=0表示把邻接矩阵转换为关联矩阵f=1表示把关联矩阵转换为邻接矩阵%无向图的关联矩阵和邻接矩阵的相互转换function W=incandadf<F,f>if f==0 %邻接矩阵转换为关联矩阵m=sum<sum<F>>/2; %计算图的边数n=size<F,1>;W=zeros<n,m>;k=1;for i=1:nfor j=i:nif F<i,j>~=0W<i,k>=1; %给边的始点赋值为1W<j,k>=1; %给边的终点赋值为1k=k+1;endendendelseif f==1 %关联矩阵转换为邻接矩阵m=size<F,2>;n=size<F,1>;W=zeros<n,n>;for i=1:ma=find<F<:,i>~=0>;W<a<1>,a<2>>=1; %存在边,则邻接矩阵的对应值为1 W<a<2>,a<1>>=1;endelsefprint<'Please imput the right value of f'>;W;程序三:有向图关联矩阵和邻接矩阵互换算法%有向图的关联矩阵和邻接矩阵的转换function W=mattransf<F,f>if f==0 %邻接矩阵转换为关联矩阵m=sum<sum<F>>;n=size<F,1>;W=zeros<n,m>;k=1;for i=1:nfor j=i:nif F<i,j>~=0 %由i发出的边,有向边的始点W<i,k>=1; %关联矩阵始点值为1W<j,k>=-1; %关联矩阵终点值为-1k=k+1;endendendelseif f==1 %关联矩阵转换为邻接矩阵m=size<F,2>;n=size<F,1>;W=zeros<n,n>;for i=1:ma=find<F<:,i>~=0>; %有向边的两个顶点if F<a<1>,i>==1W<a<1>,a<2>>=1; %有向边由a<1>指向a<2>elseW<a<2>,a<1>>=1; %有向边由a<2>指向a<1>endendelsefprint<'Please imput the right value of f'>;endW;第二讲:最短路问题程序0:最短距离矩阵W表示图的权值矩阵D表示图的最短距离矩阵%连通图中各项顶点间最短距离的计算function D=shortdf<W>%对于W<i,j>,若两顶点间存在弧,则为弧的权值,否则为inf;当i=j时W<i,j>=0 n=length<W>;m=1;while m<=nfor i=1:nfor j=1:nif D<i,j>>D<i,m>+D<m,j>D<i,j>+D<i,m>+D<m,j>; %距离进行更新 endendendm=m+1;endD;程序一:Dijkstra算法〔计算两点间的最短路〕function [l,z]=Dijkstra<W>n = size <W,1>;for i = 1 :nl<i>=W<1,i>;z<i>=0;endi=1;while i<=nfor j =1 :nif l<i>>l<j>+W<j,i>l<i>=l<j>+W<j,i>;z<i>=j-1;if j<ii=j-1;endendendi=i+1;end程序二:floyd算法〔计算任意两点间的最短距离〕function [d,r]=floyd<a>n=size<a,1>;d=a;for i=1:nfor j=1:nr<i,j>=j;endendr;for k=1:nfor i=1:nfor j=1:nif d<i,k>+d<k,j><d<i,j>d<i,j>=d<i,k>+d<k,j>; r<i,j>=r<i,k>;endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short<W,k1,k2>n=length<W>;U=W;m=1;while m<=nfor i=1:nfor j=1:nif U<i,j>>U<i,m>+U<m,j>U<i,j>=U<i,m>+U<m,j>;endendendm=m+1;endu=U<k1,k2>;P1=zeros<1,n>;k=1;P1<k>=k2;V=ones<1,n>*inf;kk=k2;while kk~=k1for i=1:nV<1,i>=U<k1,kk>-W<i,kk>;if V<1,i>==U<k1,i>P1<k+1>=i;kk=i;k=k+1;endendendk=1;wrow=find<P1~=0>;for j=length<wrow>:-1:1P<k>=P1<wrow<j>>;k=k+1;endP;程序四、n1short.m<计算某点到其它所有点的最短距离> function[Pm D]=n1short<W,k>n=size<W,1>;D=zeros<1,n>;for i=1:n[P d]=n2short<W,k,i>;Pm{i}=P;D<i>=d;end程序五:pass2short.m<计算经过某两点的最短距离> function [P d]=pass2short<W,k1,k2,t1,t2>[p1 d1]=n2short<W,k1,t1>;[p2 d2]=n2short<W,t1,t2>;[p3 d3]=n2short<W,t2,k2>;dt1=d1+d2+d3;[p4 d4]=n2short<W,k1,t2>;[p5 d5]=n2short<W,t2,t1>;[p6 d6]=n2short<W,t1,k2>;dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2<2:length<p2>> p3<2:length<p3>>]; elsed=dt1;p=[p4 p5<2:length<p5>> p6<2:length<p6>>]; endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf<d,flag>if nargin==1n=size<d,2>;m=sum<sum<d~=0>>/2;b=zeros<3,m>;k=1;for i=1:nfor j=<i+1>:nif d<i,j>~=0b<1,k>=i;b<2,k>=j;b<3,k>=d<i,j>;k=k+1;endendendelseb=d;endn=max<max<b<1:2,:>>>;m=size<b,2>;[B,i]=sortrows<b',3>;B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t<B<1,i>>~=t<B<2,i>>T<1:2,k>=B<1:2,i>;c=c+B<3,i>;k=k+1;tmin=min<t<B<1,i>>,t<B<2,i>>>; tmax=max<t<B<1,i>>,t<B<2,i>>>; for j=1:nif t<j>==tmaxt<j>=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf<a>l=length<a>;a<a==0>=inf;k=1:l;listV<k>=0;listV<1>=1;e=1;while <e<l>min=inf;for i=1:lif listV<i>==1for j=1:lif listV<j>==0 & min>a<i,j>min=a<i,j>;b=a<i,j>;s=i;d=j;endendendendlistV<d>=1;distance<e>=b;source<e>=s;destination<e>=d;e=e+1;endT=[source;destination];for g=1:e-1c<g>=a<T<1,g>,T<2,g>>;endc;第四讲:Euler图和Hamilton图程序一:Fleury算法〔在一个Euler图中找出Euler环游〕注:包括三个文件;fleuf1.m, edf.m, flecvexf.mfunction [T c]=fleuf1<d>%注:必须保证是Euler环游,否则输出T=0,c=0n=length<d>;b=d;b<b==inf>=0;b<b~=0>=1;m=0;a=sum<b>;eds=sum<a>/2;ed=zeros<2,eds>;vexs=zeros<1,eds+1>;matr=b;for i=1:nif mod<a<i>,2>==1m=m+1;endendif m~=0fprintf<'there is not exit Euler path.\n'>T=0;c=0;endif m==0vet=1;flag=0;t1=find<matr<vet,:>==1>;for ii=1:length<t1>ed<:,1>=[vet,t1<ii>];vexs<1,1>=vet;vexs<1,2>=t1<ii>;matr<vexs<1,2>,vexs<1,1>>=0;flagg=1;tem=1;while flagg[flagg ed]=edf<matr,eds,vexs,ed,tem>;tem=tem+1;if ed<1,eds>~=0 & ed<2,eds>~=0T=ed;T<2,eds>=1;c=0;for g=1:edsc=c+d<T<1,g>,T<2,g>>;endflagg=0;break;endendendendfunction[flag ed]=edf<matr,eds,vexs,ed,tem>flag=1;for i=2:eds[dvex f]=flecvexf<matr,i,vexs,eds,ed,tem>;if f==1flag=0;break;endif dvex~=0ed<:,i>=[vexs<1,i> dvex];vexs<1,i+1>=dvex;matr<vexs<1,i+1>,vexs<1,i>>=0;elsebreak;endendfunction [dvex f]=flecvexf<matr,i,vexs,eds,ed,temp> f=0;edd=find<matr<vexs<1,i>,:>==1>;dvex=0;dvex1=[];ded=[];if length<edd>==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length<edd>m1=find<vexs==edd<kk>>;if sum<m1>==0dvex1<dd>=edd<kk>;dd=dd+1;dd1=1;elsekkk=kkk+1;endendif kkk==length<edd>tem=vexs<1,i>*ones<1,kkk>;edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1<1:2,l1>==ed<1:2,l2>lt=lt+1;endendif lt==0ded<ddd>=edd<l1>;ddd=ddd+1;endendendif temp<=length<dvex1>dvex=dvex1<temp>;elseif temp>length<dvex1> & temp<=length<ded>dvex=ded<temp>;elsef=1;endend程序二:Hamilton改良圈算法〔找出比较好的Hamilton路〕function [C d1]= hamiltonglf<v>%d表示权值矩阵%C表示算法最终找到的Hamilton圈.%v =[ 51 67;37 84;41 94;2 99;18 54;4 50;24 42;25 38;13 40;7 64;22 60;25 62;18 40;41 26];n=size<v,1>;subplot<1,2,1>hold on;plot <v<:,1>,v<:,2>,'*'>; %描点for i=1:nstr1='V';str2=num2str<i>;dot=[str1,str2];text<v<i,1>-1,v<i,2>-2,dot>; %给点命名endplot <v<:,1>,v<:,2>>;%连线plot<[v<n,1>,v<1,1>],[v<n,2>,v<1,2>]>;for i =1:nfor j=1:nd<i,j>=sqrt<<v<i,1>-v<j,1>>^2+<v<i,2>-v<j,2>>^2>;endendd2=0;for i=1:nif i<nd2=d2+d<i,i+1>;elsed2=d2+d<n,1>;endendtext<10,30,num2str<d2>>;n=size<d,2>;C=[linspace<1,n,n> 1];for nnn=1:20C1=C;if n>3for m=4:n+1for i=1:<m-3>for j=<i+2>:<m-1>if<d<C<i>,C<j>>+d<C<i+1>,C<j+1>><d<C<i>,C<i+1>>+d<C<j>,C<j+1>>>C1<1:i>=C<1:i>;for k=<i+1>:jC1<k>=C<j+i+1-k>;endC1<<j+1>:m>=C<<j+1>:m>;endendendendelseif n<=3if n<=2fprint<'It does not exist Hamilton circle.'>; elsefprint<'Any cirlce is the right answer.'>;endendC=C1;d1=0;for i=1:nd1=d1+d<C<i>,C<i+1>>;endd1;endsubplot<1,2,2>;hold on;plot <v<:,1>,v<:,2>,'*'>; %描点for i=1:nstr1='V';str2=num2str<i>;dot=[str1,str2];text<v<i,1>-1,v<i,2>-2,dot>; %给点命名endv2=[v;v<1,1>,v<1,2>];plot<v<C<:>,1>,v<C<:>,2>,'r'>;text<10,30,num2str<d1>>;第五讲:匹配问题与算法程序一:较大基础匹配算法function J=matgraf<W>n=size<W,1>;J=zeros<n,n>;while sum<sum<W>>~=0a=find<W~=0>;t1=mod<a<1>,n>;if t1==0t1=n;endif a<1>/n>floor<a<1>/n>t2=floor<a<1>/n>+1;elset2=floor<a<1>/n>;endJ<t1,t2>=1,J<t2,t1>=1;W<t1,:>=0;W<t2,:>=0;W<:,t1>=0;W<:,t2>=0;endJ;程序二:匈牙利算法〔完美匹配算法,包括三个文件fc01,fc02,fc03〕function [e,s]=fc01<a,flag>if nargin==1flag=0;endb=a;if flag==0cmax=max<max<b>'>;b=cmax-b;endm=size<b>;for i =1:m<1>b<i,:>=b<i,:>-min<b<i,:>>;endfor j=1:m<2>b<:,j>=b<:,j>-min<b<:,j>>;endd=<b==0>;[e,total]=fc02<d>;while total~=m<1>b=fc03<b,e>;d=<b==0>;[e,total]=fc02<d>;endinx=sub2ind<size<a>,e<:,1>,e<:,2>>;e=[e,a<inx>];s=sum<a<inx>>;function [e,total]=fc02<d>total=0;m=size<d>;e=zeros<m<1>,2>;t=sum<sum<d>'>;nump=sum<d'>;while t~=0[s,inp]=sort<nump>;inq=find<s>;ep=inp<inq<1>>;inp=find<d<ep,:>>;numq=sum<d<:,inp>>;[s,inq]=sort<numq>;eq=inp<inq<1>>;total=total+1;e<total,:>=[ep,eq];inp=find<d<:,eq>>;nump<inp>=nump<inp>-1;nump<ep>=0;t=t-sum<d<ep,:>>-sum<d<:,eq>>+1;d<ep,:>=0*d<ep,:>;d<:,eq>=0*d<:,eq>;endfunction b=fc03<b,e>m=size<b>;t=1;p=ones<m<1>,1>;q=zeros<m<1>,1>;inp=find<e<:,1>~=0>;p<e<inp,1>>=0;while t~=0tp=sum<p+q>;inp=find<p==1>;n=size<inp>;for i=1:n<1>inq=find<b<inp<i>,:>==0>;q<inq>=1;endinp=find<q==1>;n=size<inp>;for i=1:n<1>if all<e<:,2>-inp<i>>==0inq=find<<e<:,2>-inp<i>>==0>;p<e<inq>>=1;endendtq=sum<p+q>;t=tq-tp;endinp=find<p==1>;inq=find<q==0>;cmin=min<min<b<inp,inq>>'>;inq=find<q==1>;b<inp,:>=b<inp,:>-cmin;b<:,inq>=b<:,inq>+cmin;第六讲:最大流最小费用问题程序一:2F算法<Ford-Fulkerson算法>,求最大流%C=[0 5 4 3 0 0 0 0;0 0 0 0 5 3 0 0;0 0 0 0 0 3 2 0;0 0 0 0 0 0 2 0; %0 0 0 0 0 0 0 4;0 0 0 0 0 0 0 3;0 0 0 0 0 0 0 5;0 0 0 0 0 0 0 0 ] function [f wf]=fulkersonf<C,f1>%C表示容量%f1表示当前流量,默认为0%f表示最大流±íʾ×î´óÁ÷%wf表示最大流的流量n=length<C>;if nargin==1;f=zeros<n,n>;elsef=f1;endNo=zeros<1,n>;d=zeros<1,n>;while <1>No<1>=n+1;d<1>=Inf;while <1>pd=1;for <i=1:n>if <No<i>>for <j=1:n>if <No<j>==0 & f<i,j><C<i,j>>No<j>=i;d<j>=C<i,j>-f<i,j>;pd=0;if <d<j>>d<i>>d<j>=d<i>;endelseif <No<j>==0 & f<j,i>>0>No<j>=-i;d<j>=f<j,i>;pd=0;if <d<j>>d<i>>d<j>=d<i>;endendendendendif <No<n>|pd>break;endendif <pd>break;enddvt=d<n>;t=n;while <1>if<No<t>>0>f<No<t>,t>=f<No<t>,t>+dvt;elseif <No<t><0>f<No<t>,t>=f<No<t>,t>-dvt;endif <No<t>==1>for <i=1:n>No<i>=0;d<i>=0;endbreakendt=No<t>;endendwf=0;for <j=1:n>wf=wf+f<1,j>;endf;wf;程序二:Busacker-Gowan算法<求最大流最小费用>%C=[0 15 16 0 0;0 0 0 13 14;0 11 0 17 0;0 0 0 0 8;0 0 0 0 0] %b=[0 4 1 0 0;0 0 0 6 1;0 2 0 3 0;0 0 0 0 2;0 0 0 0 0]%function [f wf zwf]=BGf<C,b>%C表示弧容量矩阵%b表示弧上单位流量的费用%f表示最大流最小费用矩阵%wf最大流量%zwf表示最小费用n=size<C,2>;wf=0;wf0=inf;f=zeros<n,n>;while <1>a=ones<n,n>*inf;for <i=1:n>a<i,i>=0;endfor <i=1:n>for <j=1:n>if<C<i,j>>0 & f<i,j>==0>a<i,j>=b<i,j>;elseif <C<i,j>>0 & f<i,j>==C<i,j>>a<j,i>=-b<i,j>;elseif <C<i,j>>0>a<i,j>=b<i,j>;a<j,i>=-b<i,j>;endendendfor <i=2:n>p<i>=inf;s<i>=i;endfor <k=1:n>pd=1;for <i=2:n>for <j=1:n>if <p<i>>p<j>+a<j,i>>p<i>=p<j>+a<j,i>;s<i>=j;pd=0; endendendif <pd>break;endendif <p<n>==inf>break;enddvt=inf;t=n;while <1>if <a<s<t>,t>>0>dvtt=C<s<t>,t>-f<s<t>,t>;elseif <a<s<t>,t><0>dvtt=f<t,s<t>>;endif <dvt>dvtt>dvt=dvtt;endif <s<t>==1>break;endt=s<t>;endpd=0;if <wf+dvt>=wf0>dvt=wf0-wf;pd=1;endt=n;while <1>if <a<s<t>,t>>0>f<s<t>,t>=f<s<t>,t>+dvt; elseif <a<s<t>,t><0>f<<t>,s<t>>=f<t,s<t>>-dvt; endif <s<t>==1>break;endt=s<t>;endif <pd>break;endwf=0;for <j=1:n>wf=wf+f<1,j>;endendzwf=0;for <i=1:n>for <j=1:n>zwf=zwf+b<i,j>*f<i,j>;endendf;。

matlab高等数学部分

matlab高等数学部分

matlab高等数学部分
MATLAB是一种强大的数学软件,它提供了许多高等数学领域的
功能和工具,包括微积分、线性代数、微分方程等。

在MATLAB中,
你可以使用各种内置函数和工具箱来解决高等数学中的各种问题。

以下是MATLAB在高等数学部分的一些应用和功能:
1.微积分,MATLAB提供了符号计算工具箱,可以进行符号计算,如求导、积分、极限等。

此外,MATLAB还提供了数值积分和微分方
程求解的函数,可以用来解决各种微积分相关的问题。

2.线性代数,MATLAB拥有强大的线性代数工具,可以进行矩阵
运算、线性方程组求解、特征值分解等操作。

你可以使用MATLAB来
进行矩阵运算、求解线性方程组、进行特征值分解等。

3.微分方程,MATLAB提供了ODE工具箱,可以用来求解各种常
微分方程和偏微分方程。

你可以使用MATLAB来进行数值求解、绘制
相图、分析稳定性等。

4.数值方法,MATLAB提供了各种数值方法的函数和工具箱,可
以用来解决高等数学中的各种数值计算问题,如数值积分、数值求
解微分方程、数值优化等。

总之,MATLAB在高等数学部分提供了丰富的功能和工具,可以
用来解决各种高等数学领域的问题。

无论是符号计算还是数值计算,MATLAB都能够帮助你进行高效、准确的数学建模和分析。

希望这些
信息能够帮助你更好地了解MATLAB在高等数学领域的应用。

MATLAB程序大全

MATLAB程序大全

1.全景图到穹景图这个程序我最初是用FreeImage写的,这两天改成了matlab,再不贴上来,我就要忘了.看到一篇文章有这样的变换,挺有意思的,就拿来试了一下,文章点此。

全景图到穹顶图变换,通俗的说就是将全景图首尾相接做成一个圆环的样子。

先看下面这张图:下面的矩形就是我们要处理的全景图,上面的矩形是变换后的图像.下面图像的底边对应穹顶图的内圆,顶边对应穹顶图的外圆,当然,反过来也是可以的。

程序流程:1。

定义穹顶图内圆和外圆的半径,变换后的像素就填充在这个内外半径的圆环中。

2。

遍历穹顶图,当所处理当前像素位于圆环内,则通过极坐标反变换去全景图中寻找相应位置的像素进行填充.3.遍历完图像就行了。

用的技巧和图像旋转或放大缩小都是类似的。

处理结果:原图:结果:matlab代码如下:clear all;close all;clc;img=imread(’pan.jpg’);imshow(img);[m,n]=size(img);r1=100; %内环半径r2=r1+m;%外环半径imgn=zeros(2*r2,2*r2);[re_m,re_n]=size(imgn);for y=1:re_mfor x=1:re_ndis_x=x-re_n/2;dis_y=y—re_m/2;l=sqrt(dis_x^2+dis_y^2);if l〈=r2 &&l>=r1theta=0;if y〉re_m/2theta=atan2(dis_y,dis_x);endif y<re_m/2theta=pi+atan2(—dis_y,—dis_x);endif y==re_m/2theta=atan2(dis_y,dis_x)+0。

0001;endxx=ceil(n*theta/(2*pi));yy=ceil(l-r1);if yy〉=1&&yy<=m && xx>=1&&xx<=nimgn(y,x)=img(yy,xx);endendendendfigure;imshow(imgn,[])最后要说的是,一般我们要是有一张全景图,通常会用cubic映射,将图像变换为立方体的六个面,然后通过图形学方法贴到立方体上,就能做出类似谷歌街景的样子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
function [P d]=pass2short(W,k1,k2,t1,t2) [p1 d1]=n2short(W,k1,t1); [p2 d2]=n2short(W,t1,t2); [p3 d3]=n2short(W,t2,k2); dt1=d1+d2+d3; [p4 d4]=n2short(W,k1,t2); [p5 d5]=n2short(W,t2,t1); [p6 d6]=n2short(W,t1,k2); dt2=d4+d5+d6; if dt1<dt2 d=dt1; P=[p1 p2(2:length(p2)) p3(2:length(p3))]; else d=dt1; p=[p4 p5(2:length(p5)) p6(2:length(p6))]; end P; d;
程序三:有向图关联矩阵和邻接矩阵互换算法
function W=mattransf(F,f) if f==0 m=sum(sum(F)); n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=-1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); if F(a(1),i)==1 W(a(1),a(2))=1; else W(a(2),a(1))=1; end end else fprint('Please imput the right value of f'); end W;
第二讲:最短路问题
程序一:Dijkstra算法(计算两点间的最短路)
function [l,z]=Dijkstra(W) n = size (W,1); for i = 1 :n l(i)=W(1,i); z(i)=0; end i=1; while i<=n for j =1 :n if l(i)>l(j)+W(j,i) l(i)=l(j)+W(j,i); z(i)=j-1; if j<i i=j-1; end end end i=i+1; end
第三讲:最小生成树
程序一:最小生成树的 Kruskal 算法
function [T c]=krusf(d,flag) if nargin==1 n=size(d,2); m=sum(sum(d~=0))/2; b=zeros(3,m); k=1; for i=1:n for j=(i+1):n if d(i,j)~=0 b(1,k)=i;b(2,k)=j; b(3,k)=d(i,j); k=k+1; end end end else b=d; end n=max(max(b(1:2,:))); m=size(b,2); [B,i]=sortrows(b',3); B=B'; c=0;T=[]; k=1;t=1:n; for i=1:m if t(B(1,i))~=t(B(2,i)) T(1:2,k)=B(1:2,i); c=c+B(3,i); k=k+1; tmin=min(t(B(1,i)),t(B(2,i))); tmax=max(t(B(1,i)),t(B(2,i))); for j=1:n if t(j)==tmax t(j)=tmin; end end end if k==n break; end
end
程序三:n2short.m 计算指定两点间的最短距离
function [P u]=n2short(W,k1,k2) n=length(W); U=W; m=1; while m<=n for i=1:n for j=1:n if U(i,j)>U(i,m)+U(m,j) U(i,j)=U(i,m)+U(m,j); end end end m=m+1; end u=U(k1,k2); P1=zeros(1,n); k=1; P1(k)=k2; V=ones(1,n)*inf; kk=k2; while kk~=k1 for i=1:n V(1,i)=U(k1,kk)-W(i,kk); if V(1,i)==U(k1,i) P1(k+1)=i; kk=i; k=k+1; end end end k=1; wrow=find(P1~=0); for j=length(wrow):-1:1 P(k)=P1(wrow(j)); k=k+1; end P;
超全的图论程序
程序一:可达矩阵算法
function P=dgraf(A) n=size(A,1); P=A; for i=2:n P=P+A^i; end P(P~=0)=1; P;
程序二:关联矩阵和邻接矩阵互换算法
function W=incandadf(F,f) if f==0 m=sum(sum(F))/2; n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); W(a(1),a(2))=1; W(a(2),a(1))=1; end else fprint('Please imput the right value of f'); end W;
另外两种程序
最小生成树程序 1(prim 算法构造最小生成树) a=[inf 50 60 inf inf inf inf;50 inf inf 65 40 inf inf;60 inf inf 52 inf inf 45;... inf 65 52 inf 50 30 42;inf 40 inf 50 inf 70 inf;inf inf inf 30 70 inf inf;... inf inf 45 42 inf inf inf];
end T; c;
程序二:最小生成树的 Prim 算法
function [T c]=Primf(a) l=length(a); a(a==0)=inf; k=1:l; listV(k)=0; listV(1)=1; e=1; while (e<l) min=inf; for i=1:l if listV(i)==1 for j=1:l if listV(j)==0 & min>a(i,j) min=a(i,j);b=a(i,j); s=i;d=j; end end end end listV(d)=1; distance(e)=b; source(e)=s; destination(e)=d; e=e+1; end T=[source;destination]; for g=1:e-1 c(g)=a(T(1,g),T(2,g)); end c;
程序四、n1short.m(计算某点到其它所有点的最短距离)
function[Pm D]=n1short(W,k) n=size(W,1);
D=zeros(1,n); for i=1:n [P d]=n2short(W,k,i); Pm{i}=P; D(i)=d; end
程序五:pass2short.m(计算经过某两点的最短距离)
第四讲:Euler 图和 Hamilton 图
程序一: Fleury 算法(在一个 Euler 图中找出 Euler 环游)
注:包括三个文件;fleuf1.m, edf.m, flecvexቤተ መጻሕፍቲ ባይዱ.m function [T c]=fleuf1(d)
%注:必须保证是Euler环游,否则输出T=0,c=0 n=length(d); b=d; b(b==inf)=0; b(b~=0)=1; m=0; a=sum(b); eds=sum(a)/2; ed=zeros(2,eds); vexs=zeros(1,eds+1); matr=b; for i=1:n if mod(a(i),2)==1 m=m+1; end end if m~=0 fprintf('there is not exit Euler path.\n') T=0;c=0; end if m==0 vet=1; flag=0; t1=find(matr(vet,:)==1); for ii=1:length(t1) ed(:,1)=[vet,t1(ii)]; vexs(1,1)=vet;vexs(1,2)=t1(ii); matr(vexs(1,2),vexs(1,1))=0; flagg=1;tem=1; while flagg [flagg ed]=edf(matr,eds,vexs,ed,tem); tem=tem+1; if ed(1,eds)~=0 & ed(2,eds)~=0 T=ed; T(2,eds)=1; c=0; for g=1:eds c=c+d(T(1,g),T(2,g)); end flagg=0; break; end end end
result=[];p=1;tb=2:length(a); while length(result)~=length(a)-1 temp=a(p,tb);temp=temp(:); d=min(temp); [jb,kb]=find(a(p,tb)==d); j=p(jb(1));k=tb(kb(1)); result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[]; end result 最小生成树程序 2(Kruskal 算法构造最小生成树) clc;clear; a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40; a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30; a(4,7)=42; a(5,6)=70; [i,j,b]=find(a); data=[i';j';b'];index=data(1:2,:); loop=max(size(a))-1; result=[]; while length(result)<loop temp=min(data(3,:)); flag=find(data(3,:)==temp); flag=flag(1); v1=data(1,flag);v2=data(2,flag); if index(1,flag)~=index(2,flag) result=[result,data(:,flag)]; end index(find(index==v2))=v1; data(:,flag)=[]; index(:,flag)=[]; end result
相关文档
最新文档