【江苏省】2017学年高考模拟应用题选编数学年试题(五)答案

合集下载

(完整版)2017年高考数学江苏卷试题解析

(完整版)2017年高考数学江苏卷试题解析

绝密★启用前2017 年一般高等学校招生全国一致考试(江苏卷)数学 I参照公式:柱体的体积 V Sh ,此中 S 是柱体的底面积,h 是柱体的高.球的体积 V4πR3,此中 R 是球的半径.3一、填空题:本大题共14 小题,每题 5 分,合计 70 分.请把答案填写在答题卡相应地点上.........1.已知会合 A {1,2} , B { a, a23},若 AI B {1} ,则实数a的值为▲.【答案】1【分析】由题意 1 B ,明显a2 3 3,所以a 1 ,此时a234,知足题意,故答案为1.2.已知复数 z (1i)(12i) ,此中 i 是虚数单位,则z 的模是▲.【答案】10【分析】z(1i)(1 2i)1i 1 2i2510 ,故答案为10 .3.某工厂生产甲、乙、丙、丁四种不一样型号的产品,产量分别为200,400,300,100 件.为查验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60 件进行查验,则应从丙种型号的产品中抽取▲件.【答案】 18【分析】应从丙种型号的产品中抽取6030018.18 件,故答案为10004.右图是一个算法流程图,若输入x的值为1 ,则输出y的值是▲.16【答案】2【分析】由题意得 y 2 log 212 ,故答案为 2 .16π1, 则tan▲.5.若 tan()64【答案】75tan()tan 1 177【分析】 tan tan[()]4461.故答案为.441tan()tan5514466.如图,在圆柱O1O2内有一个球 O ,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为 V1,球 O 的体积为 V2,则 V1的值是▲.V2【答案】32V1r 22r3【分析】设球半径为r ,则V24r 3 2 .故答案为3.327.记函数f (x)6 x x2的定义域为 D .在区间[4,5] 上随机取一个数x ,则x D的概率是▲.【答案】5 98.在平面直角坐标系 xOy 中,双曲线x2y21的右准线与它的两条渐近线分别交于点P ,Q,其焦点是3F1 , F2,则四边形 F1 PF2Q 的面积是▲.【答案】 2 3【分析】右准线方程为33103x ,设 P( 3 10,30),则Q(3 10,30),x10,渐近线方程为 y10310101010F 1 ( 10,0) , F 2 ( 10,0) ,则 S 21030 .2 3109.等比数列 { a n } 的各项均为实数,其前n7 63 项和为 S n ,已知 S 3, S 6,则 a 8 = ▲ .44【答案】 3210.某企业一年购置某种货物 600 吨,每次购置 x 吨,运费为 6 万元 /次,一年的总储存花费为4x 万元.要使一年的总运费与总储存花费之和最小,则x 的值是▲ .【答案】 30【分析】 总花费为 4x600 6900 4 2 900240 ,当且仅当 x900 ,即 x 30 时等号成立.x4( x) xx11.已知函数 f ( x)32 x x1 ,此中 e 是自然对数的底数.若f ( a 1)2) 0 ,则实数 a 的取值xee xf (2 a范围是 ▲ .【答案】 [1,1]2【分析】因为f ( x)x 3 2x1e xf ( x) ,所以函数 f ( x) 是奇函数,e x因为f '( x)3x 22 e x e x 3x 2 2 2 e x e x 0 ,所以数 f ( x) 在 R 上单一递加,又 f (a 1) f (2a 2 ) 0 ,即 f (2a 2 )f (1 a) ,所以 2a 2 1 a ,即 2a 2a 10,解得 1a 1 ,故实数 a 的取值范围为 [ 1,1] .2 uuur uuur uuur 21 1 uuur uuur,且 tan=712.如图, 在同一个平面内, 向量 OA ,OB ,OC 的模分别为 , , 2 ,OA 与 OC 的夹角为,uuur uuur 45° uuur uuur uuur (m, n R ) ,则 m nOB 与OC 的夹角为 .若 OC mOA nOB ▲ .【答案】 3【分析】由 tan7 可得 sin7 2, cos2 ,依据向量的分解, 101022 2n cos 45 m cos 2nm5n m 10 5 7 ,即210,即易得m sin5n 7m,即得 m, n,n sin 452 n 7 2 m 0442 10所以 m n 3 .uuur uuur13.在平面直角坐标系xOy 中, A( 12,0), B(0,6), 点 P 在圆 O : x 2y 250 上,若 PA PB ≤ 20, 则点 P 的横坐标的取值范围是▲.【答案】 [ 5 2,1]14 .设 f ( x) 是定义在 R 上且周期为x 2 , x D , n1 1 的函数,在区间 [0,1) 上, f ( x)D , 此中会合 D { x x,x, xnn N*} ,则方程 f (x)lg x0 的解的个数是▲.【答案】 8【分析】因为 f ( x) [0,1) ,则需考虑 1 x 10 的状况,在此范围内,x Q 且 xD 时,设 xq, p, q N * , p 2 ,且 p, q 互质,p若 lg xQ ,则由 lg x(0,1) ,可设 lg xn, m, n N * , m 2 ,且 m, n 互质,mnqnq m所以 10m,则 10 )lg xQ ,p( ,此时左侧为整数,右侧为非整数,矛盾,所以p所以 lg x 不行能与每个周期内x D 对应的部分相等,只要考虑 lg x 与每个周期 x D 的部分的交点,画出函数图象,图中交点除外(1,0) 其余交点横坐标均为无理数,属于每个周期 x D 的部分,且 x 1 处(lg x)111 邻近仅有一个交点,xln101 ,则在xln10所以方程 f ( x) lg x0 的解的个数为 8.二、解答题:本大题共 6 小题,合计90 分.请在答题卡指定地区内作答,解答时应写出文字说明、证明过........程或演算步骤.15.(本小题满分14 分)如图,在三棱锥A-BCD 中, AB ⊥AD, BC⊥ BD,平面 ABD ⊥平面 BCD ,点 E, F(E 与 A, D 不重合 )分别在棱AD, BD 上,且 EF⊥ AD .求证:( 1) EF∥平面 ABC;(2) AD⊥ AC.16.(本小题满分14 分)已知向量 a (cos x, sin x), b (3,3), x[0, π].( 1)若 a∥ b,求 x 的值;( 2)记 f ( x) a b ,求 f (x) 的最大值和最小值以及对应的x 的值.( 2)f (x)a b (cos x,sin x)(3,3)3cos x 3 sin x2π3 cos(x) .6因为,所以 x ππ 7π,进而1cos(xπ3.6[ ,])2 666于是,当 x π π0 时,3;6,即 x取到最大值6当 x π,即 x5π取到最小值 2 3 .6时,617.(本小题满分14 分)如图,在平面直角坐标系xOy 中,椭圆x2y21(a b0) 的左、右焦点分别为F1, F2,离心率为E :2b2a1,两准线之间的距离为8F1作直线 PF1的垂线 l1,过点 F22.点 P 在椭圆 E 上,且位于第一象限,过点作直线 PF2的垂线 l2.(1)求椭圆E的标准方程;(2)若直线 l1, l2的交点 Q 在椭圆E上,求点P的坐标.【分析】( 1)设椭圆的半焦距为c.因为椭圆 E 的离心率为1,两准线之间的距离为8c12a28 ,2,所以2,a c解得 a 2, c 1 ,于是b a2c23,所以椭圆 E 的标准方程是x2y21.43( 2)由( 1)知,F1(1,0) , F2 (1,0).设 P(x0 , y0 ) ,因为 P 为第一象限的点,故x00, y00 .当 x01时, l2与 l1订交于 F1,与题设不符.由①②,解得xx0 , y x021,所以 Q(x0,x21).y0y0因为点 Q 在椭圆上,由对称性,得x021221221 .y0y0,即x0y0或 x0y0又P在椭圆 E 上,故x02y02 1 .43x02y02147, y0 3 7x02y021由x02y02,解得x0;x02y021,无解.4317743所以点 P的坐标为(47,3 7).7718.(本小题满分16 分)如图,水平搁置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线 AC 的长为10 7 cm,容器Ⅱ的两底面对角线EG , E1G1的长分别为14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽视不计)( 1)将 l 放在容器Ⅰ中,l 的一端置于点 A 处,另一端置于侧棱CC1上,求l没入水中部分的长度;( 2)将 l 放在容器Ⅱ中,l 的一端置于点 E 处,另一端置于侧棱GG1上,求 l 没入水中部分的长度.【分析】( 1)由正棱柱的定义,CC1⊥平面ABCD,所以平面 A1 ACC1⊥平面ABCD, CC1⊥ AC .记玻璃棒的另一端落在CC1上点M处.因为 AC 10 7, AM40 ,所以MC402(10 7) 230,进而 sin ∠MAC 3,4记AM 与水面的交点为P ,过P 作P1Q1⊥AC,Q1为垂足,11则 P1Q1⊥平面 ABCD ,故 P1Q1=12,进而 AP1=P1Q116 .sin∠ MAC答:玻璃棒 l 没入水中部分的长度为 16cm.(假如将“没入水中部分”理解为“水面以上部分”,则结果为24cm)过 G 作 GK⊥ E1G1, K 为垂足,则 GK =OO1=32.因为 EG = 14, E1G1= 62,所以 KG 1=62 1424 ,进而GG1KG12GK 224232240 .2设 ∠EGG 1,∠ENG, 则 sinsin(∠ KGG 1 ) cos ∠ KGG 14 .25因为,所以 cos 3 .52在 △ENG 中,由正弦定理可得40 14 ,解得 sin7 .sin sin25因为 0,所以 cos 24 .252于是 sin ∠ NEG sin()sin() sincoscos sin4 24 ( 3) 7 3 .525 5 255记 EN 与水面的交点为 P 22222为垂足,则 2 2,过P 作PQ ⊥EG ,Q P Q ⊥平面 EFGH ,故 P 2Q 2=12,进而 EP 2=P 2Q 2 20 .sin ∠ NEG答:玻璃棒 l 没入水中部分的长度为 20cm .(假如将“没入水中部分”理解为“水面以上部分”,则结果为 20cm)19.(本小题满分16 分)对于给定的正整数 k ,若数列 { a n } 知足: a n k a n k 1Lan 1an 1Lan k 1an k2ka n 对随意正整数 n(n k) 总成立,则称数列{ a n } 是“ P(k ) 数列”. ( 1 )证明:等差数列 { a n } 是“ P(3) 数列”;( 2 )若数列 { a n } 既是“ P(2) 数列”,又是“ P(3) 数列”,证明: { a n } 是等差数列.【分析】( 1)因为 { a}是等差数列,设其公差为d ,则 ana( n1)d ,n1进而,当 n4 时, a n ka nk a 1(n k 1)d a 1 (n k 1)d2a 1 2( n 1)d 2a n , k 1,2,3,所以 a n 3 a n 2 +a n 1 +a n 1 a n 2 +a n 3 6a n ,所以等差数列 { a n } 是“ P(3) 数列”.a n2 a n34a n1 ( a n 1 a n ) ,④将③④代入②,得a n 1 a n 12a n,此中n 4 ,所以 a3, a4 , a5 ,L是等差数列,设其公差为 d' .在①中,取在①中,取n4,则 a2a3a5a64a4,所以 a2a3d' ,n3,则 a1a2a4a54a3,所以 a1a32d' ,所以数列 { a n}是等差数列.20.(本小题满分16 分)已知函数 f ( x)32f (x) 的极值点是 f (x) 的零点.(极值点x ax bx 1(a 0,b R ) 有极值,且导函数是指函数取极值时对应的自变量的值)( 1)求 b 对于a的函数关系式,并写出定义域;( 2)证明: b 23a;( 3)若 f (x) , f ( x) 这两个函数的所有极值之和不小于7,求a的取值范围.2当 a3时, f (x)>0(x1),故 f (x) 在R上是增函数, f (x)没有极值;当 a3时, f (x)=0 有两个相异的实根x1=aa23b,x2= aa23b .33列表以下:x(, x1)x1( x1 , x2 )x2(x2 , )f (x)+0–0+f (x)Z极大值]极小值Z故 f (x) 的极值点是 x 1 , x 2 .进而 a 3 .所以 b2a 23(3,) .9,定义域为a( 2)由( 1)知,b = 2a a 3 .设 g (t )= 2t3 ,则 g (t )=2 32t 2 27 .a 9 a a 9t9 t 2 9t 2当t ( 3 6, ) 时, g (t) 0 ,进而 g(t ) 在 ( 3 6 ,) 上单一递加.22因为 a3 ,所以 a a3 3 ,故 g (a a )>g (3 3)= 3 ,即 b > 3 .所以 b 2 >3a .a记 f (x) , f (x) 所有极值之和为 h(a) ,因为 f (x) 的极值为 b a21 a2 3,所以 h(a)=1 a23 , a 3 .39a9 a因为 h (a)=2 a3 0 ,于是 h(a) 在 (3, ) 上单一递减.9 a 2因为 h(6)=7h(6) ,故 a 6 .所以 a 的取值范围为 (3,6] . ,于是 h(a)2数学Ⅱ(附带题)21.【选做题】此题包含A 、B 、C 、D 四小题,请选定此中两题 ,并在相应的答题地区内作答,若多做,....... ............ 则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A . [ 选修 4-1:几何证明选讲 ]( 本小题满分 10 分)如图, AB 为半圆 O 的直径,直线 PC 切半圆 O 于点 C , AP ⊥ PC , P 为垂足.求证:( 1) PACCAB ;( 2) AC 2AP AB .【分析】( 1)因为 PC 切半圆 O 于点 C ,所以 ∠ PCA ∠ CBA , 因为 AB 为半圆 O 的直径,所以 ∠ACB 90 .因为 AP ⊥ PC ,所以 ∠APC90 ,所以 PACCAB .( 2)由( 1)知, △APC ∽△ ACB ,故APAC,即 AC 2AP ·AB .AC ABB . [ 选修 4-2:矩阵与变换 ](本小题满分 10 分 )0 1 1 0 已知矩阵 A, B.121()求 AB ;x 2 y 2 C C21 在矩阵 AB 对应的变换作用下获得另一曲线2 ,求 2 的方程.( )若曲线 C 1 :82C . [ 选修 4-4:坐标系与参数方程](本小题满分 10 分)x 8t在平面直角坐标系 xOy 中,已知直线 l 的参照方程为t( t 为参数 ),曲线 C 的参数方程为y2x 2s 2P 到直线 l 的距离的最小值.y( s 为参数 ).设 P 为曲线 C 上的动点,求点2 2s【分析】直线 l 的一般方程为x 2 y 8 0.因为点 P 在曲线 C 上,设 P(2 s 2 , 22s) ,进而点 P 到直线 l 的的距离d | 2s242s 8 | 2( s2) 242时,d min 4 5 .2(2)25,当s15所以当点 P 的坐标为 (4, 4)时,曲线 C 上点P到直线 l 的距离取到最小值45 .5D .[选修 4-5:不等式选讲](本小题满分10 分)已知 a,b,c,d 为实数,且a2b24,c2 d 216, 证明: ac bd ≤ 8.【必做题】第22 题、第 23 题,每题10 分,合计20 分.请在答题卡指定地区内作答,解答时应写出文字.......说明、证明过程或演算步骤.22.(本小题满分10 分)如图,在平行六面体ABCD-A 1B1C1D1中, AA1⊥平面 ABCD ,且 AB=AD =2, AA1 = 3 ,BAD 120 .(1)求异面直线 A1B 与 AC1所成角的余弦值;(2)求二面角 B-A1D-A 的正弦值.【分析】在平面ABCD 内,过点 A 作 AE AD ,交 BC 于点 E.因为 AA1平面ABCD,所以AA1AE,AA 1AD .uuur uuur uuur如图,以 { AE , AD , AA1} 为正交基底,成立空间直角坐标系A-xyz.因为 AB=AD =2,AA 1=3,BAD 120.则A(0,0,0), B( 3, 1,0), D(0,2,0), E( 3,0,0), A1(0,0,3), C1 ( 3,1, 3) .uuur (1)A1B ( 3, uuur uuuur 则cos A1 B, AC1uuuur1, 3), AC1(3,1,3),uuur uuuur(3,1, 3) ( 3,1, 3)1 A1B AC1uuur uuuur.| A1B || AC1 |77所以异面直线A1B 与 AC1所成角的余弦值为 1 .7设二面角 B-A1D-A 的大小为,则 | cos|3.4因为[0,] ,所以sin1cos2717 ..所以二面角B-A D-A 的正弦值为4423.(本小题满分10 分)已知一个口袋中有 m 个白球, n 个黑球(m,n N*,n ≥ 2 ),这些球除颜色外所有同样.现将口袋中的球随机地逐一拿出,并放入以下图的编号为1,2, 3,L , m n 的抽屉内,此中第 k 次拿出的球放入编号为 k 的抽屉 (k 1, 2, 3,L , m n) .123L m n( 1)试求编号为 2 的抽屉内放的是黑球的概率p ;( 2 )随机变量X 表示最后一个拿出的黑球所在抽屉编号的倒数, E ( X ) 是X的数学希望,证明:E(X )n.n)( n(m1)【分析】( 1)编号为2 的抽屉内放的是黑球的概率C m n 1n 1n p 为: p.C m n nm n( 2)随机变量 X 的概率散布为1 1 111 Xn 1n 2nkm nC n n 11PCnm n随机变量 X 的希望为C n n1 C n n11C m nnC m nnmn1C k n11E(X)k n kC m nnC k n11C n n 1m 1C m nnC m n n1m n1(k 1)!.C m n n k n k (n 1)!(kn)!1m n(k 2)!1m n(k 2)!所以 E(X)C m nn ( n1)!( k n)! (n1)C mnn k n(n2)!( kn)!n k1n 2n 2 n 2 1n 1 n 2n 2 n 2(n 1)C m n (1 C n 1C nL C m n 2 )(C n 1Cn 1C n L C m n 2 )n( n 1)C m n n1n 1 n 2 Ln 2L1n 1n 2(n 1)C m n (C nC nCm n 2)(Cm n 2Cm n 2)n( n 1)C m nnC m n 1n 1n ,(n 1)C mn( m n)( n 1)n即E(X)n.n)(n 1)(m。

2017年江苏省高考数学试卷(真题详细解析).docx

2017年江苏省高考数学试卷(真题详细解析).docx

2017 年江苏省高考数学试卷一 .填空题1(.5 分)已知集合 A={ 1,2} ,B={ a,a2+3} .若 A∩B={ 1} ,则实数 a 的值为.2.(5 分)已知复数 z=( 1+i)(1+2i),其中 i 是虚数单位,则 z 的模是.3.(5 分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取 60 件进行检验,则应从丙种型号的产品中抽取件.4.( 5 分)如图是一个算法流程图:若输入 x 的值为,则输出 y 的值是.5.(5 分)若 tan(α﹣)=.则tanα=.6.( 5 分)如图,在圆柱 O1 O2内有一个球 O,该球与圆柱的上、下底面及母线均相切,记圆柱 O1 2 的体积为1,球O 的体积为2,则的值是.O V V7.( 5 分)记函数 f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则 x∈ D 的概率是.8.(5 分)在平面直角坐标系xOy 中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q,其焦点是 F1,F2,则四边形 F1PF2Q 的面积是.9.( 5 分)等比数列 { a n} 的各项均为实数,其前n 项和为 S n,已知S3=,S6=,则 a8=.10.(5 分)某公司一年购买某种货物600 吨,每次购买 x 吨,运费为 6 万元 / 次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数 f(x)=x3﹣2x+e x﹣,其中 e 是自然对数的底数.若 f(a﹣ 1) +f(2a2)≤ 0.则实数 a 的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且 tan α=7,与的夹角为 45°.若 =m +n( m,n∈ R),则 m+n=.13.( 5 分)在平面直角坐标系xOy 中, A(﹣ 12,0), B( 0, 6),点 P 在圆 O:x2+y2=50 上.若≤20,则点P的横坐标的取值范围是.14.( 5 分)设 f(x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f(x)=,其中集合 D={ x| x=, n∈ N* } ,则方程 f(x)﹣ lgx=0 的解的个数是.二 .解答题15.( 14 分)如图,在三棱锥 A﹣ BCD中, AB⊥AD, BC⊥ BD,平面 ABD⊥求证:(1)EF∥平面 ABC;(2) AD⊥AC.16.( 14 分)已知向量 =(cosx,sinx), =(3,﹣),x∈[ 0,π].( 1)若,求x的值;( 2)记 f (x)=,求f(x)的最大值和最小值以及对应的x 的值.17.( 14 分)如图,在平面直角坐标系xOy 中,椭圆 E:=1( a> b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点 P 在椭圆E 上,且位于第一象限,过点 F1作直线 PF1的垂线 l1,过点 F2作直线 PF2的垂线l2.(1)求椭圆 E 的标准方程;(2)若直线 l1,l2的交点 Q 在椭圆 E 上,求点 P 的坐标.18.( 16 分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm,容器Ⅰ的底面对角线 AC的长为 10 cm,容器Ⅱ的两底面对角线EG, E1G1的长分别为 14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为 12cm.现有一根玻璃棒 l,其长度为 40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将 l 放在容器Ⅰ中, l 的一端置于点 A ,另一端置于棱 CC1上,求 l 没入水中部分的度;(2)将 l 放在容器Ⅱ中, l 的一端置于点 E ,另一端置于棱 GG1上,求 l 没入水中部分的度.19.(16 分)于定的正整数k,若数列 { a n} 足:a n﹣k+a n﹣k+1+⋯+a n﹣1+a n+1+⋯+a n+k+a n+k=2ka n 任意正整数n(n>k)成立,称数列{ a n}是“P(k)数列”.( 1)明:等﹣1差数列 { a n } 是“P(3)数列”;( 2)若数列 { a n} 既是“P(2)数列”,又是“P(3)数列”,明:{ a n} 是等差数列.20.( 16 分)已知函数f( x) =x3+ax2+bx+1(a>0,b∈R)有极,且函数 f ′( x)的极点是 f(x)的零点.(Ⅰ)求 b 关于 a 的函数关系式,并写出定域;(Ⅱ)明: b2> 3a;(Ⅲ)若 f( x),f ′(x)两个函数的所有极之和不小于,求数a的取范.二 .非,附加( 21-24 做)【修 4-1:几何明】(本小分0分)21.如, AB 半 O 的直径,直 PC切半 O 于点 C,AP⊥PC,P 垂足.求:(1)∠PAC=∠CAB;(2) AC2 =AP?AB.[ 修 4-2:矩与 ]22.已知矩 A=,B=.(1)求 AB;( 2)若曲 C1:=1在矩AB的作用下得到另一曲2,求CC2的方程.[ 修 4-4:坐系与参数方程 ]23.在平面直角坐系xOy 中,已知直 l 的参数方程(t参数),曲 C 的参数方程(s参数).P曲C上的点,求点P 到直 l 的距离的最小.[修 4-5:不等式]24.已知 a,b,c, d 数,且 a2+b2=4,c2+d2=16,明 ac+bd≤ 8.【必做】25.如,在平行六面体ABCD A1B1C1D1中, AA1⊥平面 ABCD,且 AB=AD=2,AA1=,∠ BAD=120°.(1)求异面直 A1B 与 AC1所成角的余弦;(2)求二面角 B A1D A 的正弦.26.已知一个口袋有 m 个白球, n 个黑球( m,n∈N*,n≥2),些球除色外全部相同.将口袋中的球随机的逐个取出,并放入如所示的号1,2,3,⋯,m+n 的抽内,其中第 k 次取出的球放入号k 的抽( k=1,2,3,⋯,m+n).123⋯m+n( 1)求号 2 的抽内放的是黑球的概率p;( 2)随机量 x 表示最后一个取出的黑球所在抽号的倒数,E( X)是 X 的数学期望,明E( X)<.2017 年江苏省高考数学试卷参考答案与试题解析一 .填空题2+3} .若 A∩B={ 1} ,则实数 a 的值为 1 ..(分)已知集合1 5A={ 1,2} ,B={ a,a【分析】利用交集定义直接求解.【解答】解:∵集合 A={ 1,2} ,B={ a,a2+3} .A∩B={ 1} ,∴a=1 或 a2+3=1,当a=1 时, A={ 1,1} , B={ 1, 4} ,成立;a2+3=1 无解.综上, a=1.故答案为: 1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5 分)已知复数 z=( 1+i)(1+2i),其中 i 是虚数单位,则 z 的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数 z=( 1+i)(1+2i) =1﹣2+3i=﹣ 1+3i,∴ | z| ==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5 分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取 60 件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000 件,而抽取60 件进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18 件,故答案为: 18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.( 5 分)如图是一个算法流程图:若输入 x 的值为,则输出y的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值 x=,不满足x≥1,所以 y=2+log2=2﹣=﹣ 2,故答案为:﹣ 2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5 分)若 tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵ tan(α﹣)===∴6tan α﹣6=tan α+1,解得 tan α=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.( 5 分)如图,在圆柱 O1 O2内有一个球 O,该球与圆柱的上、下底面及母线均相切,记圆柱 O1 2 的体积为1,球O 的体积为2,则的值是.O V V【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,23.圆柱的体积为:πR?2R=2πR则 == .故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.( 5 分)记函数 f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则 x∈ D 的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由 6+x﹣x2≥0 得 x2﹣x﹣6≤0,得﹣ 2≤ x≤ 3,则 D=[ ﹣2,3] ,则在区间 [ ﹣ 4, 5] 上随机取一个数 x,则 x∈ D 的概率 P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5 分)在平面直角坐标系xOy 中,双曲线﹣ y2=1 的右准线与它的两条渐近线分别交于点 P, Q,其焦点是 F1,2,则四边形 1 2.F F PF Q 的面积是【分析】求出双曲线的准线方程和渐近线方程,得到 P,Q 坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣ y2=1的右准线:x=,双曲线渐近线方程为:±x,y=所以 P(,),Q(,﹣),F1(﹣,). 2(,).20 F 2 0则四边形 F1PF2Q 的面积是:=2.故答案为: 2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.( 5 分)等比数列 { a n} 的各项均为实数,其前n 项和为 S n,已知S3=,S6=,则a8= 32 .【分析】设等比数列 { a n的公比为≠, 3, 6,可得=,}q 1 S =S = =,联立解出即可得出.【解答】解:设等比数列 { a n} 的公比为 q≠ 1,∵ S3, 6,∴,,解得 a1=,q=2.则 a8==32.故答案为: 32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5 分)某公司一年购买某种货物600 吨,每次购买 x 吨,运费为 6 万元 / 次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4× 2×=240(万元).当且仅当 x=30 时取等号.故答案为: 30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题..(分)已知函数3﹣2x+e x﹣,其中 e 是自然对数的底数.若 f(a 11 5f(x)=x﹣ 1) +f(2a2)≤ 0.则实数 a 的取值范围是[ ﹣ 1, ] .【分析】求出 f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在 R 上递增;再由奇偶性的定义,可得 f(x)为奇函数,原不等式即为2a2≤ 1﹣ a,运用二次不等式的解法即可得到所求范围.【解答】解:函数 f (x) =x3﹣ 2x+e x﹣的导数为:f ′(x)=3x2﹣2+e x+ ≥﹣ 2+2=0,可得 f (x)在 R 上递增;3+2x+e ﹣x x 3x又 f(﹣ x) +f (x)=(﹣ x)﹣e +x﹣2x+e ﹣ =0,可得 f (x)为奇函数,则f( a﹣ 1) +f (2a2)≤ 0,即有 f (2a2)≤﹣ f(a﹣1)由 f(﹣( a﹣1))=﹣ f( a﹣1),f(2a2)≤ f(1﹣a),即有 2a2≤1﹣a,解得﹣ 1≤a≤,故答案为: [ ﹣1,] .【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5 分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且 tan α=7,与的夹角为45°.若=m +n(m,n∈ R),则 m+n= 3.【分析】如图所示,建立直角坐标系. A(1,0).由与的夹角为α,且tanα=7.可得 cosα=, sin α= . C.可得°°cos(α+45 ) =. sin(α+45 )=.B.利用=m +n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴ cosα=,sinα=.∴ C.°( cosα﹣sin α)=.cos(α+45) =sin(α+45°(sin α+cosα)=.)=∴ B.∵=m +n (m, n∈ R),∴ =m﹣ n, =0+ n,解得 n=,m=.则m+n=3.故答案为: 3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.( 5 分)在平面直角坐标系xOy 中, A(﹣ 12,0), B( 0, 6),点 P 在圆 O:x2+y2=50 上.若≤20,则点P的横坐标的取值范围是[ ﹣5,1].【分析】根据题意,设 P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线 2x+y+5≤ 0 以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设 P(x0, y0),则有 x02+y02=50,=(﹣ 12﹣ x0,﹣ y0)?(﹣ x0,6﹣y0)=( 12+x0)x0﹣ y(0 6﹣ y0)=12x0+6y+x02+y02≤20,化为: 12x0﹣6y0+30≤0,即 2x0﹣y0+5≤ 0,表示直线 2x﹣ y+5=0 以及直线上方的区域,联立,解可得 x0﹣或0 ,= 5x =1结合图形分析可得:点P 的横坐标 x0的取值范围是 [ ﹣5,1] ,故答案为: [ ﹣5 ,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于 x0、y0的关系式.14.( 5 分)设 f(x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f(x)=,其中集合 D={ x| x=,n∈ N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中 f( x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f ( x)=,其中集合D={ x| x=,n∈ N*},分析f(x)的图象与y=lgx 图象交点的个数,进而可得答案.【解答】解:∵在区间 [ 0,1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又 f( x)是定义在 R 上且周期为 1 的函数,∴在区间 [ 1,2)上, f(x)=,此时f(x)的图象与y=lgx 有且只有一个交点;同理:区间 [ 2, 3)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 3, 4)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 4, 5)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 5, 6)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 6, 7)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 7, 8)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 8, 9)上, f( x)的图象与 y=lgx 有且只有一个交点;在区间 [ 9,+∞)上, f(x)的图象与 y=lgx 无交点;故f( x)的图象与 y=lgx 有 8 个交点;即方程 f(x)﹣ lgx=0 的解的个数是 8,故答案为: 8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二 .解答题15.( 14 分)如图,在三棱锥 A﹣ BCD中, AB⊥AD, BC⊥ BD,平面 ABD⊥平面BCD,点 E、F(E 与 A、D 不重合)分别在棱 AD,BD 上,且 EF⊥ AD.求证:(1)EF∥平面 ABC;(2) AD⊥AC.【分析】(1)利用 AB∥EF及线面平行判定定理可得结论;(2)通过取线段 CD上点 G,连结 FG、EG使得 FG∥ BC,则 EG∥ AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为 AB⊥ AD, EF⊥AD,且 A、B、E、F 四点共面,所以 AB∥EF,又因为 EF?平面 ABC,AB? 平面 ABC,所以由线面平行判定定理可知:EF∥平面 ABC;(2)在线段 CD上取点 G,连结 FG、 EG使得 FG∥BC,则 EG∥AC,因为 BC⊥BD, FG∥ BC,所以 FG⊥BD,又因为平面 ABD⊥平面 BCD,所以 FG⊥平面 ABD,所以 FG⊥AD,又因为 AD⊥EF,且 EF∩FG=F,所以 AD⊥平面 EFG,所以 AD⊥EG,故 AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.( 14 分)已知向量 =(cosx,sinx), =(3,﹣),x∈[ 0,π].( 1)若,求x的值;( 2)记 f (x)=,求f(x)的最大值和最小值以及对应的x 的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,( 2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵ =(cosx, sinx), =(3,﹣),∥,∴﹣cosx=3sinx,∴ tanx=﹣,∵ x ∈[ 0,π] ,∴ x=,( 2) f (x )==3cosx ﹣ sinx=2(cosx ﹣ sinx )=2 cos (x+),∵ x ∈[ 0,π] ,∴ x+ ∈[, ] ,∴﹣ 1≤cos (x+ )≤,当 x=0 时, f (x )有最大值,最大值 3,当 x=时, f (x )有最小值,最小值﹣ 2 .【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.( 14 分)如图,在平面直角坐标系 xOy 中,椭圆 E :=1( a > b >0)的左、右焦点分别为 F 1, 2 ,离心率为 ,两准线之间的距离为 8 .点 P 在椭圆FE 上,且位于第一象限,过点F 作直线 PF 的垂线 l ,过点 F 作直线 PF 的垂线1 112 2 l 2.( 1)求椭圆 E 的标准方程;( 2)若直线 l 1,l 2 的交点 Q 在椭圆 E 上,求点 P 的坐标.【分析】(1)由椭圆的离心率公式求得 a=2c ,由椭圆的准线方程 x=±,则 2×=8,即可求得 a 和 c 的值,则 b 2=a 2﹣ c 2 =3,即可求得椭圆方程;( 2)设 P 点坐标,分别求得直线 PF 2 的斜率及直线 P F 1 的斜率,则即可求得 l 2及l1的斜率及方程,联立求得 Q 点坐标,由 Q 在椭圆方程,求得 y02=x02﹣1,联立即可求得 P 点坐标;方法二:设 P(m, n),当 m≠1时,=,=,求得直线l1及l1的方程,联立求得 Q 点坐标,根据对称性可得=± n2,联立椭圆方程,即可求得 P 点坐标.【解答】解:(1)由题意可知:椭圆的离心率e== ,则 a=2c,①椭圆的准线方程 x=±,由 2×=8,②由①②解得: a=2,c=1,则 b2 2﹣c2,=a=3∴椭圆的标准方程:;( 2)方法一:设 P(x0,0),则直线 2 的斜率=,y PF则直线 l2的斜率 2 ﹣,直线l 2的方程﹣(﹣),k =y=x 1直线 PF1的斜率=,则直线 l2的斜率1﹣,直线l 1 的方程﹣(),k =y=x+1联立,解得:,则Q(﹣x0,),由 P,Q 在椭圆上, P, Q 的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣ 1,则,解得:,则,又 P 在第一象限,所以P 的坐标为:P(,).方法二:设 P(m, n),由 P 在第一象限,则 m> 0, n> 0,当 m=1 时,不存在,解得: Q 与 F1重合,不满足题意,当 m≠1 时,=,=,由 l1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线 l1的方程 y=﹣( x+1),①直线 l2的方程 y=﹣(x﹣1),②联立解得: x=﹣m,则 Q(﹣ m,),由 Q 在椭圆方程,由对称性可得:=±n2,即m2﹣ n2=1,或 m2+n2=1,由 P(m,n),在椭圆方程,,解得:,或,无解,又 P 在第一象限,所以P 的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.( 16 分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm,容器Ⅰ的底面对角线 AC的长为 10 cm,容器Ⅱ的两底面对角线EG, E1G1的长分别为 14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为 12cm.现有一根玻璃棒 l,其长度为 40cm.(容器厚度、玻璃棒粗细均忽略不计)( 1)将 l 放在容器Ⅰ中, l 的一端置于点 A 处,另一端置于侧棱 CC1上,求 l 没入水中部分的长度;( 2)将 l 放在容器Ⅱ中, l 的一端置于点 E 处,另一端置于侧棱 GG1上,求 l 没入水中部分的长度.【分析】(1)设玻璃棒在 CC1上的点为 M,玻璃棒与水面的交点为 N,过 N 作NP∥MC,交 AC于点 P,推导出 CC1⊥平面 ABCD,CC1⊥ AC,NP⊥ AC,求出MC=30cm,推导出△ ANP∽△ AMC,由此能出玻璃棒 l 没入水中部分的长度.(2)设玻璃棒在 GG1上的点为 M,玻璃棒与水面的交点为 N,过点 N 作 NP⊥ EG,交 EG于点 P,过点 E 作 EQ⊥E1G1,交 E1G1于点 Q,推导出 EE1G1G 为等腰梯形,求出 E1Q=24cm,E1E=40cm,由正弦定理求出 sin∠GEM= ,由此能求出玻璃棒 l没入水中部分的长度.【解答】解:(1)设玻璃棒在 CC1上的点为 M ,玻璃棒与水面的交点为 N,在平面 ACM 中,过 N 作 NP∥MC,交 AC于点 P,∵ABCD﹣A1B1C1D1为正四棱柱,∴ CC1⊥平面 ABCD,又∵ AC? 平面 ABCD,∴ CC1⊥AC,∴ NP⊥AC,∴NP=12cm,且 AM2=AC2+MC2,解得 MC=30cm,∵ NP∥MC,∴△ ANP∽△ AMC,∴= ,,得AN=16cm.∴玻璃棒 l 没入水中部分的长度为16cm.(2)设玻璃棒在 GG1上的点为 M ,玻璃棒与水面的交点为 N,在平面 E1EGG1中,过点 N 作 NP⊥EG,交 EG于点 P,过点 E 作 EQ⊥ E1G1,交 E1G1于点 Q,∵ EFGH﹣ E1F1G1H1为正四棱台,∴ EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G 为等腰梯形,画出平面 E1EGG1的平面图,∵ E1G1=62cm,EG=14cm,EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得: E1E=40cm,∴sin∠EE1G1= ,sin∠EGM=sin∠EE1G1= ,cos∠EGM=﹣,根据正弦定理得:=,∴ sin∠EMG=,cos∠EMG=,∴sin∠GEM=sin(∠ EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠ EMG= ,∴ EN===20cm.∴玻璃棒 l 没入水中部分的长度为20cm.【点】本考玻璃棒 l 没入水中部分的度的求法,考空中、面、面面的位置关系等基知,考推理能力、运算求解能力、空想象能力,考数形合思想、化与化思想,是中档.19.(16 分)于定的正整数k,若数列 { a n} 足:a n﹣k+a n﹣k+1+⋯+a n﹣1+a n+1+⋯+a n+k+a n+k=2ka n 任意正整数n(n>k)成立,称数列{ a n}是“P(k)数列”.( 1)明:等﹣1差数列 { a n } 是“P(3)数列”;( 2)若数列 { a n} 既是“P(2)数列”,又是“P(3)数列”,明:{ a n} 是等差数列.【分析】(1)由意可知根据等差数列的性, a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=( a n+a n+3)+(a n﹣ 2+a n+2)+(a n﹣ 1+a n+1)═2×3a n,根据“P(k)数列”的定,可得﹣3数列 { a n} 是“P(3)数列”;( 2)由已知条件合( 1)中的,可得到 { a n} 从第 3 起等差数列,再通判断 a2与 a3的关系和 a1与 a2的关系,可知 { a n} 等差数列.【解答】解:( 1)明:等差数列 { a n} 首 a1,公差 d, a n =a1+(n 1)d,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n +2a n+2a n,=2×3a n,∴等差数列 { a n} 是“P(3)数列”;( 2 )明:当n ≥ 4 ,因数列{ a n} 是 P( 3 )数列,a n﹣3+a n﹣2+a n﹣1+a n +1+a n+2+a n +3=6a n,①因数列 { a n} 是“P( 2)数列”,所以 a n﹣2+a n﹣1+a n+1+a n+2=4a n,②则a n﹣1+a n+a n+2+a n+3=4a n+1,③,②+③﹣①,得 2a n=4a n﹣1+4a n+1﹣6a n,即 2a n=a n﹣1+a n+1,( n≥ 4),因此 n≥4 从第 3 项起为等差数列,设公差为d,注意到 a2+a3+a5+a6=4a4,所以 a2=4a4﹣a3﹣a5﹣ a6=4(a3+d)﹣ a3﹣( a3+2d)﹣( a3+3d) =a3﹣ d,因为 a1+a2+a4+a5=4a3,所以 a1 =4a3﹣a2﹣ a4﹣a5=4(a2+d)﹣ a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前 3 项满足等差数列的通项公式,所以 { a n} 为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.( 16 分)已知函数 f( x) =x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f ′(x)的极值点是 f(x)的零点.(Ⅰ)求 b 关于 a 的函数关系式,并写出定义域;(Ⅱ)证明: b2> 3a;(Ⅲ)若 f( x),f ′(x)这两个函数的所有极值之和不小于﹣,求实数a的取值范围.【分析】(Ⅰ )通过对 f(x) =x3+ax2+bx+1 求导可知 g( x) =f (′x)=3x2+2ax+b,进而再求导可知 g′(x)=6x+2a,通过令 g′( x) =0 进而可知 f ′(x)的极小值点为 x=﹣,从而 f(﹣)=0,整理可知 b=+ ( a>0),结合 f(x)=x3+ax2+bx+1( a> 0,b∈ R)有极值可知 f ′(x)=0 有两个不等的实根,进而可知 a>3.(Ⅱ)通过( 1)构造函数 h(a)=b2﹣3a=﹣+ =(4a3﹣27)( a3﹣ 27),结合 a> 3 可知 h( a)> 0,从而可得结论;(Ⅲ)通过( 1)可知 f ′(x)的极小值为 f (′﹣)=b﹣,利用韦达定理及完全平方关系可知 y=f( x)的两个极值之和为﹣+2,进而问题转化为解不等式 b﹣ +﹣+2= ﹣≥﹣,因式分解即得结论.【解答】(Ⅰ )解:因为 f (x)=x3+ax2 +bx+1,所以 g(x)=f ′( x) =3x2 +2ax+b,g′(x)=6x+2a,令 g′(x)=0,解得 x=﹣.由于当 x>﹣时g′(x)>0,g(x)=f(′x)单调递增;当x<﹣时g′(x)<0,g(x)=f (′x)单调递减;所以 f ′(x)的极小值点为x=﹣,由于导函数 f ′(x)的极值点是原函数f( x)的零点,所以 f (﹣)=0,即﹣+﹣+1=0,所以 b=+(a>0).因为 f (x) =x3+ax2 +bx+1(a>0,b∈R)有极值,所以 f ′(x)=3x2+2ax+b=0 的实根,所以 4a2﹣12b≥ 0,即 a2﹣+≥0,解得a≥3,所以 b=+(a>3).(Ⅱ)证明:由( 1)可知 h(a)=b2﹣3a=﹣+ =(4a3﹣27)( a3﹣ 27),由于 a>3,所以 h(a)> 0,即 b2>3a;(Ⅲ)解:由( 1)可知 f ′(x)的极小值为 f ′(﹣)=b﹣,设 x1, 2 是y=f ()的两个极值点,则 1 2, 1 2,x x x +x =x x =所以 f (x1)+f ( 2)= +(+)+b( 1 2)+2 x+a x +x=(x1+x2)[ (x1+x2)2﹣3x1x2]+ a[ ( x1 +x2)2﹣2x1 x2]+ b(x1+x2)+2 =﹣+2,又因为 f(x), f ′(x)这两个函数的所有极值之和不小于﹣,所以 b﹣+﹣+2=﹣≥﹣,因为 a>3,所以 2a3﹣63a﹣54≤0,所以 2a(a2﹣36)+9( a﹣6)≤ 0,所以( a﹣6)( 2a2+12a+9)≤ 0,由于 a>3 时 2a2+12a+9>0,所以 a﹣6≤0,解得 a≤6,所以 a 的取值范围是( 3,6] .【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二 .非选择题,附加题( 21-24 选做题)【选修 4-1:几何证明选讲】(本小题满分0分)21.如图, AB 为半圆 O 的直径,直线 PC切半圆 O 于点 C,AP⊥PC,P 为垂足.求证:(1)∠ PAC=∠CAB;(2) AC2 =AP?AB.【分析】( 1 )利用弦切角定理可得:∠ ACP=∠ ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.( 2)由( 1)可得:△ APC∽△ ACB,即可证明.【解答】证明:(1)∵直线 PC切半圆 O 于点 C,∴∠ ACP=∠ABC.∵AB为半圆 O 的直径,∴∠ ACB=90°.∵AP⊥PC,∴∠ APC=90°.∴∠ PAC=90°﹣∠ ACP,∠ CAB=90°﹣∠ ABC,∴∠ PAC=∠CAB.(2)由( 1)可得:△ APC∽△ ACB,∴ = .∴2AC =AP?AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理,考查了推理能力与计算能力,属于中档题.[ 选修 4-2:矩阵与变换 ]22.已知矩阵 A=,B=.(1)求 AB;( 2)若曲线 C1:=1在矩阵AB对应的变换作用下得到另一曲线2,求CC2的方程.【分析】(1)按矩阵乘法规律计算;( 2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点 P( x,y)为曲线 C1的任意一点,点P 在矩阵 AB 的变换下得到点 P′( x0,y0),则=,即x0, 0 ,=2y y =x∴x=y0,y= ,∴,即 x02+y02=8,∴曲线 C2的方程为 x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[ 选修 4-4:坐标系与参数方程 ]23.在平面直角坐标系 xOy 中,已知直线 l 的参数方程为(t 为参数),曲线 C 的参数方程为(s为参数).设P为曲线C上的动点,求点P 到直线 l 的距离的最小值.【分析】求出直线 l 的直角坐标方程,代入距离公式化简得出距离 d 关于参数 s的函数,从而得出最短距离.【解答】解:直线 l 的直角坐标方程为x﹣2y+8=0,∴ P 到直线 l 的距离 d==,∴当 s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修 4-5:不等式选讲]24.已知 a,b,c, d 为实数,且 a2+b2=4,c2+d2=16,证明 ac+bd≤ 8.【分析】a2+b2=4,c2+d2=16,令 a=2cos α,b=2sin α,c=4cos β,d=4sin β代入. ac+bd 化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:( ac+bd )2≤( a2+b2)( c2+d2),即可得出.【解答】证明:∵ a2+b2=4,c2+d2=16,令a=2cosα, b=2sin α,c=4cosβ,d=4sin β.∴ ac+bd=8( cosαcos+sinβ αsin)β=8cos(α﹣β)≤ 8.当且仅当cos(α﹣β) =1时取等号.因此 ac+bd≤ 8.另解:由柯西不等式可得:( ac+bd)2≤( a2+b2)(c2+d2)=4× 16=64,当且仅当时取等号.∴﹣ 8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】第27页(共 31页)AA1=,∠ BAD=120°.(1)求异面直线 A1B 与 AC1所成角的余弦值;(2)求二面角 B﹣A1D﹣ A 的正弦值.【分析】在平面 ABCD内,过 A 作 Ax⊥ AD,由 AA1⊥平面 ABCD,可得 AA1⊥ Ax,AA1⊥ AD,以 A 为坐标原点,分别以Ax、AD、 AA1所在直线为 x、 y、 z 轴建立空间直角坐标系.结合已知求出A, B, C, D,A1,1的坐标,进一步求出,C,,的坐标.( 1)直接利用两法向量所成角的余弦值可得异面直线A1B 与1所成角的余弦AC值;(2)求出平面 BA1D 与平面 A1AD 的一个法向量,再由两法向量所成角的余弦值求得二面角 B﹣A1D﹣ A 的余弦值,进一步得到正弦值.【解答】解:在平面 ABCD内,过 A 作 Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax? 平面ABCD,∴ AA1⊥Ax, AA1⊥ AD,以 A 为坐标原点,分别以 Ax、AD、AA1所在直线为 x、y、z 轴建立空间直角坐标系.∵AB=AD=2,AA1= ,∠ BAD=120°,∴ A( 0, 0, 0),B(), C(, 1, 0),D(0,2,0),A ( 0, 0,),C ().11= (),= (),,.( 1)∵ cos<>==.∴异面直 A1B 与 1 所成角的余弦;AC( 2)平面 BA1D 的一个法向量,由,得,取 x=,得;取平面 A1 AD 的一个法向量.∴ cos<>==.∴二面角 B A1A 的余弦,二面角B1A的正弦D A D.【点】本考异面直所成的角与二面角,了利用空向量求空角,是中档.26.已知一个口袋有 m 个白球, n 个黑球( m,n∈N*,n≥2),些球除色外全部相同.将口袋中的球随机的逐个取出,并放入如所示的号1,2,3,⋯,m+n 的抽内,其中第 k 次取出的球放入号k 的抽( k=1,2,3,⋯,m+n).123⋯m+n( 1)求号 2 的抽内放的是黑球的概率 p;( 2)随机量 x 表示最后一个取出的黑球所在抽号的倒数,E( X)是 X 的数学期望,明 E( X)<.【分析】(1)法一:事件 A i表示号i 的抽里放的是黑球,( 2)p=p A=P(A 2| A1)P(A1)+P(A2 |)P(),由此能求出号 2 的抽内放的是黑球的概率.法二:按照同种模型的方法,黑球共有m+n 个位置,故排法有种,除去第二个位置放的黑球,剩下n+m 1 个位置,由此能求出号 2 的抽内放的是黑球的概率.( 2)X 的所有可能取,⋯,,P(x=)=,k=n,n+1,n+2,⋯,n+m,从而(E X)=()=,由此能明(EX)<.【解答】解:(1)解法一:事件A i表示号 i 的抽里放的是黑球,p=p(A2)=P(A2| A1)P( A1)+P(A2|)P()===.解法二:按照同种模型的方法,黑球共有m+n 个位置,故排法有种,除去第二个位置放的黑球,剩下n+m 1 个位置,∴ 号 2 的抽内放的是黑球的概率p==.明:(2)∵ X 的所有可能取,⋯,,P(x=)=,k=n,n+1,n+2,⋯,n+m,∴ E( X) =()==<==?()第30页(共 31页)==,∴ E( X)<.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.第31页(共 31页)。

2017年江苏数学高考试卷含答案和解析

2017年江苏数学高考试卷含答案和解析

2017年江苏数学高考试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D 的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且ta nα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…a n+k﹣+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.1(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠P AC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).1 2 3 …m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏高考数学参考答案与试题解析一.填空题1.(5分)(2017•江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)(2017•江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)(2017•江苏)如图是一个算法流程图:若输入x的值为,则输出y的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)(2017•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)(2017•江苏)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5分)(2017•江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.11.(5分)(2017•江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,].【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5分)(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且ta nα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=3.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1].【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0+6y0+30≤0,即2x0+y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2017•江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f (x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二.解答题15.(14分)(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG⊥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.(14分)(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.(14分)(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)设P(x0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF1的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由Q在椭圆上,则y0=,则y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.(16分)(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG 于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos,根据正弦定理得:=,∴sin,cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19.(16分)(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣+a n+1+…a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.1(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【分析】(1)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;(2)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.【解答】解:(1)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.(16分)(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2017•江苏)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠P AC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠P AC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠P AC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理,考查了推理能力与计算能力,属于中档题.[选修4-2:矩阵与变换]22.(2017•江苏)已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y0),则=,即x0=2y,y0=x,∴x=y0,y=,∴,即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[选修4-4:坐标系与参数方程]23.(2017•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修4-5:不等式选讲]24.(2017•江苏)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd化简,利用三角函数的单调性即可证明.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】25.(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.26.(2017•江苏)已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n 的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).1 2 3 …m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E(X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.。

【江苏省】2017年高考模拟应用题选编数学试卷(五)-答案

【江苏省】2017年高考模拟应用题选编数学试卷(五)-答案
33

2
AD


2 3
AB

1 3
AC
2

4
2
AB

4
AB
AC

1
2
AC
9
9
9
…………10 分
4 7502 4 7501500 ( 1) 1 15002 250000
9
9
29
| AD | 500 ,
1000500 500000 元 所以,建水上通道 AD 还需要 50 万元.
x 70 x 10 20
1 x 70 x

10(x 70) x2 70x 200

10 20

t

70

x,
x [70,140]
,则
tan
BPD

t2

10t 210t 10000

t

10 10000

210

t
因为 t 10000 2 t 10000 200 (当且仅当 t 100 即 x 30 时,取“=”)
2 AQ PA cosPAB 2 3 3 ,
2 由 BAC 60 ,且 AQ AR , ∴ △QAB 为等边三角形,
则 RQ AQ 3 ,
三条街道的总长度 l PQ PR RQ 11 3 2 3 ; (2)设 PAB , 0<<60 , 则 PQ AP sin 2sin , PR AP sin(60- ) 2sin(60- ) cos -sin ,

1 2n1
1
1 2n1

2017年高考江苏卷数学试题解析(参考版).doc

2017年高考江苏卷数学试题解析(参考版).doc

2017年高考江苏卷数学试题解析(参考版)1. 1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【解析】(1)(12)112z i i i i =++=++=3.18【解析】所求人数为300601810000⨯=,故答案为18.4.2- 【解析】由题意212log 216y =+=-,故答案为-2.5.75 【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ππαππααππα+-+=-+===---.故答案为75.6.32 【解析】设球半径为r ,则213223423V r r V r ππ⨯==.故答案为32. 7.59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,学¥科网根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.8.【答案】【解析】右准线方程为x =,渐近线为y x =,则P,Q,1(F,2F,则S ==. 9.【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 10.【答案】30【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.11. 1[1,]2- 【解析】因为31()2e ()ex xf x x f x x -=-++-=-,所以函数()f x 是奇函数, 因为22()32e e 322e e 0x x x x f 'x x x --=-++≥-+⋅≥,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-.14.115.【解析】(1)在平面ABD 内,AB ⊥AD ,EF AD ⊥,则AB EF ∥.∵AB ⊂平面ABC ,EF ⊄平面ABC ,∴EF ∥平面ABC .(2)∵BC ⊥BD ,平面ABD I 平面BCD =BD ,平面ABD ⊥平面BCD ,BC ⊂平面BCD ,∴BC ⊥平面ABD .∵AD ⊂平面ABD ,∴BC ⊥AD .∵AB ⊥AD ,,BC AB ⊂平面ABC ,BC AB B =I ,∴AD ⊥平面ABC ,又AC ⊂平面ABC ,∴AD ⊥AC.16. 【解析】(1)∵a ∥b ,∴3sin 3cos x x =-,又cos 0x ≠,∴3tan 3x =-,∵,∴5π6x =. (2)()π3cos 3sin 23sin()3f x x x x =-=--.∵,∴ππ2π[,]333x -∈-,∴3πsin()123x -≤-≤,∴()233f x -≤≤,当ππ33x -=-,即0x =时,取得最大值,为3;当ππ32x -=,即5π6x =时,取得最小值,为3-.17.【解析】(1)∵椭圆E的离心率为12,∴12ca=①.∵两准线之间的距离为8,∴228ac=②.联立①②得2,1a c==,∴3b=,故椭圆E的标准方程为22143x y+=.(2)设00(,)P x y,则000,0x y>>,由题意得1(1)1(1)xy xyxy xy+⎧=-+⎪⎪⎨-⎪=--⎪⎩,整理得21x xxyy=-⎧⎪-⎨=⎪⎩,∵点00(,)P x y在椭圆E上,∴2200143x y+=,∴222002(1)33y xy-=,∴2200169,77x y==,故点P的坐标是4737(,).18.【解析】(1)记玻璃棒与1CC交点为H,则2230CH AH AC=-=,3sin4HAC∠=,没入水中的部分为1216sin HAC=∠(cm).19.【解析】当{a n}为等差数列时,∵1112n k n k n n n k na a a a a ka--+-++++++++=L L,∴111(21)n k n k n n n n k na a a a a a k a--+-+++++++++=+L L,∴(21)(21)2n k n kna ak k a-+++=+,∴2n k n k na a a-++=.(2)21124n n n n na a a a a--+++++=(2n>,n∈Z),3211236n n n n n n n a a a a a a a ---++++++++=(2n >,n ∈Z ), ∴11448n n n a a a -++=,∴112n n n a a a -++=, ∴数列{a n }是等差数列.20. 【解析】(1)因为2()32f x x ax b '=++,所以()620f x x a ''=+=,所以3ax =-, 所以()03af -=,所以3239a b a =+, 因为24120a b ∆=->,所以3a >. (2)26345-39813b a a a =-+, 23459(27)813y t t t a =-+=> 因为135278t =<,所以min (27)0y y >=,所以b ²>3a .21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域内..........作答..。

2017年江苏省高考数学试卷(含答案解析)

2017年江苏省高考数学试卷(含答案解析)

2017年江苏省高考数学试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x 的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a ﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且t anα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.19.(16分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. 20.(16分)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f′(x )这两个函数的所有极值之和不小于﹣,求a 的取值范围. 二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:(1)∠PAC=∠CAB ; (2)AC 2 =AP•AB .[选修4-2:矩阵与变换] 22.已知矩阵A=,B=.(1)求AB ;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2017•江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)(2017•江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)(2017•江苏)如图是一个算法流程图:若输入x的值为,则输出y 的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)(2017•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)(2017•江苏)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5分)(2017•江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.11.(5分)(2017•江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,] .【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R 上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5分)(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n (m,n∈R),则m+n=3.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1] .【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2017•江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f (x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二.解答题15.(14分)(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.(14分)(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.(14分)(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l 1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F 1重合,不满足题意,当m≠1时,=,=,由l 1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线l1的方程y=﹣(x+1),①直线l2的方程y=﹣(x﹣1),②联立解得:x=﹣m,则Q(﹣m,),由Q在椭圆方程,由对称性可得:=±n2,即m2﹣n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.(16分)(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l 没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos,根据正弦定理得:=,∴sin,cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19.(16分)(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. 【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由“P (k )数列”的定义,则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n ,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,变形整理即可求得2a n =a n ﹣1+a n +1,即可证明数列{a n }是等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1), =2a n +2a n +2a n , =2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:由数列{a n }是“P (2)数列”则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n ,① 数列{a n }是“P (3)数列”a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,② 由①可知:a n ﹣3+a n ﹣2+a n +a n +1=4a n ﹣1,③ a n ﹣1+a n +a n +2+a n +3=4a n +1,④由②﹣(③+④):﹣2a n =6a n ﹣4a n ﹣1﹣4a n +1, 整理得:2a n =a n ﹣1+a n +1, ∴数列{a n }是等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.(16分)(2017•江苏)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2017•江苏)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理,考查了推理能力与计算能力,属于中档题.[选修4-2:矩阵与变换]22.(2017•江苏)已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y0),则=,即x0=2y,y0=x,∴x=y0,y=,∴,即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[选修4-4:坐标系与参数方程]23.(2017•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t 为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s 的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修4-5:不等式选讲]24.(2017•江苏)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd ≤8.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd 化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),即可得出.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】25.(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.26.(2017•江苏)已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E(X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A 2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.。

2017年江苏数学高考试卷含答案和解析,推荐文档

2017年江苏数学高考试卷含答案和解析,推荐文档

2017年江苏数学高考试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为 .2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是 .3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是 .5.(5分)若tan(α﹣)=.则tanα= .6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是 .7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是 .8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是 .9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8= .10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是 .11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是 .12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n= .13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是 .14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是 .二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏高考数学参考答案与试题解析一.填空题1.(5分)(2017•江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为 1 .【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)(2017•江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是 .【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 18 件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)(2017•江苏)如图是一个算法流程图:若输入x的值为,则输出y的值是 ﹣2 .【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)(2017•江苏)若tan(α﹣)=.则tanα= .【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是 .【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)(2017•江苏)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是 .【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是 .【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8= 32 .【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5分)(2017•江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是 30 .【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.11.(5分)(2017•江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是 [﹣1,] .【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5分)(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n= 3 .【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是 [﹣5,1] .【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0+6y0+30≤0,即2x0+y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2017•江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是 8 .【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二.解答题15.(14分)(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG⊥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题. 16.(14分)(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.(14分)(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)设P(x 0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由Q在椭圆上,则y0=,则y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.(16分)(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG 于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos,根据正弦定理得:=,∴sin,cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19.(16分)(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【分析】(1)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;(2)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.【解答】解:(1)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.(16分)(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2017•江苏)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理,考查了推理能力与计算能力,属于中档题.[选修4-2:矩阵与变换]22.(2017•江苏)已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y0),则=,即x0=2y,y0=x,∴x=y0,y=,∴,即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[选修4-4:坐标系与参数方程]23.(2017•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修4-5:不等式选讲]24.(2017•江苏)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd化简,利用三角函数的单调性即可证明.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】25.(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.26.(2017•江苏)已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A)+P(A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E(X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.。

2017年高考数学江苏习题及解析

2017年高考数学江苏习题及解析

精心整理2017年江苏1.(2017年江苏)已知集合A={1,2},B={a,a2+3},若A∩B={1},则实数a的值为.1.1【解析】由题意1∈B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.2.(2017年江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.2.【解析】|z|=|(1+i)(1+2i)|=|1+i||1+2i|=×=.故答案为.3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽V1,6.【解析】设球半径为r,则=πr3)=.故答案为.7.(2017年江苏)记函数f(x)=的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是.7.【解析】由6+x-x2≥0,即x2-x-6≤0,得-2≤x≤3,根据几何概型的概率计算公式得x∈D的概率是=.8.(2017年江苏)在平面直角坐标系xOy中,双曲线-y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.8.2【解析】右准线方程为x=)=,10),渐近线方程为y=±,3)x,设P(,10),,10)),则Q(,10),-,10)),F1(-,0),F2(,0),则S=2×,10)=2.9.(2017·江苏高考)等比数列{a n}的各项均为实数,其前n项和为S n.已知S3=,S6=,则a8=________.[解析]设等比数列{a}的公比为q,则由S6≠2S3,得q≠1,则解得n则a8=a1q7=×27=32.[答案]32易得,,nsin45°-msinα=0,))即,2)n+,10)m=,,,2)n-,10)m=0,))即即得m=,n=,所以m+n=3.13.(2017年江苏)在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上,若·≤20,则点P的横坐标的取值范围是_________.【答案】[5,1]【解析】设P(x,y,)由·≤20易得2x-y+5≤0,由可得A:或B:由2x-y+5≤0得P点在圆左边弧上,结合限制条件-5≤x≤5,可得点P横坐标的取值范围为[5,1].14.(2017·江苏高考)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=其中集合D=,则方程f(x)-lg x=0的解的个数是________.解析:由于f(x)∈[0,1),因此只需考虑1≤x<10的情况,在此范围内,当x∈Q且x?Z时,设x=,q,p∈N*,p≥2且p,q互质.若lg x∈Q,则由lg x∈(0,1),可设lg x=,m,n∈N*,m≥2且m,n互质,n m?Q,故周期x且x=015.(2017)分别在棱求证:((2)AD【分析】(1)先由平面几何知识证明EF∥AB,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC⊥平面ABD,则BC⊥AD,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.【证明】(1)在平面ABC内,∵AB⊥AD,EF⊥AD,∴EF∥AB.又∵EF?平面ABC,AB?平面ABC,∴EF∥平面ABC.(2)∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC?平面BCD,BC⊥BD,∴BC⊥平面ABD.∵AD?平面ABD,∴BC⊥AD.又AB⊥AD,BC∩AB=B,AB?平面ABC,BC?平面ABC,∴AD⊥平面ABC.又∵AC?平面ABC,∴AD⊥AC.16.(2017年江苏)已知向量a=(cos x,sin x),b=(3,-),x∈[0,π].(1)若a(2)记f【解析】∴-cos x若cos x=于是tan x(2)f(x)∵x∈[0,当x+=,当x+=π17.(2017的垂线2l2.(1(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.17.解:(1)设椭圆的半焦距为c.因为椭圆E的离心率为,两准线之间的距离为8,所以=,=8,解得a=2,c=1,于是b==,因此椭圆E的标准方程是+=1.(2)由(1)知,F1(-1,0),F2(1,0).设P(x0,y0),因为P为第一象限的点,故x0>0,y0>0.当x0=1时,l2与l1相交于F1,与题设不符.当x0≠1时,直线PF1的斜率为,直线PF2的斜率为.因为l1⊥PF1,l2⊥PF2,所以直线l1的斜率为-,直线l2的斜率为-,从而直线l1的方程:y=-(x+1),①直线l2的方程:y=-(x-1).②由①②,解得x=-x0,y=,所以Q(-x0,).因为点Q在椭圆上,由对称性,得=±y0,即x02-y02=1或x02+y02=1.又P在椭圆E上,故+=1.由+=1,))解得x=,7),y=,7);+=1,))无解.记玻璃棒的另一端落在GG1上点N处.过G作GK⊥E1G1,K为垂足,则GK=OO1=32.因为EG=14,E1G1=62,所以KG1==24,从而GG1===40.设∠EGG1=α,∠ENG=β,则sinα=sin(+∠KGG1)=cos∠KGG1=. 因为<α<π,所以cosα=-.在△ENG中,由正弦定理可得=,解得sinβ=.因为0<β<,所以cosβ=.于是sin∠NEG=sin(π-α-β)=sin(α+β)=sinαcosβ+cosαsinβ=×+(-)×=.记EN与水面的交点为P2,过P2作P2Q2⊥EG,Q2为垂足,则P2Q2⊥平面EFGH,故P2Q2=12,从而EP2==20.答:玻璃棒l没入水中部分的长度为20cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)19.(2017年江苏)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.20.(2017年江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于-,求a的取值范围.20.解:(1)由f(x)=x3+ax2+bx+1,得f′(x)=3x2+2ax+b=3(x+)2+b-.当x=-时,f′(x)有极小值b-.因为f′(x)的极值点是f(x)的零点.所以f(-)=-+-+1=0,又a>0,故b=+.因为f(x)有极值,故f′(x)=0有实根,从而b-=(27-a3)≤0,即a≥3.当a=3时,f′(x)>0(x≠-1),故f(x)在R上是增函数,f(x)没有极值;当a>3时,f′(x)=0有两个相异的实根x1=,3),x2=,3).列表如下:因为h(6)=-,于是h(a)≥h(6),故a≤6.因此a的取值范围为(3,6].21.(2017年江苏)A.[选修4-1:几何证明选讲]如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2=AP·AB.解:(1)因为PC切半圆O于点C,所以∠PCA=∠CBA,因为AB为半圆O的直径,所以∠ACB=90°.因为AP⊥PC,所以∠APC=90°,所以∠APC=∠CBA.(2)由(1)知,△APC∽△ACB,故=,即AC2=AP·AB.B.[选修4-2:矩阵与变换]已知矩阵A=[0110],B=[1002].(1)求AB;).所以点P到直线l的距离d=s+8|,)=)2+4,).当s=时,d min=,5).所以当点P的坐标为(4,4)时,曲线C上点P到直线l的距离的最小值为,5).D.[选修4-5:不等式选讲]已知a,b,c,d为实数,且a2+b2=4,c2+d2=16.求证:ac+bd≤8.【证明】由柯西不等式得(ac+bd)2≤(a2+b2)(c2+d2).因为a2+b2=4,c2+d2=16,所以(ac+bd)2≤64,所以ac+bd≤8.22.(2017年江苏)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.22.解:在平面ABCD内,过点A作AE⊥AD,交BC于点E.因为AA1 平面ABCD,所以AA1⊥AE,AA1⊥AD.k的(1)试求编号为2的抽屉内放的是黑球的概率P;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明:E(X)<.23.解:(1)编号为2的抽屉内放的是黑球的概率P为:P==.(2)随机变量X的概率分布为所以E(X)<)=)=(1+C n-2n-1+C n-2n+…+C n-2m+n-2)=(C n-1n-1+C n-2n-1+C n-2n+…+C n-2m+n-2) =(C n-1n+C n-2n+…+C n-2m+n-2) =…=(C n-1m+n-2+C n-2m+n-2)。

【江苏省】2017年高考模拟应用题选编数学试卷(五)-答案

【江苏省】2017年高考模拟应用题选编数学试卷(五)-答案

江苏省2017年高考模拟应用题大全数学试卷(五)答 案1、解(1)延长BA 至'B ,使得'BA AB =连接'DB 交AC 于P ,此时P 点到两楼顶,B D 距离之和最短, 由'APB CPD ∆∆∽∴70'1020AP PC AP APAB CD -=⇒=703AP m =所以P 点在距AB 楼703m 处,使得P 点到两楼顶,B D 距离之和最短.(2)设()AP x m =,则70()PC x m =-,tan 10AP x B AB ∠==,70tan 20PC xD CD -∠==, 此时270tan tan 10(70)1020tan()701tan tan 7020011020x x B D x B D x x B D x x -+∠+∠+∠+∠===--∠∠-+-⋅, 令70,[70,140]t x x =+∈,则21010tan 1000021010000210t BPD t t t t∠==-++-,因为10000200t t +≥=(当且仅当100t =即30x =时,取“=”) 所以1110000210t t ≤-+-或1010000210t t>+-,即tan 1BPD ∠≤-或tan 0BPD ∠>要使张角BPD ∠最大,即要使tan BPD ∠为负数且取负数时的最大值, 所以tan 1BPD ∠=-,此时30x =.2.(本题共16分,其中卷面分1分) 解:(1)在Rt PMA △中,tan AMAPθ=,得2tan AM θ=, 所以122tan 2tan 2PMA S θθ==△ 由πAPM MPN BPN ∠+∠+∠=,APM θ∠=,π2MPN ∠=在Rt PNB △中,tan BP BN θ=,得1tan BN θ=, 所以11112tan 2tan PMA S θθ==△ 所以绿化草坪面积1()2PAM PBN S AD BC AB S S =+--△△11132tan 22tan θθ=--11(2tan )2tan θθ+,ππ[,]63θ∈ …………4分又因为11112tan 22tan 22tan 2tan θθθθ+≥=当且仅当12tan 2tan θθ=,即1tan 2θ=.此时ππ[,]63θ∈…………6分所以绿化草坪面积的最大值为2)-平方百米. …………7分(2)方法一:在Rt PMA △中,cos AP PM θ=,得2cos PM θ=, 由πAPM MPN BPN ∠+∠+∠=,APM θ∠=,π2MPN ∠=在Rt PNB △中,sin BP PN θ=,得1sin PN θ=, 所以总美化费用为22cos sin y θθ=+,ππ[,]63θ∈ …………10分 3322222sin 2cos 2(sin cos )cos sin sin cos y θθθθθθθθ-'=-=22222(sin cos )(sin sin cos cos )sin cos θθθθθθθθ-++=令0y '=得πθ=列表如下所以当4θ=时,即2,1AM BM ==时总美化费用最低为4万元. …………15分方法二:在Rt PMA △中,cos AP PM θ=,得2cos PM θ=, 由πAPM MPN BPN ∠+∠+∠=,APM θ∠=,π2MPN ∠=在Rt PNB △中,sin BP PN θ=,得1sin PN θ=, 所以总美化费用为22cos sin y θθ=+,ππ[,]63θ∈ …………10分θθθθθθcos sin )cos (sin 2sin 2cos 2+=+=y令sin cos ,t t θθ=+∈得21sin cos 2t θθ-= 所以241ty t =-,22244'0(1)t y t +=-<-所以241ty t =-在t ∈上是单调递减所以当t π4θ=时,即2,1AM BM ==时总美化费用最低为4万元.3.解:(1)∵()f x =, ∴()0f x '=>,∴函数()f x =是区间[1,5]上的单调递增函数,满足标准①,…………2分当[1,4)x ∈时,1()2f x x x ==>,不满足标准②,综上所述:()f x =不符合奖励方案.…………4分(2)∵函数()ln f x x =符合奖励标准, ∴()f x kx ≤,即ln x kx ≤,∴ln xk x≥, …………6分∴设ln ()xg x x =,[1,5]x ∈,∴21ln ()xg x x -'=,令()0g x '=,∴e x =,…………8分∴ln ()x g x x =的极大值是1(e)eg =,且为最大值, ∴1ek ≥,…………10分又∵函数()ln f x x =,[1,5]x ∈,∴1()0f x x'=>,∴函数()f x 在区间[1,5]上单调递增,满足标准①, ∵[1,5]x ∈,∴()ln 0f x x =≥,综上所述:实数k 的最小值是1e. …………12分4.解:(1)由P 位于弧BC 的中点,在P 位于BAC ∠的角平分线上, 则1sin 2sin30212PQ PR PA PAB ==∠=⨯︒=⨯=,cos 2AQ PA PAB =∠== 由60BAC ∠=︒,且AQ AR =, ∴QAB △为等边三角形,则RQ AQ ==三条街道的总长度112l PQ PR RQ =++=++= (2)设PAB θ∠=,060θ︒<<,则sin 2sin PQ AP θθ==,sin 602sin 60cos sin PR AP θθθθ=︒=︒=(-)(-)-,cos 2cos AQ AP θθ==,cos 602cos 60cos AR AP θθθθ=︒=︒=(-)(-)由余弦定理可知:2222cos60RQ AQ AR AQ AR =+︒﹣,222cos cos 22cos cos cos60θθθθθθ=++⨯+︒()()-(), 3=,则RQ =三条街道每年能产生的经济总效益W ,300200400W PQ PR RQ =⨯+⨯+⨯3002sin sin 200400sin θθθθθ=⨯+⨯+=++-)2002sin θθ=+(),θϕ=++()tan ϕ当sin 1θϕ+=()时,W 取最大值,最大值为1222, 三条街道每年能产生的经济总效益最高约为1222万元.5.解:(1)设AB 长为x 米,AC 长为y 米,依题意得8004001200000x y +=, 即23000x y +=,…………2分1sin1202ABC S x y =︒△4x y =…………4分2322()882x y x y +=≤=2m 当且仅当2x y =,即750,1500x y ==时等号成立,所以当ABC △的面积最大时,AB 和AC 的长度分别为750米和1500米. …………6分(2)在(1)的条件下,因为750,1500AB m AC m ==. 由2133AD AB AC =+ …………8分得222133AD AB AC ⎛⎫=+ ⎪⎝⎭22441999AB AB AC AC =++ …………10分 2244117507501500()15009929=⨯+⨯⨯⨯-+⨯250000= ||500AD ∴=, …………12分1000500500000⨯=元所以,建水上通道AD 还需要50万元.…………14分解法二:在ABC △中,BC ===…………8分在ABD △中,222cos 2AB BC AC B AB AC +-===…………10分在ABD △中,AD =277)500==…………12分1000500500000⨯=元所以,建水上通道AD 还需要50万元.…………14分解法三:以A 为原点,以AB 为x 轴建立平面直角坐标系,则(0,0)A ,(750,0)B(1500cos120,1500sin120)C ︒︒,即(C -,设00(,)D x y…………8分由2CD DB =,求得00250x y =⎧⎪⎨=⎪⎩D…………10分所以,500AD…………12分1000500500000⨯=元所以,建水上通道AD 还需要50万元.…………14分 6.解:(1)由11()22f =,可得111log 222a -=,解之得2a =.…………2分由32种情形等可能,故1(1,2,,32)32k P k ==, …………4分所以21132(log )53232H =⨯-=, 答:“谁被选中”的信息熵为5.…………6分 (2)n A 获得冠军的概率为111111111+)1(1)24222n n n ----++=--=(,…………8分当1,2,k =,1n -时,2()2log 22k k k k k f p --=-=,又11()2n n n f p --=, 故111231124822n n n n H ----=+++++, …………11分1112211+248222n n n n n n H ----=++++, 以上两式相减,可得11111111+1224822n n H --=+++=-,故422nH =-, 答:“谁获得冠军”的信息熵为422n-.…………14分7.解:(1)在ABC △中,由正弦定理可得2626AC =,BC == ∴ABC △的周长为617.60+米(2)在ABC △中,由余弦定理:2222602cos60c a b ab ==+︒-, ∴2236a b ab +=-,∴22362ab a b ab +=+≥,即36ab ≤, ∴1π3sin 23ABC S AC BC ==≤△ 此时a b =,ABC △为等边三角形,∴60θ=︒,ABC max S =△() 8.略9.(1)12341234()()96530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.10.解:(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处.因为40AC AM ==,所以30MC =,从而3sin 4MAC ∠=, 记AM 与水面的焦点为1P ,过1P 作111,PQ AC Q ⊥为垂足, 则11PQ ⊥平面ABCD ,故1112PQ =, 从而11116sin PQ AP MAC==∠答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分冶”理解为“水面以上部分冶”,则结果为24cm )(2)如图,O ,1O 是正棱台的两底面中心.由正棱台的定义,1OO ⊥平面EFGH ,所以平面11E EGG ⊥平面EFGH ,1O O EG ⊥. 同理,平面11E EGG ⊥平面1111E F G H ,111O O E G ⊥. 记玻璃棒的另一端落在1GG 上点N 处.过G 作1GK E G ⊥,K 为垂足,则132GK OO ==.因为14EG =,1162E G =,所以1KG =6214242-=,从而140GG =. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=.于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠. 记EN 与水面的交点为2P ,过2P 作22P Q EG ⊥,2Q 为垂足,则22P Q ⊥平面EFGH ,故2212P Q =,从而2EP =2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm .。

2017年江苏省高考数学模拟应用题选编(三)

2017年江苏省高考数学模拟应用题选编(三)

2017年江苏省高考数学模拟应用题大全(三)1、(江苏省连云港、徐州、宿迁2017届高三年级第三次模拟考试)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,且12AB AD ≥.设EOF θ∠=,透光区域的面积为S .(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值 越大越好.当该比值最大时,求边AB 的长度.2、(江苏省南京、淮安市2017届高三第三次模拟考试数学试题)在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10米;三角形水域ABC 的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.3、(江苏省南京师范大学附属中学2017届高三考前模拟考试数学试题)园林管理处拟在公园某区域规划建设一半径为r 米,圆心角为θ(弧度)的扇形观景水池,其中O 为扇形AOB 的圆心,同时紧贴水池周边建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平米400元,步道造价为每米1000元.(1)当r 和θ分别为多少时,可使得广场面积最大,并求出最大面积;A BCDFEO(第1题)G θ(第2题图)(2)若要求步道长为105米,则可设计出的水池最大面积是多少.4、(江苏省南京市、盐城市2017届高三年级第二次模拟考试)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a ≥b .(1)当a =90时,求纸盒侧面积的最大值;(2)试确定a ,b ,x 的值,使得纸盒的体积最大,并求出最大值.5、(江苏省南通、扬州、泰州2017届高三第三次调研考试数学试题)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C -D -E -F ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参 观线路的费用为()f t 万元,经测算150()118 2.3t f t t t ⎧<⎪=⎨⎪-<<⎩,,≤,(1)用t 表示线段EF 的长; (2)求修建该参观线路的最低费用.(第4题图)DCB AO(第5题)6、(江苏省南通、扬州、泰州、徐州、淮安、宿迁2017届高三二模数学试题)一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击.已知缉私艇的最 大航速是走私船最大航速的3倍.假设缉私艇和走私船均按直线方向以最大航速航行. (1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截 成功;(参考数据:sin17°≈5.7446)(2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.7、(江苏省如皋市2017届高三下学期语数英学科联考(二)数学试题)如图所示,在一半径等于1千米的圆弧及直线段道路AB 围成的区域内计划建一条商业街,其起点和终点均在道路AB 上,街道由两条平行于对称轴l 且关于l 对称的两线段EF 、CD ,及夹在两线段EF 、CD 间的弧组成.若商业街在两线段EF 、CD 上收益为每千米2a 元,在两线段EF 、CD 间的弧上收益为每千米a 元.已知2AOB π∠=,设2EOD θ∠=,(1) 将商业街的总收益()f θ表示为θ的函数; (2) 求商业街的总收益的最大值.北(第6题)8、(江苏省苏州大学2017届高考数学考前指导卷 1)如图,某地区有一块(百米),植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为.(1(2,若计划9、舞,试求这块圆形广场的最大面积.(10、(江苏省泰州市2017届高三考前参考题数学试题)甲、乙分别位于扇形居民区弧⌒AB合)处建造一个大型快件集散中心,经过前期的调查,发现可以分别用抗拒系数⌒AB的中点时,(1(211、(上海市崇明区2017届高三第二次(4月)模拟考试数学试卷)某校兴趣小组在如图所示的矩形区域ABCD内举行机器人拦截挑战赛,在E器人甲,同时在A处按某方向释放机器人乙,设机器人乙在Q处成功拦截机器人甲.若点Q在矩形区域ABCD内(包含边界),则挑战成功,否则挑战失败.E为A B中点,机器人乙的速度是机器人甲的速度的2倍,比(1AD足够长,则如何设置机器人乙的释放角度才能挑战成功?(结(2)如何设计矩形区域ABCD的宽AD的长度,甲?12、(江苏省学大教育2017届高考数学密2)13、(江苏省学大教育2017届高考数学密1)某单位为端正工作人员仪容,在单位设置一面仪容镜(仪容镜为平面镜),如图,仪容2米,(1(2答案1、(12分分,所以定义域为10分12分所以,所以,故有最大,此时(2)1m .………16分2、(1)因为看台Ⅰ的面积是看台Ⅱ的面积的3倍,所以AB =3AC .在△ABC 中,S △ABC =12AB •AC •sin θ=4003,所以AC 2=800sin θ . …………………… 3分由余弦定理可得BC 2=AB 2+AC 2-2AB •AC •cos θ,=4AC 2-23AC 2 cos θ.=(4-23cos θ) 800sin θ ,即BC =(4-23cos θ)•800sin θ =402-3cos θsin θ.所以 BC =402-3cos θsin θ ,θ∈(0,π). …………………… 7分(2)设表演台的总造价为W 万元.因为CD =10m ,表演台每平方米的造价为0.3万元,所以W =3BC =1202-3cos θsin θ ,θ∈(0,π). …………………… 9分记f (θ)=2-3cos θsin θ,θ∈(0,π).则f ′(θ)=3-2cos θsin 2θ. …………………… 11分由f ′(θ)=0,解得θ=π6.当θ∈(0,π6)时,f ′(θ)<0;当θ∈(π6,π)时,f ′(θ)>0.故f (θ)在(0,π6)上单调递减,在(π6,π)上单调递增,从而当θ=π6 时,f (θ)取得最小值,最小值为f (π6)=1.所以W min =120(万元).答:表演台的最低造价为120万元. …………………… 14分34、解:(1)因为矩形纸板ABCD 的面积为3600,故当a =90时,b =40,从而包装盒子的侧面积S =2×x (90-2x )+2×x (40-2x )=-8x 2+260x ,x ∈(0,20) . ………………… 3分因为S =-8x 2+260x =-8(x -654)2+42252,故当x =654 时,侧面积最大,最大值为 42252 平方厘米.答:当x =654 时,纸盒的侧面积的最大值为42252平方厘米. ………………… 6分(2)包装盒子的体积V =(a -2x )(b -2x ) x =x [ab -2(a +b )x +4x 2],x ∈(0,b 2),b ≤60.…………… 8分V =x [ab -2(a +b )x +4x 2]≤x (ab -4abx +4x 2)=x (3600-240x +4x 2)=4x 3-240x 2+3600x . ………………… 10分当且仅当a =b =60时等号成立.设f (x )=4x 3-240x 2+3600x ,x ∈(0,30).则f ′ (x )=12(x -10)(x -30).于是当0<x <10时,f ′ (x )>0,所以f (x )在(0,10)上单调递增;当10<x <30时,f ′ (x )<0,所以f (x )在(10,30)上单调递减.因此当x =10时,f (x )有最大值f (10)=16000, ……………… 12分 此时a =b =60,x =10.答:当a =b =60,x =10时纸盒的体积最大,最大值为16000立方厘米.……………… 14分5、【解】设DE 与半圆相切于点QDQ=QE,以OF所在直线为x轴,OQ所在直线为y轴,建立如图所示的平面直角坐标系xOy.(1)方法一:由题意得,点E……1分设直线EF,因为直线EF与半圆相切,所以圆心O到直线EF (3)分F……5分即.……7分方法二:切圆所以Rt△EHF≌Rt△OGF,……3分……5分所以.……7分(2①所以当时,取最小值为……11分②……13分且当时,;当时,调递增.由①②知,取最小值为……15分答:(1(2)修建该参观线路的最低费用为万元.……16分6、解:(1,……2分.……5分又B到边界线l……8分(2AB C图甲走私……12分1.55所以缉私艇能在领海内截住走私船.……14分答:(1(2)缉私艇总能在领海内成功拦截走私船.……16分18.7、1)①3分②6分由①②8分(2)①列表:11分所以在时单调递减所以…………………14分10分的面积最大值为分⌒AB(2由(119.11、解:(1分分.....................................................6分(2)以所在直线为轴,中垂线为分分6为半径的上半圆在矩形区域人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲...........................................14分12、13由正弦定理,)2,21(tan 2321sin )32sin(sin sin ∈+=-==C C C C B AB AC π即的取值范围为AB AC 的取值范围为(2,21)(2)易知AD A A 2='、又由三角形ABC 的面积A AC AB AD BC S sin 2121⋅=⋅=,可得AC AB AD ⋅=43由余弦定理,AC AB AC AB AC AB A AC AB AC AB BC ⋅=⋅-⋅≥⋅⋅-+==2cos 24222, 解得4≤⋅AC AB ,当且仅当2==AC AB 时。

2017年高考真题——数学(江苏卷) 含解析

2017年高考真题——数学(江苏卷) 含解析

绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合{}=1,2A ,{}=+2,3B a a ,若A B ={1}则实数a 的值为________2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是5.若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α= 6.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下面及母线均相切。

记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是7.记函数()f x =的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈ D 的概率是 8.在平面直角坐标系xoy k ,双曲线2213x y -= 的右准线与学科&网它的两条渐近线分别交于点P,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是9.等比数列{}n a 的各项均为实数,其前n 项的和为Sn ,已知36763,44S S ==, 则8a =10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是11.已知函数()3xx 12x+e -e -f x =x ,其中e 是自然数对数的底数,若()()2a-1+2a ≤f f 0,则实数a 的取值范围是 。

2017年江苏省高考数学试卷(真题详细解析)

2017年江苏省高考数学试卷(真题详细解析)

2017年江苏省高考数学试卷(真题详细解析)2017年江苏省高考数学试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{an }的各项均为实数,其前n项和为Sn,已知S3=,S6=,则a8= .10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n ∈R),则m+n= .13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l 没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l 没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{an }满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…+an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.(1)证明:等差数列{an}是“P(3)数列”;(2)若数列{an }既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求实数a的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为 1 .【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,当a=1时,A={1,1},B={1,4},成立;a2+3=1无解.综上,a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18 件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60件进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是﹣2 .【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,=2﹣=﹣2,所以y=2+log2故答案为:﹣2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=±x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.(5分)等比数列{an }的各项均为实数,其前n项和为Sn,已知S3=,S6=,则a8= 32 .【分析】设等比数列{an }的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{an}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30 .【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,] .【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)由f(﹣(a﹣1))=﹣f(a﹣1),f(2a2)≤f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n ∈R),则m+n= 3 .【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin (α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1] .【分析】根据题意,设P(x0,y),由数量积的坐标计算公式化简变形可得2x+y+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y),则有x2+y2=50,=(﹣12﹣x0,﹣y)•(﹣x,6﹣y)=(12+x)x﹣y(6﹣y)=12x+6y+x2+y2≤20,化为:12x0﹣6y+30≤0,即2x0﹣y+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x=1,结合图形分析可得:点P的横坐标x的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y的关系式.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8 .【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx 图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊄平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y2=x2﹣1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x0,y),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF1的斜率=,则直线l2的斜率k1=﹣,直线l1的方程y=﹣(x+1),联立,解得:,则Q(﹣x,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y=,∴y02=x2﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F1重合,不满足题意,当m≠1时,=,=,由l1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线l1的方程y=﹣(x+1),①直线l2的方程y=﹣(x﹣1),②联立解得:x=﹣m,则Q(﹣m,),由Q在椭圆方程,由对称性可得:=±n2,即m2﹣n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l 没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l 没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos∠EGM=﹣,根据正弦定理得:=,∴sin∠EMG=,cos∠EMG=,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19.(16分)对于给定的正整数k,若数列{an }满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…+an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.(1)证明:等差数列{an}是“P(3)数列”;(2)若数列{an }既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.【分析】(1)由题意可知根据等差数列的性质,an﹣3+an﹣2+an﹣1+an+1+an+2+an+3=(an﹣3+an+3)+(an﹣2+an+2)+(an﹣1+an+1)═2×3an,根据“P(k)数列”的定义,可得数列{an}是“P(3)数列”;(2)由已知条件结合(1)中的结论,可得到{an}从第3项起为等差数列,再通过判断a2与a3的关系和a1与a2的关系,可知{an}为等差数列.【解答】解:(1)证明:设等差数列{an }首项为a1,公差为d,则an=a1+(n﹣1)d,则an﹣3+an﹣2+an﹣1+an+1+an+2+an+3,=(an﹣3+an+3)+(an﹣2+an+2)+(an﹣1+an+1),=2an +2an+2an,=2×3an,∴等差数列{an}是“P(3)数列”;(2)证明:当n≥4时,因为数列{an }是P(3)数列,则an﹣3+an﹣2+an﹣1+an+1+an+2+an+3=6an,①因为数列{an }是“P(2)数列”,所以an﹣2+an﹣1+an+1+an+2=4an,②则an﹣1+an+an+2+an+3=4an+1,③,②+③﹣①,得2an =4an﹣1+4an+1﹣6an,即2an=an﹣1+an+1,(n≥4),因此n≥4从第3项起为等差数列,设公差为d,注意到a2+a3+a5+a6=4a4,所以a2=4a4﹣a3﹣a5﹣a6=4(a3+d)﹣a3﹣(a3+2d)﹣(a3+3d)=a3﹣d,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{an}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求实数a的取值范围.【分析】(Ⅰ)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(Ⅱ)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(Ⅲ)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0的实根,所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,所以b=+(a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理,考查了推理能力与计算能力,属于中档题.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y),则=,即x0=2y,y=x,∴x=y,y=,∴,即x02+y2=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s 的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),即可得出.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的余弦值为,则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X )<.【分析】(1)法一:设事件Ai 表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P (),由此能求出编号为2的抽屉内放的是黑球的概率.法二:按照同种模型的方法,对黑球共有m+n 个位置,故总排法有种,除去第二个位置放的黑球,还剩下n+m﹣1个位置,由此能求出编号为2的抽屉内放的是黑球的概率.(2)X 的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E(X)<.【解答】解:(1)解法一:设事件Ai表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P ()===.解法二:按照同种模型的方法,对黑球共有m+n个位置,故总排法有种,除去第二个位置放的黑球,还剩下n+m﹣1个位置,∴编号为2的抽屉内放的是黑球的概率p==.证明:(2)∵X 的所有可能取值为,…,,第31页(共32页)P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==•()==,∴E(X )<.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.第32页(共32页)。

2017年江苏卷高考数学试卷及参考答案与试题解析

2017年江苏卷高考数学试卷及参考答案与试题解析

2017年江苏卷高考数学试卷及参考答案与试题解析一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α-)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线-y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{an }的各项均为实数,其前n项和为Sn,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数f(x)=x3-2x+e x-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)-lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D 不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,-),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{an }满足:an-k+an-k+1+…+an-1+an+1+…+an+k-1+an+k =2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.(1)证明:等差数列{an}是“P(3)数列”;(2)若数列{an }既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于-,求实数a的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的…,m+n).p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为 1 .【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,当a=1时,A={1,1},B={1,4},成立;a2+3=1无解.综上,a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1-2+3i=-1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18 件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60件进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是-2 .【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2-=-2,故答案为:-2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)若tan(α-)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α-)===∴6tanα-6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果. 【解答】解:设球的半径为R,则球的体积为:R 3,圆柱的体积为:πR 2•2R =2πR 3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)记函数f(x)=定义域为D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 .【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可. 【解答】解:由6+x -x 2≥0得x 2-x -6≤0,得-2≤x ≤3, 则D =[-2,3],则在区间[-4,5]上随机取一个数x,则x ∈D 的概率P ==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)在平面直角坐标系xOy 中,双曲线-y 2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q 坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线-y 2=1的右准线:x =,双曲线渐近线方程为:y =±x,所以P(,),Q(,-),F1(-2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.(5分)等比数列{an }的各项均为实数,其前n项和为Sn,已知S3=,S6=,则a8=32 .【分析】设等比数列{an }的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{an}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30 .【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.11.(5分)已知函数f(x)=x3-2x+e x-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0.则实数a的取值范围是[-1,] .【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1-a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3-2x+e x-的导数为:f′(x)=3x2-2+e x+≥-2+2=0,可得f(x)在R上递增;又f(-x)+f(x)=(-x)3+2x+e-x-e x+x3-2x+e x-=0,可得f(x)为奇函数,则f(a-1)+f(2a2)≤0,即有f(2a2)≤-f(a-1)由f(-(a-1))=-f(a-1),f(2a2)≤f(1-a),即有2a2≤1-a,解得-1≤a≤,故答案为:[-1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n= 3 .【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα-sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m-n,=0+n,解得n=,m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.(5分)在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[-5,1] .【分析】根据题意,设P(x0,y),由数量积的坐标计算公式化简变形可得2x+y+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y),则有x2+y2=50,=(-12-x0,-y)•(-x,6-y)=(12+x)x-y(6-y)=12x+6y+x2+y2≤20,化为:12x0-6y+30≤0,即2x0-y+5≤0,表示直线2x-y+5=0以及直线上方的区域,联立,解可得x0=-5或x=1,结合图形分析可得:点P的横坐标x的取值范围是[-5,1],故答案为:[-5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y的关系式.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)-lgx=0的解的个数是8 .【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)-lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二.解答题15.(14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D 不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊄平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.(14分)已知向量=(cosx,sinx),=(3,-),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=-,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,-),∥,∴-cosx=3sinx,∴tanx=-,∵x∈[0,π],∴x=,(2)f(x)==3cosx-sinx=2(cosx-sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴-1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值-2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2-c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x2-1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标. 【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2-c2=3,∴椭圆的标准方程:;(2)方法一:设P(x0,y),则直线PF2的斜率=,则直线l2的斜率k2=-,直线l2的方程y=-(x-1),直线PF1的斜率=,则直线l2的斜率k1=-,直线l1的方程y=-(x+1),联立,解得:,则Q(-x,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y=,∴y02=x2-1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F1重合,不满足题意, 当m≠1时,=,=,由l1⊥PF1,l2⊥PF2,则=-,=-,直线l1的方程y=-(x+1),①直线l2的方程y=-(x-1),②联立解得:x=-m,则Q(-m,),由Q在椭圆方程,由对称性可得:=±n2,即m2-n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N, 在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD-A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH-E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1 ,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos∠EGM=-,根据正弦定理得:=,∴sin∠EMG=,cos∠EMG=,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19.(16分)对于给定的正整数k,若数列{an }满足:an-k+an-k+1+…+an-1+an+1+…+an+k-1+an+k =2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.(1)证明:等差数列{an}是“P(3)数列”;(2)若数列{an }既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.【分析】(1)由题意可知根据等差数列的性质,an-3+an-2+an-1+an+1+an+2+an+3=(an-3+an+3)+(an-2+an+2)+(an-1+an+1)═2×3an,根据“P(k)数列”的定义,可得数列{an}是“P(3)数列”;(2)由已知条件结合(1)中的结论,可得到{an }从第3项起为等差数列,再通过判断a2与a3的关系和a1与a2的关系,可知{an}为等差数列.【解答】解:(1)证明:设等差数列{an }首项为a1,公差为d,则an=a1+(n-1)d,则an-3+an-2+an-1+an+1+an+2+an+3,=(an-3+an+3)+(an-2+an+2)+(an-1+an+1),=2an +2an+2an,=2×3an,∴等差数列{an}是“P(3)数列”;(2)证明:当n≥4时,因为数列{an }是P(3)数列,则an-3+an-2+an-1+an+1+an+2+an+3=6an,①因为数列{an }是“P(2)数列”,所以an-2+an-1+an+1+an+2=4an,②则an-1+an+an+2+an+3=4an+1,③,②+③-①,得2an =4an-1+4an+1-6an,即2an=an-1+an+1,(n≥4),因此n≥4从第3项起为等差数列,设公差为d,注意到a2+a3+a5+a6=4a4,所以a2=4a4-a3-a5-a6=4(a3+d)-a3-(a3+2d)-(a3+3d)=a3-d,因为a1+a2+a4+a5=4a3,所以a1=4a3-a2-a4-a5=4(a2+d)-a2-(a2+2d)-(a2+3d)=a2-d,也即前3项满足等差数列的通项公式,所以{an}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于-,求实数a的取值范围.【分析】(Ⅰ)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=-,从而f(-)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(Ⅱ)通过(1)构造函数h(a)=b2-3a=-+=(4a3-27)(a3-27),结合a>3可知h(a)>0,从而可得结论;(Ⅲ)通过(1)可知f′(x)的极小值为f′(-)=b-,利用韦达定理及完全平方关系可知y =f(x)的两个极值之和为-+2,进而问题转化为解不等式b-+-+2=-≥-,因式分解即得结论.【解答】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=-.由于当x>-时g′(x)>0,g(x)=f′(x)单调递增;当x<-时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=-,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(-)=0,即-+-+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0的实根,所以4a2-12b≥0,即a2-+≥0,解得a≥3,所以b=+(a>3).(Ⅱ)证明:由(1)可知h(a)=b2-3a=-+=(4a3-27)(a3-27), 由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′(-)=b-,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2-3x1x2]+a[(x1+x2)2-2x1x2]+b(x1+x2)+2=-+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于-,所以b-+-+2=-≥-,因为a>3,所以2a3-63a-54≤0,所以2a(a2-36)+9(a-6)≤0,所以(a-6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a-6≤0,解得a≤6,所以a的取值范围是(3,6].【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°-∠ACP,∠CAB=90°-∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理,考查了推理能力与计算能力,属于中档题.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y),则=,即x0=2y,y=x,∴x=y,y=,∴,即x02+y2=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x-2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd 化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),即可得出.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α-β)≤8.当且仅当cos(α-β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号. ∴-8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】25.如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B-A1D-A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD, ∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A 1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B-A1D-A的余弦值为,则二面角B-A1D-A的正弦值为.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的…,m+n).p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.【分析】(1)法一:设事件Ai 表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.法二:按照同种模型的方法,对黑球共有m+n个位置,故总排法有种,除去第二个位置放的黑球,还剩下n+m-1个位置,由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E(X)<.【解答】解:(1)解法一:设事件Ai表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P()===.解法二:按照同种模型的方法,对黑球共有m+n个位置,故总排法有种,除去第二个位置放的黑球,还剩下n+m-1个位置,∴编号为2的抽屉内放的是黑球的概率p==.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.。

2017年高考江苏卷数学试题解析参考版

2017年高考江苏卷数学试题解析参考版

2017年高考江苏卷数学试题解析(参考版)1. 1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【解析】(1)(12)112z i i i i =++=++=3.18【解析】所求人数为300601810000⨯=,故答案为18.4.2- 【解析】由题意212log 216y =+=-,故答案为-2.5.75 【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ππαππααππα+-+=-+===---.故答案为75.6.32 【解析】设球半径为r ,则213223423V r r V r ππ⨯==.故答案为32. 7.59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,学¥科网根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.8.【答案】【解析】右准线方程为x =,渐近线为y x =,则P,Q,1(F,2F,则S ==. 9.【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 10.【答案】30【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.11. 1[1,]2- 【解析】因为31()2e ()ex xf x x f x x -=-++-=-,所以函数()f x 是奇函数, 因为22()32e e 322e e 0x x x x f 'x x x --=-++≥-+⋅≥,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-.14.115.【解析】(1)在平面ABD 内,AB ⊥AD ,EF AD ⊥,则AB EF ∥.∵AB ⊂平面ABC ,EF ⊄平面ABC ,∴EF ∥平面ABC . (2)∵BC ⊥BD ,平面ABD平面BCD =BD ,平面ABD ⊥平面BCD ,BC ⊂平面BCD ,∴BC ⊥平面ABD .∵AD ⊂平面ABD ,∴BC ⊥AD .∵AB ⊥AD ,,BC AB ⊂平面ABC ,BC AB B =,∴AD ⊥平面ABC ,又AC ⊂平面ABC ,∴AD ⊥AC.16. 【解析】(1)∵a ∥b ,∴3sin 3cos x x =-,又cos 0x ≠,∴3tan 3x =-,∵,∴5π6x =. (2)()π3cos 3sin 23sin()3f x x x x =-=--.∵,∴ππ2π[,]333x -∈-,∴3πsin()123x -≤-≤,∴()233f x -≤≤,当ππ33x -=-,即0x =时,取得最大值,为3;当ππ32x -=,即5π6x =时,取得最小值,为3-.17.【解析】(1)∵椭圆E的离心率为12,∴12ca=①.∵两准线之间的距离为8,∴228ac=②.联立①②得2,1a c==,∴3b=,故椭圆E的标准方程为22143x y+=.(2)设00(,)P x y,则000,0x y>>,由题意得1(1)1(1)xy xyxy xy+⎧=-+⎪⎪⎨-⎪=--⎪⎩,整理得21x xxyy=-⎧⎪-⎨=⎪⎩,∵点00(,)P x y在椭圆E上,∴2200143x y+=,∴222002(1)33y xy-=,∴2200169,77x y==,故点P的坐标是4737(,).18.【解析】(1)记玻璃棒与1CC交点为H,则2230CH AH AC=-=,3sin4HAC∠=,没入水中的部分为1216sin HAC=∠(cm).19.【解析】当{a n}为等差数列时,∵1112n k n k n n n k na a a a a ka--+-++++++++=,∴111(21)n k n k n n n n k na a a a a a k a--+-+++++++++=+,∴(21)(21)2n k n kna ak k a-+++=+,∴2n k n k na a a-++=.(2)21124n n n n na a a a a--+++++=(2n>,n∈Z),3211236n n n n n n n a a a a a a a ---++++++++=(2n >,n ∈Z ), ∴11448n n n a a a -++=,∴112n n n a a a -++=, ∴数列{a n }是等差数列.20. 【解析】(1)因为2()32f x x ax b '=++,所以()620f x x a ''=+=,所以3ax =-, 所以()03af -=,所以3239a b a =+, 因为24120a b ∆=->,所以3a >. (2)26345-39813b a a a =-+, 23459(27)813y t t t a =-+=> 因为135278t =<,所以min (27)0y y >=,所以b ²>3a .21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域内..........作答..。

江苏省普通高等学校2017年高三招生考试20套模拟测试数学试题五 含解析 精品

江苏省普通高等学校2017年高三招生考试20套模拟测试数学试题五 含解析 精品

江苏省普通高等学校招生考试高三模拟测试卷(五)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分.1. 设复数z 满足(z +i)(2+i)=5(i 为虚数单位),则z =____________.2. 设全集U ={1,2,3,4},集合A ={1,3},B ={2,3},则B ∩∁U A =____________.3. 某地区有高中学校10所、初中学校30所、小学学校60所.现采用分层抽样的方法从这些学校中抽取20所学校对学生进行体质健康检查,则应抽取初中学校________所.4. 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线经过点P(1,-2),则该双曲线的离心率为____________.(第7题)5. 函数f(x)=log 2(-x 2+22)的值域为____________.6. 某校从2名男生和3名女生中随机选出3名学生做义工,则选出的学生中男女生都有的概率为____________.7. 如图所示的流程图中,输出S 的值是____________.8. 已知四棱锥PABCD 的底面ABCD 是边长为2,锐角为60°的菱形,侧棱PA ⊥底面ABCD ,PA =3.若点M 是BC 的中点,则三棱锥MPAD 的体积为__________.9. 已知实数x ,y 满足⎩⎪⎨⎪⎧4x +y ≤10,4x +3y ≤20,x ≥0,y ≥0,则2x +y 的最大值为____________.10. 已知平面向量a =(4x,2x),b =⎝⎛⎭⎫1,2x-22x ,x ∈R .若a ⊥b ,则|a -b|=__________.11. 已知等比数列{a n }的各项均为正数,且a 1+a 2=49,a 3+a 4+a 5+a 6=40,则a 7+a 8+a 99的值为__________.(第12题)12. 如图,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),则1m +1n 的最小值为____________.13. 在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:(x -4)2+y 2=4,动点P 在直线x +3y -b =0上,过P 分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2PA 的点P 有且只有两个,则实数b 的取值范围是____________.14. 已知函数f(x)=⎩⎪⎨⎪⎧2x 2-3x ,x ≤0,e x +e 2,x >0.若不等式f(x)≥kx 对x ∈R 恒成立,则实数k 的取值范围是____________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos(B -C)=1-cosA ,且b ,a ,c 成等比数列.求:(1) sinB ·sinC 的值; (2) A 的值;(3) tanB +tanC 的值.16.(本小题满分14分)如图,在正三棱柱A 1B 1C 1ABC 中,点D ,E 分别是A 1C ,AB 的中点. (1) 求证:ED ∥平面BB 1C 1C ;(2) 若AB =2BB 1,求证:A 1B ⊥平面B 1CE.已知等差数列{a n}的公差d为整数,且a k=k2+2,a2k=(k+2)2,其中k为常数且k∈N*.(1) 求k及a n;(2) 设a1>1,{a n}的前n项和为S n,等比数列{b n}的首项为1,公比为q(q>0),前n项和为T n.若存在正整数m,使得S2S m=T3,求q.18. (本小题满分16分)如图,直线l是湖岸线,O是l上一点,弧AB是以O为圆心的半圆形栈桥,C为湖岸线l上一观景亭.现规划在湖中建一小岛D,同时沿线段CD和DP(点P在半圆形栈桥上且不与点A,B重合)建栈桥.考虑到美观需要,设计方案为DP=DC,∠CDP=60°且圆弧栈桥BP在∠CDP的内部.已知BC=2OB=2(km).设湖岸BC与直线栈桥CD,DP及圆弧栈桥BP围成的区域(图中阴影部分)的面积为S(km2),∠BOP=θ.(1) 求S关于θ的函数关系式;(2) 试判断S是否存在最大值,若存在,求出对应的cosθ的值;若不存在,说明理由.在平面直角坐标系xOy 中,设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是e ,定义直线y =±be 为椭圆的“类准线”.已知椭圆C 的“类准线”方程为y =±23,长轴长为4.(1) 求椭圆C 的方程;(2) 点P 在椭圆C 的“类准线”上(但不在y 轴上),过点P 作圆O :x 2+y 2=3的切线l ,过点O 且垂直于OP 的直线与l 交于点A ,问点A 是否在椭圆C 上?证明你的结论.20. (本小题满分16分)已知a ,b 为实数,函数f(x)=ax 3-bx. (1) 当a =1且b ∈[1,3]时,求函数F(x)=⎪⎪⎪⎪f (x )x -lnx +2b +1⎝⎛⎭⎫x ∈⎣⎡⎦⎤12,2的最大值M(b);(2) 当a =0,b =-1时,记h(x)=lnxf (x ).① 函数h(x)的图象上一点P(x 0,y 0)处的切线方程为y =y(x),记g(x)=h(x)-y(x).问:是否存在x 0,使得对于任意x 1∈(0,x 0),任意x 2∈(x 0,+∞),都有g(x 1)g(x 2)<0恒成立?若存在,求出所有可能的x 0组成的集合;若不存在,说明理由;② 令函数H(x)=⎩⎪⎨⎪⎧x 2e ,x ≥s ,h (x ),0<x <s ,若对任意实数k ,总存在实数x 0,使得H(x 0)=k成立,求实数s 的取值集合.(五)1. 2-2i 解析:z =52+i-i =2-2i.本题主要考查复数的概念及四则运算等基础知识,属于容易题.2. {2} 解析:∁U A ={2,4},B ={2,3},则B ∩∁U A ={2}.本题考查集合相等的概念及集合中元素互异性,属于容易题.3. 6 解析:20100×30=6.本题主要考查分层抽样的概念,属于容易题.4. 5 解析:双曲线x 2a 2-y 2b2=1过点P(1,-2) 的渐近线方程为bx +ay =0,得b =2a ,则c =b 2+a 2=5a ,则离心率为 5.本题主要考查双曲线的渐近线方程,离心率等概念.本题属于容易题.5. ⎝⎛⎦⎤-∞,32 解析:由-x 2+22≤22,即f(x)≤log 222=32,函数f(x)的值域为⎝⎛⎦⎤-∞,32.本题主要考查二次函数的最值,对数的化简.本题属于容易题.6. 910解析:从5名学生中随机选出3名学生共有10种选法,男女生都有共9种(即去掉选的是3名女生的情况),则所求的概率为910.本题考查用列举法解决古典概型问题,属于容易题.7. 23 解析:k =1时,S =-12;k =2时,S =23;k =3时,S =3,恢复工厂到初始值;可以发现周期为3,2015中共有671个周期,还余2个数,则输出S 的值是23.本题考查流程图基础知识,关键把握好每一次循环体的执行情况.本题属于容易题.8. 3 解析:三棱锥MPAD 的底面MAD 的面积为3,高PA =3,则体积为3,本题主要考查锥体的体积公式,属于容易题.9. 7.5 解析:作出可行域发现最优解为⎝⎛⎭⎫54,5,则目标函数z =2x +y 的最大值为2.5+5=7.5.本题考查线性规划解决最值问题,属于容易题.10. 2 解析:由4x +2x -2=0,得2x =1,所以x =0,则a -b =(0,2),|a -b|=2.本题考查了指数方程,向量数量积的坐标运算及模的求法.本题属于容易题.11. 117 解析:设等比数列{a n }的公比为q ,由a 1+a 2=49,a 3+a 4+a 5+a 6=40,则49q 2+49q 4=40,则q =3,a 1+a 2+a 3+a 4+a 5+a 6=49+40,a 1+a 2+a 3+(a 1+a 2+a 3)q 3=49+40,得a 1+a 2+a 3=139,则a 7+a 8+a 99=19(a 1+a 2+a 3)q 6=19×139×93=117.本题考查了等比数列中的整体思想求和,属于中等题.12. 7+434 解析:(解法1)设AB →=a ,AD →=b ,则BC →=-34a +b ,设BP →=λBC →,则AP →=AB →+BP →=⎝⎛⎭⎫1-34λa +λb .因为AP →=m a +n b ,所以有 1-34λ=m ,λ=n ,消去λ得m +34n =1,1m +1n =⎝⎛⎭⎫m +34n ⎝⎛⎭⎫1m +1n =1+3n 4m +m n +34≥74+23n 4m ·m n =7+434.(解法2)以A 为原点,AB 为x 轴,AD 为y 轴建系,则A(0,0),B(4,0),C(1,4),设BP →=λBC →=(-3λ,4λ),则AP →=AB →+BP →=(4-3λ,4λ).因为AP →=mAB →+nAD →=(4m ,4n), 所以有 4-3λ=4m ,4λ=4n ,消去λ得m +34n =1(下同解法1).本题考查了平面向量的线性表示或坐标运算,利用基本不等式,运用“1”的代换求最值.本题属于中等题.13. ⎝⎛⎭⎫-203,4 解析:设P 点坐标为(x ,y),∵ PB =2PA ,∴ PB 2=4PA 2,即(x -4)2+y 2-4=4(x 2+y 2-1),整理得3x 2+3y 2+8x -16=0.(方法1)该方程表示一个圆,圆心⎝⎛⎭⎫-43,0,r =83.因为P 点有且只有两个,所以直线和圆相交,故⎪⎪⎪⎪-43-b 2<83,解得b ∈⎝⎛⎭⎫-203,4.(方法2)因为P 在直线x +3y -b =0上,所以3y =-x +b ,代入3x 2+3y 2+8x -16=0,得4x 2+(8-2b)x +b 2-16=0.因为P 点有且只有两个,所以方程有两个不相等的根,即Δ>0,整理得3b 2+8b -80<0,所以b ∈⎝⎛⎭⎫-203,4.本题考查了直线与圆的位置关系,以及一元二次不等式的解法,突出了方程思想和解析法,其中方法1是利用方程对应的几何图形解决问题;方法2用代数方法算方程根的个数.本题属于难题.14. [-3,e 2] 解析:① 当x =0时,0≥0,所以k ∈R .② 当x<0时,2x 2-3x ≥kx ,同除以x ,即k ≥2x -3恒成立,所以k ≥-3.③ 当x>0时,e x +e 2≥kx ,同除以x ,即k ≤e x +e 2x恒成立,令g(x)=e x +e 2x ,下面只需求出g(x)的最小值.g′(x)=(x -1)e x -e 2x 2,令g′(x)=0,即(x -1)e x -e 2=0.令h(x)=(x -1)e x -e 2,h ′(x)=xe x >0,所以h(x)在x ∈(0,+∞)上是单调递增函数.显然x =2是方程(x -1)e x -e 2=0的根,由单调性可知x =2是唯一实数根.当x ∈(0,2)时g(x)单调递减,当x ∈(2,+∞)时,g(x)单调递增,所以g(2)是函数g(x)的最小值,且g(2)=e 2,所以k ≤e 2.综上,实数k 的取值范围是[-3,e 2].本题突出了函数思想和分类讨思想,考查了利用导数求最值和恒成立问题.本题属于难题.15. 解:(1) 因为A +B +C =π,所以A =π-(B +C). 由cos(B -C)=1-cosA ,得cos(B -C)=1+cos(B +C),展开,整理得sinB ·sinC =12.(2分)(2) 因为b ,a ,c 成等比数列,所以a 2=bc.由正弦定理,得sin 2A =sinBsinC ,从而sin 2A =12.(6分)因为A ∈(0,π),所以sinA =22.因为a 边不是最大边,所以A =π4.(8分)(3) 因为B +C =π-A =3π4,所以cos(B +C)=cosBcosC -sinBsinC =-22,从而cosBcosC =1-22.(10分)所以tanB +tanC =sinB cosB +sinC cosC =sin (B +C )cosBcosC(12分)=221-22=-2- 2.(14分) 16. 证明:(1) 连结AC 1,BC 1,因为AA 1C 1C 是矩形,D 是A 1C 的中点, 所以D 是AC 1的中点.(2分)在△ABC 1中,因为D ,E 分别是AC 1,AB 的中点, 所以DE ∥BC 1.(4分)因为DE ⊄ 平面BB 1C 1C ,BC 1⊂平面BB 1C 1C ,所以ED ∥平面BB 1C 1C.(6分)(2) 因为△ABC 是正三角形,E 是AB 的中点, 所以CE ⊥AB.因为正三棱柱A 1B 1C 1ABC 中,平面ABC ⊥平面ABB 1A 1,交线为AB ,所以CE ⊥平面ABB 1A 1.从而CE ⊥A 1B.(9分)在矩形ABB 1A 1中,因为A 1B 1B 1B =2=B 1BBE,所以Rt △A 1B 1B ∽Rt △B 1BE ,从而∠B 1A 1B =∠BB 1E. 因此∠B 1A 1B +∠A 1B 1E =∠BB 1E +∠A 1B 1E =90°, 所以A 1B ⊥B 1E.(12分)因为CE ,B 1E ⊂平面B 1CE ,CE ∩B 1E =E , 所以A 1B ⊥平面B 1CE.(14分)17. 解:(1) 由题意,得⎩⎪⎨⎪⎧dk +a 1-d =k 2+2, ①2dk +a 1-d =(k +2)2, ②(2分) ②-①,得d =4+2k.因为d ,k ∈N *,所以k =1,或k =2.(4分)当k =1时,d =6,代入①,解得a 1=3,所以a n =6n -3.当k =2时,d =5,代入①,解得a 1=1,所以a n =5n -4.(6分) (2) 因为a 1>1,所以a n =6n -3,从而S n =3n 2.(7分) 由S 2S m =T 3,得123m 2=1+q +q 2,整理,得q 2+q +1-4m2=0.(9分) 因为Δ=1-4⎝⎛⎭⎫1-4m 2≥0,所以m 2≤163. 因为m ∈N *,所以m =1或m =2.(11分)当m =1时,q =-13-12(舍),q =13-12.当m =2时,q =0或q =-1(均舍去).综上所述,q =13-12.(14分)18. 解:(1) 在△COP 中,CP 2=CO 2+OP 2-2CO·OPcos θ=10-6cos θ,从而△CDP 的面积S △CDP =34CP 2=32(5-3cos θ).因为△COP 的面积S △COP =12OC ·OPsin θ=32sin θ,(6分)所以S =S △CDP +S △COP -S 扇形OBP=12(3sin θ-33cos θ-θ)+532,0<θ≤θ0<π,cos θ0=1-10512.(9分) (注:定义域2分.当DP 所在直线与半圆相切时,设θ取得最大值θ0,此时在△COP 中,OP =1,OC =3,∠CPO =30°,CP =10-6cos θ0,由正弦定理得10-6cos θ0=6sinθ0,cos θ0=1±10512.)(2) 存在.S ′=12(3cos θ+33sin θ-1),令S′=0,得sin ⎝⎛⎭⎫θ+π6=16.(12分)当0<θ<θ0时,S ′>0,所以当θ=θ0时,S 取得最大值.(14分)(或者:因为0<θ<π,所以存在唯一θ0∈⎝⎛⎭⎫π2,π,使得sin ⎝⎛⎭⎫θ0+π6=16.当0<θ<θ0<π时,S ′>0,所以当θ=θ0时,S 取得最大值.)此时cos ⎝⎛⎭⎫θ0+π6=-356,cos θ0=cos [(θ0+π6)-π6]=1-10512.(16分)19. 解:(1) 由题意⎩⎪⎨⎪⎧ab c =23,a =2,又a 2=b 2+c 2,解得b =3,c =1,(4分) 所以椭圆C 的方程为x 24+y 23=1.(5分)(2) 点A 在椭圆C 上.证明如下:设切点为Q(x 0,y 0),x 0≠0,则x 20+y 20=3,切线l 的方程为x 0x +y 0y -3=0,当y P =23时,x P =3-23y 0x 0,即P ⎝ ⎛⎭⎪⎫3-23y 0x 0,23,则k OP =233-23y 0x 0=2x 03-2y 0,(7分)所以k OA =2y 0-32x 0,直线OA 的方程为y =2y 0-32x 0x.(9分)由⎩⎪⎨⎪⎧y =2y 0-32x 0x ,x 0x +y 0y -3=0,解得⎩⎪⎨⎪⎧x =6x 06-3y 0,y =3(2y 0-3)6-3y 0,即A(6x 06-3y 0,3(2y 0-3)6-3y 0).(11分)因为⎝ ⎛⎭⎪⎫6x 06-3y 024+(3(2y 0-3)6-3y 0)23=9(3-y 20)+3(4y 20-43y 0+3)3y 20-123y 0+36=3y 20-123y 0+363y 20-123y 0+36=1, 所以点A 的坐标满足椭圆C 的方程.(14分)当y P =-23时,同理可得点A 的坐标满足椭圆C 的方程, 所以点A 在椭圆C 上.(16分)20. 解:(1) F(x)=|x 2-lnx -b|+2b +1,记t(x)=x 2-lnx ,x ∈⎣⎡⎦⎤12,2,则t′(x)=2x -1x , 令t′(x)=0,得x =22.(1分)当12<x <22时,t ′(x)<0,t(x)在⎝⎛⎭⎫12,22上为单调减函数; 当22<x <2,t ′(x)>0,t(x)在⎝⎛⎭⎫22,2上为单调增函数, 又t ⎝⎛⎭⎫12=14+ln2,t(2)=4-ln2,t ⎝⎛⎭⎫22=1+ln22,且t(2)-t ⎝⎛⎭⎫12=154-2ln2>0, 所以t(x)的取值范围为⎣⎡⎦⎤1+ln22,4-ln2.(3分)当b ∈[1,3]时,记v(t)=|t -b|+2b +1,则v(t)=⎩⎪⎨⎪⎧-t +3b +1,1+ln22≤t ≤b ,t +b +1,b <t ≤4-ln2.因为函数v(t)在⎣⎡⎦⎤1+ln22,b 上单调递减,在(b ,4-ln2]上单调递增,且v ⎝⎛⎭⎫1+ln22=3b +1-ln22,v(4-ln2)=b +5-ln2,v ⎝⎛⎭⎫1+ln22-v(4-ln2)=2b +ln2-92,所以当b ≤9-ln24时,最大值M(b)=v(4-ln2)=b +5-ln2,当b >9-ln24时,最大值M(b)=v ⎝⎛⎭⎫1+ln22=3b +1-ln22,所以M(b)=⎩⎨⎧b +5-ln2,1≤b ≤9-ln24,3b +1-ln22,9-ln24<b ≤3.(5分)(2) h(x)=lnxx,① h ′(x)=1-lnx x 2,h ′(x 0)=1-lnx 0x 20,所以y(x)=1-lnx 0x 20(x -x 0)+y 0,g(x)=lnxx -y 0-1-lnx 0x 20(x -x 0),g(x 0)=0.(7分)g ′(x)=1-lnx x 2-1-lnx 0x 20,g ′(x 0)=0.令G(x)=g′(x)=1-lnx x 2-1-lnx 0x 20,G ′(x)=-3+2lnxx 3, 所以g′(x)在()0,e 32上单调递减,在()e 32,+∞上单调递增,若x 0<e 32,则x ∈(0,x 0)时,g ′(x)>0,g(x)单调递增,g(x)<g(x 0)=0;x ∈(x 0,e 32)时,g ′(x)<0,g(x)单调递减,g(x)<g(x 0)=0,不符合题意.若x 0>e 32,则x ∈()e 32,x 0时,g ′(x)<0,g(x)单调递减,g(x)>g(x 0)=0; x ∈(x 0,+∞)时,g ′(x)>0,g(x)单调递增,g(x)>g(x 0)=0,不符合题意. 若x 0=e 32,则x ∈()0,e 32时g(x)<0,x ∈()e 32,+∞时g(x)>0,符合题意.综上,存在x 0满足要求,且x 0的取值集合为{e 32}.(10分)② 因为对任意实数k ,总存在实数x 0,使得H(x 0)=k 成立,所以函数y =H(x)的值域为一切实数.y =12ex 在[s ,+∞)上是增函数,其值域为⎣⎡⎭⎫s 2e ,+∞.(11分) 对于函数y =lnxx ,y ′=1-lnx x2,当x =e 时,y ′=0,当x >e 时,y ′<0,在(e ,+∞)上为单调减函数, 当0<x <e 时,y ′>0,在(0,e)上为单调增函数.若s >e ,则函数y =lnxx在(0,e]上是增函数,在[e ,s)上是减函数,其值域为⎝⎛⎦⎤-∞,1e , 又1e <s2e,不符合题意,舍去;(13分) 若0<s ≤e ,则函数y =lnxx在(0,s)上是增函数,值域为⎝⎛⎭⎫-∞,lns s ,由题意得s 2e ≤lns s,即s 2-2elns ≤0. ① 记u(s)=s 2-2elns ,u ′(s)=2s -2e s =2(s 2-e )s. 当0<s <e 时,u ′(s)<0,u(s)在(0,e)上为单调减函数.当s >e 时,u ′(s)>0,u(s)在(e ,e)上为单调增函数,所以,当s =e 时,u(s)有最小值u(e)=0,从而u(s)≥0恒成立(当且仅当s =e 时,u(s)=0.) ②(15分)由①②得,u(s)=0,所以s = e.综上所述,实数s 的取值集合为{e}.(16分)。

江苏省普通高等学校2017年高三招生考试20套模拟测试附加题数学试题(五) Word版含解析

江苏省普通高等学校2017年高三招生考试20套模拟测试附加题数学试题(五) Word版含解析

江苏省普通高等学校招生考试高三模拟测试卷(五) 数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图所示,△ABC 是圆O 的内接三角形,且AB =AC ,AP ∥BC ,弦CE 的延长线交AP 于点D.求证:AD 2=DE·DC.B. (选修4-2:矩阵与变换) 已知矩阵M =⎣⎢⎡⎦⎥⎤a24b 的属于特征值8的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,点P(-1,2)在M 对应的变换作用下得到点Q ,求Q 的坐标.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,曲线C :⎩⎨⎧x =6cos α,y =2sin α(α为参数).以原点O 为极点,x轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρ(cos θ+3sin θ)+4=0.求曲线C 上的点到直线l 的最大距离.D. (选修4-5:不等式选讲)已知|x|<2,|y|<2,求证:|4-xy|>2|x-y|.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在四棱柱ABCDA1B1C1D1中,侧面ADD1A1⊥底面ABCD,D1A=D1D=2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2.(1) 在平面ABCD内找一点F,使得D1F⊥平面AB1C;(2) 求二面角CB1AB的平面角的余弦值.23.已知数列{a n}满足a n=a n+1-a-n-1a-a-1(n∈N*),a≠-1,0,1.设b=a+1a.(1) 求证:a n+1=ba n-a n-1(n≥2,n∈N*);(2) 当n(n∈N*)为奇数时,a n=,猜想当n(n∈N*)为偶数时,a n关于b的表达式,并用数学归纳法证明.(五)21. A. 证明:连结AE ,则∠AED =∠B.(2分) ∵ AB =AC ,∴ ∠ACB =∠B , ∴ ∠ACB =∠AED.(4分) ∵ AP ∥BC ,∴ ∠ACB =∠CAD ,∴ ∠CAD =∠AED.(6分) 又∠ACD =∠EAD ,∴ △ACD ∽△EAD.(8分) ∴CD AD =ADED,即AD 2=DE·DC.(10分)B. 解:由题意知⎣⎢⎡⎦⎥⎤a 24b ⎣⎢⎡⎦⎥⎤11=8×⎣⎢⎡⎦⎥⎤11,故⎩⎪⎨⎪⎧a +2=8,4+b =8,解得⎩⎪⎨⎪⎧a =6,b =4.(5分) ∴ ⎣⎢⎡⎦⎥⎤6 244⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4, ∴ 点Q 的坐标为(-2,4).(10分)C. 解:将l 转化为直角坐标方程为x +3y +4=0.(3分)在C 上任取一点A(6cos α,2sin α),α∈[0,2π),则点A 到直线l 的距离为 d =|6cos α+6sin α+4|2=|23sin ⎝⎛⎭⎫α+π4+4|2=23sin ⎝⎛⎭⎫α+π4+42.(7分)当α=π4时,d 取得最大值,最大值为2+3,此时A 点为(3,1).(10分)D. 证明:因为|4-xy|2-4|x -y|2=(4-xy +2x -2y)(4-xy -2x +2y)(2分) =(2+x)(2-y)(2-x)(2+y)=(4-x 2)(4-y 2)>0,(7分) ∵ |x|<2,|y|<2,∴ |4-xy|>2|x -y|.(10分)22. 解:(1) 以A 为原点,建立空间直角坐标系,如图,A(0,0,0),B(1,0,0),C(1,1,0),D 1(0,1,1),B 1(1,-1,1),设F(a ,b ,0),则D 1F →=(a ,b -1,-1),(3分)由⎩⎪⎨⎪⎧D 1F →·AC →=a +b -1=0,D 1F →·AB 1→=a -b =0,得a =b =12,(5分)∴ F ⎝⎛⎭⎫12,12,0,即F 为AC 的中点.(6分)(2) 由(1)可取平面B 1AC 的一个法向量n 1=D 1F →=⎝⎛⎭⎫12,-12,-1.(7分) 设平面B 1AB 的法向量n 2=(x ,y ,z),⎩⎪⎨⎪⎧n 2·AB →=x =0,n 2·AB 1→=x -y +z =0,得⎩⎪⎨⎪⎧x =0,y =z ,取n 2=(0,1,1).(8分)则cos 〈n 1,n 2〉=-322×32=-32.(9分)∴ 二面角CB 1AB 的平面角的余弦值为32.(10分) 23. (1) 证明:ba n -a n -1=(a +a -1)(a n +1-a -n -1)a -a -1-a n -a -n a -a -1=a n +2-a -n -2a -a -1=a n +1.(3分) (2) 解:猜想当n(n ∈N *)为偶数时,a n =(4分)下面用数学归纳法证明这个猜想.① 当n =2时,a 2=a 3-a -3a -a-1=a 2+1+a -2=⎝⎛⎭⎫a +1a 2-1=b 2-1,结论成立.(5分) ② 假设当n =k(k 为偶数)时,结论成立,即a k ==0,k(-1)i C ik -i b-2i=b k -C 1k -1bk -2+…+(-1)i C i k -i b k -2i+…+(-1)k 2,此时k +1为奇数,∴ a k +1==0,k(-1)i C i k +1-i b k+1-2i=b k +1-C 1k bk -1+…+(-1)i C i k +1-i b k +1-2i +…+(-1)k2C k2k +22b ,(6分)则当n =k +2(k 为偶数)时, a k +2=ba k +1-a k =[b k +2-C 1k b k +…+(-1)i C i k +1-i b k +2-2i+…+(-1)k2C k2k +22b 2]-[b k -C 1k -1b k -2+…+(-1)i C i k -i b k-2i+…+(-1)k2]=b k +2-b k +…+(-1)i(C i k +1-i +C i -1k -(i -1))bk +2-2i+…+(-1)k +22=bk +2-bk+…+(-1)i C i k +2-i bk +2-2i +…+(-1)k +22==0,k+2(-1)i C i k+2-i b k+2-2i,结论也成立.(9分) 根据①和②,可知当n(n∈N*)为偶数时,均有a n=(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2017年高考模拟应用题选编数学试卷(五)
1.如图,某开发区内新建两栋楼AB ,CD (A ,C 为水平地面),已知楼AB 、CD 的高度分别为10m 、20m ,两楼间的距离AC 为70m .
(1)如何在两楼间AC 上取一点P 点,使得P 点到两楼顶,B D 距离之和最短?
(2)试在AC 上确定一点P ,使得张角BPD ∠最大.
2.某地方政府要将一块如图所示的直角梯形ABCD 空地改建为健身娱乐广场.已知AD BC ∥,
,2AD AB AD BC ⊥==3AB =百米,广场入口P 在AB 上,且2AP BP =,根据规划,过点P 铺设两条相互垂直的笔直小路,PM PN (小路的宽度不计),点,M N 分别在边,AD BC 上(包含端点),PAM △区域拟建为跳舞健身广场,PBN △区域拟建为儿童乐园,其它区域铺设绿化草坪,设APM θ∠=.
(1)求绿化草坪面积的最大值;
(2)现拟将两条小路,PM PN 进行不同风格的美化,PM 小路的美化费用为每百米1万元,PN 小路的美化费用为每百米2万元,试确定,M N 的位置,使得小路,PM PN 的美化总费用最低,并求出最小费用.
3.某公司科技小组研发一个新项目,预计能获得不少于1万元且不多于5万元的投资收益,公司拟对研发小组实施奖励,奖励金额y (单位:万元)和投资收益x (单位:万元)近似满足函数()y f x =,奖励方案满足如下两个标准:①()f x 为单调递增函数,②0()f x kx ≤≤,其中0k >.
(1)若12
k =,试判断函数()f x (2)若函数()ln f x x =符合奖励方案,求实数k 的最小值. 4.如图所示,扇形ABC 是一个半径为2千米,圆心角为60︒的风景区,P 点在弧BC 上,现欲在风景区中规划三条商业街道,要求街道PQ 与AB 垂直,街道PR 与AC 垂直,线段RQ 表示第三条街道.
(1)如果P 位于弧BC 的中点,求三条街道的总长度
(2)由于环境原因,三条街道,,PQ PR QR 每年能够产出的经济效益分别是每千米300万元,200万元及400万元,这三条街道最高经济效益(精确到1万元)
5.如图所示,PAQ ∠是某海湾旅游区的一角,其中120PAQ ∠=︒,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸AP 和AQ 上分别修建观光长廊AB 和AC ,其中AB 是宽长廊,造价是800元/米,AC 是窄长廊,造价是400元/米,两段长廊的总造价为120万元,同时在线段BC 上靠近点B 的三等分点D 处建一个观光平台,并建水上直线通道AD (平台大小忽略不计),水上通道的造价是1000元/米.
(1)若规划在三角形ABC 区域内开发水上游乐项目,要求ABC △的面积最大,那么AB 和AC 的长度分别为多少米?
(2)在(1)的条件下,建直线通道AD 还需要多少钱?
6.如果一条信息有n 1,)n n >∈N (种可能的情形(各种情形之间互不相容)
,且这些情形发生的概率分别为12,,,n p p p ,则称H =12()()()n f p f p f p ++(其中()f x =log ,a x x -(0,1)x ∈)
为该条信息的信息熵.已知11()22
f =. (1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小;
(2)某次比赛共有n 位选手(分别记为12,,,n A A A )参加,若当1,2,k =,1n -时,选手k A 获得冠军的概率为2k -,求“谁获得冠军”的信息熵H 关于n 的表达式.
7.某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室,地面形状如图所示,已知已有两面墙的夹角为
π3(π3ACB ∠=),墙AB 的长度为6米,(已有两面墙的可利用长度足够大),记ABC θ∠= (1)若π4
θ=,求ABC △的周长(结果精确到0.01米); (2)为了使小动物能健康成长,要求所建的三角形露天活动室面积ABC △的面积尽可能大,问当θ为何值时,该活动室面积最大?并求出最大面积.
8.如图,一辆轿车在山区的某段起伏路面先水平行驶,然后下坡行驶,再水平行驶,已知坡面的铅直高度为1单位长度,水平长度为10单位长度,轿车下坡行驶轨迹为某三次函数()f x 图象的一部分.若()f x 是奇函数,且当5x =-时,()f x 有极大值.
(1)求该函数()f x 的解析式;
(2)轿车在夜间行驶,当行驶到点00(,)M x y 处时,灯光正好射到坡底A ,求0x 的值.
(说明:轿车视为一个点,其灯光视为一条射线)
9.根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),
其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩
,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?
10.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC
的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)
(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;
(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.
容器Ⅱ
容器ⅠH 11
E 1A (第10题)。

相关文档
最新文档