Parton-Hadron duality in event generators

合集下载

The Role of CRISPR-Cas in Gene Editing and Beyond

The Role of CRISPR-Cas in Gene Editing and Beyond

The Role of CRISPR-Cas in Gene Editingand BeyondCRISPR-Cas technology has revolutionized the field of gene editing, offering unprecedented precision and efficiency in the manipulation of genetic material. This powerful tool has the potential to not only treat genetic disorders but also to transform various industries, including agriculture and biotechnology. However, the widespread application of CRISPR-Cas raises ethical, social, and regulatory concerns that must be carefully considered. In this essay, we will explore therole of CRISPR-Cas in gene editing and its implications beyond the realm of science. At its core, CRISPR-Cas is a bacterial immune system that has been repurposed for gene editing. The system consists of two main components: the Cas9 protein, which acts as molecular scissors, and a guide RNA, which directs the Cas9 to a specific target sequence in the genome. This precise targeting ability allows researchers to make changes to the DNA with unprecedented accuracy, whether it involves correcting a mutation, introducing a new gene, or disrupting aproblematic gene. The potential applications of this technology are vast, ranging from the development of novel therapeutics to the creation of genetically modified organisms with desirable traits. One of the most promising aspects of CRISPR-Casis its potential to treat genetic disorders. By correcting disease-causing mutations at the genetic level, CRISPR-Cas could offer hope to millions of people suffering from conditions that were previously considered untreatable. For example, researchers have already made significant progress in using CRISPR-Cas to treat genetic disorders such as sickle cell anemia and muscular dystrophy in preclinical studies. These advancements bring a sense of optimism and possibility toindividuals and families affected by genetic diseases, offering the potential for improved quality of life and longevity. Beyond the realm of human health, CRISPR-Cas also holds immense promise for agricultural and environmental applications. The ability to precisely modify the genomes of plants and animals could lead tothe development of hardier crops, livestock with improved disease resistance, and environmentally friendly bioengineered solutions. For instance, CRISPR-Cas couldbe used to create crops that are more resilient to climate change, therebyaddressing food security concerns in a rapidly changing world. Additionally, the technology could enable the conservation of endangered species by mitigating the genetic factors contributing to their decline. However, the widespread use of CRISPR-Cas also raises significant ethical and societal considerations. The potential for heritable changes to the human genome, often referred to as "germline editing," has sparked intense debate within the scientific community and beyond. The prospect of altering the genetic makeup of future generations carries profound implications, including concerns about unintended consequences, equity in access to genetic enhancements, and the potential for exacerbating existing social inequalities. These ethical dilemmas underscore the importance of thoughtful and inclusive dialogue surrounding the responsible use of CRISPR-Cas technology. Moreover, the regulatory landscape surrounding CRISPR-Cas remains complex and variable across different jurisdictions. While some countries have established clear guidelines for the use of gene editing technologies, others have yet to develop comprehensive regulatory frameworks. This lack of uniformity presents challenges for researchers and companies seeking to navigate the ethical and legal considerations associated with CRISPR-Cas. Harmonizing international regulations and fostering transparent communication will be essential in ensuring that the potential benefits of CRISPR-Cas are realized in a manner that prioritizes safety, equity, and societal well-being. In conclusion, CRISPR-Cas has emerged as a transformative tool with far-reaching implications for human health, agriculture, and the environment. Its precision and versatility offer unprecedented opportunities for addressing genetic disorders, enhancing food security, and advancing conservation efforts. However, the ethical, social, and regulatory considerations surrounding its use are equally significant and demand careful reflection and engagement. As we continue to harness the potential of CRISPR-Cas, it is imperative that we approach its applications with humility, empathy, and a commitment to the well-being of present and future generations.。

缩略词表英文缩写英文全称中文全称...

缩略词表英文缩写英文全称中文全称...

论文提交日期:二 0 一二年五月 论文答辩日期:二 0 一二年六月
学 位 类 型:医学科学学位
学位授予单位:广州医学院源自答辩委员会主席:评议人:
二 0 一二年五月
广州医学院
二 00 九级博士学位论文
脆性 X 相关疾病 FMR1 基因突变 筛查和致病性分析
Screening and Pathogenicity Analysis of the FMR1 Gene Mutation in Patients with Fragile X-associated Disorders
分类号:R742.1 U D C:616.831
密级:一般 编号:2009310126
广州医学院
博士学位论文
脆性 X 相关疾病 FMR1 基因突变 筛查和致病性分析
研究生:段现来 导 师:易咏红 教授
廖卫平 教授
申请学位级别:医学博士

级:二 00 九级
学 位 专 业:神经病学
研 究 方 向:神经遗传性疾病
此外,也有研究报道具有典型 FXS 临床表型的患者 FMR1 基因并未出现 CGG 重复序列的异常扩增,但是在 FMR1 基因外显子区域出现了错义突变等变异类 型,因此 FMR1 基因突变的致病机制值得深入研究。 【研究目的】
筛查FMR1基因外显子突变,探讨筛查到的错义突变在脆性X相关性疾病中 可能的致病机制。 【研究方法】
参照美国医学遗传学会推荐的 FXD 分子筛查指南(2005 年版),选取疑似 FXD 患者 68 例(包括家系),其中不明原因的精神发育迟滞病例 56 例、FXTAS 疑似患者 2 例、FXPOI 疑似患者 10 例。常规 PCR 对 FMR1 基因 5'-UTR 的(CGG)n 区段进行 PCR 扩增测序,未能扩出目的片段或女性可疑个体行 Southern Blo(t SB) 及 Capillary Electrophoresis(CE)测序扫描分析。PCR 扩增测序(CGG)n 正常的 疑似 FXS 或 FXTAS 患者,排除 FMR2 基因(CCG)n 异常扩增突变后,对 FMR1 基因外显子及 3'-UTR 区段采用常规 PCR 方法扩增测序筛查。

(武汉大学)分子生物学考研名词汇总

(武汉大学)分子生物学考研名词汇总

(武汉大学)分子生物学考研名词汇总●base flipping 碱基翻出●denaturation 变性DNA双链的氢键断裂,最后完全变成单链的过程●renaturation 复性热变性的DNA经缓慢冷却,从单链恢复成双链的过程●hybridization 杂交●hyperchromicity 增色效应●ribozyme 核酶一类具有催化活性的RNA分子,通过催化靶位点RNA链中磷酸二酯键的断裂,特异性地剪切底物RNA分子,从而阻断基因的表达●homolog 同源染色体●transposable element 转座因子●transposition 转座遗传信息从一个基因座转移至另一个基因座的现象成为基因转座,是由转座因子介导的遗传物质重排●kinetochore 动粒●telomerase 端粒酶●histone chaperone 组蛋白伴侣●proofreading 校正阅读●polymerase switching 聚合酶转换●replication folk 复制叉刚分开的模板链与双链DNA的连接区●leading strand 前导链在DNA复制过程中,与复制叉运动方向相同,以5’-3’方向连续合成的链被称为前导链●lagging strand 后随链在DNA复制过程中,与复制叉运动方向相反的,不连续延伸的DNA链被称为后随链●Okazaki fragment 冈崎片段●primase 引物酶依赖于DNA的RNA聚合酶,其功能是在DNA复制过程中合成RNA引物●primer 引物是指一段较短的单链RNA或DNA,它能与DNA的一条链配对提供游离的3’-OH末端以作为DNA聚合酶合成脱氧核苷酸链的起始点●DNA helicase DNA解旋酶●single-strand DNA binding protein, SSB 单链DNA结合蛋白●cooperative binding 协同结合●sliding DNA clamp DNA滑动夹●sliding clamp loader 滑动夹装载器●replisome 复制体●replicon 复制子单独复制的一个DNA单元称为一个复制子,一个复制子在一个细胞周期内仅复制一次●replicator 复制器●initiator protein 起始子蛋白●end replication problem 末端复制问题●homologous recombination 同源重组●strand invasion 链侵入●Holliday junction Holliday联结体●branch migration 分支移位●joint molecule 连接分子●synthesis-dependent strand annealing, SDSA 合成依赖性链退火●gene conversion 基因转变●conservative site-specific recombination, CSSR 保守性位点特异性重组●recombination site 重组位点●recombinase recognition sequence 重组酶识别序列●crossover region 交换区●serine recombinase 丝氨酸重组酶●tyrosine recombinase 酪氨酸重组酶●lysogenic state 溶原状态●lytic growth 裂解生长●transposon 转座子能够在没有序列相关性的情况下独立插入基因组新位点上的一段DNA序列,是存在与染色体DNA上可自主复制和位移的基本单位。

不稳定斑块动物模型英语

不稳定斑块动物模型英语

不稳定斑块动物模型英语The animal model for unstable plaque refers to a research model used to study the development andprogression of unstable atherosclerotic plaques in animals. Atherosclerotic plaques are deposits of fats, cholesterol, and other substances that build up in the walls of arteries, leading to atherosclerosis. Unstable plaques areparticularly dangerous as they are more prone to rupture, leading to blood clot formation and potentially causing a heart attack or stroke.In the context of the animal model, researchers may use various animal species such as mice, rabbits, or pigs to mimic the conditions of unstable plaques seen in humans. These models allow scientists to investigate the underlying mechanisms of plaque instability, test potentialtherapeutic interventions, and evaluate the efficacy and safety of new treatments.From a biological perspective, the animal modelprovides insights into the cellular and molecular processes involved in the development of unstable plaques. It allows researchers to study factors such as inflammation, lipid accumulation, smooth muscle cell proliferation, and therole of immune cells in plaque destabilization.Furthermore, the use of animal models also enables the assessment of imaging techniques for detecting and characterizing unstable plaques, as well as the evaluation of biomarkers that may indicate plaque vulnerability.Ethically, the use of animal models raises important considerations regarding the welfare of the animals involved in research. Scientists and regulatory bodies must ensure that animal studies are conducted with the highest standards of care and ethical treatment, and that alternative methods, such as in vitro models or computer simulations, are considered whenever possible.In summary, the animal model for unstable plaques in atherosclerosis research plays a crucial role in advancing our understanding of plaque development and rupture, aswell as in the development and testing of potential therapeutic strategies. It provides valuable insights into the pathophysiology of unstable plaques, the assessment of diagnostic tools, and the ethical considerations of animal research in this field.。

【高中生物】近代物理所揭示高LET射线诱导肿瘤细胞凋亡分子机理

【高中生物】近代物理所揭示高LET射线诱导肿瘤细胞凋亡分子机理

【高中生物】近代物理所揭示高LET射线诱导肿瘤细胞凋亡分子机理碳离子将恶性肿瘤细胞周期阻滞于g2/m期,抑制其生长,并明显诱导了肿瘤细胞凋亡。

中国科学院现代物理研究所放射医学系的研究人员利用兰州重离子研究所(HIRFL)提供的碳离子束,研究了高能线能量转移(let)射线诱导肿瘤细胞凋亡的分子机制,并获得了新发现。

细胞凋亡是电离辐射所致细胞死亡的主要形式。

p73是p53家族蛋白成员之一,在人类肿瘤细胞中很少发生缺失或突变,反而呈现出很高量的表达。

p73是抑制凋亡基因还是促进凋亡基因这个问题仍处于争论之中。

p73有两组蛋白异构体:tap73和np73。

tap73和δnp73被誉为肿瘤生死存亡的“开关”。

目前对于p73异构体在高let射线诱导的肿瘤细胞凋亡中的作用机制尚未见报道。

现代物理研究所放射医学系的研究人员发现,碳离子辐射诱导肿瘤细胞G2/M期阻滞,抑制其生长和增殖,并显著促进肿瘤细胞凋亡(如图1所示)。

其机制是电离辐射激活p73基因选择性剪接,启动p73介导的死亡受体和线粒体凋亡信号通路,进而促进肿瘤细胞凋亡的发生(如图2所示)。

此外,大蒜的天然活性产物二烯丙基二硫(DADS)不仅可以提高肿瘤细胞的放射敏感性,而且对正常细胞具有辐射防护作用。

进一步的实验证实,dads通过上调癌细胞TAp73/δNp73激活凋亡信号通路,促进癌细胞凋亡,与碳离子协同作用;对于正常细胞,TAp73下调/δNp73抑制其凋亡信号通路并促进DNA损伤的修复。

这些发现首次揭示了高LET辐射诱导肿瘤细胞凋亡的新分子机制,为提高重离子放射治疗的疗效和阐明其安全机制提供了新思路。

该研究得到国家自然科学基金委员会?中国科学院大科学装置联合基金重点项目和国家自然科学基金的资助。

研究结果发表在科学报告(,5:16020)和细胞周期(,DOI:10.1080/15384101..1104438)中。

遗传育种相关名词中英文对照

遗传育种相关名词中英文对照

遗传育种相关名词中英文对照中英文对照的分子育种相关名词 3"untranslated region (3"UTR) 3"非翻译区 5"untranslated region (5; UTR) 5"非翻译区 A chromosome A 染色体 AATAAA 多腺苷酸化信号aberration 崎变 abiogenesis 非生源说 accessory chromosome 副染色体 accessory nucleus 副核 accessory protein 辅助蛋白 accident variance 偶然变异 Ac-Ds system Ac-Ds 系统 acentric chromosome 无着丝粒染色体acentric fragment 无着丝粒片段 acentric ring 无着丝粒环 achromatin 非染色质 acquired character 获得性状acrocentric chromosome 近端着丝粒染色体 acrosyndesis 端部联会 activating transcription factor 转录激活因子activator 激活剂 activator element 激活单元 activator protein( AP)激活蛋白 activator-dissociation system Ac-Ds 激活解离系统 active chromatin 活性染色质 activesite 活性部位 adaptation 适应 adaptive peak 适应高峰adaptive surface 适应面 addition 附加物 addition haploid 附加单倍体 addition line 附加系 additiveeffect 加性效应 additive gene 加性基因 additive genetic variance 加性遗传方差additive recombination 插人重组additive resistance 累加抗性 adenosine 腺昔adenosine diphosphate (ADP )腺昔二鱗酸adenosine triphosphate( ATP)腺昔三憐酸adjacent segregation 相邻分离A- form DNA A 型 DNAakinetic chromosome 无着丝粒染色体akinetic fragment 无着丝粒片断alien addition monosomic 外源单体生物alien chromosome substitution 外源染色体代换alien species 外源种 alien-addition cell hybrid 异源附加细胞杂种 alkylating agent 焼化剂 allele 等位基因allele center 等位基因中心 allele linkage analysis 等位基因连锁分析 allele specific oligonucleotide(ASO)等位基因特异的寡核苷酸 allelic complement 等位(基因)互补 allelic diversity 等位(基因)多样化 allelic exclusion 等位基因排斥 allelic inactivation 等位(基因)失活 allelic interaction 等位(基因)相互作用allelic recombination 等位(基因)重组 allelicreplacement 等位(基因)置换 allelic series 等位(基因)系列 allelic variation 等位(基因)变异 allelism 等位性 allelotype 等位(基因)型 allodiploid 异源二倍体 allohaploid 异源单倍体 allopatric speciation 异域种alloploidy 异源倍性 allopolyhaploid 异源多倍单倍体allopolyploid 异源多倍体 allosyndesis 异源联会allotetraploid 异源四倍体 alloheteroploid 异源异倍体alternation of generation 世代交替 alternative transcription 可变转录 alternative transcription initiation 可变转录起始 Alu repetitive sequence, Alu family Alu 重复序列,Alu 家族ambiguous codon 多义密码子 ambisense genome 双义基因组 ambisense RNA 双义 RNA aminoacyl-tRNA binding site 氨酰基 tRNA 接合位点 aminoacyl-tRNA synthetase 氨酰基 tRNA 连接酶 amixis 无融合amorph 无效等位基因amphidiploid 双二倍体amphipolyploid 双多倍体amplicon 扩增子amplification 扩增 amplification primer 扩增引物analysis of variance 方差分析 anaphase (分裂)后期anaphase bridge (分裂)后期桥anchor cell 锚状细胞 androgamete 雄配子aneuhaploid 非整倍单倍体aneuploid 非整倍体 animal genetics 动物遗传学annealing 复性 antibody 抗体anticoding strand 反编码链anticodon 反密码子anticodon arm 反密码子臂anticodon loop 反密码子环 antiparallel 反向平行antirepressor 抗阻抑物antisense RNA 反义 RNAantisense strand 反义链 apogamogony 无融合结实apogamy 无配子生殖apomixis 无融合生殖 arm ratio (染色体)臂比artificial gene 人工基因 artificial selection 人工选择 asexual hybridization 无性杂交 asexual propagation 无性繁殖 asexual reproduction 无性生殖assortative mating 选型交配 asynapsis 不联会 asynaptic gene 不联会基因atavism 返祖 atelocentric chromosome 非端着丝粒染色体 attached X chromosome 并连 X 染色体 attachmentsite 附着位点 attenuation 衰减 attenuator 衰减子autarchic gene 自效基因auto-alloploid 同源异源体 autoallopolyploid 同源异源多倍体 autobivalent 同源二阶染色体 auto-diploid 同源二倍体;自体融合二倍体 autodiploidization 同源二倍化autoduplication 自体复制 autogenesis 自然发生autogenomatic 同源染色体组 autoheteroploidy 同源异倍性autonomous transposable element 自主转座单元autonomously replicating sequence(ARS)自主复制序列autoparthenogenesis 自发单性生殖 autopolyhaploid 同源多倍单倍体 autopolyploid 同源多倍体 autoradiogram 放射自显影图 autosyndetic pairing 同源配对 autotetraploid 同源四倍体 autozygote 同合子 auxotroph 营养缺陷体 B chromosome B 染色体 B1,first backcross generation 回交第一代 B2,second backcross generation 回交第二代back mutation 回复突变 backcross 回交backcross hybrid 回交杂种 backcross parent 回交亲本 backcross ratio 回交比率 background genotype 背景基因型 bacterial artification chromosome( BAC )细菌人工染色体Bacterial genetics 细菌遗传学 Bacteriophage 噬菌体balanced lethal 平衡致死 balanced lethal gene 平衡致死基因 balanced linkage 平衡连锁 balanced load 平衡负荷balanced polymorphism 平衡多态现象 balanced rearrangements 平衡重组balanced tertiary trisomic 平衡三级三体balanced translocation 平衡异位balancing selection 平衡选择band analysis 谱带分析 banding pattern (染色体)带型basal transcription apparatus 基础转录装置 base analog 碱基类似物base analogue 类減基base content 减基含量base exchange 碱基交换 base pairing mistake 碱基配对错误 base pairing rules 碱基配对法则 base substitution 减基置换 base transition 减基转换 base transversion 减基颠换 base-pair region 碱基配对区base-pair substitution 碱基配对替换 basic number of chromosome 染色体基数 behavioral genetics 行为遗传学behavioral isolation 行为隔离 bidirectionalreplication 双向复制 bimodal distribution 双峰分布binary fission 二分裂binding protein 结合蛋白binding site 结合部位 binucleate phase 双核期biochemical genetics 生化遗传学 biochemical mutant 生化突变体biochemical polymorphism 生化多态性 bioethics 生物伦理学 biogenesis 生源说 bioinformatics 生物信息学biological diversity 生物多样性 biometrical genetics 生物统计遗传学(简称生统遗传学) bisexual reproduction 两性生殖 bisexuality 两性现象 bivalent 二价体 blending inheritance 混合遗传 blot transfer apparatus 印迹转移装置 blotting membrane 印迹膜 bottle neck effect 瓶颈效应 branch migration 分支迁移 breed variety 品种breeding 育种,培育;繁殖,生育 breeding by crossing 杂交育种法 breeding by separation 分隔育种法 breeding coefficient 繁殖率 breeding habit 繁殖习性 breeding migration 生殖回游,繁殖回游 breeding period 生殖期breeding place 繁殖地 breeding population 繁殖种群breeding potential 繁殖能力,育种潜能 breeding range繁殖幅度 breeding season 繁殖季节 breeding size 繁殖个体数 breeding system 繁殖系统 breeding true 纯育breeding value 育种值 broad heritability 广义遗传率bulk selection 集团选择 C0,acentric 无着丝粒的Cl,monocentric 单着丝粒 C2, dicentric 双着丝粒的C3,tricentric 三着丝粒的 candidate gene 候选基因candidate-gene approach 候选基因法 Canpbenmodel 坎贝尔模型carytype 染色体组型,核型 catabolite activator protein 分解活化蛋白catabolite repression 分解代谢产物阻遏catastrophism 灾变说 cell clone 细胞克隆 cell cycle 细胞周期 cell determination 细胞决定 cell division 细胞分裂 cell division cycle gene(CDC gene) 细胞分裂周期基因 ceU division lag 细胞分裂延迟 cell fate 细胞命运cell fusion 细胞融合 cell genetics 细胞的遗传学 cell hybridization 细胞杂交 cell sorter 细胞分类器 cell strain 细胞株 cell-cell communication 细胞间通信center of variation 变异中心 centimorgan(cM) 厘摩central dogma 中心法则 central tendency 集中趋势centromere DNA 着丝粒 DNA centromere interference 着丝粒干扰centromere 着丝粒 centromeric exchange ( CME)着丝粒交换centromeric inactivation 着丝粒失活 centromeric sequence( CEN sequence)中心粒序列 character divergence 性状趋异chemical genetics 化学遗传学chemigenomics 化学基因组学chiasma centralization 交叉中化chiasma terminalization 交叉端化chimera 异源嵌合体Chi-square (x2) test 卡方检验 chondriogene 线粒体基因 chorionic villus sampling 绒毛膜取样 chromatid abemition 染色单体畸变chromatid break 染色单体断裂chromatid bridge 染色单体桥chromatid interchange 染色单体互换 chromatid interference 染色单体干涉 chromatid segregation 染色单体分离chromatid tetrad 四分染色单体chromatid translocation 染色单体异位chromatin agglutination 染色质凝聚chromosomal aberration 染色体崎变chromosomal assignment 染色体定位chromosomal banding 染色体显带chromosomal disorder 染色体病chromosomal elimination 染色体消减 chromosomal inheritance 染色体遗传chromosomal interference 染色体干扰chromosomal location 染色体定位chromosomal locus 染色体位点 chromosomal mutation 染色体突变chromosomal pattern 染色体型chromosomal polymorphism 染色体多态性 chromosomal rearrangement 染色体质量排chromosomal reproduction 染色体增殖chromosomal RNA 染色体 RNAchromosomal shift 染色体变迁,染色体移位chromosome aberration 染色体畸变 chromosome arm 染色体臂chromosome association 染色体联合chromosome banding pattern 染色体带型chromosome behavior 染色体动态chromosome blotting 染色体印迹chromosome breakage 染色体断裂chromosome bridge 染色体桥 chromosome coiling 染色体螺旋chromosome condensation 染色体浓缩chromosome constriction 染色体缢痕chromosome cycle 染色体周期chromosome damage 染色体损伤chromosome deletion 染色体缺失chromosome disjunction 染色体分离chromosome doubling 染色体加倍chromosome duplication 染色体复制chromosome elimination 染色体丢失 chromosome engineering 染色体工程chromosome evolution 染色体进化 chromosome exchange 染色体交换chromosome fusion 染色体融合 chromosome gap 染色体间隙chromosome hopping 染色体跳移chromosome interchange 染色体交换chromosome interference 染色体干涉chromosome jumping 染色体跳查chromosome knob 染色体结 chromosome loop 染色体环chromosome lose 染色体丢失chromosome map 染色体图 chromosome mapping 染色体作图chromosome matrix 染色体基质chromosome mutation 染色体突变 chromosome non-disjunction 染色体不分离 chromosome paring 染色体配对chromosome polymorphism 染色体多态性 chromosome puff 染色体疏松 chromosome rearrangement 染色体质量排chromosome reduplication 染色体再加倍 chromosome repeat 染色体质量叠 chromosome scaffold 染色体支架chromosome segregation 染色体分离 chromosome set 染色体组chromosome stickiness 染色体粘性chromosome theory of heredity 染色体遗传学说chromosome theory of inheritance 染色体遗传学说chromosome thread 染色体丝chromosome walking 染色体步查chromosome-mediated gene transfer 染色体中介基因转移 chromosomology 染色体学 CIB method CIB 法;性连锁致死突变出现频率检测法 circular DNA 环林 DNA cis conformation 顺式构象 cis dominance 顺式显性 cis-heterogenote 顺式杂基因子 cis-regulatory element 顺式调节兀件 cis-trans test 顺反测验cladogram 进化树 cloning vector 克隆载体 C-meiosis C 减数分裂C-metaphase C 中期C-mitosis C 有丝分裂 code degeneracy 密码简并coding capacity 编码容量 coding ratio 密码比 coding recognition site 密码识别位置 coding region 编码区coding sequence 编码序列 coding site 编码位置 coding strand 密码链 coding triplet 编码三联体 codominance 共显性 codon bias 密码子偏倚 codon type 密码子型coefficient of consanguinity 近亲系数 coefficient of genetic determination 遗传决定系数 coefficient of hybridity 杂种系数 coefficient of inbreeding 近交系数coefficient of migration 迁移系数 coefficient of relationship 亲缘系数 coefficient of variability 变异系数 coevolution 协同进化 coinducer 协诱导物 cold sensitive mutant 冷敏感突变体colineartiy 共线性combining ability 配合力comparative genomics 比较基因组学competence 感受态competent cell 感受态细胞competing groups 竞争类群 competition advantage 竞争优势competitive exclusion principle 竞争排斥原理complementary DNA (cDNA)互补 DNAcomplementary gene 互补基因 complementation test 互补测验complete linkage 完全连锁 complete selection 完全选择 complotype 补体单元型 composite transposon 复合转座子 conditional gene 条件基因 conditional lethal 条件致死conditional mutation 条件突变 consanguinity 近亲consensus sequence 共有序列 conservative transposition 保守转座 constitutive heterochromatin 组成型染色质continuous variation 连续变异convergent evolution 趋同进化cooperativity 协同性 coordinately controlled genes 协同控制基因 core promoter element 核心启动子 core sequence 核心序列 co-repressor 协阻抑物correlation coefficient 相关系数 cosegregation 共分离 cosuppression 共抑制cotranfection 共转染cotranscript 共转录物 cotranscriptional processing 共转录过程 cotransduction 共转导cotransformation 共转化 cotranslational secrection 共翻译分泌counterselection 反选择coupling phase 互引相 covalently closed circular DNA(cccDNA)共价闭合环状 DNAcovariation 相关变异criss-cross inheritance 交叉遗传 cross 杂交crossability 杂交性crossbred 杂种cross-campatibility 杂交亲和性 cioss-infertility 杂交不育性 crossing over 交换crossing-over map 交换图crossing-over value 交换值crossover products 交换产物 crossover rates 交换率crossover reducer 交换抑制因子crossover suppressor 交换抑制因子crossover unit 交换单位 crossover value 值crossover-type gamete 交换型配子C-value paradox C 值悖论 cybrid 胞质杂种 cyclin 细胞周期蛋白cytidme 胞苷 cytochimera 细胞嵌合体cytogenetics 细胞遗传学 cytohet 胞质杂合子cytologic 细胞学的cytological map 细胞学图cytoplasm 细胞质cytoplasmic genome 胞质基因组 cytoplasmic heredity 细胞质遗传 cytqplasmic incompatibility 细胞质不亲和性cytoplasmic inheritance 细胞质遗传cytoplasmic male sterility 细胞质雄性不育cytoplasmic mutation 细胞质突变 cytofdasmic segregation 细胞质分离cytoskeleton 细胞骨架Darwin 达尔文 Darwinian fitness 达尔文适合度Darwinism 达尔文学说 daughter cell 子细胞 daughter chromatid 子染色体 daughter chromosome 子染色体deformylase 去甲酰酶 degenerate code 简并密码degenerate primer 简并引物 degenerate sequence 简并序列 degenerated codon 简并密码子degeneration 退化 degree of dominance 显性度delayed inheritance 延迟遗传 deletant 缺失体deletion 缺失。

分子生物学考试名词解释

分子生物学考试名词解释

Central dogma(中心法则):DNA的遗传信息经RNA一旦进入蛋白质就不能再输出了。

Genome(基因组):指来自一个生物体的一整套遗传信息就是一个细胞或病毒携带的全部遗传信息或整套基因。

transcriptome(转录组):广义指某一生理条件下细胞内所有转录产物的集合,包括mRNA、tRNA、rRNA及非编码RNA侠义指所有mRNA 的集合proteome (蛋白质组):指有机体全部基因表达下的全部蛋白质及其存在方式,是一种细胞、组织或完整生物体在特定时期上有拥有的圈套蛋白质Metabolome(代谢组):指生物体内源性代谢物质的动态整体,为了有别于基因组、转录组和蛋白质组,代谢组目前只涉及相对分子质量约小于1000的小分子代谢物质。

Gene(基因):具有特定功能的、完整的不可分割的最小遗传单位也即顺反子。

Epigenetics(表观遗传学现象):DNA结构上完全相同的基因,由于处于不同染色体状态下具有不同的表达方式,进而表现出不同的表型。

Cistron(顺反子):是染色体上的一个区段,在一个顺反子内有若干交换单位Muton(突变子):顺反子中又若干个突变单位,最小的突变单位被称为突变子。

recon(交换子):意同突变子。

Z DNA(Z型DNA):DNA的一种二级结构,由两条核苷酸链反相平行左手螺旋形成。

Denaturation(变性):当天然DNA的溶液被加热或受到极端pH溶剂、尿素、酰胺等有机溶剂处理后,碱基之间的氢键会发生断裂,或氢键的生成关系会发生改变或碱基之间的堆积力会受到破换,链条核苷酸便逐渐彼此分离,形成无规则的线团,这一过程叫做变性。

Renaturation(复性):变性的生物大分子恢复成具有生物活性的天然构想的现象。

negative superhelix(负超螺旋):B-DNA分子被施加左旋外力,使双螺旋体局部趋向松弛,DNA分子会出现向右旋转的力的超螺旋结构。

C value paradox (C值矛盾):1生物体进化程度的高低与大C 值不成明显相关2.亲缘关系相近的生物的C指相差较大3.一种生物体内的大C值与小c值相差极大。

酶的定向进化

酶的定向进化
2024/6/12
4.基因家族重排技术
2024/6/12
2024/6/12
2.DNA重组技术(又称有性PCR)
• 是基因在分子水平上进行有性重组 (sexualcombination) 。该方法由stemmer 于1994年引入到蛋白质的定向进化过程中, 并成功地改造了数十种具有工业用途的蛋
• 白质。该方法通过改变单个基因或基因家 族(genefamily)原有的核苷酸序列,创造新基 因,并赋予表达产物以新功能。
筛选
正突变基因
进化酶
目前酶定向进化的主要策略
• 1.易错ห้องสมุดไป่ตู้CR 技术 • 是指利用TaqDNA聚合酶不具有3’-5’ 外切酶活力,或改变
正常PCR的反应条件的技术 在进行PCR 扩增目的基因时, 使碱基在一定程度上随机错配而引入多点突变,导致目的 基因发生随机突变。是一种非重组型构建突变的方法。2024/6/12
酶分子改造技术的分类 • 一是基于序列的合理化设计方案,如化学修饰,
定点突变等;二是利用基因的可操作性,通过模 拟自然界的演化进程进行非合理化设计方案。
酶分子的定向进化属于蛋白质的非合理设计 方式。
2024/6/12
酶分子定向进化的历史
• 1993年,美国科学家Arnold F H首先提出酶 分子的定向进化的概念,并用于天然酶的改 造或构建新的非天然酶.
• Exchangemutagenesis, RAISE) 。
该方法主要由三个步 骤组成,即基因破碎; 添加随机短序列; 重新组装。
2024/6/12
酶定向进化的基本过
酶基因
随机12
1994年Stemmer等人首次利用基因从 组技术获得了理想的突变体,开拓了 酶分子定向进化的方法。

分子生物学名词解释期末考试 考研必背

分子生物学名词解释期末考试 考研必背

α -Amanitin( 鹅膏覃碱):是来自毒蘑菇 Amanita phalloides 二环八肽,能抑制真核 RNA 聚AAbundance (mRNA 丰度):指每个细胞中 mRNA 分子的数目。

Abundant mRNA( 高丰度 mRNA) :由少量不同种类 mRNA 组成,每一种在细胞中出现大量 拷贝。

Acceptor splicing site (受体剪切位点):内含子右末端和相邻外显子左末端的边界。

Acentric fragment( 无着丝粒片段):(由打断产生的)染色体无着丝粒片段缺少中心粒,从 而在细胞分化中被丢失。

Active site( 活性位点):蛋白质上一个底物结合的有限区域。

Allele(等位基因):在染色体上占据给定位点基因的不同形式。

Allelic exclusion( 等位基因排斥):形容在特殊淋巴细胞中只有一个等位基因来表达编码 的免疫球蛋白质。

Allosteric control(别构调控):指蛋白质一个位点上的反应能够影响另一个位点活性的能 力。

Alu-equivalent family(Alu 相当序列基因):哺乳动物基因组上一组序列,它们与人类 Alu 家族相关。

Alu family (Alu 家族):人类基因组中一系列分散的相关序列,每个约 300bp 长。

每个成 员 其两端有 Alu 切割位点(名字的由来)。

合酶,特别是聚合酶 II 转录。

Amber codon ( 琥珀密码子):核苷酸三联体 UAG ,引起蛋白质合成终止的三个密码子之一。

Amber mutation ( 琥珀突变):指代表蛋白质中氨基酸密码子占据的位点上突变成琥珀密码 子的任何 DNA 改变。

Amber suppressors ( 琥珀抑制子):编码 tRNA 的基因突变使其反密码子被改变,从而能识 别 UAG 密码子和之前的密码子。

Aminoacyl-tRNA ( 氨酰-tRNA):是携带氨基酸的转运 RNA ,共价连接位在氨基酸的 NH2 基团和 tRNA 终止碱基的 3¢或者 2¢-OH 基团上。

Particle Codes(粒子的编码)

Particle Codes(粒子的编码)
next up previous contents Next: The Event Record Up: The Event Record Previous: The Event Record Contents
Particle Codes
The Particle Data Group particle code [PDG88,PDG92,PDG00] is used consistently throughout the program. Almost all known discrepancies between earlier versions of the PDG standard and the PYTHIA usage have now been resolved. The one known exception is the (very uncertain) classification of , with also affected as a consequence. There is also a possible point of confusion in the technicolor sector between and . The latter is retained for historical reasons, whereas the
37. Gauge bosons and other fundamental bosons, Table [*] . This group includes all the gauge and Higgs bosons of the Standard Model, as well as some of the bosons appearing in various extensions of it. They correspond to one extra U(1) and one extra SU(2) group, a further Higgs doublet, a graviton, a horizontal gauge boson (coupling between

真核细胞的基本结构

真核细胞的基本结构

核被膜在细胞周期中的裂解与重建
核孔与核孔复合体
核孔是核质间物质运输的通道
核孔复合体(nuclear pore complex, NPC)是镶嵌在内外 核膜融合处形成的核孔上, 由多种类型蛋白质构成的复杂 结构。直径大约120nm, 八角轮形, 孔径70nm 是物质交换的双向性亲水通道, 对大分子的双向运输有高 度选择性
细胞骨架对于维持细胞的 形态结构及内部结构的 注有意序细性胞骨, 架以结及构的在高细度胞动态运性 动、物质运输、能量转
一、微管 (microtubule, MT)
❖ 微管是由微管蛋白(tubulin )组成的中空管状结构, 直 径24-26nm。
❖ 呈网状和束状分布, 并能与 其他蛋白共同组装成纺锤体 、基粒、中心粒、纤毛、鞭 毛、轴突、神经管等结构。
聚合条件: ATP、适宜的温度、存在K+和 Mg2+。
多种微丝结合蛋白参与微丝的组装和去组装 细胞松弛素(cytochalasin)特异地抑制微丝的聚合 鬼笔环肽(phalloidine)稳定微丝结构
3.微丝结合蛋白( Actin-binding proteins )
4.微丝马达蛋白
肌球蛋白(myosin)超家族成员是依赖微丝的分子马达 已发现15种, 其马达结构域都含有一个微丝结合位点和应 该具有ATP酶活性的ATP结合位点 Myosin II为传统的肌球蛋白, 其它为非传统肌球蛋白
5.微丝与细胞迁移
非肌细胞的迁移通过微丝构 成的特化结构介导 粘着斑 片状伪足(lamellipodium) 丝状伪足(filopodium) 轴突生长锥(growth cone)
细胞在迁移信号刺 激下, 靠近信号源 的细胞前缘微丝组 装, 推动质膜伸出 形成伪足, 后端粘 着斑的微丝解聚, 导致细胞迁移

含氮原子双钼桥连化合物电子传递

含氮原子双钼桥连化合物电子传递

作者姓名:舒尧 指导教师姓名 及学位、职称:刘春元 (博士) 教授 学科、专业名称:物理化学 论文提交日期:2014 年 5 月 29 日 论文答辩日期:2014 年 6 月 3 日 答辩委员会主席:毛宗万 论文评阅人:杨洋溢、周立新
学位授予单位和日期:
独 创 性 声 明
本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。 除了文中特别加以标注和致谢的地方外, 论文中不包含其他人已经发表或撰写过的研究成 果,也不包含为获得
II
暨南大学硕士学位论文
by EPR and UV-Vis-NIR spectroscopies. Because the length of the conjugated bridge can affect the strength of electronic coupling, we insert one more phenylene group to increase the length of the conjugated bridging ligands, thus affording new Mo2-Mo2 compounds [Mo2(DAniF)3]2[μ1,4{C(O)NH}2C6H4C6H4] (6)and [Mo2(DAniF)3]2[μ1,4{C(S)NH}2C6H4C6H4] (7). Both compounds have been characterized by 1H NMR, electrochemistry and electronic spectroscopy. Key words :dimolybdenum compounds;asymmetry;electron transfer;electron coupling; Hush theory;CNS theory.

分子遗传学常用词汇

分子遗传学常用词汇

分子遗传学常用词汇词汇医学英语专业英语医学术语分子遗传学【字体:小大】腺嘌呤Adenine(A):一种碱基,和胸腺嘧啶T结合成碱基对。

等位基因(Alleles):同一个基因座位上的多种表现形式。

一般控制同一个性状,比如眼睛的颜色等。

氨基酸(Amino Acid):共有20种氨基酸组成了生物体中所有的蛋白质。

蛋白质的氨基酸序列和由遗传密码决定。

扩增(Amplification):对某种特定DNA片段拷贝数目增加的方法,有体内扩增和体外扩增两种。

(参见克隆和PCR技术)克隆矩阵(Arrayed Library):一些重要的重组体的克隆(以噬菌粒,YAC或者其他作载体),这些重组体放在试管中,排成一个二维矩阵。

这种克隆矩阵有很多应用,比如筛选特定的基因和片段,以及物理图谱绘制等。

从每种克隆得到的遗传连锁信息和物理图谱信息都输入到关系数据库中。

自显影技术(Autoradiography):使用X光片来显示使用放射性元素标记的DNA片段的位置,常用在使用凝胶将DNA片段按照片段大小分离之后,显示各个DNA片段的位置。

常染色体(Autosome):和性别决定无关的染色体。

人是双倍体动物,每个体细胞中都含有46条染色体,其中22对是常染色体,一对是性染色体(XX或者XY)。

噬菌体(Bacteriophage):参见phage碱基对(Base Pair,bp):两个碱基(A和T,或者C和G)之间靠氢键结合在一起,形成一个碱基对。

DNA的两条链就是靠碱基对之间的氢键连接在一起,形成双螺旋结构。

碱基序列(Base sequence):DNA分子中碱基的排列顺序。

碱基序列分析(Base Sequence Analysis):分析出DNA分子中碱基序列的方法(这种方法有时能够全自动化)cDNA:参见互补DNA厘摩(cM):一种度量重组概率的单位。

在生殖细胞形成的减数分裂过程中,常常会发生同源染色体之间的交叉现象,如果两个标记之间发生交叉的概率为1%,那么它们之间的距离就定义为1cM.对人类来说,1cM大致相当于1Mbp.着丝点(Centromere):在细胞的有丝分裂过程中,从细胞的两端发出纺锤丝,连接在染色体的着丝点上,将染色体拉向细胞的两级。

大鼠胚胎胰腺外分泌功能基因的表达调控

大鼠胚胎胰腺外分泌功能基因的表达调控

大鼠胚胎胰腺外分泌功能基因的表达调控仲燕;袁栎;袁庆新;刘超;柴伟栋;管晓翔;周锦勇;胡静静;滕丽萍;德伟【期刊名称】《世界华人消化杂志》【年(卷),期】2004(12)8【摘要】目的:探讨大鼠胚胎胰腺发育外分泌功能基因表达调控. 方法:采用高密度寡核苷酸芯片(Affemetrix芯片)对E15.5和E18.5胚胎胰腺进行基因转录水平分析,基于获得的基因表达信息对UCSC,TRANSFAC,NCBI等公共数据库进行检索. 结果:在差异或特异表达的1319个基因中与胰腺细胞分化相关的转录因子和信号分子表达均下调,但胰腺外分泌部特有的转录因子PTF1-P48,Mistl表达显著上调,多种消化性酶表达亦显著增强,然而与分泌功能相关的VAMP-2却无表达. 结论:从E15.5至E18.5大鼠胚胎胰腺外分泌部积极地完善其消化功能,但尚不能分泌多种消化性酶.【总页数】3页(P1988-1990)【关键词】大鼠胚胎;胰腺外分泌功能;基因转录水平;消化性;酶表达;转录因子;消化功能;表达调控;特异表达;NCBI【作者】仲燕;袁栎;袁庆新;刘超;柴伟栋;管晓翔;周锦勇;胡静静;滕丽萍;德伟【作者单位】南京医科大学生物化学教研室;南京医科大学第一附属医院内分泌科【正文语种】中文【中图分类】R329;R995【相关文献】1.胰炎灵颗粒对急性水肿型胰腺炎大鼠胰腺细胞内钙超载及调控基因P53、Bax表达的影响 [J], 孙敬昌;姚晓瑜;王峰;贾成友;邢爱红;李运伦2.大鼠胰腺胚胎发育功能相关基因表达谱的分析 [J], 程梅;吴玉龙;赵东梅;倪天辉;孙丽红3.急性坏死性胰腺炎大鼠胰腺外分泌细胞中hsp70基因的表达 [J], 张丽杰4.胰腺腺泡细胞凋亡在大鼠急性胰腺炎病程中的作用及凋亡调控基因的表达 [J], 尚东;关凤林;杨佩满;辛毅;陈海龙;刘忠5.斑马鱼nrf基因时空表达分析及其在调控胰外分泌酶原基因表达中的作用研究[J], 孙素杰;谢琳琳;于翠霞;王雨薇;钟雪萍;赵浩斌;陈新华;周青春因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:h ep-ph/928258v24Se p1992PRA-HEP-92/14February 1,2008Parton-hadron duality in event generators J.Ch ´y la and J.Rame ˇs Institute of Physics,Czechoslovak Academy of Sciences Prague,Czechoslovakia 1Abstract The validity of local parton-hadron duality within the framework of HER-WIG and JETSET event generators is investigated.We concentrate on e +e −annihilations in LEP 2energy range as these interactions provide theoretically the cleanest condition for the discussion of this concept.1IntroductionThe concept of parton hadron duality(PHD)and in particular its local version attempts to answer the question of the relation between the properties of experimentally observed hadrons and the assumed underlying parton dynamics.A few years ago the St.Petersburg school has gone beyond the original global version of the duality idea and has argued in favour of much closer relation between the single particle inclusive spectra of partons and hadrons[1].They have developed powerful theoretical tools to calculate within pertur-bative QCD partonic spectra in great detail,taking into account various subtle effects (for comprehesive review of this topic see,for instance,[2]).In converting their results into the statements concerning hadrons they,however,crucially rely on two important as-sumptions.First,the independent fragmenation model is used to hadronize the partonic configurations originating from perturbative cascading.Secondly,partonic cascades are allowed to evolve down to rather small(timelike)virtualities of the order of pion mass. As neither of these assumptions is incorporated in the currently widely used generators based on either the string or cluster fragmentation,we have undertaken a detailed in-vestigation of the PHD within two distinct event generators which successfully describe vast amount of experimental data from various collisions.For related work see also[3,4]. Both HERWIG(we use its5.3version)and JETSET(version7.2)use in their respective hadronization stages algorithms which do not allow a sensible,i.e.reasonably unambigu-ous interpretation of produced hadrons as being fragments of a particular single parton. In our study we have addressed two closely related questions:•to what extent do the hadronic distributions reflect those of the perturbatively produced partons•how much do the partonic spectra in HERWIG and JETSET differ from each other In the local PHD picture thefirst question has a very simple answer,at least if the fragmentation function advocated by the authors of[1]is employed:hadronic spectra are proportional to those of the partons with the proportionality factor of the order of unity. This is not the case in either HERWIG or JETSET generator.These generators are both based on the partonic cascade as described by perturbative QCD so that the starting point is in principle the same as in[1].The partonic cascades in HERWIG and JETSET are,however,neither identical nor fully equivalent to the analytic calculations of[1]so that differences do appear already on the parton level.Moreover,the influence of the hadronization stage turns out to be very important in its effects on the hadronic spectra. What we basicaly observe is that quite different configurations of partons yield much the same hadronic spectra.Indeed while HERWIG and JETSET are quite different as far as partonic spectra are concerned they yield remarkably similar results for hadrons.This indicates that the interplay between the perturbative and hadronization stages in hard scattering processes is very important,nontrivial and model dependent.Because of this ambiguity in the relation between the partonic and hadronic characteristics the concept of local PHD looses much of its intuitive appeal and predictive power.In order to investigate these questions in relatively”clean”conditions,we have con-centrated on the e+e−annihilations into hadrons at200GeV center of mass energy,i.e. on LEP2energy range.There the perturbative cascades,though model dependent,are already rather well developed and so the whole perturbation theory machinery seems to be well justified and under control.Any comparison between several sets of results depends on the quantities selected for that purpose.We have chosen the following ones:•multiplicity distribution•single particle inclusive distributions in the standard variables z and p2t wherez=ln 1√q2.evolution of parton showers on all partonic legs,here qq pairs4.decay of these clusters into hadronsIn JETSET thefirst two steps are in principle similar although the details of shower evolution differ from HERWIG.The main difference between these generators concerns, however,the hadronization stage.Instead of the formation of colorless clusters JETSET spans relativistic string on the products of partonic cascade which then breaks into ob-servable hadrons.There are many parameters which determine the details of each of these steps,but the following ones are essential forfixing the relative importance and interplay between the parton shower and hadronization stages in HERWIG:•QCDLAM:the usual QCDΛ-parameter•V QCUT,V GCUT:parameters setting,when added to parton masses,the minimal parton virtuality in timelike cascades.The default options are such that for both quarks and gluons the minimal timelike virtuality is about0.9GeV.•CLMAX:the decisive parameter for the hadronization stage of HERWIG.It forces the colorless clusters,produced in the perturbative cascade,with mass squared above CLMAX2+(m q+m¯q)2to split,before hadronization,into lower mass ones.The default value is3.5GeV.Although in typical events the action of CLMAX parameter is limitted it plays quite an essential role in defining the relative role of partonic cascades and hadronization stages.As will be shown below it is particularly important in low parton number events.In JETSET analogous role is played by the parameters:•PARJ(81):analogue of QCDLAM•PARJ(82):invariant mass cutoffon parton virtualities,similar in effect to V GCUT, V QCUT in HERWIG.•there is no direct analogue of CLMAX parameter.In JETSET the user can choose betweeen the leading log parton showers and exactfixed order matrix element approaches.In HERWIG parton showers cannot be straightfor-wardly switched offand they always accompany the hard scattering subprocess,be it e+e−→q q g.Nevertheless to study the relation between partons and hadrons in theoretically cleanest conditions we have concentrated in both generators on the e+e−→q3Discussion of the resultsThe basic results of extensive simulations with HERWIG and JETSET at LEP2energy are presented in Fig.1-7.We stress that neither generator has been tuned especially for our purposes and we have taken the currently”best”sets of their respective parameters.3.1Multiplicity distributionsFig.1displays the comparison between the partonic as well as hadronic multiplicity dis-tributions in HERWIG and JETSET.Already this simplest quantity signals the basic message:while for the hadrons these models predict results which are rather close to each other(typically within10-15%)they differ vastly on the level of partons!Despite the large difference in the average number of perturbatively produced partons(9in HERWIG vs.15.5in JETSET)the hadronic multiplicity distributions are much closer in shape as well in average values:42.5in HERWIG vs.48for JETSET.This large difference between the average parton and hadron multiplicities is in sharp contrast with the results of[1], where the number of partons is much closer to the number of hadrons.3.2Single particle inclusive spectraThe same message can be read offFig.2,where the single particle spectra in z and p2t,from both HERWIG and JETSET,are compared on partonic as well as hadronic levels.The pronounced difference in z distributions of partons in the region close to zero comes from the region of phase space where one of the partons carries nearly all available momentum. The most important difference between HERWIG and JETSET partonic distributions is,however,observed for large z and small p2t,i.e.for soft partons which dominate the total multiplicity.We see that HERWIG z-distribution is significantly lower than that of JETSET down to z=2and practically vanishes for z>5.Despite these dramatic differences on the level of partons,the corresponding hadronic distributions are quite similar even in the large z region.For p2t distributions of partons the dramatic difference in the region close to p2t=0is a direct manifestation of the cut on minimal virtuality of partons as set by the parameters V QCUT,V GCUT.The position of the maximum in HERWIG spectrum is in fact proportional to them.In JETSET there does not seem to be an analogous effect.This difference between HERWIG and JETSET is,however, again not reflected in the corresponding hadronic p2t distributions,which look practically indistinguishable.The slightly higher hadronic multiplicity in JETSET is then reflected in somewhat higher values of hadronic z spectra in the region around z=4.In Fig.3we compare the partonic and hadronic spectra obtained with both generators by plotting(as solid lines)the ratiar(w)= 1dw partons 1dw hadrons ;w=z,p2t(2) of appropriately normalized partonic over hadronic distributions,which should be approx-imately constant if local PHD holds.Clearly rather large deviations from constancy inmost of the phase space and for both z and p2t are observed,the pattern of these violations being,except for z close to the upper limit,similar in HERWIG as in JETSET.In both generators a large part of this effect can be traced back to the fact that their partonic showers are stopped at much higher virtualities than in[1].This is demonstrated by dot-ted lines in Fig.3which correspond,for HERWIG as well as JETSET,to lower virtuality cut-offQ0=0.2GeV.For technical reasons this low virtuality cut-offrequires,in both generators,simultaneous lowering of the QCDΛ-parameter.In our case we have taken it to be0.04GeV.The most dramatic effect occurs for the ratio r(z)which for Q0=1.0GeV was rapidly decreasing function of z in the whole phase space,while now this ratio is nearly constant in the large interval z∈(1,6).Similar effect is observed for p2t spectra,in particular on low p2t region.There is thus no doubt that local PHD is much better reproduced in both HERWIG and JETSET for small virtuality cut-offQ0=0.2GeV.However,neither HERWIG nor JETSET can accommodate such low values of Q0and still describe the available experimental data as accurately as with the Q0in the region of1GeV.In the regions of x p close to0and1the deviations from constancy are very large even for Q0=0.2GeV but this is not surprising as these are also the regions where the analytic calculation of[1]contain subtle effects not included in the generators.An interesting difference between HERWIG and JETSET z distributions is observed in large z region, i.e.for x p→0,which is populated by soft partons,and where the ratia behave quite oppositely.All this suggests that the validity of local PHD relies heavily on evolving the partonic showers to rather small scales comparable to the pion mass.In order to understand the differences between HERWIG and JETSET in more detail we have furthermore subdivided all events in three classes according to the number of perturbatively produced partons.•small number of partons:2-6•moderate number of partons:7-11•large number of partons:more than11In Fig.4the comparison between partonic z and p2t spectra from HERWIG and JETSET is done for each of the classes separately.We see that the differences increase with decreasing number of underlying partons.For all three classes of events the corresponding hadronic spectra(not displayed)are,however,again much closer as in the case of the full samples.We now come to the interplay between the parton shower and cluster decay stages in HERWIG event generator.In Fig.5we plot separately for each of the three classes of events the z and p2t distributions for partons and hadrons.In the case of hadronic distributions we moreover show two sets of curves corresponding to two different values of the CLMAX parameter.Beside the default value CLMAX=3.5GeV we plot also the results corresponding to CLMAX=50GeV.This large value effectively means that we do not force large mass clusters to split into smaller ones before hadronization and thus come close to the original formulation of HERWIG.We conclude that1.Small value of CLMAX is more effective in events with small number of partons.For them perturbative branching itself leads on average to small number of heavy clusters.Once small CLMAX is taken,all these heavy clusters arefirst split into smaller ones and only then allowed to hadronize.After this step the cluster mass distributions are essentially the same irrespective of the original parton number.The only trace of the originally different parton numbers then remains in the smaller cluster multiplicity.2.The differences between the shapes as well as magnitudes of parton and hadronspectra are large in the whole phase space and depend sensitively on the number of partons.3.The differences between the two hadronic spectra,corresponding to CLMAX=3.5GeV and CLMAX=50GeV show that for events with small parton numbers the initial part of the hadronization stage i.e.the cluster splitting is crucially important.This shows why and how the hadronization stage may significantly influence the relation between the parton and hadron spectra.Taken together the message contained in the preceding observations is simple and clear:While on the level of hadrons different models give very similar results,these results can originate from very different partonic distributions.Moreover,the effects and importance of the hadronization stage are nontrivial and do depend on particular partonic configuration.All this demonstrates that the concept of local PHD does not hold within either HERWIG or JETSET event generators and is thus more ambiguous than as claimed in[1].3.3Intermittency analysisThe intermittency phenomenon,as quantified by the factorial moments in small phase space regions[5,6]is commonly regarded as a convincing evidence for the underlying partonic cascading process with the selfsimilarity property[7].As such it should also provide the evidence for the local PHD.To check this assumption we have carried out several simple tests using both HERWIG and JETSET event generators.The question we ask ourselves is similar as before:to what extent is the observed intermittency behaviour on the level of hadrons a direct consequence of the underlying partonic cascade?Tofind the answer we have calculated the conventional factorial moments of the i−th rank in two dimensions(rapidity versus azimuthal angle)F i(y,φ)=1( n /n bins)i(3)where n is the average number of particles in the full∆y−∆φregion accepted(we have taken full azimuthal coverage and y∈(−2,2))and n bins denotes the number of bins in this two-dimensional space,given as4b with n div=2b defining the number of divisions in each of the two directions.We have constructed these moments for partons as well as hadrons as functions of b or n div.Then we have compared for i=2,3,4,5•the results from HERWIG and JETSET(Fig.6a)•the results for partons with those of hadrons(Fig.6b)•the results corresponding to events with different number of partons(Fig.7)On the basis of the plots displayed in Figs.6,7we draw the following conclusions,which point in the same direction as those of the preceding paragraphs:1.Despite the large differences on the partonic level HERWIG and JETSET give verysimilar results for the hadronic factorial moments(3).This conclusion holds well for the full sample of events as well as for all three classes of events defined above (corresponding plots similar to Fig.6a are omitted),i.e.is independent of the number of underlying partons.2.For HERWIG wefind a remarkable agreement between the partonic and hadronicfactorial moments in the region where the former show the appropriate rising be-haviour.It is clear that this region can not be large as the number of partons is much smaller than that of the hadrons.In order to see the effect on the parton level clearly we have therefore chosenfiner steps in the division of∆y-∆φinterval for partonic moments.We have,however,seen that much the same behaviour of hadronic factorial moments results even for the case where there are so little par-tons that their own factorial moments vanish.So again we see that the property of hadrons usually considered as a direct consequence of the presence of partonic cascade can equally well result from the effects of the hadronization stage.In other words there is some kind of duality but of different sort that originally proposed in[1],namely the duality between the partonic and hadronization stages within thewhole event generation.3.Except for F2the factorial moments in HERWIG as well as JETSET are practicallyindependent of the number of partons in the event.In Fig.7we present results from JETSET,but the same picture is obtained for HERWIG as well.For the purpose of this comparison we have somewhat changed the definition of the three classes of events(2-10,11-18,19and more)which is more appropriate for JETSET due to its higher average parton multiplicity.This atfirst sight surprising observation again shows that there is no simple relation between the partonic and hadronic properties.The fact that events with small number of partons give smaller F2than those with many partons may be a simple reflection of lower overall hadronic multiplicity in these events.In HERWIG the approximate indepedence of the factorial moments has a simple explanation in the interplay between the partonic cascade and the hadronization stage.What happens is that in the case of small parton number the action of the CLMAX parameter creates out of the small number of heavy clus-ters,produced by purely perturbative cascade,much larger number of lighter ones.Instead of partonic cascade we have”cluster”cascade,which,however,produces essentially the same behaviour of hadronic factorial moments.In JETSET we can offer no such simple explanation but the effect holds as well.4Summary and conclusionsIn this paper we have discussed the relation between partons and hadrons in two different, widely used event generators,HERWIG and JETSET.We concentrated on e+e−annihi-lations at LEP2energies as these conditions provide theoretically the cleanest place for investigation of such a relation.Our simulations show that this relation is complicated and generator dependent.The idea of local PHD as suggested in[1]is not realized in either of these models.To large extent,this is due to the fact that the analytical calculations of[1]rely in a crucial way on the use of independent fragmenation model coupled with the assumption that partonic showers are allowed to evolve down to virtualities of the order of the pion mass,while both HERWIG and JETSET stop their respective cascades at much higher virtualities.On the other hand we have found evidence for the strong interplay between the effects of parton showers and those of the hadronization stage.Clear example of such an interplay is provided by factorial moments in narrow phase space region where the intermittent behaviour originates equally from perturbative parton branching as well as from colorless cluster splitting.This indicates that we can not check details of partonic evolution without the knowledge of hadronization mechanism and vice versa.References[1]Ya.I.Azimov,Yu.L.Dokshitzer,V.A.Khoze,S.I.Troyan:Z.Phys.C-Particles andFields27(1985)65[2]Yu.L.Dokshitzer,V.A.Khoze,A.H.Mueller,S.I.Troyan:Basics of Perturbative QCD,Editions Frontieres,ed.J.Tran Thanh Van(1991)[3]B.Andersson,P.Dahlqvist,G.Gustafson:Z.Phys.C-Particles and Fields44(1989)455[4]B.Andersson,P.Dahlqvist,G.Gustafson:Z.Phys.C-Particles and Fields44(1989)461[5]A.Bialas,R.Peschanski:Nucl.Phys.B273(1986)703[6]A.Bialas,R.Peschanski:Nucl.Phys.B308(1988)857[7]W.Ochs,J.Wosiek:Phys.Lett.B214(1988)617Figure captions.Fig.1:Multiplicity distributions of partons(a)and hadrons(b)from HERWIG and JETSET.Fig.2:Single particle distributions in z and p2t of hadrons(a)and partons(b)from HERWIG and JETSET.Fig.3:Ratia r(z),r(p2t)from JETSET(a)and HERWIG(b)for two values of the lower virtuality cut-offQ0.Fig.4:Single particle distributions of hadrons from HERWIG and JETSET,as functions of z and p2t,for the three classes of events defined in the text.Fig.5:Partonic and hadronic distributions in z and p2t for the three classes of events defined in the text as obtained from HERWIG.For the hadrons the spectra corresponding to two different values of CLMAX parameter are displayed.Fig.6:Comparison of factorial moments F i(y,φ)between HERWIG and JETSET(a),and between partons and hadrons within HERWIG(b).Fig.7:Dependence of factorial moments F i(y,φ)on the number of partons as obtained from JETSET.。

相关文档
最新文档