小学数学竞赛假设法(答案)
五年级奥数专题讲义-第21讲假设法解题通用版(含答案)
第 21 讲假设法解题基础卷1.小明有 2 元和 5 元的邮票共 100 枚,总价钱为 320 元,这两种邮票各有多少枚?5×100=500元,500-320=180元2元:180÷﹙5-2﹚=60枚5元:100-60=40枚2.松鼠妈妈采松子,晴天每天可以采 20 个,雨天每天只能采 12 个。
它一连几天采了 112 个松子,平均每天采 14 个。
问:这几天当中有几天有雨?采了:112÷14=8天假设全是晴天应该采 20×8=160个比实际少了 160-112=48个是由于把雨天也看成了晴天每天相差 20-12=8个雨天:48÷8=6天3.徒工小王雕刻红木玩具,平均每天雕刻玩具 48 件。
每雕刻出一件正品,可创造财富 12 元:但如果雕刻坏了一件就要损失 98 元。
他平均每天创造财富 466 元。
小王平均每天雕刻出的正品是多少件?可以这么列:(48×12-466)÷(12+98)=1(件)48-1=47(件)4.数学竞赛中抢答题共 10 道题,规定答对一题得 15 分,答错一题倒扣 10 分(不答按答错计算)。
晓敏回答了所有的问题,结果共得 100 分,问:答对和答错各几题?设答对x题,答错(10-x)题.15x-10(10-x)=10015x+10x-100=10025x=200x=8∴答错10-8=2题答:答对8题,答错2题.5.学校组织春游,一共用了 10 辆客车,已知大客车每辆坐 100 人,小客车每辆坐 60 人,大客车比小客车一共多载 520 人,问:大、小客车各几辆?假设大客车为x辆,小客车则为10-x ,又大客车多坐520人那么100*x-520= 60*(10-x)求得x=7所以7辆大客车,3辆小客车6.人民电影院有座位 1200 个,前排票每张 1.5 元,后排票每张 2.5 元。
已知后排票比前排票的总价多1080 元,该电影院有前排座位和后排座位各多少个?假设前排和后排的座位是相同的,那么后排票会比前排票总价多600元(1200除以2等于600, ,2.5减1.5等于1,1X600=600)而现在实际多了1080元,1080—600=480元因此相当于少算了480除以4等于120个后排的座位.(本来是后排就是2.5却被算成前排,对于后排来说就相差2.5加1.5等于4元)所以前排有600-120=480个座位,后排有600+120=720个座位.1200÷2=600(元) 1080—600=480(元)后排:480÷(2.5+1.5)+600=720(个)前排:1200-720=480(个)提高卷1.有 1 元硬币和 5 角硬币若干枚,共值 675 角。
高斯小学奥数含答案三年级(上)第18讲 假设法进阶
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在学习基础的鸡兔同笼时,我们已经对假设法有了基本的了解.首先复习下“假设法”四步曲:第一步:假设:换句话说就是猜一个较为合理的答案.第二步:比较:比较假设和实际情况的差别,找出不同点,为调整找到方向.第三步:调整:逐步使得猜测的答案符合题目的已知条件.第四步:验算:看是否与题设条件相一致.“假设法”是一种循序渐进去解决问题的方法.就像饭要一口一口吃,路要一步一步走,假设法先去满足一部分条件,然后再通过恰当的调整去逐步满足所有的条件.这一讲我们继续学习鸡兔同笼问题,使大家对假设法有更深入的理解.接下来,我们看一道比较简单的鸡兔同笼问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1 第十八讲 假设法进阶体育课上,三年一班的46名同学都在操场上玩球.每个篮球有6名同学玩,每个排球有8名同学玩,篮球和排球共有7个.问:玩排球的同学有多少人?分析:7个球里既有排球又有篮球,如果将这7个球都看成篮球,人数会有什么变化?练习1公园里的23条长凳上坐了50个人,每条长凳上可以坐2个大人或者3个小孩,那么这50个人中,有多少个小孩?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 有时题目中不会直接告诉“头和”,需要通过寻找不变量来求得“头和”.这也是解决鸡兔同笼很重要的方法之一.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题2集体劳动时,女生抬土,每2名女生用1根扁担抬1个筐;男生挑土,每1名男生用1根扁担挑2个筐.结果共用了27根扁担和44个筐,请问:女生和男生各有多少人?分析:扁担和筐之间有什么关系?一根扁担上可能挂着几个筐?练习2幼儿园里小朋友和老师共40人在一起喝汤,每个老师单独用1个碗喝,而2个小朋友合用1个碗喝,最后共用了27个碗,请问:有多少小朋友?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 有时题目中会隐藏着不变量,抓住不变量解决鸡兔问题也是很重要的方法之一.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题3天上一群九头鸟和地上一群九尾狐商量去吃唐僧,九头鸟有九头一尾,九尾狐有九尾一头.孙悟空将它们抓起来关进了笼子,猪八戒在笼子外得意地数出了134个头和166条尾巴.请同学们算一算:共有多少只九头鸟,多少只九尾狐?分析:不管是九头鸟还是九尾狐都有多少个头和尾巴?能不能把一共有多少只动物求出来?练习3男生手里拿2个红气球,5个蓝气球,女生手里拿3个红气球,4个蓝气球,一共有100个红气球和166个蓝气球,请问:男生多少人?女生多少人?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 前面3道例题比起上学期学的鸡兔同笼问题稍复杂些,涉及到的数量关系比较多,或是条件比较复杂,大家千万不要被题目“怪异”的外表吓到!只要对已知条件做适当的转化,把题目变为一个基本的鸡兔同笼问题,就可以轻松解决了.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题4某宿舍楼的大、小寝室一共有20间,已知大寝室每间住了6人,小寝室每间住了4人,并且大寝室的总人数比小寝室的总人数多30人.请问:大、小寝室各有多少间?分析:假设法是解决鸡兔同笼问题的重要方法,假设每个寝室都是大寝室的话,大寝室会比小寝室多住多少人?练习4春游时候同学们去划船,一共有船20条,每条大船可以坐12人,每条小船可以坐8人,结果大船上坐的人要比小船上的人多80个,那么一共有多少条大船?例题5新华书店一天内卖出了《哈利波特》和《魔戒》共40本,其中《哈利波特》每本30元,《魔戒》每本25元.经过统计,卖《哈利波特》的收入比《魔戒》多650元,这天卖出多少本《哈利波特》?分析:与例题4类似,本题应该怎么假设呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题4和例题5与前三道例题有很大不同,虽然也是用假设法来解决,但调整的时候每次变化的量与原先的鸡兔同笼问题有很大不同:原先把一只鸡换成一只兔子的时候,我们考虑的是鸡与兔的腿数和,于是变化了2;但现在考虑的是鸡与兔的腿数差,鸡腿数少了2,兔腿数反而增加了4,差距变化了6.请大家细心体会两者的差别.关于“腿数差”的鸡兔同笼问题:注意调整时“腿数差”的改变与之前“腿数和”的改变是不同的.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6男生手里拿2个红气球,13个蓝气球,女生手里拿1个红气球,12个蓝气球,一共有62个红气球,且蓝气球的范围在495-510之间,请问男生多少人?女生多少人?分析:每人拿着的红气球和蓝气球之间有怎样不变的数量关系?课堂内外九头鸟的来历九头鸟的最基本特征就是有九个头.但是关于这九个头,也有多种不同的说法.有些人说它本来有十个头.如唐段成式《酉阳杂俎》卷十六《羽》:鬼车鸟,相传此鸟昔有十首,……一首为犬所噬.宋周密《齐东野语》卷十九:鬼车,俗称九头鸟,……世传此鸟昔有十首,为犬噬其一,至今血滴人家为灾咎.……身圆如箕,十脰环簇,其九有头,其一独无而鲜血点滴,如世所传.明杨慎《杨升庵全集》卷八一《鬼车》条:《小说》:周公居东周,恶闻此鸟,命庭氏射之,血其一首,馀九首.又有些人说它原本只有九个头,其中一个头受伤滴血永不愈合.如前引《三国典略》:齐后园有九头鸟见,……九头皆鸣.又唐刘恂《岭表录异》卷中云:鬼车,……或云九首,曾为犬啮其一,常滴血.以上传说中,以《齐东野语》所记的那个“十脰(脖子)九头”的模样最为吓人,试想九个鸟头之外,还有一个鸟脖子在那里流滴鲜血,那多么可怕?原名“鬼车”,长有十个脖子、九个头,据说它的第十个头是被周公旦命令猎师射掉的.那个没有头的脖子不断地滴出血,古人宣称如果九头鸟飞过,要吹灭灯火、放狗把它赶走.有些传说宣称九头鸟的每一个头拥有一对翅膀,结果18只翅膀互相挤兑、导致全都派不上用场.历史上,周、楚的确是死对头.周昭王率军亲征,竟死于汉水之中,成为异乡之鬼.周人对楚人之恨可想而知.我们知道:一个民族的神,在它的敌对民族那里必然会被说成妖.象埃及大神沙特(sat),在希伯来人《圣经》中就变成了撒旦(satan).我国东夷部族之神蚩尤,在华夏族那里便成了能飞沙走石的妖怪,周人将楚人的九凤图腾说成妖怪,并编出天狗断其一首的故事,也符合这条比较神话学的基本规律,至于是周公本人确有此事,还是民间传说附会于周公身上,那倒是无关紧要的.作业1.大卡车一次能运7吨土,小卡车一次能运4吨土.现在有大、小卡车8辆,一次恰好能运土38吨.那么大卡车有多少辆?2.和尚们在庙里吃饭,3个小和尚公用1个大碗吃1碗米饭,1个大和尚独用1个大碗吃2碗米饭,结果一共用了32个碗,吃了54碗米饭,那么庙里有多少个小和尚?3.中国学生一顿饭能吃3个汉堡和2杯可乐,外国学生一顿饭能吃4个汉堡和1杯可乐,共吃了64个汉堡和26杯可乐,请问有多少个中国学生?4.鸡兔同笼共20只,兔子的腿数要比鸡的腿数多44条,请问一共有多少只鸡?5.男巫和女巫比赛魔法,男巫可以用1个魔法之尘变出3朵花,女巫可以用1个魔法之尘变出4朵花,最后他们一共用掉了14个魔法之尘,男巫变出的花比女巫变出的花多14朵,请问男巫用了多少个魔法之尘?第十八讲 假设法进阶1. 例题1答案:16人详解:假设7个球都是篮球,那么应该有同学:6742⨯=个,现在有46名同学,多了4个,每个排球比每个篮球玩的同学多862-=人,所以有排球:422÷=个,玩排球的的同学有:8216⨯=人. 2. 例题2答案:女生有20人;男生有17人详解:当女生用扁担时,1根扁担挑1筐,当男生用扁担时,1根扁担挑2筐,如果27根扁担都是女生用,那么只能挑27个筐,所以现在有()()44272117-÷-=根扁担男生在用,而剩下的10根扁担女生在用,所以共有男生17人,女生20人.3. 例题3答案:九头鸟有13只;九尾狐有17只详解:九头鸟和九尾狐的头脚加在一起全是10个,那么共有头尾134166300+=个,则共有3001030÷=只动物,假设30只动物全是九头的,则有309270⨯=个头,比较:270134136-=个头,将一个九头的变为一个单头的会少8个头,调整:()1369117÷-=次,每次调整出现1个单头的,那么有17只九尾狐,有301713-=只九头鸟.4. 例题4答案:大寝室有11间;小寝室有9间详解:如果20间都是大寝室,那么大寝室共住了206120⨯=人,小寝室住了0人,大寝室比小寝室多了120人,如果1间大寝室换成小寝室,那么大寝室住的人少了6人,小寝室住的人多了4人,人数差变小了6410+=人,所以会有:()12030109-÷=间小寝室,大寝室11间.5. 例题5答案:30本详解:如果卖的都是《哈利波特》,那么卖《哈》的收入比卖《魔》的收入多40301200⨯=元,每少卖1本《哈》、多卖1本《魔》,收入差会减少55元,所以卖了《魔》()12006505510-÷=本,卖了《哈》30本.6. 例题6答案:男生有32人;女生有18人详解:不管男生还是女生,每个人手中的蓝气球比红气球多11个,那么总的蓝气球比红气球多的必须是11的倍数,即62-W是11的倍数,且□的范围在495-510之间,则□=502才行,这样50262440-=才是11的倍数,那么总人数为4401140÷=人;假设这40人全是男生,那么会有红气球40280⨯=个,比较:806218-=个,将一个男生变为一个女生会少拿1个红气球,则有18118÷=个女生,那么男生有32人.7. 练习1答案:12个简答:假设23条长凳做的全是大人,则有23246⨯=个人,比较:50464-=人,将一条大人凳变为一条小孩凳会多1人,调整:()4324÷-=次,每次调整出现1条小孩凳,那么有4条小孩凳,有4312⨯=个小孩.8. 练习2简答:如果所有碗都是老师用的,那么会有27个人,则()()40272113-÷-=个小朋友碗,则小朋友有26人,大人有14人.9. 练习3答案:女生有24人;男生有14人简答:男生和女生手里的气球加在一起全是7个,且共有气球100166266+=个,则共有266738÷=人,假设38人全是男生,则有38276⨯=个红气球,比较:1007624-=个红气球,将一个男生的变为一个女生气球会多1个,调整:()243224÷-=次,每次调整出现1女生,那么有24个女生,有382414-=个男生.10. 练习4答案:12条简答:如果都是大船,那么大船比小船多坐240人,每把1条大船换成小船人数差会减少20,所以有小船:()24080208-÷=条,大船12条.11. 作业1答案:2辆简答:假设全是小卡车,可得大卡车有(3848)(74)2-⨯÷-=辆.12. 作业2答案:30个简答:每个大和尚吃的米饭比用的碗多一碗,共多了543222-=碗米饭,所以大和尚用了22个碗,小和尚用了322210-=个碗.可得小和尚有10330⨯=个.13. 作业3答案:8人简答:人一顿饭吃5样东西,共吃了266490+=样东西,说明共有90518÷=人,假设全是外国学生,则中国学生有()()18464438⨯-÷-=人.14. 作业4答案:6只简答:假设全是兔子,兔子腿比鸡腿多420080⨯-=条.每把一只兔子换成鸡,腿数之差减少426+=条,所以鸡有(8044)66-÷=只.15. 作业5答案:10个简答:假设魔法之尘全是男巫用的,那么男巫比女巫多变出143042⨯-=朵花,每个魔法之尘改由女巫使用,男巫与女巫变出花的数量差将减少347+=朵,所以女巫用的魔法之尘为(4214)74-÷=个,则男巫的为10个.。
高斯小学奥数含答案三年级(上)第09讲假设法解鸡兔同笼
第九讲假设法解鸡兔同笼________这一讲我们学习鸡兔同笼问题,主要介绍关于“头数和与腿数和”的典型鸡兔同笼问卜面请大得链A纺脾面A着里!入股到了旺!刃吹口狐了的y腿怎么少了』条AT难道有只狮子飞起来< 了?站起来吧,娜子们!例题1中国古代的数学著作《孙子算经》中记载了这样的一道题:上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有一些鸡和兔在同一个笼子里,从上面看有35个头,从下面看有94条腿.请求出笼中的鸡和兔各有几只?分析:假设如果笼中都是鸡,那么笼子里会有多少个头和多少条腿?幺、有一些鸡和兔在同一个笼子里,从上面看有21个头,从下面看有48条腿.请练习1求出笼中的鸡和兔各有几只?在解决鸡兔同笼问题时,往往会分为这样几个步骤:首先,假设笼中全都是鸡或者兔,根据头数(即动物的个数)求出假设时的腿数,再把假设时的腿数与实际情况相比较,找到差距和造成差距的原因(例如:把兔假设成鸡造成的腿数差距),经过调整找到正确结果.当然,鸡兔同笼问题不仅仅是指这些以“鸡”和“兔子”为内容的题,而说的是可以用这类思想方法去解决的问题.例题2有一些三脚猫和五脚猪在同一个笼子里,从上面看有12个头,从下面看有50练一练在下面各小题中,根据题意应该把几只鸡换成兔子?(1) 鸡、兔共6只, 共有16条腿.(2)(3)鸡、兔共6只, 共有20条腿.鸡、兔共6只, 共有22条腿.“今有雏兔同笼,☆XI ☆条腿.请求出笼中的三脚猫和五脚猪各有几只?JO分析:假设如果笼中都是三脚猫,那么笼子里会有多少个头和多少条腿?当然,鸡兔同笼问题不仅仅是指这些以动物为内容的题,而说的是可以用这类思想方 法去解决的应用题.例题3同学们去游乐场游玩,老师用 500元钱买了套票和普通票两种门票,普通票 10元一张,套票20元一张,共买了 35张.请问:两种门票各买了多少张?分析:本题该如何假设呢?王东东老师买包子,肉包子8角一个,菜包子6角一个,结果花了 8元买了 12 个包子.请问:他买了几个肉包子?例题4班主任黄老师和班上的50名同学举行中秋晚会.黄老师吃了 5块月饼,男生 每人吃了 4块,女生每人吃了 2块,最后一共吃了 135块月饼.请问班上有几 名男生,有几名女生?分析:之前的问题都只有两种不同的数量,而这道题出现了老师、男生、女生三类人,能不能变成只有 两类人的问题?孙悟空带着猴子们摘桃子,一共有 15只猴子(包括孙悟空自己),他自己摘了 练习4 —35个桃子,而每只大猴子摘了 14个桃子,每只小猴子只摘了 10个桃子,结果一共摘了 199个桃子.请问:大、小猴子各有几只?除了基本的鸡兔同笼问题之外,有些题目会把所谓的“头数”和“腿数”隐藏起来, 这时候就需要同学们把这些隐藏的条件挖掘出来才行.12个头,从下面看有28条腿•请求出笼中练习2有一些独脚鸡和三脚猫从上面看有的独脚鸡和三脚猫各有几只?练习3天采了 112个松籽,平均每天采14个.请问:这些天里有几天是雨天?分析:一共采了多少天呢?应该如何假设呢?例题6超市里,水果糖每千克卖20元,奶糖每千克卖25元,巧克力糖每千克卖30元.某天上午,这三种糖一共卖了 20千克,总收入是480元.已知奶糖和巧克力糖总共卖了 300元, 其中卖出奶糖多少千克?现在传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹 算乘除法则,卷中举例说明筹算分数算法和筹算开平方法.卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”.书中是这样叙述的:"今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句 话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?” 此题被义务教育课程标准实验教科书人 教版数学五年级上册选为第七单元教材.松鼠妈妈采松籽,晴天每天可以采 20个,雨天每天只能采12个.它一连几☆XI ☆具有重大意义的是卷下第 26题:“今有物不知其数,三三数之剩二,五五 数之剩三,七七数之剩二,问物几何?答曰:’二十三.《孙子算经》不但提供了答案,而且还给出了解法.南宋大数学家秦九韶则进一步开创了对一次 同余式理论的研究工作, 推广“物不知数”的问题.德国数学家高斯于公元 1801作业1. 有一些鸡和兔子被关在同一个笼子里,一共有10个头和26条腿,那么笼子中兔子和鸡各有几只?2. 马戏团里有独轮车和三轮车一共30辆,其中每辆独轮车有1个轮子,每辆三轮车有3个轮子.所有车辆一共有66个轮子,那么有多少辆三轮车?3. 军队行军,雨天每天能走60公里,晴天每天能走90公里,15天一共走了1200公里•那么这些天里有多少天下雨?4. 植树节那天,班主任带着全班35名同学去植树•班主任自己种了6棵树,每名男生种了4棵,每名女生种了2棵,师生一共种了112棵树•那么全班有多少名男生?5. 一辆卡车运粮食,每次能运10吨•晴天时每天能运8次,雨天时每天只能运3次•这辆卡车10 天共运了650吨粮食•在这10天中,晴天和雨天各有多少天?例题6答案:6千克详解:水果糖共卖了 480 300卖了了 11千克,共卖了 300元.假设全是巧克力糖,会卖 多330 300 30元,接下来进行调整,3030 256 千克.1.2. 3.4.5.第九讲 假设法解鸡兔同笼例题1答案:鸡有23只;兔有12只详解:假设全是鸡,35只鸡共有腿35 2 70条,比较一下发现比实际腿少 94 70 24 条,接下来进行调整,拿1只兔换1只鸡,腿会增加2条,共需要增加24 4 212只兔子,那么鸡有35 1223只.也可以在开始时假设全是兔,140 4635只兔共有腿 35 4 140条,比较一下发现比实际腿多94 46条,接下来进行调整,拿1只鸡换1只兔,腿会减少2条,共需要增加4 223只鸡, 例题答案:三脚猫有5只;详解:假设全是三脚猫, 条,接下来进行调整, 那么兔子有 35 23 12只.五脚猪有7只12只三脚猫共有腿12 3 36条,比较一下发现比实际腿少 50 36 14拿1只五脚猪换1只三脚猫,腿会增加2条,共需要增加14 5 37只五脚猪,那么三脚猫有 12 7 5只.例题3答案: 详解: 500 普通票有20张;套票有15张 假设老师买的全是普通票,35张普通票共35 10 350元,比较发现比实际花的钱少350 150元,接下来进行调整,增加1张套票,花的钱会增加 10,共需要增加15020 1015张,那么普通票有 35 1520张.例题答案:男生有15名; 详解:男生女生共吃了 发现比实际的少130 块,共需要增加30女生有35名135 1005 130块月饼.假设全是女生,共吃了 50 2 100块月饼,比较30块月饼,接下来进行调整,增加1名男生,吃的月饼会增加 215名男生,那么女生有 50 1535 名.例题5 答案:6天详解:松鼠妈妈一共采了 这些天全是晴天,共采了112个松籽,平均每天采14个,那么一共采了 8 20160个松籽,比较发现比实际的多 160112 14 8天.假设112 48个松籽,接F 来进行调整,1个晴天变雨天, 松籽的总数会减少 8个,雨天有4820 12 6 天.6. 180元,水果糖卖了 180 20 9千克.那么奶糖和巧克力糖共 11 30 330元,比较发现比实际的1千克巧克力糖换成奶糖,收入会减少5元,奶糖有7. 练习1答案:鸡有18只;兔有3只*简答:假设全是鸡:21 2 42条;比较:48 426条;调整:兔:6 4 23只,鸡:21 3 18简答:假设全是独脚鸡:12 1 12条;比较:28 12 16条;调整:三脚猫:16 3 1 8只,独脚鸡:12 8 4只.9. 练习3答案:4个简答:假设买的全是菜包子:6 12 72角;比较:80 72 8角;调整:肉包子:8 8 6 4个.10. 练习4答案:大猴子有6只;小猴子有8只简答:大、小猴子共摘了199 35 164个桃子,大小猴子共15 1 14个•假设全是小猴子:14 10 140个;比较:164 140 24个;调整:大猴子:24 14 10 6只,小猴子有14 6 8只.11. 作业1答案:兔子有3只;鸡有7只简答:假设全是鸡,可得兔子有(26 2 10) (4 2) 3只,于是鸡有10 3 7只.12. 作业2答案:18辆简答:假设全是独轮车,可得三轮车有(66 30 1) (3 1) 18辆.13. 作业3答案:5天简答:假设都是晴天,可得有(15 90 1200) (90 60) 5天下雨.14. 作业4答案:18名简答:同学们共植树112 6 106棵•假设全是女生,可得男生有(106 35 2) (4 2) 18名.15. 作业5答案:晴天有7天;雨天有3天简答:10天内共运了650 10 65次•假设全是雨天,可得晴天有(65 3 10) (8 3) 7天.那么雨天有10 7 3天.。
高斯小学奥数含答案三年级(上)第09讲假设法解鸡兔同笼
第九讲假设法解鸡兔同笼________这一讲我们学习鸡兔同笼问题,主要介绍关于“头数和与腿数和”的典型鸡兔同笼问卜面请大得链A纺脾面A着里!入股到了旺!刃吹口狐了的y腿怎么少了』条AT难道有只狮子飞起来< 了?站起来吧,娜子们!例题1中国古代的数学著作《孙子算经》中记载了这样的一道题:上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有一些鸡和兔在同一个笼子里,从上面看有35个头,从下面看有94条腿.请求出笼中的鸡和兔各有几只?分析:假设如果笼中都是鸡,那么笼子里会有多少个头和多少条腿?幺、有一些鸡和兔在同一个笼子里,从上面看有21个头,从下面看有48条腿.请练习1求出笼中的鸡和兔各有几只?在解决鸡兔同笼问题时,往往会分为这样几个步骤:首先,假设笼中全都是鸡或者兔,根据头数(即动物的个数)求出假设时的腿数,再把假设时的腿数与实际情况相比较,找到差距和造成差距的原因(例如:把兔假设成鸡造成的腿数差距),经过调整找到正确结果.当然,鸡兔同笼问题不仅仅是指这些以“鸡”和“兔子”为内容的题,而说的是可以用这类思想方法去解决的问题.例题2有一些三脚猫和五脚猪在同一个笼子里,从上面看有12个头,从下面看有50练一练在下面各小题中,根据题意应该把几只鸡换成兔子?(1) 鸡、兔共6只, 共有16条腿.(2)(3)鸡、兔共6只, 共有20条腿.鸡、兔共6只, 共有22条腿.“今有雏兔同笼,☆XI ☆条腿.请求出笼中的三脚猫和五脚猪各有几只?JO分析:假设如果笼中都是三脚猫,那么笼子里会有多少个头和多少条腿?当然,鸡兔同笼问题不仅仅是指这些以动物为内容的题,而说的是可以用这类思想方 法去解决的应用题.例题3同学们去游乐场游玩,老师用 500元钱买了套票和普通票两种门票,普通票 10元一张,套票20元一张,共买了 35张.请问:两种门票各买了多少张?分析:本题该如何假设呢?王东东老师买包子,肉包子8角一个,菜包子6角一个,结果花了 8元买了 12 个包子.请问:他买了几个肉包子?例题4班主任黄老师和班上的50名同学举行中秋晚会.黄老师吃了 5块月饼,男生 每人吃了 4块,女生每人吃了 2块,最后一共吃了 135块月饼.请问班上有几 名男生,有几名女生?分析:之前的问题都只有两种不同的数量,而这道题出现了老师、男生、女生三类人,能不能变成只有 两类人的问题?孙悟空带着猴子们摘桃子,一共有 15只猴子(包括孙悟空自己),他自己摘了 练习4 —35个桃子,而每只大猴子摘了 14个桃子,每只小猴子只摘了 10个桃子,结果一共摘了 199个桃子.请问:大、小猴子各有几只?除了基本的鸡兔同笼问题之外,有些题目会把所谓的“头数”和“腿数”隐藏起来, 这时候就需要同学们把这些隐藏的条件挖掘出来才行.12个头,从下面看有28条腿•请求出笼中练习2有一些独脚鸡和三脚猫从上面看有的独脚鸡和三脚猫各有几只?练习3天采了 112个松籽,平均每天采14个.请问:这些天里有几天是雨天?分析:一共采了多少天呢?应该如何假设呢?例题6超市里,水果糖每千克卖20元,奶糖每千克卖25元,巧克力糖每千克卖30元.某天上午,这三种糖一共卖了 20千克,总收入是480元.已知奶糖和巧克力糖总共卖了 300元, 其中卖出奶糖多少千克?现在传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹 算乘除法则,卷中举例说明筹算分数算法和筹算开平方法.卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”.书中是这样叙述的:"今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句 话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?” 此题被义务教育课程标准实验教科书人 教版数学五年级上册选为第七单元教材.松鼠妈妈采松籽,晴天每天可以采 20个,雨天每天只能采12个.它一连几☆XI ☆具有重大意义的是卷下第 26题:“今有物不知其数,三三数之剩二,五五 数之剩三,七七数之剩二,问物几何?答曰:’二十三.《孙子算经》不但提供了答案,而且还给出了解法.南宋大数学家秦九韶则进一步开创了对一次 同余式理论的研究工作, 推广“物不知数”的问题.德国数学家高斯于公元 1801作业1. 有一些鸡和兔子被关在同一个笼子里,一共有10个头和26条腿,那么笼子中兔子和鸡各有几只?2. 马戏团里有独轮车和三轮车一共30辆,其中每辆独轮车有1个轮子,每辆三轮车有3个轮子.所有车辆一共有66个轮子,那么有多少辆三轮车?3. 军队行军,雨天每天能走60公里,晴天每天能走90公里,15天一共走了1200公里•那么这些天里有多少天下雨?4. 植树节那天,班主任带着全班35名同学去植树•班主任自己种了6棵树,每名男生种了4棵,每名女生种了2棵,师生一共种了112棵树•那么全班有多少名男生?5. 一辆卡车运粮食,每次能运10吨•晴天时每天能运8次,雨天时每天只能运3次•这辆卡车10 天共运了650吨粮食•在这10天中,晴天和雨天各有多少天?例题6答案:6千克详解:水果糖共卖了 480 300卖了了 11千克,共卖了 300元.假设全是巧克力糖,会卖 多330 300 30元,接下来进行调整,3030 256 千克.1.2. 3.4.5.第九讲 假设法解鸡兔同笼例题1答案:鸡有23只;兔有12只详解:假设全是鸡,35只鸡共有腿35 2 70条,比较一下发现比实际腿少 94 70 24 条,接下来进行调整,拿1只兔换1只鸡,腿会增加2条,共需要增加24 4 212只兔子,那么鸡有35 1223只.也可以在开始时假设全是兔,140 4635只兔共有腿 35 4 140条,比较一下发现比实际腿多94 46条,接下来进行调整,拿1只鸡换1只兔,腿会减少2条,共需要增加4 223只鸡, 例题答案:三脚猫有5只;详解:假设全是三脚猫, 条,接下来进行调整, 那么兔子有 35 23 12只.五脚猪有7只12只三脚猫共有腿12 3 36条,比较一下发现比实际腿少 50 36 14拿1只五脚猪换1只三脚猫,腿会增加2条,共需要增加14 5 37只五脚猪,那么三脚猫有 12 7 5只.例题3答案: 详解: 500 普通票有20张;套票有15张 假设老师买的全是普通票,35张普通票共35 10 350元,比较发现比实际花的钱少350 150元,接下来进行调整,增加1张套票,花的钱会增加 10,共需要增加15020 1015张,那么普通票有 35 1520张.例题答案:男生有15名; 详解:男生女生共吃了 发现比实际的少130 块,共需要增加30女生有35名135 1005 130块月饼.假设全是女生,共吃了 50 2 100块月饼,比较30块月饼,接下来进行调整,增加1名男生,吃的月饼会增加 215名男生,那么女生有 50 1535 名.例题5 答案:6天详解:松鼠妈妈一共采了 这些天全是晴天,共采了112个松籽,平均每天采14个,那么一共采了 8 20160个松籽,比较发现比实际的多 160112 14 8天.假设112 48个松籽,接F 来进行调整,1个晴天变雨天, 松籽的总数会减少 8个,雨天有4820 12 6 天.6. 180元,水果糖卖了 180 20 9千克.那么奶糖和巧克力糖共 11 30 330元,比较发现比实际的1千克巧克力糖换成奶糖,收入会减少5元,奶糖有7. 练习1答案:鸡有18只;兔有3只*简答:假设全是鸡:21 2 42条;比较:48 426条;调整:兔:6 4 23只,鸡:21 3 18简答:假设全是独脚鸡:12 1 12条;比较:28 12 16条;调整:三脚猫:16 3 1 8只,独脚鸡:12 8 4只.9. 练习3答案:4个简答:假设买的全是菜包子:6 12 72角;比较:80 72 8角;调整:肉包子:8 8 6 4个.10. 练习4答案:大猴子有6只;小猴子有8只简答:大、小猴子共摘了199 35 164个桃子,大小猴子共15 1 14个•假设全是小猴子:14 10 140个;比较:164 140 24个;调整:大猴子:24 14 10 6只,小猴子有14 6 8只.11. 作业1答案:兔子有3只;鸡有7只简答:假设全是鸡,可得兔子有(26 2 10) (4 2) 3只,于是鸡有10 3 7只.12. 作业2答案:18辆简答:假设全是独轮车,可得三轮车有(66 30 1) (3 1) 18辆.13. 作业3答案:5天简答:假设都是晴天,可得有(15 90 1200) (90 60) 5天下雨.14. 作业4答案:18名简答:同学们共植树112 6 106棵•假设全是女生,可得男生有(106 35 2) (4 2) 18名.15. 作业5答案:晴天有7天;雨天有3天简答:10天内共运了650 10 65次•假设全是雨天,可得晴天有(65 3 10) (8 3) 7天.那么雨天有10 7 3天.。
假设法解应用题(含标准答案)
假设法解应用题(含答案)————————————————————————————————作者:————————————————————————————————日期:21、小红有1角、5角的硬币共35枚,一共是9元5角,问两种硬币各多少枚?2、某玻璃杯厂要为商店运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这一个不但不给运费,而且要赔偿4元。
结果运到目的地结算时,玻璃杯厂共得运费895元,求打碎了几个玻璃杯?3、小张、小李两进行射击比赛,约定每中一发记20分,脱靶一发则扣12分,两人各打了10发,共得208分,其中小张比小李多得64分,问小张、小李两人各中几发?4、一个化肥厂原计划14天完成一项任务,由于每天多生产15吨,结果9天就完成任务。
原计划每天生产化肥多少吨?5、买来2角邮票和5角邮票共100张,总值41元。
求2角邮票、5角邮票各多少张?6、甲、乙两车间共加工同样零件393个,包装时,把甲车间加工的16个零件并入乙车间的零件中,这时甲车间加工的零件仍比乙车间多5个,问两个车间各加工零件多少个?- 3 -- 4 -7、某校举行的数学竞赛共15道题,规定每做对一题得10分,每做错一题倒扣4分,小明在这次竞赛中共得66分,问他错、对了几道题?8、甲、乙、丙、丁四人上山摘桃子,已知他们共摘了80个桃子,甲比乙少摘8个,丙比甲少摘14个,丁和丙摘的一样多,问他们每人摘了多少个桃子?9、某厂工人,白班补助4元,夜班另加6元,某工人工作24天,共得补助费144元,问他上了几天夜班?【试题答案】1、分析与解:9元5角=95角假设这35枚都是1角的,那么总钱数就应该是()135⨯=35角,比实际95角少了()9535-=60角,这是因为把其中5角的硬币都当成1角了,有一枚5角硬币,少算了()51-=4角,少算的60角中有几个这样的4角,就有几个5角硬币。
953560-=(角) 605115÷-=()(枚) 351520-=(枚) 答:5角硬币有15枚,1角硬币有20枚。
小学奥数专题之假设法求解
奥数专题之假设法求解1、鸡兔共100只,鸡的脚比兔的脚一共少70只。
问鸡、兔各有多少只?2、一批果汁,如果用小桶装,要装45桶,如果用大桶装,只需要装36桶。
已知大桶每桶比小桶多装4千克。
这批果汁有多少千克?3、学校买来3个排球和2个足球,共花去111元。
每个足球比每个排球贵3元。
每个排球和每个足球各多少元?4、某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多多少人?5、鸡兔同笼,鸡比兔多25只,一共有脚158只,问鸡兔各多少只?6、学生买回来4个篮球5个排球一共用185元,一个篮球比一个排球贵8元,问篮球的单价是多少元?7、学校拿出7200元用于购买课桌椅。
已知每张桌子比每张椅子贵18元,5张桌子和8张椅子的价格相等。
请你算一算,如果用这些钱都买桌子能买多少张?8、甲、乙两数的和为76,甲数的3倍和乙数的5倍的和是312,甲乙两数分别是多少?9、甲茶叶每千克132元,乙茶叶每千克96元,共买这两种茶叶12千克。
甲茶叶所花的钱比乙茶叶所花钱少354元。
问每种茶叶各买多少千克?10、某次数学测验共20道题,做对一题得5分,做错一题倒扣1分,不做得0分。
小华得了76分。
问小华做对了几道题?11、甲、乙二人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分。
每人各射10发,共命中14发。
结算分数时,甲比乙多10分。
问甲、乙各中几发?12、买一些4分和8分的邮票,共花680分。
已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?13、鸡与兔共100只,鸡的脚数比兔的脚数少28。
问鸡与兔各几只?14、古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字。
问两种诗各多少首?15、学校组织参观,师生共720人参加。
一辆大巴比一辆中巴多载20人。
假设法解题一附答案
假设法解题 (一)假设是解决较复杂的应用题时常用的一种解题策略,一般针对题目中出现了2种或2种以上的未知量的应用题。
思考时可以先假设全部是一种未知量,然后按照题目的意思进行推算,并根据已知条件把数量上出现的矛盾加以适当的调整,最后找到答案。
数量上出现的矛盾加以适当的调整,最后找到答案。
例题1: 鸡兔同笼,共100个头,320只脚,鸡兔各有多少只?只脚,鸡兔各有多少只?例2 :甲每小时走12千米,乙每小时走8千米。
某日甲从A 地到B 地,乙同时从B 地到A 地,已知乙到A 地时,甲已先到B 地5小时。
求AB 两地距离?两地距离?例3:小王骑车从甲地到乙地往返一次。
去的时候速度是每小时20千米,回来的时候速度是每小时12千米,求他往返的平均速度。
千米,求他往返的平均速度。
例题1: 鸡兔同笼,共100个头,320只脚,鸡兔各有多少只?只脚,鸡兔各有多少只?思路导航:实际上,鸡兔脚的数量是不同的。
我们假设鸡兔脚的数量相同,一只鸡2只脚,只脚,一只兔也一只兔也2只脚。
只脚。
我们能够得出一个新数量,我们能够得出一个新数量,我们能够得出一个新数量,鸡兔共鸡兔共100只,只,有有100×2=200只脚。
问题出来了,实际上多出了320-200=120只脚,为什么?其实,这些多出来的脚是兔子的脚。
从假设看,一只兔子我们要补充给它2条腿,才符合实际。
实际上多出的脚,一共有多少个“2条腿”呢?有120÷2=60个。
这就是兔子的只数。
列算式这就是兔子的只数。
列算式兔子(320-100×2)÷2=(320-200)÷2=120÷2=60(只)(只)鸡100-60=40(只)(只)答:鸡有40只,兔有60只。
只。
例2 :甲每小时走12千米,乙每小时走8千米。
某日甲从A 地到B 地,乙同时从B 地到A 地,已知乙到A 地时,甲已先到B 地5小时。
求AB 两地距离?两地距离? 思路导航:假设甲到B 地后,继续往前走,那么当乙到达A 地时,甲又走了12×5=60(千米),这是在相同时间内,甲比乙多走的路,由于甲每小时比乙多走12-8=4(千米),因此,因此,看看60千米里面有几个4千米,千米,就得出乙行完全程的就得出乙行完全程的时间,再用乙的速度×时间,就可以得出AB 两地的距离。
(完整word版)六年级奥数假设法解题答案
第十周 假设法解题(一)例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的38 与徒弟加工零件个数的47的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了47 ,一个能完成(105×47 )=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的38 与完成加工零件的47 相差的个数。
小学三年级奥数第31讲 用假设法解题(含答案分析)
第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
二、精讲精练例1:鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?练习一1、鸡、兔共100只,共有脚280只。
鸡、兔各多少只?2、鸡、兔共50只,共有脚160只。
鸡、兔各几只?例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1、鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?练习三1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。
小华答对几题?2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
小学四年级奥数第30讲 用假设法解题后附答案
第30讲用假设法解题一、知识要点:假设法是一种常用的解题方法。
“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。
二、精讲精练:例1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?练习一1、鸡与兔共有30只,共有脚70只。
鸡与兔各有多少只?2、鸡与兔共有20只,共有脚50只。
鸡与兔各有多少只?3、鸡与兔共有100只,鸡脚比兔脚多80只。
鸡与兔各有多少只?例2:面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?练习二1、孙佳有2分、5分硬币共40枚,一共是1元7角。
两种硬币各有多少枚?2、50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人。
问大船和小船各几只?3、小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3分(不猜按错算)。
小明共得60分,他猜对了几道?例3:一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?练习三1、一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?2、有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次。
每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?3、一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?例4:某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元。
结果运到目的地后结算时,玻璃杯厂共得运费920元。
求打碎了几个玻璃杯?练习四1、搬运1000玻璃瓶,规定安全运到一只可得搬运费3角。
三年级知识点:用假设法解题练习30道附答案
三年级知识点:用假设法解题练习30道(附答案)假设法解题1、鸡兔共50只,兔的脚比鸡的脚少40只,鸡兔各有多少只?兔:40 + 4=10只,鸡:50-10=40只2、鸡兔共45只,鸡的脚比兔的脚多60只,鸡兔各有多少只?60 + 2=30 45-30=15 兔:15+(2+1)=5 只鸡:15-5=40 只3、共有鸡兔的脚48只,如果将鸡的只数与兔的只数互换一下则共有脚42只,鸡兔各有多少只?48 + 2=24兔(48-24) + 4=6互换鸡变6只兔:(48-6x2)+4=9只4、一辆自行车有2个轮子,一辆三轮车有3个轮子,车棚里放着自行车和三轮车共10辆,共25个轮子。
自行车(5)辆,三轮车(5)辆。
5、一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?4x36=144 吨,45 —36=9 辆,144 + 9=16 吨,16x45=720 吨。
6、一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?4x16=64 吨,48-16=32 辆,64 + 32=2 吨,2x48=96 0吨7、有甲、乙、丙三种练习簿,价钱分别为7角、3角和2 角,三种练习簿一共买了47本,付了21元2角。
买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?7乂47=329 (角),329-212=117 (角),因为把3角和2角的练习簿都看成了7角,117+(7*33**2)=9 (本)1x9=9 (本),2x9=18 (本), 47-18-9=20 (本)8、甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。
问两桶油原来各有多少千克?36+2=18千克,36+18=54千克,乙54 + 2=27千克,甲18 +27=45千克。
用假设法解应用题(含答案)-
用假设法解应用题(含答案)-假设法是一种常用的数学解题方法,能够帮助我们解决各种应用题。
本文将通过解析一个具体的应用题,详细介绍如何运用假设法来解决问题,并附上答案供参考。
假设法可以分为强假设和弱假设。
强假设是指我们在解题过程中假设一些特定条件,通过逻辑推理得出结论。
弱假设则是通过试错方法,尝试多个条件,通过排除法找到最优解。
假设这里有一个经典的应用题:小明在游泳池中游泳,他每秒钟能游过2米。
他打算从游泳池的一侧游到另一侧,但他发现池子的长度是8米,那么他用时多久能游完全程呢?我们可以使用假设法来解决这个问题。
首先,我们假设小明游泳的速度是一直保持不变的,不受任何因素的影响。
假设他游完全程需要的时间是t秒。
根据题目中的条件,小明游泳的速度是每秒2米,所以他在t秒内游过的路程应该是2t米。
因为他要从一侧游到另一侧,所以他需要游过的距离是游泳池的长度8米。
根据上述分析,我们得出以下方程:2t = 8。
解这个方程,我们可以得到t = 4秒。
所以,根据假设法得出的结论是,小明需要4秒钟才能完成从游泳池一侧到另一侧的全程。
通过这个简单的例子,我们可以看到假设法的应用。
当遇到数学问题时,我们可以根据问题的条件进行适当的假设,通过数学推理找到问题的解决方法。
除了强假设,我们还可以使用弱假设法来解决实际问题。
假设我们需要在一段距离内建设一座公园,我们需要选取一个合适的位置。
我们可以通过尝试不同的位置来找到最优解。
假设我们有一段长度为100米的道路,我们希望在这段道路上建设一座公园,同时最大化公园的面积。
我们可以先假设公园的长度为x 米,宽度为y米。
根据题目的要求,我们得知公园的长度加宽度不能超过100米,即x + y ≤ 100。
我们希望最大化公园的面积,所以我们需要找到一组合适的x和y使得公园的面积最大。
我们可以通过尝试不同的x和y的取值,来得到最优解。
通过计算不同组合下的公园面积,我们可以找到一个最大值。
通过这个例子,我们可以看到弱假设法的应用。
小学三年级奥数第31讲 用假设法解题附答案解析
第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
二、精讲精练例1:鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?练习一1、鸡、兔共100只,共有脚280只。
鸡、兔各多少只?2、鸡、兔共50只,共有脚160只。
鸡、兔各几只?例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1、鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?练习三1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。
小华答对几题?2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?练习四1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
六年级奥数假设法解题
第5讲假设法解题(一)【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学六年级奥数第10讲 假设法解题(一)(含答案分析)
第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少? 练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出91,则比黑白电视机多5台。
问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少?解析:本题主要考查一元一次方程的应用。
根据题意设甲数是,则乙数是,根据题意可得方程,解得。
练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。
四年级下册数学竞赛试题- 假设法解题北师大版(含答案)
假设法解题【名师解析】假设法是解应用题时常用的一种思维方法。
在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。
【例题精讲】【例1】有1角、5角硬币共28枚,价值108角,那么1角、5角硬币各有几枚?练习一:1、小明的妈妈买了鸡和兔共33只,脚共有96只。
问鸡、兔各有多少只?2、在一个停车场中,汽车、摩托车共有48辆,其中每辆汽车共有4个轮子,每辆摩托车有2个轮子,这些车共有152个轮子,那么停车场有汽车、摩托车各几辆?【例2】有一元、二元、五元的人民币50张,总面值116元。
已知一元的比二元的多2张,问三种面值的人民币各有几张?练习二:1、有3元、5元和7元的电影票400张,一共价值1920元。
其中7元的和5元的张数相等,三种价格的电影票各有多少张?2、有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。
问三种人民币各有多少张?【例3】有一堆黑白棋子,其中黑子个数是白子个数的2倍。
如果从这堆棋子中每次同时取出4个黑子和3个白子,那么取了多少次后,白子余1个,而黑子还剩18个?练习三:1、有一堆黑白棋子,其中黑子个数是白子个数的3倍。
如果从这堆棋子中每次同时取出6个黑子和3个白子,那么取了多少次后,白子余5个,而黑子还剩36个?2、操场上有一群同学。
男生人数是女生人数的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人。
操场上原有多少名同学?【例4】将200拆成两个自然数之和,其中一个是17的倍数,另一个是23的倍数,那么两个自然数的积是多少?练习四:1、将2007拆成两个自然数之和,其中一个是17的倍数,另一个是29的倍数,那么两个自然数的差是多少?(答案不唯一)2、将2010拆成两个自然数之和,其中一个是13的倍数,另一个是19的倍数,那么两个自然数的差是多少?【例5】某运输队为商店运送1998套玻璃茶具,按合同规定,每套茶具的运费为1.6元。
小学奥数:逻辑推理一假设法
小学奥数:逻辑推理一假设法TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】各种通过枚举或列表分析法求解的逻辑推理问题.枚举即为逐个探讨各种假设的正确性,进而得出确切的信息;列表即将同一对象的两种不同表达方式分别用行与列标出,通过横向与纵向的不断比较得出结论.1、在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球【分析与解】可以枚举,一一尝试.当从贴有“一黑一白”的盒子中取出一个球,如果是白球,那么这只盒子一定装有两个白球,于是贴有“两个黑球”的盒子一定装有一个白球和一个黑球,最后贴有“两个白球”的盒子一定装有两个黑球.对应的,如果从贴有“一黑一白”的盒子中取出一个球,如果是黑球,那么这只盒子一定装有两个黑球,剩下的两只盒子可以同上分析出.所以,只要从贴有“一黑一白”的盒子中取球即可.2.甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号【分析与解】如下表,先假设赵的前半句话正确,判断一次;再假设赵的后半句正确,再判断一次.即甲是1号,乙是3号,丙是4号,丁是2号.所以丙的号码是4号.3.某校数学竞赛,A,B,C,D,E,F,G,H这8位同学获得前8名.老师让他们猜一下谁是第一名.A说:“或者F是第一名,或者H是第一名.”B说:“我是第一名.”C说:“G是第一名.”D说:“B不是第一名.”E说:“A说得不对.”F 说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A 的意见.”老师指出:8个人中有3人猜对了.那么第一名是谁?【分析与解】我们抓住谁是第一名这点,一一尝试,如果A是第一名,那么D、E、F、G这4人都猜对了,不满足;如果B是第一名,那么B、E、F、G这4人都猜对了,不满足;如果D是第一名,那么D、E、F、G这4人都猜对了,不满足;如果E是第一名,那么D、E、F、G这4人都猜对了,不满足;如果F是第一名,那么A、D、G、H这4人都猜对了,不满足;如果G是第一名,那么C、D、E、F、G这5人都猜对了,不满足;如果H是第一名,那么A、D、G、H这4人都猜对了,不满足.所以,第一名是C.4.某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A 地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D 两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些【分析与解】假设参观团去了A地,由①知一定去了B地,由②知没去C地,由④知没去D地,由③知去了E地,由⑤知去了4、D两地,矛盾.所以开始的假设不正确,那么参观团没有去A地,由①知也没去B地,由②知去了C地,由④知去了D地,因为A、D两地没有都去,所以由⑤知没去E地.即参观团去了C、D两地.例5:地理课上老师挂出一张没有注明省份的中国地图。
小学三年级奥数第31讲 用假设法解题(含答案分析)
第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
二、精讲精练例1:鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?练习一1、鸡、兔共100只,共有脚280只。
鸡、兔各多少只?2、鸡、兔共50只,共有脚160只。
鸡、兔各几只?例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1、鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?练习三1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。
小华答对几题?2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设法(答案)
1.买15只板羽球应付多少元?
0.20×15=3.00(元)。
买15只乒乓球应付多少元?
0.16×15=2.40(元)。
一共应付多少元?
3.00+2.40=5.40(元)。
综合式:
0.20×15+0.16×15=5.40(元)
或(0.20+0.16)×15=5.40(元)
答:一共应付5.40元。
2.四分邮票有多少张?
(0.08×100-4.80)÷(0.08-0.04)
=3.20÷0.04
=80(张)。
八分邮票有多少张?
(4.80-0.04×100)÷(0.08-0.04)
=0.80÷0.04
=20(张)
答:四分邮票有80张,八分邮票有20张。
3.买来杯子有多少只?
(0.55×30-13.8)÷0.15
=2.7÷0.15
=18(只)。
买来碗有多少只?
30-18=12(只)
答:买来碗有12只,杯子有18只。
4.8小时比原计划多生产多少个?
15×8=120(个)。
比原计划提前几小时?
10-8=2(小时)。
按原计划2小时能生产多少个?
120-72=48(个)。
李师傅原来每小时生产多少个零件?
48÷2=24(个)。
综合式:
(15×8-72)÷(10-8)
=48÷2
=24(个)
答:李师傅原来每小时生产24个零件。
5.设这批机床的总台数为“1”。
甲每天完成总台数的几分之几?
乙每天完成总台数的几分之几?
甲车间比乙车间每天多做总台数的几分之几?
这批机床共有多少台?
综合式:
答:这批机床共有60台。
6.设梨树的棵数为“1”。
梨树有多少棵?
=120(棵)。
桃树有多少棵?
李树有多少棵?
答:梨树有120棵,桃树有150棵,李树有100棵。
7.教师有多少人?
100÷(6-1)=20(人)。
学生有多少人?
100-20=80(人)。
教师栽树多少棵?
3×20=60(棵)。
学生栽树多少棵?
1×(80÷2)=40(棵)
答:老师栽树60棵,学生栽树40棵。
=42(克)
答:这块合金原含银42克。
9.大和尚有多少人?
(3×100-100)÷(9-1)
=200÷8=25(人)
小和尚有多少人?
100-25=75(人)
答:大和尚有25人,小和尚有75人。
10.学生票有多少张?
(0.60×1750-665)÷(0.60-0.25)=385÷0.35
=1100(张)。
大人票有多少张?
1750-1100=650(张)
答:售出的大人票是650张,学生票是1100张。