新课标人教A版 必修一1.2.1 函数的概念课件

合集下载

1.2.1 函数的概念 课件(人教A必修1)

1.2.1 函数的概念 课件(人教A必修1)

栏目 导引
第一章
集合与函数概念
解:要使函数解析式有意义,
x+1≥0, (1)由 解得 x≥-1 且 x≠2, x-2≠0,
所以函数定义域为{x|x≥-1 且 x≠2}.
栏目 导引
第一章
集合与函数概念
x+3≠0, (2) -x≥0, x+4≥0,
且 x≠-3,
x≠-3, 即 x≤0, x≥-4,
1 x≥0 |x| (4)f(x)= ,g(x)= . x -1x<0
栏目 导引
第一章
集合与函数概念
【解 】 (1)f(x)的定义 域为 R,g(x)的 定义域为 {x|x≠2}. 由于定义域不同, f(x)与 g(x)不是相等 故 函数. (2)f(x)的定义域为 R,g(x)的定义域为 R,即定义 域相同. 由于 f(x)与 g(x)解析式不相同,则 f(x)与 g(x)不是 相等函数. (3)g(x)= x2=|x|=f(x),是相等函数.
栏目 导引
第一章
集合与函数概念
1 【解】 (1)∵f(x)= , 1+x 1 1 ∴f(2)= = ; 1+2 3 ∵g(x)=x2+2, ∴g(2)=22+2=6 1 1 (2)f(g(2))=f(6)= = 1+6 7
1 (3)f(x)= 的定义域为{x|x≠-1}, x+1 ∴值域是(-∞,0)∪(0,+∞) g(x)=x2+2 的定义域为 R,最小值为 2. ∴值域是[2,+∞)
集合与函数概念
变式训练
1.判断下列对应关系f是否为从集合A到集合 B的一个函数:
(1)A = {1,2,3} , B = {7,8,9} , f(1) = f(2) = 7 ,
f(3)=8; (2)A=Z,B={-1,1},n为奇数时, f(n)=-1,n为偶数时,f(n)=1; (3)A=B={1,2,3},f(x)=2x-1.

人教版高中数学必修一第一章函数的概念课件PPT

人教版高中数学必修一第一章函数的概念课件PPT
例3 (1)已知函数f(x)=2x+1,求f(0)和f [f (0)]; 解 f(0)=2×0+1=1. ∴f [f (0)]=f(1)=2×1+1=3. (2)求函数 g(x)=01,,xx为为无有理理数数, 的定义域,值域; 解 x为有理数或无理数,故定义域为R. 只有两个函数值0,1,故值域为{0,1}.
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念

高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.

人教版必修1数学课件1.2.1 函数的概念精选ppt课件

人教版必修1数学课件1.2.1 函数的概念精选ppt课件

(1)判断一个集合 A 到集合 B 的对应关系是不是函数关系的 方法:①A,B 必须都是非空数集;②A 中任意一个数在 B 中 必须有并且是唯一的实数和它对应.
[注意] A 中元素无剩余,B 中元素允许有剩余. (2)函数的定义中“任意一个 x”与“有唯一确定的 y”说明函 数中两变量 x,y 的对应关系是“一对一”或者是“多对一”,而不 能是“一对多”.
符号 (-∞,+∞) _[_a_,__+__∞__) (_a_,__+__∞_) (_-__∞_,__a_] (_-__∞_,__a_)
1.判断(正确的打“√”,错误的打“×”) (1) 函 数 值 域 中 的 每 一 个 数 都 有 定 义 域 中 的 数 与 之 对 应.(√ ) (2)函数的定义域和值域一定是无限集合.( × ) (3)定义域和对应关系确定后,函数值域也就确定了.( √ ) (4)若函数的定义域只有一个元素,则值域也只有一个元 素.( √ ) (5)区间表示数集,数集一定能用区间表示.( × ) (6)数集{x|x<-3},其区间表示为(-∞,-3).( √ )
2.函数 y= 1-x+ x的定义域为( D )
A.{x|x≤1}
B.{x|x≥0}
C.{x|x≥1,或 x≤0} D.{x|0≤x≤1}
3.已知 f(x)=x2+1,则 f(f(-1))=( D )
A.2
B.3
C.4
D.5
4.已知 f(x)=2x1+1,x∈{0,1,2},则函数 f(x)的值函数符号,f 表示对应关系,f(x)表示 x 对应的函 数值,绝对不能理解为 f 与 x 的乘积.在不同的函数中 f 的具 体含义不同,对应关系可以是解析式、图象、表格等(下节讲函 数这三种表示).函数除了可用符号 f(x)表示外,还可用 g(x), F(x)等表示.

高中数学新课标人教A版必修一:1.2.1 函数的概念 课件 (共16张PPT)

高中数学新课标人教A版必修一:1.2.1 函数的概念 课件 (共16张PPT)

3 两个函数相同:当且仅当三要素相同。
例1 y= x 3 + 2 x 是函数吗?
——函数的定义域和值域均为非空的数集
例2 y=± x 是函数吗?
——对于函数定义域中每一个x,值域中都有 唯一确定的y和它对应。(不是函数)
练习:下列图形哪个可以表示函数的图象?
y
0x
A
y
0x
B
y
0x
C
四、如何求函数的定义域
想 f(1)表示什么意思? 一 想 f(1)与f(x)有什么区别?
一般地,f(a)表示当x=a时的函数值,是一个常量。 f(x)表示自变量x的函数,一般情况下是变量。 14
例:已知函数f(x)=3x2-5x+2.求f(0),f(a)和 f(a+1)
想一想 f[f(0)]等于多少?
练习:f(x)=|x+1|,则f(-1) +f(1)等于多少?
六、小结
1 函数的概念
2 定义域的求法 3 对函数符号y=f(x)的理解
七、布置作业
一、复习回顾
初中时学过函数的概念,它是怎样叙述的? 设在一个变化过程中,有两个变量x和y,
如果对于x的每一个值,y都有唯一的值与 它对应.那么就说y是x的函数. 其中x叫做 自变量,y是函数值。
想一想
y=1(x∈R)是函数吗?
Go to 13
研究函数y 1 x
为了研究的方便,取几组特殊的x值和对应的y值
当x=1时,y=1
当x=2时,y
1 2
当xБайду номын сангаас3时,y 1
3
A
B
y1
x
1
1
1
2
2

人教版高中数学必修一1.2.1函数的的概念_ppt课件

人教版高中数学必修一1.2.1函数的的概念_ppt课件

题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;

人教版高中数学必修一(1.2.1-1函数的概念)ppt课件

人教版高中数学必修一(1.2.1-1函数的概念)ppt课件

定义域
f:x 2x1
值域
函数解析式:f(x)=2x+1或y=2x+1
-3
-5
-2
-3
-1
-1 f(x)2x1
0
1
1
3
2
5
3
7 对应法则
对应法则施
加的运算对
f ( 3 ) 2 ( 3 ) 象 1 5
对应法 则
运算对象
运算内容:乘以2加一
象,即y的值
-3 -2 -1 0 1 2 3
f(a )f,(a 1 )
练习:
g(x) 2x3 5x2 3x2,求g(3),
h(x) | 4x|,求h(8),h(a) x2
1 r(x) 3
x5,求r(3),r(6)
x
已知函数
x 2
f
(x)


x
2

2
x
(1)求 f ( 2 ) , f的( 1值);
2
集合B中有唯一元素和A中某个元素对应
开平方
B
A
3
300
-3
2
450
-2 1
600
-1
900
求正弦
A
一对多不是映射
求平方
B
1
1
-1
一对一是映射
A
乘以2
1
2
4
-2
2
3 -3
9
3
多对一是映射
一对一是映射
集合A中任何一个元素都在B中有对应
乘以2加1
A
1
3
5
1B
2 3 4 5 6 7
集合A中的元素5在集合B中没有元素与之对 应,不能称为映射。

高中数学 第一章 集合与函数概念 函数的概念课件 新人教A必修1

高中数学 第一章 集合与函数概念 函数的概念课件 新人教A必修1

❖ 本节重点:函数的概念、定义域、值域的求 法.
❖ 本节难点:(1)函数概念的理解.
❖ (2)实际应用问题中函数的定义域和复合函数 定义域.
❖ (一)对函数y=f(x)涵义的理解,应明确以 下几点:
❖ ①“A,B是非空数集”,若求得自变量取 值范围为∅,则此函数不存在.
❖ ②定义域、对应法则和值域是函数的三要 素,实际上,值域是由定义域和对应法则 决定的,所以看两个函数是否相等,只要 看这两个函数的定义域与对应法则是否相 同.
❖ (1)当每辆车的月租金定为3600元时,能租 出多少辆车?
❖ (2)当每辆车的月租金定为多少元时,租赁
[解析] (1)当每辆车的月租金为 3600 元时,未租出的 车辆数为:(3600-3000)÷50=12,所以这时租出了 88 辆车.
(2)设每辆车的月租金为 x 元,则租赁公司的月收益为: f(x)=(100-x-530000)(x-150)-x-530000×50,整理得:f(x) =-5x02 +162x-2100=-510(x-4050)2+307050.所以当 x= 4050 元时,f(x)最大,其最大值为 307050.即当每辆车的月租 金为 4050 元时,租赁公司的月收益最大,最大值为 307050 元.
❖ [分析] (1)据函数的定义:“对于集合A中的 任意一个元素,在集合B中有唯一确定的元素 与之对应”进行判断.
❖ (2)给定函数的解析式,也就给定了由定义域 到值域的对应法则,只要将自变量允许值代 入,就可以求得对应的函数值.
[解析] (1)①由 x2+y2=2 得 y=± 2-x2,因此由它不能 确定 y 是 x 的函数,如当 x=1 时,由它所确定的 y 的值有两 个±1.
②由 x-1+ y-1=1,得 y=(1- x-1)2+1,所以当 x 在{x|x≥1}中任取一个值时,由它可以确定唯一的 y 值与之 对应,故由它可以确定 y 是 x 的函数.

人教A版2003课标版高中数学 必修1第一章1.2.1 函数的概念(共42张PPT)

人教A版2003课标版高中数学 必修1第一章1.2.1 函数的概念(共42张PPT)
对于数集A中的任意一个时间t,按照对应关系(*),在数集 B中都有唯一的高度h和它对应.
函数的概念----疑中求解
实例分析2
下图中的曲线显示了南极上空臭氧层 空洞的面积从1979~2001年的变化情况.
S/106km2
30 26 25 20 15 10 5 0 1979 81 83 85 87 89 91 93 95
A t 1979 t 2001 B S 0 S 26
t/年 对于数集A中的每一个时刻t,按照图中的曲线,在 数集B中都有惟一确定的臭氧层空洞面积S和它对应.
97 99 2001
函数的概念----疑中求解
实例分况
时间 (年) 19911992 1993 1994 19951996 19971998 1999 2000 2001
函数的概念----导中求疑 问题1 回忆
y 930(0 x 70) 是函数吗?
用初中函数定义,难于判断!
请同学们回忆初中函数的定义是什么?
(用运动变化的观点定义函数)
函数的概念----导中求疑
应用集合与对应的知识来研究
函数的概念
二、教学情境设计说明
2. 疑中求解(自发解惑, 形成概念) 【教学安排】通过分析三个实例中变量之间的关系的共 同特点, 抽象概括出函数的概念 【设计意图】通过生活中的实例,引导学生分析和归纳 三个实例中变量之间的关系的共同特点,让学生在已有 认知结构的基础上建构新知识,从而达到概念的自然形 成,并建立数学概念,进而从数学的外部到数学的内部 ,启发学生运用概念探究新问题。目的是充分发挥学生 的学习主动性,经历和体验概念的建立过程。
函数的概念----导中求疑
“9.3”阅兵,扬国威.振人心

人教高中数学必修一A版《函数的概念》函数的概念与性质说课教学课件

人教高中数学必修一A版《函数的概念》函数的概念与性质说课教学课件

(2)如何理解“当两个函数的定义域相同,并且对应关系完全一致
时,两个函数才是同一个函数”这句话?
提示:这句话说明:(1)定义域不同,两个函数也就不同;(2)对应关系
不同,两个函数也就不相同;(3)即使定义域和值域都分别相同的两
个函数,它们也不一定是同一个函数.例如:函数y=2x和函数y=x-1,
其定义域都是R,值域都是R.但它们的对应关系是不同的,因此这两
数;如果定义域相同,再化简函数的表达式,如果化简后的函数表达
式相同,那么它们是同一个函数,否则它们不是.
课堂篇
探究学习
探究一
探究二
探究三
探究四
思想方法
随堂演练
解:(1)因为函数 f(x)=( )2 的定义域为{x|x≥0},
而 g(x)= 2 的定义域为{x|x∈R},它们的定义域不同,
所以它们不表示同一个函数.
是从运动变化的观点出发,新定义的对应关系是从集合与对应的观
点出发.
课前篇
自主预习



6.判断正误:(1)对应关系ຫໍສະໝຸດ 值域都相同的两个函数是相等函数.(
)
(2)函数的值域中每个数在定义域中都只存在一个数与之对应.
(
)
答案:(1)× (2)×
课前篇
自主预习



二、区间的概念及表示
1.阅读教材
设a,b∈R,且a<b,规定如下:
思想方法
变式训练 3(1)求函数 y= 2 + 3 −
1
随堂演练
1
+ 的定义域.
2-
(2)已知函数 f(x)的定义域是[-1,4],求函数 f(2x+1)的定义域.

高中数学第一章集合与函数概念1.2.1函数的概念课件新人教A版必修1

高中数学第一章集合与函数概念1.2.1函数的概念课件新人教A版必修1
.
(2){x|x>1,且 x≠2}用区间表示为
解析:(1){x|2<x≤4}用区间表示为(2,4].
(2){x|x>1,且 x≠2}用区间表示为(1,2)∪(2,+∞).
答案:(1)(2,4] (2)(1,2)∪(2,+∞)
第七页,共29页。
思考辨析
判断下列说法是否正确,正确的在后面(hòu mian)的括号内画“√”,
非正数
y
1
-1
A.
x
0
奇数
偶数
y
1
0
-1
B.
x
有理数
无理数
y
1
-1
C.
x
自然数 整数
有理数
y
1
0
-1
D.
第二十四页,共29页。
2
3
4
5
1
2
3
4
5
解析:A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、
有理数之间存在(cúnzài)包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A,B,D
即(x-2)(x+3)≠0,
所以 x-2≠0 或 x+3≠0,即 x≠2 或 x≠-3.
故所求函数的定义域为{x|x≠2,或 x≠-3}.
第二十一页,共29页。
探究(tànjiū)

探究(tànjiū)

探究(tànjiū)

思维辨析
第二十二页,共29页。
探究(tànjiū)

探究
(tànjiū)二

-1 ≠ 0,
≤ 4,

高一数学必修一课件1.2.1函数的概念

高一数学必修一课件1.2.1函数的概念
2.y = ax2 + bx + c(a 0)
定义域是R,值域是集合B,当a>0时,B={y︱ y≥ 4ac - b2},当a<0时,B={y︱y≤ 4ac - b}2. 对于R4中a 的任意一个数x,在B中都有4a唯一确定的
y = a素x2是+定b构x义+成c域函(a、数0对的) 和应三它关要对应.
3.y 系= k和(值k 域 0. ) x
定义域是A={ xR︱x≠0 },值域是R.
对于集合A中的每一个x,在R中都有唯一确定的 值 y = k (k 0) 与它对应.
x
用实心点表示包括在区 与函数相间关内的的概端念点—,—用区空间心点表示
不包括在区间内的点.
定义 {x︱a≤x≤b} {x︱a<x<b}
域就是{x︱x<0}.
(2)使根式 x + 2 有意义的实数的集合是{x︱x≥-2}, 使分式 1 成立的实数的集合是{x︱x≠10}.所以,这
10 - x
个函数的定义域就是
{x︱x≥-2} {x︱x≠10}={x︱x ≥-2,且x≠10} .
例2 已知函数 f(x) = 3 - x + x + 1 - 1 (1)求f(-1),f(0)的值; (2)当-1≤a ≤ 3时,求f(a)的值.
x
A. f ( x) ln x B. f (x) 1
x
C. f (x) | x | D. f ( x) e x
1
解析:y = x的定义域为{x|x>0},而 f ( x) ln x
的定义域也为{x|x>0}.
3.(2008 山东)设函数
f
(
x
)

必修1课件1.2.1-1 函数的概念 (一)

必修1课件1.2.1-1 函数的概念 (一)

知识探究(三)
国际上常用恩格尔系数反映一个国家人民生活质 量的高低,恩格尔系数越低,生活质量越高.下表是 “八五”计划以来我国城镇居民恩格尔系数变化情况.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 时间 (年)
恩格尔 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9 系数
练习1、下列说法中正确的有( A ) (1)y=f(x)与y=f(t)表示同一个函数 (2) y=f(x)与y=f(x+1)不可能是同一个函数 (3) f(x)=1与g(x)=x0是同一函数 (4)定义域和值域都相同的两个函数是同一个函数 A、1个 B、2个 C、3个 D、4个
练习2、下列各组函数表示同一函数的是(D )
求定义域的几种情况:
(1)如果f(x)是整式,那么函数的定义域是实数R
(2)如果f(x)是分式,那么函数的定义域是使分母不等 于0的实数的集合
(3)如果f(x)是二次根式,那么函数的定义域是使根号 内的式子大于或等于0的实数的集合 (4)如果f(x)是由几个部分的数学式子构成的,那么函 数的定义域是使各部分式子都有意义的实数集合. (即求各集合的交集)
1 而 x 2 时,分式 有意义 x2
∴这个函数的定义域是:
x | x 2
例2.求下列函数的定义域:
(2) f ( x) 3x 2
②解:要使函数有意义,则:
3x 2 0
2 x 3
∴这个函数的定义域是{x|
2 x 3
}.
1 例2.求下列函数的定义域:(3) f ( x) x 1 2 x

高中数学 1.2.1函数的概念(第2课时)课件 新人教A版必

高中数学 1.2.1函数的概念(第2课时)课件 新人教A版必

前后整体范围一致
f (x 1)的定义域为 (0,2]
定义域就是指x的取值范围
题型三:
抽象函数的定义域
已知f (g(x))的定义域,求f ((x))的定义域
2.已知函数f (x2 2)的定义域为[1, ) 求f ( x )的定义域
2
f ( x )的定义域为[2,) 2
本课小结
• 复习并巩固了函数的概念
下列函数的定义域。
(1) f (2x 1) (2) f (1 x) f (x)
(1)[1,0] (2)[0,1]
可简要概括为:
1.定义域仅指x的取值;
2.对同一对应法则括号里的
整体范围一致
题型二:
抽象函数的定义域
已知f (g(x))的定义域,求f (x)的定义域
例2.已知f (x 1)的定义域为[1,1],
求f ( x )的定义域 2
题型三:
抽象函数的定义域
已知f (g(x))的定义域,求f ((x))的定义域
练习 : 1.已知函数f (2x 1)的定义域 0,1 ,
求f ( x 1)的定义域
解:f (2x 1)中0 x 1
定义域就是指x的取值范围
1 2x 11
f (x 1)中1 x 1 1 0 x 2
练:已知f ( x 3)的定义域为[4,9], 求函数f (x)的定义域。
f (x)的定义域为:[1,0]
题型三:
抽象函数的定义域
已知f (g(x))的定义域,求f ((x))的定义域
练习 : 1.已知函数f (2x 1)的定义域 0,1 ,
求f ( x 1)的定义域
2.已知函数f (x2 2)的定义域为[1, )
函数的概念

人教版数学必修一1.2.1函数的概念精品课件(共21张PPT)

人教版数学必修一1.2.1函数的概念精品课件(共21张PPT)
A={t|0≤t≤26} B={h|0≤h≤845}
§1.2.1函数的概念
(2) 近几十年来,大气层中的臭氧迅速减少, 因而出现了臭氧层空洞问题.下图中的曲线显 示了南极上空臭氧空洞的面积从1979~2001年 的变化情况:
§1.2.1函数的概念
根据上图中的曲线可知,时间t的变化范围是 数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化 范围是数集B ={S|0≤S≤26}.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
恩格尔系数( % ) 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001} B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
实例2(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞 问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.
A={t|1979≤t≤2001}
B ={S|0≤S≤26}
实例3 (3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔 系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表 明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
记作: y=f(x),xA
其中, x叫做自变量, x的取值范围A叫做函数的定义域 (domain);与x的值相对应的y值叫做函数值,函数值的集合 {f(x)|x∈A}叫做函数的值域(range).

高中数学人教A版必修1课件:1.2函数及其表示

高中数学人教A版必修1课件:1.2函数及其表示
2.分式1x有意义的条件是 x≠0,无理式 x有意 义的条件是 x≥0,x0 有意义的条件是 x≠0.
1.函数的概念
(1)函数的定义 设A,B是非空的_数__集__,如果按照某种确定的对 应关系f,使对于集合A中的_任__意__一__个__数__x_,在集
合B中都有_唯__一__确__定__的__数__f_(x_)__和它对应,那么就 称_f:__A__→__B___为从集合A到集合B的一个函数,记 作_y_=__f(_x_)_,__x_∈__A. 函数y=f(x)中,x叫自变量,_x_的__取__值__范__围___叫函 数的定义域,与x的值相对应的y值叫做_函__数__值__, 函数值的集合_{_f(_A_)_|x_∈__A__}_叫做函数的值域.显 然,值域是集合B的_子__集__.
①明确求的量,如本例求的是x的范围,而不是m 的范围; ②明确是对哪个量进行的分类讨论,如本例是对 m进行分类,而不是对x分类; ③如果求的量与分类的量是同一个量,则结果取 并集,如在解|x-1|+|2x+1|≤5时,求的是x范围, 也是对x进行分类,因此最后是将各种分类结果取 并集; ④如果求的量与分类的量不是同一个量,如本例, 则最后既不取交集也不取并集. [注意] 分类讨论的问题最后需进行总的概括.
,即
x≤5
x≠2 x≠-1
∴原函数的定义域为(-∞,-1)∪(-1,2)∪
(2,5]
[题后感悟] 定义域的求法: (1)如果f(x)是整式,那么函数的定义域是实数 集R; (2)如果f(x)是分式,那么函数的定义域是使分 母不为0的实数的集合; (3)如果f(x)为偶次根式,那么函数的定义域是 使根号内的式子大于或等于0的实数的集合;
2.区间与无穷的概念 (1)区间定义及表示 设a,b是两个实数,而且a<b.

人教版A版必修一《函数的概念及其表示》课件ppt

人教版A版必修一《函数的概念及其表示》课件ppt

自主诊断 2.(多选)(2023·南宁质检)下列图象中,是函数图象的是



在函数的对应关系中,一个自变量只对应一个因变量,在图象中, 图象与平行于y轴的直线最多有一个交点,故选项B中的图象不是函 数图象.
自主诊断
3.(多选)下列选项中,表示的不是同一个函数的是
A.y= x3+-3x与 y=
x+3 3-x
(4)若对任意实数x,均有f(x)-2f(-x)=9x+2,求f(x)的解析式.
0
(解方程组法)∵f(x)-2f(-x)=9x+2,

∴f(-x)-2f(x)=9(-x)+2,

由①+2×②得-3f(x)=-9x+6,
∴f(x)=3x-2(x∈R).
思维升华
函数解析式的求法 (1)配凑法.(2)待定系数法.(3)换元法.(4)解方程组法.
√B.y=x2 与 y=(x-1)2 √C.y= x2与 y=x
√D.y=1 与 y=x0
自主诊断
对于 A 选项,y= x3+-3x的定义域是[-3,3), y= x3+-3x的定义域是[-3,3), 并且 x3+-3x= x3+-3x,所以两个函数的定义域相同,对应关系相同, 所以是同一个函数;
√C.f(x)=x-,xx,≥x0<,0, g(t)=|t|
D.f(x)=x+1,g(x)=xx2--11
对于 A,f(x)= x2的定义域为 R,g(x)=( x)2 的定义域为[0,+∞), 不是同一个函数; 对于B,f(x)的定义域为{x|x≠0},g(x)的定义域为{x|x≠1},不是同一 个函数; 对于C,两个函数的定义域、对应关系均相同,是同一个函数; 对于 D,f(x)=x+1 的定义域为 R,g(x)=xx2--11的定义域为{x|x≠1}, 不是同一个函数.

人教版高中数学必修一1.2.1函数的概念ppt课件

人教版高中数学必修一1.2.1函数的概念ppt课件

编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
例2、求下列函数的定义域。
(1)
f (x)
1
(12x)(x1)
(2) f(x) x4 x2 1
(3) ;f(x) x1 2- x
例3、 已知: f =(xx2)x+3 求:f(-1), f(a),
f(x+1), f(
1 ),f(x2),f(f(x)), x
注意: 1在 y f中(xf)表示对应法则,不同 的函数其含义不一样。
初中已经学过:正比例函数、反比例函数、 一次函数、二次函数等。
1.[引例1](P15)一枚炮弹发射后,经过26s落到地面击
中目标。炮弹的射高为845m,且炮弹距地面的高度h
(单位:m)随时间t(单位:s)变化的规律是
h13t 05t2 (﹡)
提出以下问题: (1) 炮弹飞行1秒、8秒、15秒、25秒时距地面多高? (2) 炮弹何时距离地面最高? (3) 你能指出变量t和h的取值范围吗?分别用集合A和 集合B表示出来。 (4) 对于集合A中的任意一个时间t,按照对应关系
• 1930 年库拉托夫斯基(Kuratowski)用集合概念给出现代函数定义为“若对 集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上 定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前开后闭区间 开区间 开区间
[a, +∞) (a, +∞)
(-∞ ,b] (-∞, b) (-∞, +∞)
/bkpt
二、区间的概念
反馈练习
2.将下列集合用区间表示出来:
(1){x|x≥1}=
[1,+∞)

(2){x|x<1或x≥2}= (-∞,1)∪[2,+∞) ; (3){x|x=1或2≤x≤8}= {1}∪[2,8] .
/bkpt
二、区间的概念
提出问题
2.上述三种区间的定义、名称、符号和数轴表示如下表的前四行,
我们用“∞”表示“无穷大”,类似地,把下表填写完整.
设a,b是两个实数,且a<b,如下表所示:
Jinxing education
/bkpt
二、区间的概念
结论:
定义
(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b];
(2)满足不等式a<x<b的实数x的集合叫做开区间,表示为(a,b); (3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,
表示为[a,b),(a,b];实数a与b都叫做相应区间的端点.
Jinxing education
是函数符号,不是表示“y等于f与x的乘积”,f(x)也不一定是解析式,
在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.
Jinxing education
/bkpt
四、求函数的值
提出问题
2.f(x)与f(a)有什么区别与联系?
结论:f(a)表示当x=a时函数f(x)的值,是一个常量,而f(x)表示以x为 自变量的函数,表示数x对应的函数值,它是一个变量,f(a)是f(x) 在x=a处的一个特殊值.如一次函数f(x)=3x+4,当x=8时, f(8)=3×8+4=28是一个常数.
/bkpt
五、同一函数
提出问题
1.一个函数有自变量和因变量两个变量,两个变量和对应关系的
表示可以用任意的字母,那么,不同的字母表示对两个函数是否
相同有影响吗?
结论:自变量、因变量和对应关系用什么字母表示与函数无关,不 影响两个函数的关系. 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和 值域.由于值域是由定义域和对应关系决定的,所以,如果两个函 数的定义域相同,并且对应关系完全一致,我们就称这两个函数相 等.
Jinxing education
/bkpt
课堂检测 C
D
Jinxing education
/bkpt
课堂检测
-1
Jinxing education
/bkpt
布置作业
作业一:教材第19页练习第1、2、3题. 作业二:作业内容见后面的“课时练案”.
Jinxing education
/bkpt
三、函数的定义域与值域
提出问题
1.我们学习过一次函数、二次函数和反比例函数.它们的定义域、 值域、对应关系分别是什么?
Jinxing education
/bkpt
三、函数的定义域与值域
提出问题
2.从问题1引申,已知一个函数的解析式,如何求它的定义域?
“y=f(x)”的含义是什么?
结论:符号“y=f(x)”中的“f”表示对应关系,在不同的具体函数中,“f”
的含义不一样.符号y=f(x)就是“y是x的函数”的数学表示,应理解为x
是自变量,它是法则所施加的对象;f是对应关系,它可以是一个 或几个解析式,可以是图象、表格,也可以是文字描述.y=f(x)仅仅
Jinxing education
/bkpt
四、数学中的常用数集及其记法
反馈练习
解:(1)∈ (2)∉ (6)∉ (7)∉
(3)∉
(4)∈
(5)∈
(8)∈
Jinxing education
/bkpt
四、求函数的值
典型 例题
Jinxing education
提出问题
4.在教材的实例3中,恩格尔系数与时间之间的关系是否和前两 个实例中的两个变量之间的关系相似?如何用集合与对应的语言 来描述这个关系?
结论:同上两个实例类似.时间x的变化范围构成一个数集A,恩格尔
系数y的变化范围构成一个数集B,对于数集A中的每一个时间x, 按照给定的表格,在数集B中都有唯一确定的恩格尔系数y和它对
/bkpt
一、函数的概念
提出问题
6:根据上述三个实例的共同特点,你能运用集合与对应的语言 刻画函数概念吗?
结论:一般地,设A、B都是非空的数集,如果按照某种确定的对应关
系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x) 和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作
Jinxing education
/bkpt
四、求函数的值
提出问题
2.f(x)与f(a)有什么区别与联系?
结论:f(a)表示当x=a时函数f(x)的值,是一个常量,而f(x)表示以x为 自变量的函数,表示数x对应的函数值,它是一个变量,f(a)是f(x) 在x=a处的一个特殊值.如一次函数f(x)=3x+4,当x=8时, f(8)=3×8+4=28是一个常数.
名称
符号 [a,b] (a,b) [a,b) (a,b]
数轴表示
{x|a≤x≤b} 闭区间 {x|a<x<b} 开区间 {x|a≤x<b} 半开半闭区间 {x|a<x≤b} 半开半闭区间
{x|x≥a} {x|x>a}
{x|x≤b} {x|x<b} R
Jinxing education
前闭后开区间 开区间
1.1.2
集合间的基本关系
学习目标:
1.体会函数是描述变量之间依赖关系的重要数学模型.学习用集合与 对应的语言来刻画函数,体会对应关系在刻画函数中的作用. 2.了解构成函数的要素. 3.会求一些简单函数的定义域和值域.
Jinxing education
/bkpt
重点难点
重点 体会函数是描述变量之间依赖关系 的重要数学模型,正确理解函数的 概念 难点 函数概念及符号y=f(x)的理解
结论:一般地,设A、B都是非空的数集,如果按照某种确定的对应关
系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x) 和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作
y=f(x),x∈A,其中x叫自变量,x的取值范围A叫做函数的定义域,函数值
的集合{f(x)|x∈A}叫做函数的值域.显然{f(x)|x∈A}⊆B.
Jinxing education
/bkpt
y=f(x),x∈A,其中x叫自变量,x的取值范围A叫做函数的定义域,函数值
的集合{f(x)|x∈A}叫做函数的值域.显然{f(x)|x∈A}⊆B.
Jinxing education
/bkpt
一、函数的概念
提出问题
6:根据上述三个实例的共同特点,你能运用集与对应的语言 刻画函数概念吗?
域和值域不能唯一地确定函数的对应法则.例如:函数y=2x和函数
y=x-1,其定义域都是x∈R,值域都是y∈R.也就是说,这两个函数 的定义域和值域都分别相同,但它们的对应法则是不同的,因此这
两个函数不是同一函数.
Jinxing education /bkpt
五、同一函数
典型 例题
Jinxing education
/bkpt
一、函数的概念
提出问题
2.对教材中的实例1,你能得出炮弹飞行1 s,5 s,10 s,20 s时 距地面多高吗?其中,t的变化范围是多少?变量t与变量h之间 有什么关系?
结论:炮弹飞行1 s,5 s,10 s,20 s时距地面高度分别为125 m,475 m,800
Jinxing education
/bkpt
一、函数的概念
反馈练习
B
Jinxing education
/bkpt
二、区间的概念
提出问题
1.阅读教材第17页例1上面的内容,回答闭区间、开区间、半开
半闭区间的定义与表示方法.
结论:设a,b是两个实数,而且a<b,我们规定:
Jinxing education
/bkpt
五、同一函数
提出问题
2.如何理解“当两个函数的定义域相同,并且对应关系完全一致
时,两个函数才是同一函数”这句话?
结论:这句话说明:(1)定义域不同,两个函数也就不同;(2) 对应关系不同,两个函数也就不相同;(3)即使定义域和值域都 分别相同的两个函数,它们也不一定是同一函数.因为函数的定义
Jinxing education
/bkpt
一、函数的概念
提出问题
1.初中我们已经学习过函数的概念,它是如何用函数描述变量之 间的依赖关系的呢? 结论:在一个变化过程中,有两个变量x和y,如果给定了一个x值,
相应地就确定唯一的一个y值,那么我们称y是x的函数,其中x是自
变量,y是因变量.
三、函数的定义域与值域
反馈练习
4.函数y=f(x+1)的定义域是[-2,3],求y=f(2x-1)的定义域.
Jinxing education
/bkpt
三、函数的定义域与值域
提出问题
Jinxing education
/bkpt
四、求函数的值
提出问题
1.在函数概念中,如何理解函数符号“y=f(x)”中的“f”?符号
在同一对应关系作用下,不管对应关系的对象是字母还是代数
式,其制约条件一致,其地位一致,其所取的范围一致.根据这 些信息,思考求抽象函数定义域的类型和解法有哪些?
相关文档
最新文档