周衍柏《理论力学》第五章教案-分析力学-8页文档资料

合集下载

理论力学课后答案第五章(周衍柏)上课讲义

理论力学课后答案第五章(周衍柏)上课讲义

理论力学课后答案第五章(周衍柏)第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q 是不是只相差一个乘数m ?为什么a p 比a q 更富有意义?5.4既然a q T ∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d 是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了aq T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=iii r F W δδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11 知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq 不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。

周衍柏理论力学课件(PPT可修改版本)

周衍柏理论力学课件(PPT可修改版本)

爱因斯坦 (1879-1955)
1879年 3月14日生于德国乌耳姆一个经营电器作坊的 小业主家庭。一年后,随全家迁居慕尼黑。在任工程 师的叔父等人的影响下,爱因斯坦较早地受到科学和哲 学的启蒙。1894年,他的家迁到意大利米兰,继续在慕尼 黑上中学的爱因斯坦因厌恶德国学校窒息自由思想的 军国主义教育,自动放弃学籍和德国国籍,只身去米 兰。1895年他转学到瑞士阿劳市的州立中学;1896年 进苏黎世联邦工业大学师范系学习物理学,
自然和自然规律为黑暗 所蒙蔽上帝说,让牛 顿来!一切遂臻光 明!
一、理论力学研究对象
物理学是研究物质性质、结构、运动规律的科学。世界物质可分 为不同层次、不同运动级别,因而有相应的主要研究科学:
物质层 次
宇观
线度 >108m
宏观
10-1—103m
亚宏观
10-6—10-3m
原子
10-10—10-9m
矢量力学是以牛顿运动定律为基础,从分析质量和物体受 力情况,由此探讨物体的机械运动规律。在矢量力学中,涉及 的量多数是矢量,如力、动量、动量矩、力矩、冲量等。力是 分析力学中最关键的量。
分析力学以达朗伯原理为基础,从分析质量和质量系能量情 况,由此探讨物体机械运动规律。分析力学中涉及的量多数是 标量,如动能、势能、拉格朗日函数、哈密顿函数等。动能和 势能是最关键的量。
二、理论力学研究方法
观察、实验, 总结实验规律, 建立物理模型, 提出合 理假设, 数学演译、逻辑推理 , 探讨规律, 实验验 证。 理论力学与普通物理的力学不同点是:逻辑推理、数学演译 更强。主要数学要求是:微积分和解常系数微分方程。
三、理论力学的内容结构
理论力学分为矢量力学(即牛顿力学)和分析力学两大部 分。

理论力学课程教学大纲.

理论力学课程教学大纲.

《理论力学课程》教学大纲学时:72 时学分:4 分课程类型:必修适用专业:物理学一、课程性质、地位和任务理论力学是四年制高等院校物理学专业的必修的基础课程。

本课程以牛顿运动定律为基础,高等数学为工具,通过严密的逻辑推理,全面的阐述宏观物体机械运动的基本概念和基本规律。

通过教学,应使学生:一,对宏观机械运动规律有比较全面,系统的认识,能掌握处理力学问题的一般方法,培养起一定的抽象思维和逻辑推理能力;二,能较深刻的分析力学教材,能分析生产生活中的问题;三,认识教学与物理的密切联系,能运用数学工具解决物理问题;四,通过本教材的学习为进一步学习理论物理打下了坚实的基础。

本课程总学时为72学时,讲授与习题的比例为3:1,具体情况如下。

二、课程主要内容概述及教学基本要求本课程主要内容:第一篇牛顿力学主要包括:质点力学、质点组力学、刚体力学、非惯性系力学等;第二篇分析力学主要包括:虚功原理、拉格朗日方程、哈密顿正则方程、哈密顿原理等。

理论力学是学生接触到的第一门理论物理课程。

与普通物理力学相比,它在理论上和解决问题的方法上都有较大提高。

通过本课程的学习,使学生受到理论物理研究方法的初步训练,应培养学生严密逻辑推理的能力、抽象思维的能力、从一般到特殊的分析方法及运用高等数学方法解决力学问题的能力,并较好理解数学与物理的密切关系。

三、课程内容绪论1.理论力学的研究对象和方法2.经典力学的运用方法第一章质点力学基本要求:(1).空间和时间,力和质量,惯性参照系是经典力学的基本概念,牛顿定律是经典力学的基本定律。

它是理论力学的起点。

同时介绍现代科学的观点。

(2).重点:1.平面坐标系和自然坐标系中速度加速度分量式的推导和应用,也是本章的难点。

2.质点运动微分方程的建立和求解。

要多举几种不同类型(F=F(r,v,t))例题,学会以高等数学为工具把物理问题转化为数学方程,并求数学表达式分析其中的物理意义,从而提高提出问题,分析问题解决问题的能力 3.要求学生明确质点的约束运动在加约束反力后,可按自由质点处理 4.由于质点的三个基本定律及守恒律在力学多半阐述过,要在原有基础上概括提高,对于一些问题要能正确判断一个力为保守力,并能求出相应的势能曲线。

周衍柏理论力学教学总结

周衍柏理论力学教学总结

周衍柏理论力学教学总结篇一:理论力学总结理论力学总结姓名:黄亚敏班级0911物理学学号:20XX110102指导老师:夏清华前言:学习一门课程很重要的一个环节就是总结,这样才能知道自己学到了什么,还有那些不了解,还有哪些地方需要再进一步的学习,同时还可以总结出一些好的学习方法和学习习惯,这样皆可以运用到其他方面上。

初看周衍柏《理论力学》一书,只觉得满书全是数学公式,比如第一章质点力学中的极坐标系中的速度、加速度的分量表达式,对我来说就是一个大困难,怎么就弄不明白为什么?didt??did?d?dt????j,?djdt??djd?d?dt?????i?,即曲线上的某点p的沿位矢方向的坐标i对时间t求导之后为另一方向单位矢量,自己看的时候很不能理解,后来经过推导之后发现确实是这样的,后来自己又推导一遍,发现是正确的,是数学上的微分运算??因为我开始的错误理解是:i与时间没有关系,因为在直角坐标系中,并没有对i求???导,但是不同的是,在直角坐标系中,单位矢量i,j,k是不变的,但在极坐标中,??单位矢量i,j的量值虽然为1,但方向一直随着位矢的方向的变化而变化,所以这??????里的单位矢量i,j是一个变量。

求得的速度加速度表达式为v??ri??rj,???2??????)ja?(??r?r?)i?(r??2r,还可以用自然坐标算出加速度,表达式简单一些,但前??ds?v?vi?idt提是要清楚曲线的曲率半径?,才会简化加速度表达式,为??2?2?dvdsdsdidv?v?a??i??i?j2dtdtdtdtdt?,,通过不同的题目选择不同的坐标可以使计算更简单。

对我来说,力学的一些定律一直都很熟悉,从最开始学物理的时候就能把一些力学定律背得很清楚,牛顿第二定律,动量定理和动量守恒定律,动量矩(角动量矩)定理和动量矩(角动量)守恒定律,动能定理和机械能守恒定律,但是使用起来的就需要更灵活的掌握了,首先要清楚使用每个定律的条件,通常可一分为两????dpF?dt?????dJ,m?dt,通过这几个变化和题目中的条件判断出动量和角动量是否为常量,在选择使用哪一个定律。

《理论力学》课程教学大纲

《理论力学》课程教学大纲

《理论力学》课程教学大纲课程名称:理论力学课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56 学时 3.5 学分其中实验学时:0 学时一、课程性质、教学目标《理论力学》是物理专业学生的专业主干课,它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的实用性,通过本课程的学习,使学生掌握理论力学的基本概念、基本理论、基本规律,并能应用这些知识解决具体问题。

该课程主要包括质点运动的基本定理、有心运动和两体问题、一般质点组动力学问题、特殊质点组-刚体的动力学问题以及分析力学初步。

是学习量子力学,电动力学等专业课程的重要基础。

其具体的课程教学目标为:课程教学目标1:使学生对宏观机械运动的规律有一较全面较系统的认识,能掌握处理力学问题的一般方法,为后继理论物理课程的学习打坚实基础。

并培养一定的抽象思维与严密的逻辑推理能力,为今后独立钻研创造条件。

课程教学目标2:在深入掌握力学理论的基础上,有能力居高临下、深入浅出和透彻地分析中学力学教材。

同时,可以初步分析一些生产、生活中的力学问题,提高作为中学物理教师的业务能力。

课程教学目标3:在力学理论的学习中结合运用数学工具处理问题,使学生认识数学与物理的密切关系,培养学生运用数学工具解决物理问题的能力。

课程教学目标与毕业要求对应的矩阵关系注:以关联度标识,课程与某个毕业要求的关联度可根据该课程对相应毕业要求的支撑强度来定性估计,H表示关联度高;M表示关联度中;L表示关联度低。

二、课程教学要求本课程前五章也称为牛顿力学,牛顿力学是以质点力学为基础,进而讨论质点组力学,刚体力学,在质点力学中又是以牛顿运动三定律为基础建立起质点力学的理论。

最后一章是分析力学,学习分析力学的理论一定要有牛顿力学的扎实基础,在分析力学中是以虚功原理和达朗伯原理为基础建立起力学系统在广义坐标下的运动方程的积分理论。

三、先修课程力学、高等数学四、课程教学重、难点重点:物体的受力分析;力学体系的平衡方程;点的运动的合成;动力学普遍定理的综合应用;利用虚功原理,达朗贝尔原理求解力学体系的平衡和动力学问题。

理论力学-分析力学

理论力学-分析力学

约束、自由度和广义坐标(4/9)
约束的种类 几何约束,微分约束 几何约束(完整约束):限制质点的几何位置 例:Oxy 平面的曲柄连杆的约束
约束方程的一般形式
只存在完整约束的力学系称为完整系

约束、自由度和广义坐标(5/9)
微分约束(不完整约束,运动约束):约束方程中含 有时间的一次微分变量(如速度),并且不可解为坐 标之间的关系 例:大环和小盘
不稳定约束情况:摆长随时间变化的单摆
实位移
虚位移
实位移不是虚位移中的一种 虚位移通过约束曲面的切面上

虚功原理(3/13)
例:非自由质点组的虚位移
求点 A,B,C 的虚位移
推广:n 个质点组,有 k 个约束
自由度:s = 3n - k 个参量 广义坐标:q1, q2, …, qs 独立变分:dq1, dq2, …, dqs

拉格朗日方程(1/8)
达朗贝尔原理
达朗贝尔原理 :体系在任何瞬间的主动力、约束力和逆 效力的和等于零
动力学方程→静力学方程
称为逆效力
逆效力 惯性力
惯性力:在非惯性系,与非惯性系的加速度有关
逆效力:在惯性系,与质点的加速度有关
达朗贝尔-拉格朗日方程

拉格朗日方程(2/8)
例:离心调速器由套筒(A, B和C,mA = mB = m)、两拉杆(长l)及两弹簧(系数k) 组成长;已知弹簧无拉伸时,拉杆倾斜
约束力与虚位移垂直:光滑曲面 约束力的虚功之和为零:光滑铰链,绳,杆 虚位移为零:固定点,纯滚动的接触点
非理想约束:分解为理想约束和主动力 粗糙斜面 = 光滑斜面(理想约束) + 摩擦力(主动力)

虚功原理(5/13)

周衍柏《理论力学教程(第三版)》电子教案 第五章5分析力学

周衍柏《理论力学教程(第三版)》电子教案 第五章5分析力学

H作为广义动量, 广义坐标和时间的函数, 又有
H H H dH q dq p dp t dt 1
s
由于动量, 坐标和时间都是独立的, 所以
q ( 1,2, , s ) H p q H p
(3)在球面坐标系中
1 2 2 2 2 2 2 T m(r r r sin ) ,V=V(r,,) 2
1 2 r 2 2 r 2 2 sin 2 ) V(r,,) L m(r 2
L L 2 p p mr , pr mr , r
s
考虑广义动量的定义, 得
s
L dq p dq dt dL p t 1 H ( p, q, t ) L p q
1
s
对于哈密顿量
可得
s
s
L q dp p dq q dp dt dH dL p dq t 1 1
因为
只要H不显含时间, 它就是守恒的, 即不随时间变化.
H中不显含t时,再分稳定约束与不稳定约束这两种情 况来讨论。 i)稳定约束
T=T2

s 1
T q 1
s
s T2 q q 1

2T q
该题还可解得
2 m r r 2 r


粒子的径向运动方程.
常数 角动量守恒定律. p mr 2
例3: 分别用笛卡儿坐标、柱面坐标和球面坐标写出一个 自由质点在势场V( r )中的哈密顿函数H。 解: 体系为质点,自由度数s=3 (1)在笛卡儿坐标系中,取x,y,z为广义坐标, 则拉格朗日函数L为

周衍柏著理论力学——第五章分析力学 pdf讲义

周衍柏著理论力学——第五章分析力学 pdf讲义
xi = xi ( q1 , q2 , L , q s , t ) ⎫ ⎪ yi = yi ( q1 , q2 , L , q s , t ) ⎬ zi = zi ( q1 , q2 , L , q s , t ) ⎪ ⎭ (i = 1, 2, L , n, s < 3n ) (i = 1, 2, L , n, s < 3n) (5.1.8) (5 . 1 . 9 )
3
不可解约束:质点始终不能脱离的约束。如质点始终被曲面 约束,即存在约束方程
f ( x, y , z ) = 0 或 f ( x, y , z , t ) = 0 (5.1.3)
约束又可分为几何约束和运动约束。 几何约束又叫做完整约束,它只限制质点在空间的位置,因 而表现为质点坐标的函数,如
f ( x, y , z ) = 0 或 f ( x, y , z , t ) = 0 (5.1.3)
dr P
δr
7
8
9
三、虚功原理 以下讨论只限于不可解约束的情况,设体系在 k 个几何约束 下处于平衡状态。由于体系处于平衡状态,所以体系中每一 个质点都处于平衡状态。 因此任一质点 Pi ,受到主动力的合力 Fi 与约束反力的合力 Ri 满足: (i = 1,2, L , n ) (5.2.3) Fi + Ri = 0 让每一质点在平衡位置发生一虚位移 δr ,则有 Fi ⋅ δr + Ri ⋅ δr = 0 (i = 1,2, L , n ) 上式对各质点求和得:
1
第一节 约束与广义坐标
一、约束的概念和分类 1、力学体系:质点的集合,且质点间存在相互作用,每一 个质点的运动都和其它质点的位置及运动有关,简称体系。 若有 n 个质点,则描述所有质点位置的坐标有 3n 个。 2、约束:限制质点自由运动的条件叫做的约束。 约束一般可表示成质点位置、速度和时间的方程。如:

周衍柏《理论力学》第五章教案-分析力学

周衍柏《理论力学》第五章教案-分析力学

第五章分析力学本章要求(1)掌握分析力学中的一些基本概念;(2)掌握虚功原理;(3)掌握拉格朗日方程;(4)掌握哈密顿正则方程。

第一节约束和广义坐标一、约束的概念和分类加于力学体系的限制条件叫约束。

按不同的标准有不同的分类:按约束是否与时间有关分类:稳定约束、不稳定约束;按质点能否脱离约束分类:可解约束、不可解约束;按约束限制范围分类:几何约束(完整约束)、运动约束(不完整约束)。

本章只讨论几何约束(完整约束),这种约束下的体系叫完整体系。

二、广义坐标1、自由度描述一个力学体系所需要的独立坐标的个数叫体系的自由度。

设体系有n个粒子,一个粒子需要3个坐标(如x、y、z)描述,而体系受有K个约束条件,则体系的自由度为(3n-K)2、广义坐标描述力学体系的独立坐标叫广义坐标。

例如:作圆周运动的质点只须角度用θ描述,广义坐标为θ,自由度为1,球面上运动的质点,由极角θ和描述,自由度为2。

第二节虚功原理本节重点要求:①掌握虚位移、虚功、理想约束等概念;②掌握虚功原理。

一、实位移与虚位移质点由于运动实际上所发生的位移叫实位移;在某一时刻,在约束允许的情况下,质点可能发生的位移叫虚位移。

如果约束为固定约束,则实位移是虚位移中一的个;若约束不固定,实位移与虚位移无共同之处。

例如图5.2.1中的质点在曲面上运动,而曲面也在移动,显然实位移与虚位移不一致。

二、理想约束设质点系受主动力和约束力的作用,它们在任意虚位移中作的功叫虚功。

若约束反力在任意虚位移中对质点系所作虚功之和为零,则这种约束叫理想约束。

光滑面、光滑线、刚性杆、不可伸长的绳等都是理想约束。

三、虚功原理1、文字叙述和数学表示:受理想约束的力学体系,平衡的充要条件是:作用于力学体系的诸主动力在任意虚位移中作的元功之和为零。

即(1)适用条件:惯性系、理想不可解约束。

2、推论设系统的广义坐标为q1,……,q a,……,q S,虚位移可写为用广义坐标变分表示的形式:定义:称为相应于广义坐标q a的广义力,则虚功原理表述为:理想约束的力学体系平衡的充要条件为质点系受的广义力为零,即:(2)3、用虚功原理求解平衡问题的方法步骤一般步骤为:(1)确定自由度,选取坐标系,分析力(包括主动力、约束力);(2)选取广义坐标并将各质点坐标表示成广义坐标q a的函数:;(3)求主动力的虚功并令其为零:,由此求出平衡条件。

理论力学(周衍柏)习题集答案解析,第五章

理论力学(周衍柏)习题集答案解析,第五章

第五章习题解答5.1解如题5.1.1图颠七.1图杆受理想约束,在满足题意的约束条件下杆的位置可由杆与水平方向火角a所唯一确定。

/r的自由度为1,由平衡条件:mg力y =0①变换方程f a—sin ayl =2rcos fl! sin flf - 2 = rsin2 2 (2小,1, V 2r cos 2cc~ —1cos Ci6a2/叵代回①式即1 )2r cos(3f--/ cos it(5a= 02 j因5a在约束下是任意的,要使上式成立必须有:I-cosa rcos2 二-- =013 = 0= 2r sin fi- (/+r)si sin a三球受理想约束,球的位置可以由 4确定,自由度数为1,故。

Xj = -2r sin-0 + r)$in a又由于代回④式得5.2解如题5.2.1图.4rcos2o;COSGf ④c2 -2rcos2 二= 二题321图用二口+『)COS比乃=0 +产)cos aj3 = (? +r)cos】-2r cos §物=_Q+ r)sin毋m = _Q+r)sin ada8三二-(/ 4-r)sin drd'(2f+2rsin ■8d由虚功原理4物+马a2+月弧=oa产-(Z + r)sin 值5值一1 + 八5m aSa- (/ +r)那a5a+ 2r sm R—(5af= 05a 0因灰K在约束条件下是任意的,要使上式成立,必须-3(/ + r)sin cr+2rsin B- -0 6a故3a _ 2r sin §第3("小met a又由的*泯力纵得:Sa _2rgs f羽(,+比。

£口③由②③可得tan £ = 3 tan 45.3解如题5.3.1图,8 54 口VTF \y题531 ―在相距2a的两钉处约束反力垂直于虚位移,为理想约束。

去掉纯代之以力T,且视为主动力后采用虚功原理,4 一确定便可确定ABCD的位置因此自由度数为1。

周衍柏《理论力学教程(第三版)》电子教案 第五章8分析力学

周衍柏《理论力学教程(第三版)》电子教案 第五章8分析力学
s s 1 1
*
H dt dU

相应地,变换后的正则方程为:
Q H * , P
*
H P . Q
1,2, s
反之,如果变换满足如下条件
* p d q P d Q H H dt dU s s
1
1
1


相应的可以变为
s p dq Q dP H H dt dU1 P Q U 3 (q, P, t ) 1 1 1 s s

*

所以
U 3 U 3 1,2,, s Q , p P q U 3 H H t
* H Q , P
H P . Q
*
1,2, s
2 母函数
U决定了正则变换, 因而叫正则变换的母函数.
(1)由于本身的随意性, 可以把母函数表示为函数
U1 U1 (q, Q, t )
考虑正则变换条件
s s * p d q P d Q H H dt dU1
这样用x,y表述谐振子的运动方程为
2C1 2C2 x sin( 1t 1 ), y sin( 2t 2 ) m1 m 2
4 泊松括号的不变性
泊松括号的一个重要性质就是在正则变换下具有 不变性, 即 , p,q , P,Q 证明:
, p,q
1


H*为新变量表示的哈密顿函数,则应的变换是正则 变换. 证明:由上式可得
( p q
1 s
P Q ) U
( p q
1
s
* P H U Q ) H

周衍柏理论力学教学总结

周衍柏理论力学教学总结

周衍柏理论力学教学总结各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢是XX最新发布的《周衍柏理论力学教学总结》的详细范文参考文章,感觉很有用处。

篇一:理论力学总结理论力学总结姓名:黄亚敏班级0911物理学学号:2009110102指导老师:夏清华前言:学习一门课程很重要的一个环节就是总结,这样才能知道自己学到了什么,还有那些不了解,还有哪些地方需要再进一步的学习,同时还可以总结出一些好的学习方法和学习习惯,这样皆可以运用到其他方面上。

初看周衍柏《理论力学》一书,只觉得满书全是数学公式,比如第一章质点力学中的极坐标系中的速度、加速度的分量表达式,对我来说就是一个大困难,怎么就弄不明白为什么?didt??did?d?dt????j,?djdt??djd?d?dt?????i?,即曲线上的某点p的沿位矢方向的坐标i对时间t求导之后为另一方向单位矢量,自己看的时候很不能理解,后来经过推导之后发现确实是这样的,后来自己又推导一遍,发现是正确的,是数学上的微分运算??因为我开始的错误理解是: i与时间没有关系,因为在直角坐标系中,并没有对i求???导,但是不同的是,在直角坐标系中,单位矢量i,j,k是不变的,但在极坐标中,??单位矢量i,j的量值虽然为1,但方向一直随着位矢的方向的变化而变化,所以这??????里的单位矢量i,j是一个变量。

求得的速度加速度表达式为v??ri??rj,???2??????)ja?(??r?r?)i?(r??2r,还可以用自然坐标算出加速度,最全面的范文参考写作网站表达式简单一些,但前??ds?v?vi?idt提是要清楚曲线的曲率半径?,才会简化加速度表达式,为??2?2?dvdsdsdidv?v?a??i??i?j2dtdtdtdtdt?,,通过不同的题目选择不同的坐标可以使计算更简单。

对我来说,力学的一些定律一直都很熟悉,从最开始学物理的时候就能把一些力学定律背得很清楚,牛顿第二定律,动量定理和动量守恒定律,动量矩(角动量矩)定理和动量矩(角动量)守恒定律,动能定理和机械能守恒定律,但是使用起来的就需要更灵活的掌握了,首先要清楚使用每个定律的条件,通常可一分为两????dpF?dt?????dJ,M?dt,通过这几个变化和题目中的条件判断出动量和角动量是否为常量,在选择使用哪一个定律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章分析力学
本章要求(1)掌握分析力学中的一些基本概念;(2)掌握虚功原理;(3)掌握拉格朗日方程;(4)掌握哈密顿正则方程。

第一节约束和广义坐标
一、约束的概念和分类
加于力学体系的限制条件叫约束。

按不同的标准有不同的分类:
按约束是否与时间有关分类:稳定约束、不稳定约束;
按质点能否脱离约束分类:可解约束、不可解约束;
按约束限制范围分类:几何约束(完整约束)、运动约束(不完整约束)。

本章只讨论几何约束(完整约束),这种约束下的体系叫完整体系。

二、广义坐标
1、自由度
描述一个力学体系所需要的独立坐标的个数叫体系的自由度。

设体系有n个粒子,一个粒子需要3个坐标(如x、y、z)描述,而体系受有K个约束条件,则体系的自由度为(3n-K)
2、广义坐标
描述力学体系的独立坐标叫广义坐标。

例如:作圆周运动的质点只须角度用θ描述,广义坐标为θ,自由度为1,球面上运动的质点,由极角θ和描述,自由度为2。

第二节虚功原理
本节重点要求:①掌握虚位移、虚功、理想约束等概念;②掌握虚功原理。

一、实位移与虚位移
质点由于运动实际上所发生的位移叫实位移;在
某一时刻,在约束允许的情况下,质点可能发生的
位移叫虚位移。

如果约束为固定约束,则实位移是虚位移中一的
个;若约束不固定,实位移与虚位移无共同之处。

例如图5.2.1中的质点在曲面上运动,而曲面也在移动,显然实位移与虚位移不一致。

二、理想约束
设质点系受主动力和约束力的作用,它们在任意虚位移中作的功叫虚功。

若约束反力在任意虚位移中对质点系所作虚功之和为零,则这种约束叫理想约束。

光滑面、光滑线、刚性杆、不可伸长的绳等都是理想约束。

三、虚功原理
1、文字叙述和数学表示:
受理想约束的力学体系,平衡的充要条件是:作用于力学体系的诸主动力在任意虚位移中作的元功之和为零。


(1)
适用条件:惯性系、理想不可解约束。

2、推论
设系统的广义坐标为q
1,……,q
a
,……,q
S
,虚位移可写为用广义坐
标变分表示的形式:
定义:称为相应于广义坐标q
a
的广义力,则虚功原理表述为:理想约束的力学体系平衡的充要条件为质点系受的广义力为零,即:
(2)
3、用虚功原理求解平衡问题的方法步骤
一般步骤为:(1)确定自由度,选取坐标系,分析力(包括主动力、约束力);
(2)选取广义坐标并将各质点坐标表示成广义坐标q
a
的函数:;
(3)求主动力的虚功并令其为零:,由此求出平衡条件。

[例] 见书P276 [例1]
第三节拉格朗日方程
本节重点要求:(1)掌握拉格朗日方程的两种形式,方程的特点和适用条件等;(2)掌握用拉格朗日方程求解具体问题的步骤;(3)了解循环积分等概念。

一、基本形式的拉格朗日方程
1、方程的推导
由牛顿第二定律并应用理想约束的条件,可以得到达朗伯——拉格朗日方程:
(1)
将坐标的变分改成用广义坐标q
1,……,q
S的变分
表示,即:
经数学运算,令(称为体系的动能),
(称为相应于q
a
的广义力),则(1)式变为:
(2)
这就是基本形式的拉格朗日方程,应注意:(2)实际是一组方程。

2、方程的适用条件:理想约束。

二、保守系的拉格朗日方程
设作用于体系的力全为保守力,则广义力可由(V为势能)求得:
在普遍形式的拉氏方程(2)中,由于V不包含广义速度,可令:(动能与势能的差)
为拉格朗日函数,则(2)式变为:
(3)
应指出(3)的适用条件为保守系,理想约束,且(3)应用很普遍。

三、应用拉格朗日方程求解问题的步骤,例
;②分析主动力,一般步骤:①画草图,确定自由度s和广义坐标q
a
若为保守系,则求出势能V;若为非保守力,则计算广义力Q
;③求动能
a
T=T();④对保守系,求出L=T-V,进而代入方程(3),写出运动方程;⑤对非保守系,将T和广义力Qα代入方程(2),写出运动方程。

⑥解方程,求出qα(t)。

[例1] P265 4.10题
圆环在光滑圆圈上运动,而圆圈绕垂直圆面的轴作匀角速运动,求圆环运动规律。

解:方法一:牛顿力学方法(已在第四章第三节作为举例计算)方法二:用拉格朗日方程求解。

这是光滑圆圈且
受的力只有重力和约束力,属于保守体系,可采用保守系的拉氏方程求解。

质点自由度为1,转角θ为广义坐标,广义速度为。

任一角度θ时圆环(视为质点)的动能,其中绝对速度v可由速度合成公式求出:
这里(方向沿切线方向),牵连速度,
大小为,方向垂直于op。

由速度合成公式得到:
动能:
取圆平面为零势能位置,则V=0,从而L=T-V=T-0=T
代入拉氏方程(2)中:
,得到
四、循环积分。

若拉氏函数L中某一坐标q
i 不出现,则该坐标q
i
叫循环坐标,则
(常数),叫循环积分。

第五节哈密顿正则方程
本节不作重点要求。

基本要求是:了解正则坐标、正则动量的概念和正则方程及其应用。

一、哈密顿函数
设力学体系的广义坐标为,广义速度为,则拉格朗日函数
,定义广义动量,则函数叫哈密顿函数。

它是广义坐标、广义动量的函数,而广义坐标、广义动量称为正则变量。

特例:对保守体系,H=T+V (动能与势能之和)
二、哈密顿正则方程
哈密顿函数满足的方程为:
由该方程组也可探讨运动规律。

方程组(1)叫哈密顿正则方程。

三、用哈密顿正则方程求解问题的步骤
一般步骤为:①确定自由度r和广义坐标②求动能T和势能V,写出拉
格朗日函数。

③求广义动量,将T和V中的换为
,④写出H=T+V=H(,)⑤、写出正则方程,进而解方程。

[例]电子的运动(见书P314-316)
最后指出:拉格朗日方程和哈密顿正则方程都是分析力学中的基本方程,其作用与牛顿第二定律一样,其中拉氏方程为二阶微分方程,哈密顿正则方程为一阶微分方程,但个数比前者多一倍。

希望以上资料对你有所帮助,附励志名言3条:
1、常自认为是福薄的人,任何不好的事情发生都合情合理,有这样平常心态,将会战胜很多困难。

2、君子之交淡如水,要有好脾气和仁义广结好缘,多结识良友,那是积蓄无形资产。

很多成功就是来源于无形资产。

3、一棵大树经过一场雨之后倒了下来,原来是根基短浅。

我们做任何事都要打好基础,才能坚固不倒。

相关文档
最新文档